U.S. flag An official website of the United States government
  1. Home
  2. Science & Research
  3. Bioinformatics Tools
  4. MicroArray/Sequencing Quality Control (MAQC/SEQC)
  5. MicroArray/Sequencing Quality Control (MAQC/SEQC) Publications
  1. MicroArray/Sequencing Quality Control (MAQC/SEQC)

MicroArray/Sequencing Quality Control (MAQC/SEQC) Publications

Journal Special Issues or Manuscript Collections Featuring MAQC/SECQ

Nature Biotechnology — SEQC2 Article Collection (2020-2022)

Genome Biology — SEQC2 Article Collection (2021-2022)

Nature Biotechnology — 2014 Special Issue

Nature Biotechnology — August 2010 Issue

Pharmacogenomics Journal — August 2010 Issue

Nature Biotechnology — September 2006

 

Year Title Authors Full Citation
2022 Achieving Robust Somatic Mutation Detection with Deep Learning Models Derived from Reference Data Sets of a Cancer Sample Sahraeian S.M.E., Fang L.T., Karagiannis K., Moos M., Smith S., Santana-Quintero L., Xiao C., Colgan M., Hong H., Mohiyuddin M., et al.  Achieving Robust Somatic Mutation Detection with Deep Learning Models Derived from Reference Data Sets of a Cancer Sample
Sahraeian S.M.E., Fang L.T., Karagiannis K., Moos M., Smith S., Santana-Quintero L., Xiao C., Colgan M., Hong H., Mohiyuddin M., et al. 
Genome Biol. 2022, 23(1):12.
2022 Assessing Reproducibility of Inherited Variants Detected with Short-Read Whole Genome Sequencing Pan B., Ren L., Onuchic V., Guan M., Kusko R., Bruinsma S., Trigg L., Scherer A., Ning B., Zhang C., et al. Assessing Reproducibility of Inherited Variants Detected with Short-Read Whole Genome Sequencing
Pan B., Ren L., Onuchic V., Guan M., Kusko R., Bruinsma S., Trigg L., Scherer A., Ning B., Zhang C., et al.
Genome Biol. 2022, 23(1):2.
2022 Deep Oncopanel Sequencing Reveals Within Block Position-Dependent Quality Degradation in FFPE Processed Samples Zhang Y., Blomquist T.M., Kusko R., Stetson D., Zhang Z., Yin L., Sebra R., Gong B., Lococo J.S., Mittal V.K., et al.  Deep Oncopanel Sequencing Reveals Within Block Position-Dependent Quality Degradation in FFPE Processed Samples
Zhang Y., Blomquist T.M., Kusko R., Stetson D., Zhang Z., Yin L., Sebra R., Gong B., Lococo J.S., Mittal V.K., et al. 
Genome Biol. 2022, 23(1):141.
2022 Personalized Genome Assembly for Accurate Cancer Somatic Mutation Discovery Using Tumor-Normal Paired Reference Samples Xiao C., Chen Z., Chen W., Padilla C., Colgan M., Wu W., Fang L.T., Liu T., Yang Y., Schneider V., et al.

Personalized Genome Assembly for Accurate Cancer Somatic Mutation Discovery Using Tumor-Normal Paired Reference Samples
Xiao C., Chen Z., Chen W., Padilla C., Colgan M., Wu W., Fang L.T., Liu T., Yang Y., Schneider V., et al.
Genome Biol. 2022, 23(1):237.

2022 Structural Variant Analysis of a Cancer Reference Cell Line Sample Using Multiple Sequencing Technologies Talsania K., Shen T.W., Chen X., Jaeger E., Li Z., Chen Z., Chen W., Tran B., Kusko R., Wang L., et al. Structural Variant Analysis of a Cancer Reference Cell Line Sample Using Multiple Sequencing Technologies
Talsania K., Shen T.W., Chen X., Jaeger E., Li Z., Chen Z., Chen W., Tran B., Kusko R., Wang L., et al.
Genome Biol. 2022, 23(1):255.
2022 Ultra-Deep Multi-Oncopanel Sequencing of Benchmarking Samples with a Wide Range of Variant Allele Frequencies Gong B., Kusko R., Jones W., Tong W., and Xu J.  Ultra-Deep Multi-Oncopanel Sequencing of Benchmarking Samples with a Wide Range of Variant Allele Frequencies
Gong B., Kusko R., Jones W., Tong W., and Xu J. 
Sci Data. 2022, 9(1):288.
2022 Ultra-Deep Sequencing Data from a Liquid Biopsy Proficiency Study Demonstrating Analytic Validity Gong B., Deveson I.W., Mercer T., Johann D.J. Jr., Jones W., Tong W., and Xu J.  Ultra-Deep Sequencing Data from a Liquid Biopsy Proficiency Study Demonstrating Analytic Validity
Gong B., Deveson I.W., Mercer T., Johann D.J. Jr., Jones W., Tong W., and Xu J. 
Sci Data. 2022, 9(1):170.
2022 Using Synthetic Chromosome Controls to Evaluate the Sequencing of Difficult Regions within the Human Genome Reis A.L.M., Deveson I.W., Madala B.S., Wong T., Barker C., Xu J., Lennon N., Tong W., Mercer T.R., and Consortium S.  Using Synthetic Chromosome Controls to Evaluate the Sequencing of Difficult Regions within the Human Genome.
Reis A.L.M., Deveson I.W., Madala B.S., Wong T., Barker C., Xu J., Lennon N., Tong W., Mercer T.R., and Consortium S. 
Genome Biol. 2022, 23(1):19.
2021 A Multi-Center Cross-Platform Single-Cell RNA Sequencing Reference Dataset Chen X., Yang Z., Chen W., Zhao Y., Farmer A., Tran B., Furtak V., Moos M. Jr., Xiao W., and Wang C. A Multi-Center Cross-Platform Single-Cell RNA Sequencing Reference Dataset
Chen X., Yang Z., Chen W., Zhao Y., Farmer A., Tran B., Furtak V., Moos M. Jr., Xiao W., and Wang C. 
Sci Data. 2021, 8(1):39.
2021 A Multicenter Study Benchmarking Single-Cell RNA Sequencing Technologies Using Reference Samples Chen W., Zhao Y., Chen X., Yang Z., Xu X., Bi Y., Chen V., Li J., Choi H., Ernest B., et al. A Multicenter Study Benchmarking Single-Cell RNA Sequencing Technologies Using Reference Samples
Chen W., Zhao Y., Chen X., Yang Z., Xu X., Bi Y., Chen V., Li J., Choi H., Ernest B., et al.
Nat Biotechnol. 2021, 39(9):1103-1114.
2021 A Verified Genomic Reference Sample for Assessing Performance of Cancer Panels Detecting Small Variants of Low Allele Frequency Jones W., Gong B., Novoradovskaya N., Li D., Kusko R., Richmond T.A., Johann D.J. Jr., Bisgin H., Sahraeian S.M.E., Bushel P.R., et al. A Verified Genomic Reference Sample for Assessing Performance of Cancer Panels Detecting Small Variants of Low Allele Frequency
Jones W., Gong B., Novoradovskaya N., Li D., Kusko R., Richmond T.A., Johann D.J. Jr., Bisgin H., Sahraeian S.M.E., Bushel P.R., et al.
Genome Biol. 2021, 22(1):111.
2021 Advancing NGS Quality Control to Enable Measurement of Actionable Mutations in Circulating Tumor DNA Willey J.C., Morrison T.B., Austermiller B., Crawford E.L., Craig D.J., Blomquist T.M., Jones W.D., Wali A., Lococo J.S., Haseley N., et al. Advancing NGS Quality Control to Enable Measurement of Actionable Mutations in Circulating Tumor DNA
Willey J.C., Morrison T.B., Austermiller B., Crawford E.L., Craig D.J., Blomquist T.M., Jones W.D., Wali A., Lococo J.S., Haseley N., et al.
Cell Rep Methods. 2021, 1(7):100106.
2021 Cross-Oncopanel Study Reveals High Sensitivity and Accuracy with Overall Analytical Performance Depending on Genomic Regions Gong B., Li D., Kusko R., Novoradovskaya N., Zhang Y., Wang S., Pabon-Pena C., Zhang Z., Lai K., Cai W., et al. Cross-Oncopanel Study Reveals High Sensitivity and Accuracy with Overall Analytical Performance Depending on Genomic Regions
Gong B., Li D., Kusko R., Novoradovskaya N., Zhang Y., Wang S., Pabon-Pena C., Zhang Z., Lai K., Cai W., et al.
Genome Biol. 2021, 22(1):109.
2021 Establishing Community Reference Samples, Data and Call Sets for Benchmarking Cancer Mutation Detection Using Whole-Genome Sequencing Fang L.T., Zhu B., Zhao Y., Chen W., Yang Z., Kerrigan L., Langenbach K., de Mars M., Lu C., Idler K., et al.  Establishing Community Reference Samples, Data and Call Sets for Benchmarking Cancer Mutation Detection Using Whole-Genome Sequencing
Fang L.T., Zhu B., Zhao Y., Chen W., Yang Z., Kerrigan L., Langenbach K., de Mars M., Lu C., Idler K., et al. 
Nat Biotechnol. 2021, 39(9):1151-1160.
2021 Evaluating the Analytical Validity of Circulating Tumor DNA Sequencing Assays for Precision Oncology Deveson I.W., Gong B., Lai K., LoCoco J.S., Richmond T.A., Schageman J., Zhang Z., Novoradovskaya N., Willey J.C., Jones W., et al. Evaluating the Analytical Validity of Circulating Tumor DNA Sequencing Assays for Precision Oncology
Deveson I.W., Gong B., Lai K., LoCoco J.S., Richmond T.A., Schageman J., Zhang Z., Novoradovskaya N., Willey J.C., Jones W., et al.
Nat Biotechnol. 2021, 39(9):1115-1128.
2021 FDA-Led Consortium Studies Advance Quality Control of Targeted Next Generation Sequencing Assays for Precision Oncology Li D., Kusko R., Ning B., Tong W., Johann D.J. Jr., and Xu J. FDA-Led Consortium Studies Advance Quality Control of Targeted Next Generation Sequencing Assays for Precision Oncology
Li D., Kusko R., Ning B., Tong W., Johann D.J. Jr., and Xu J.
Precis Cancer Med. 2021, 4:32.
2021 Hidden Biases in Germline Structural Variant Detection Khayat M.M., Sahraeian S.M.E., Zarate S., Carroll A., Hong H., Pan B., Shi L., Gibbs R.A., Mohiyuddin M., Zheng Y., et al. Hidden Biases in Germline Structural Variant Detection
Khayat M.M., Sahraeian S.M.E., Zarate S., Carroll A., Hong H., Pan B., Shi L., Gibbs R.A., Mohiyuddin M., Zheng Y., et al. 
Genome Biol. 2021, 22(1):347.
2021 Orchestrating and Sharing Large Multimodal Data for Transparent and Reproducible Research Mammoliti A., Smirnov P., Nakano M., Safikhani Z., Eeles C., Seo H., Nair S.K., Mer A.S., Smith I., Ho C., et al.  Orchestrating and Sharing Large Multimodal Data for Transparent and Reproducible Research.
Mammoliti A., Smirnov P., Nakano M., Safikhani Z., Eeles C., Seo H., Nair S.K., Mer A.S., Smith I., Ho C., et al. 
Nat Commun. 2021, 12(1):5797.
2021 Performance Assessment of DNA Sequencing Platforms in the ABRF Next-Generation Sequencing Study Foox J., Tighe S.W., Nicolet C.M., Zook J.M., Byrska-Bishop M., Clarke W.E., Khayat M.M., Mahmoud M., Laaguiby P.K., Herbert Z.T., et al.  Performance Assessment of DNA Sequencing Platforms in the ABRF Next-Generation Sequencing Study
Foox J., Tighe S.W., Nicolet C.M., Zook J.M., Byrska-Bishop M., Clarke W.E., Khayat M.M., Mahmoud M., Laaguiby P.K., Herbert Z.T., et al. 
Nat Biotechnol. 2021, 39(9):1129-1140.
2021 Reporting Guidelines for Human Microbiome Research: the STORMS Checklist Mirzayi C., Renson A., Genomic Standards C., Massive A., Quality Control S., Zohra F., Elsafoury S., Geistlinger L., Kasselman L.J., Eckenrode K., et al. Reporting Guidelines for Human Microbiome Research: the STORMS Checklist
Mirzayi C., Renson A., Genomic Standards C., Massive A., Quality Control S., Zohra F., Elsafoury S., Geistlinger L., Kasselman L.J., Eckenrode K., et al.
Nat Med. 2021, 27(11):1885-1892.
2021 The SEQC2 Epigenomics Quality Control (EpiQC) Study Foox J., Nordlund J., Lalancette C., Gong T., Lacey M., Lent S., Langhorst B.W., Ponnaluri V.K.C., Williams L., Padmanabhan K.R., et al. The SEQC2 Epigenomics Quality Control (EpiQC) Study
Foox J., Nordlund J., Lalancette C., Gong T., Lacey M., Lent S., Langhorst B.W., Ponnaluri V.K.C., Williams L., Padmanabhan K.R., et al.
Genome Biol. 2021, 22(1):332.
2021 The Sequencing Quality Control 2 Study: Establishing Community Standards for Sequencing in Precision Medicine Mercer T.R., Xu J., Mason C.E., Tong W., MAQC/SEQC2 Consortium. The Sequencing Quality Control 2 Study: Establishing Community Standards for Sequencing in Precision Medicine
Mercer T.R., Xu J., Mason C.E., Tong W., MAQC/SEQC2 Consortium.
Genome Biol. 2021, 22(1):306.
2021 Toward Best Practice in Cancer Mutation Detection with Whole-Genome and Whole-Exome Sequencing Xiao W., Ren L., Chen Z., Fang L.T., Zhao Y., Lack J., Guan M., Zhu B., Jaeger E., Kerrigan L., et al. Toward Best Practice in Cancer Mutation Detection with Whole-Genome and Whole-Exome Sequencing
Xiao W., Ren L., Chen Z., Fang L.T., Zhao Y., Lack J., Guan M., Zhu B., Jaeger E., Kerrigan L., et al. 
Nat Biotechnol. 2021, 39(9):1141-1150.
2021 Whole Genome and Exome Sequencing Reference Datasets from a Multi-Center and Cross-Platform Benchmark Study Zhao Y., Fang L.T., Shen T.W., Choudhari S., Talsania K., Chen X., Shetty J., Kriga Y., Tran B., Zhu B., et al. Whole Genome and Exome Sequencing Reference Datasets from a Multi-Center and Cross-Platform Benchmark Study
Zhao Y., Fang L.T., Shen T.W., Choudhari S., Talsania K., Chen X., Shetty J., Kriga Y., Tran B., Zhu B., et al.
Sci Data. 2021, 8(1):296.
2021 X-CNV: Genome-Wide Prediction of the Pathogenicity of Copy Number Variations Zhang L., Shi J., Ouyang J., Zhang R., Tao Y., Yuan D., Lv C., Wang R., Ning B., Roberts R., et al. X-CNV: Genome-Wide Prediction of the Pathogenicity of Copy Number Variations
Zhang L., Shi J., Ouyang J., Zhang R., Tao Y., Yuan D., Lv C., Wang R., Ning B., Roberts R., et al.
Genome Med. 2021, 13(1):132.
2014 A Comprehensive Assessment of RNA-Seq Accuracy, Reproducibility and Information Content by the Sequence Quality Control Consortium SEQC/MAQC-III Consortium A Comprehensive Assessment of RNA-Seq Accuracy, Reproducibility and Information Content by the Sequence Quality Control Consortium.
SEQC/MAQC-III Consortium.
Nature Biotechnology. 2014, 32(9):903-14. doi: 10.1038/nbt.2957.
2014 An Investigation of Biomarkers Derived from Legacy Microarray Data for their Utility in the RNA-Seq Era Su Z., Fang H., Hong H., Shi L., Zhang W., Zhang W., Zhang Y., Dong Z., Lancashire L.J., Bessarabova M., Yang X., Ning B., Gong B., Meehan J., Xu J., Ge W., Perkins R., Fischer M., and Tong W.   An Investigation of Biomarkers Derived from Legacy Microarray Data for their Utility in the RNA-Seq Era.
Su Z., Fang H., Hong H., Shi L., Zhang W., Zhang W., Zhang Y., Dong Z., Lancashire L.J., Bessarabova M., Yang X., Ning B., Gong B., Meehan J., Xu J., Ge W., Perkins R., Fischer M., and Tong W.  
Genome Biology. 2014, 15(12):523. doi: 10.1186/s13059-014-0523-y.
2014 Assessing Technical Performance in RNA-Seq Experiments with External Spike-in RNA Controls. Munro S.A., Lund S.P., Pine P.S., Binder H., Clevert D.A., Conesa A., Dopazo J., Fasold M., Hochreiter S., Hong H., Jafari N., Kreil D.P., Łabaj P.P., Li S., Liao Y., Lin S.M., Meehan J., Mason C.E., Santoyo-Lopez J., Setterquist R.A., Shi L., Shi W., Smyth G.K., Stralis-Pavese N., Su Z., Tong W., Wang C., Wang J., Xu J., Ye Z., Yang Y., Yu Y., and Salit M.  Assessing Technical Performance in RNA-Seq Experiments with External Spike-in RNA Controls.
Munro S.A., Lund S.P., Pine P.S., Binder H., Clevert D.A., Conesa A., Dopazo J., Fasold M., Hochreiter S., Hong H., Jafari N., Kreil D.P., Łabaj P.P., Li S., Liao Y., Lin S.M., Meehan J., Mason C.E., Santoyo-Lopez J., Setterquist R.A., Shi L., Shi W., Smyth G.K., Stralis-Pavese N., Su Z., Tong W., Wang C., Wang J., Xu J., Ye Z., Yang Y., Yu Y., and Salit M. 
Nature Communications. 2014, 5:5125. doi: 10.1038/ncomms6125.
2014 Comprehensive RNA-Seq Transcriptomic Profiling Across 11 Organs, 4 Ages, and 2 Sexes of Fischer 344 Rats Yu Y., Zhao C., Su Z., Wang C., Fuscoe J.C., Tong W., and Shi L.  Comprehensive RNA-Seq Transcriptomic Profiling Across 11 Organs, 4 Ages, and 2 Sexes of Fischer 344 Rats
Yu Y., Zhao C., Su Z., Wang C., Fuscoe J.C., Tong W., and Shi L. 
Scientific Data. 2014, 1:140013. doi: 10.1038/sdata.2014.13.
2014 The Concordance Between RNA-Seq and Microarray Data Depends on Chemical Treatment and Transcript Abundance Wang C., Gong B., Bushel P.R., Thierry-Mieg J., Thierry-Mieg D., Xu J., Fang H., Hong H., Shen J., Su Z., Meehan J., Li X., Yang L., Li H., Łabaj P.P., Kreil D.P., Megherbi D., Gaj S., Caiment F., van Delft J., Kleinjans J., Scherer A., Devanarayan V., Wang J., Yang Y., Qian H.R., Lancashire L.J., Bessarabova M., Nikolsky Y., Furlanello C., Chierici M., Albanese D., Jurman G., Riccadonna S., Filosi M., Visintainer R., Zhang K.K., Li J., Hsieh J.H., Svoboda D.L., Fuscoe J.C., Deng Y., Shi L., Paules R.S., Auerbach S.S., and Tong W.  The Concordance Between RNA-Seq and Microarray Data Depends on Chemical Treatment and Transcript Abundance.
Wang C., Gong B., Bushel P.R., Thierry-Mieg J., Thierry-Mieg D., Xu J., Fang H., Hong H., Shen J., Su Z., Meehan J., Li X., Yang L., Li H., Łabaj P.P., Kreil D.P., Megherbi D., Gaj S., Caiment F., van Delft J., Kleinjans J., Scherer A., Devanarayan V., Wang J., Yang Y., Qian H.R., Lancashire L.J., Bessarabova M., Nikolsky Y., Furlanello C., Chierici M., Albanese D., Jurman G., Riccadonna S., Filosi M., Visintainer R., Zhang K.K., Li J., Hsieh J.H., Svoboda D.L., Fuscoe J.C., Deng Y., Shi L., Paules R.S., Auerbach S.S., and Tong W. 
Nature Biotechnology. 2014, 32(9):926-32. doi: 10.1038/nbt.3001.
2014 Cross-Platform Ultradeep Transcriptomic Profiling of Human Reference RNA Samples by RNA-Seq Xu J., Su Z., Hong H., Kreil D.P., Mason C.E., Tong W., and Shi L. Cross-Platform Ultradeep Transcriptomic Profiling of Human Reference RNA Samples by RNA-Seq.
Xu J., Su Z., Hong H., Kreil D.P., Mason C.E., Tong W., and Shi L.
Scientific Data. 2014, 1:140020. doi: 10.1038/sdata.2014.20. 
2014 Detecting and Correcting Systematic Variation in Large-Scale RNA Sequencing Data Li S., Łabaj P.P., Zumbo P., Sykacek P., Shi W., Shi L., Phan J., Wu P.Y., Wang M., Wang C., Thierry-Mieg D., Thierry-Mieg J., Kreil D.P., and Mason C.E.  Detecting and Correcting Systematic Variation in Large-Scale RNA Sequencing Data.
Li S., Łabaj P.P., Zumbo P., Sykacek P., Shi W., Shi L., Phan J., Wu P.Y., Wang M., Wang C., Thierry-Mieg D., Thierry-Mieg J., Kreil D.P., and Mason C.E. 
Nat Biotechnol. 2014, 32(9):888-95. doi: 10.1038/nbt.3000. 
2014 A Rat RNA-Seq Transcriptomic BodyMap Across 11 Organs and 4 Developmental Stages Yu Y., Fuscoe J.C., Zhao C., Guo C., Jia M., Qing T., Bannon D.I., Lancashire L., Bao W., Du T., Luo H., Su Z., Jones W.D., Moland C.L., Branham W.S., Qian F., Ning B., Li Y., Hong H., Guo L., Mei N., Shi T., Wang K.Y., Wolfinger R.D., Nikolsky Y., Walker S.J., Duerksen-Hughes P., Mason C.E., Tong W., Thierry-Mieg J., Thierry-Mieg D., Shi L., and Wang C.  A Rat RNA-Seq Transcriptomic BodyMap Across 11 Organs and 4 Developmental Stages.
Yu Y., Fuscoe J.C., Zhao C., Guo C., Jia M., Qing T., Bannon D.I., Lancashire L., Bao W., Du T., Luo H., Su Z., Jones W.D., Moland C.L., Branham W.S., Qian F., Ning B., Li Y., Hong H., Guo L., Mei N., Shi T., Wang K.Y., Wolfinger R.D., Nikolsky Y., Walker S.J., Duerksen-Hughes P., Mason C.E., Tong W., Thierry-Mieg J., Thierry-Mieg D., Shi L., and Wang C. 
Nature Communications. 2014, 5:3230. doi: 10.1038/ncomms4230.
2014 Transcriptomic Profiling of Rat Liver Samples in a Comprehensive Study Design by RNA-Seq Gong B., Wang C., Su Z., Hong H., Auerbach A., Shi L., Tong W., and Xu J.

Transcriptomic Profiling of Rat Liver Samples in a Comprehensive Study Design by RNA-Seq.
Gong B., Wang C., Su Z., Hong H., Auerbach A., Shi L., Tong W., and Xu J.
Scientific Data. 2014, 1:140021. doi: 10.1038/sdata.2014.21.

2010 A Comparison of Batch Effect Removal Methods for Enhancement of Prediction Performance Using MAQC-II Microarray Gene Expression Data Luo J., Schumacher M., Scherer A., Sanoudou D., Megherbi D., Davison T., Shi T., Tong W., Shi L., Hong H., Zhao C., Elloumi F., Shi W., Thomas R., Lin S., Tillinghast G., Liu G., Zhou Y., Herman D., Li Y., Deng Y., Fang H., Bushel P., Woods M., and Zhang J. A Comparison of Batch Effect Removal Methods for Enhancement of Prediction Performance Using MAQC-II Microarray Gene Expression Data
Luo J., Schumacher M., Scherer A., Sanoudou D., Megherbi D., Davison T., Shi T., Tong W., Shi L., Hong H., Zhao C., Elloumi F., Shi W., Thomas R., Lin S., Tillinghast G., Liu G., Zhou Y., Herman D., Li Y., Deng Y., Fang H., Bushel P., Woods M., and Zhang J.
Pharmacogenomics J. 2010, 10: 278-291.
2010 An Interactive Effect of Batch Size and Composition Contributes to Discordant Results in GWAS with the CHIAMO Genotyping Algorithm Chierici M., Miclaus K., Vega S., and Furlanello C.  An Interactive Effect of Batch Size and Composition Contributes to Discordant Results in GWAS with the CHIAMO Genotyping Algorithm.
Chierici M., Miclaus K., Vega S., and Furlanello C. 
Pharmacogenomics J. 2010, 10: 355-363.
2010 Assessing Sources of Inconsistencies in Genotypes and Their Effects on Genome-Wide Association Studies with HapMap Samples Hong H., Shi L., Su Z., Ge W., Jones W.D., Czika W., Miclaus K., Lambert C.G., Vega S.C., Zhang J., Ning B., Liu J., Green B., Xu L., Fang H., Perkins R., Lin S.M., Jafari N., Park K., Ahn T., Chierici M., Furlanello C., Zhang L., Wolfinger R.D., Goodsaid F., and Tong W. Assessing Sources of Inconsistencies in Genotypes and Their Effects on Genome-Wide Association Studies with HapMap Samples.
Hong H., Shi L., Su Z., Ge W., Jones W.D., Czika W., Miclaus K., Lambert C.G., Vega S.C., Zhang J., Ning B., Liu J., Green B., Xu L., Fang H., Perkins R., Lin S.M., Jafari N., Park K., Ahn T., Chierici M., Furlanello C., Zhang L., Wolfinger R.D., Goodsaid F., and Tong W.
Pharmacogenomics J. 2010, 10: 364-374.
2010 Assessment of Variability in GWAS with CRLMM Genotyping Algorithm on WTCCC Coronary Artery Disease Zhang L., Yin S., Miclaus K., Chierici M., Vega S., Lambert C., Hong H., Wolfinger R.D., Furlanello C., and Goodsaid F. Assessment of Variability in GWAS with CRLMM Genotyping Algorithm on WTCCC Coronary Artery Disease.
Zhang L., Yin S., Miclaus K., Chierici M., Vega S., Lambert C., Hong H., Wolfinger R.D., Furlanello C., and Goodsaid F. Pharmacogenomics J. 2010, 10: 347-354.
2010 Batch Effects in the BRLMM Genotype Calling Algorithm Influence GWAS Results for the Affymetrix 500K Array Miclaus K., Wolfinger R., Vega S., Chierici M., Furlanello C., Lambert C., Hong H., Zhang L., Yin S., and Goodsaid F. Batch Effects in the BRLMM Genotype Calling Algorithm Influence GWAS Results for the Affymetrix 500K Array.
Miclaus K., Wolfinger R., Vega S., Chierici M., Furlanello C., Lambert C., Hong H., Zhang L., Yin S., and Goodsaid F. Pharmacogenomics J. 2010, 10: 336-346.
2010 Comparison of Performance of One-Color and Two-Color Gene-Expression Analyses in Predicting Clinical Endpoints of Neuroblastoma Patients Oberthuer A., Juraeva D., Li L., Kahlert Y., Westermann F., Eils R., Berthold F., Shi L., Wolfinger R.D., Fischer M., and Brors B. Comparison of Performance of One-Color and Two-Color Gene-Expression Analyses in Predicting Clinical Endpoints of Neuroblastoma Patients.
Oberthuer A., Juraeva D., Li L., Kahlert Y., Westermann F., Eils R., Berthold F., Shi L., Wolfinger R.D., Fischer M., and Brors B. Pharmacogenomics J. 2010, 10: 258-266.
2010 Consistency of Predictive Signature Genes and Classifiers Generated Using Different Microarray Platforms Fan X., Lobenhofer E.K., Chen M., Shi W., Huang J., Luo J., Zhang J., Walker S.J., Chu T.M., Li L., Wolfinger R., Bao W., Paules R.S., Bushel P.R., Li J., Shi T., Nikolskaya T., Nikolsky Y., Hong H., Deng Y., Cheng Y., Fang H., Shi L., and Tong W. Consistency of Predictive Signature Genes and Classifiers Generated Using Different Microarray Platforms.
Fan X., Lobenhofer E.K., Chen M., Shi W., Huang J., Luo J., Zhang J., Walker S.J., Chu T.M., Li L., Wolfinger R., Bao W., Paules R.S., Bushel P.R., Li J., Shi T., Nikolskaya T., Nikolsky Y., Hong H., Deng Y., Cheng Y., Fang H., Shi L., and Tong W. ​​​​​​
Pharmacogenomics J. 2010, 10: 247-257.
2010 Functional Analysis of Multiple Genomic Signatures Demonstrates that Classification Algorithms Choose Phenotype-Related Genes Dosymbekov D., Dezso Z., Nikolskaya T., Dudoladova M., Serebryiskaya T., Bugrim A., Guryanov A., Brennan R.J., Shah R., Dopazo J., Chen M., Deng Y., Shi T., Jurman G., Furlanello C., Thomas R.S., Corton J.C., Tong W., Shi L., and Nikolsky Y. Functional Analysis of Multiple Genomic Signatures Demonstrates that Classification Algorithms Choose Phenotype-Related Genes. Shi W., Bessarabova M., Dosymbekov D., Dezso Z., Nikolskaya T., Dudoladova M., Serebryiskaya T., Bugrim A., Guryanov A., Brennan R.J., Shah R., Dopazo J., Chen M., Deng Y., Shi T., Jurman G., Furlanello C., Thomas R.S., Corton J.C., Tong W., Shi L., and Nikolsky Y. Pharmacogenomics J. 2010, 10: 310-323.
2010 Genomic Indicators in the Blood Predict Drug-Induced Liver Injury Huang J., Shi W., Zhang J., Chou J.W., Paules R.S., Gerrish K., Li J., Luo J., Wolfinger R.D., Bao W., Chu T.M., Nikolsky Y., Nikolskaya T., Dosymbekov D., Tsyganova M.O., Shi L., Fan X., Corton J.C., Chen M., Cheng Y., Tong W., Fang H., and Bushel P.R. Genomic Indicators in the Blood Predict Drug-Induced Liver Injury.
Huang J., Shi W., Zhang J., Chou J.W., Paules R.S., Gerrish K., Li J., Luo J., Wolfinger R.D., Bao W., Chu T.M., Nikolsky Y., Nikolskaya T., Dosymbekov D., Tsyganova M.O., Shi L., Fan X., Corton J.C., Chen M., Cheng Y., Tong W., Fang H., and Bushel P.R.
Pharmacogenomics J. 2010, 10: 267-277.
2010 k-Nearest Neighbor Models for Microarray Gene Expression Analysis and Clinical Outcome Prediction Parry R.M., Jones W., Stokes T.H., Phan J.H., Moffitt R.A., Fang H., Shi L., Oberthuer A., Fischer M., Tong W., and Wang M.D. k-Nearest Neighbor Models for Microarray Gene Expression Analysis and Clinical Outcome Prediction.
Parry R.M., Jones W., Stokes T.H., Phan J.H., Moffitt R.A., Fang H., Shi L., Oberthuer A., Fischer M., Tong W., and Wang M.D.​​​​​
Pharmacogenomics J. 2010, 10: 292-309.
2010 MAQC-II: Analyze That! (Editorial)   MAQC-II: Analyze That!
Nat Biotechnol. 2010, 28: 761.
2010 Microarrays in the Clinic Tillinghast G.W. Microarrays in the Clinic.
Tillinghast G.W.
Nat Biotechnol. 2010, 28: 810-812.
2010 The MicroArray Quality Control (MAQC)-II Study of Common Practices for the Development and Validation of Microarray-Based Predictive Models MAQC Consortium The MicroArray Quality Control (MAQC)-II Study of Common Practices for the Development and Validation of Microarray-Based Predictive Models.
MAQC Consortium.
Nat Biotechnol. 2010, 28: 827-838.
2010 Of Genomics and Bioinformatics (Editorial) Slikker W., Jr. Of Genomics and Bioinformatics.
Slikker W., Jr.
Pharmacogenomics J. 2010, 10: 245-246.
2010 Variability in GWAS Analysis: The Impact of Genotype Calling Algorithm Inconsistencies Miclaus K., Chierici M., Lambert C., Zhang L., Vega S., Hong H., Yin S., Furlanello C., Wolfinger R., and Goodsaid F. Variability in GWAS Analysis: The Impact of Genotype Calling Algorithm Inconsistencies.
Miclaus K., Chierici M., Lambert C., Zhang L., Vega S., Hong H., Yin S., Furlanello C., Wolfinger R., and Goodsaid F. Pharmacogenomics J. 2010, 10: 324-335.
2009 Correlation Analysis of External RNA Controls Reveals its Utility for Assessment of Microarray Assay Fan X., Fang H., Hong H., Perkins R.G., She L., and Tong W. Correlation Analysis of External RNA Controls Reveals its Utility for Assessment of Microarray Assay.
Fan X., Fang H., Hong H., Perkins R.G., She L., and Tong W.
Anal Biochem. 2009, 385(2):203-207.
2009 Investigation of Reproducibility of Differentially Expressed Genes in DNA Microarrays Through Statistical Simulation Fan X., Shi L., Fang H., Harris S., Perkins R.G., and Tong W. Investigation of Reproducibility of Differentially Expressed Genes in DNA Microarrays Through Statistical Simulation.
Fan X., Shi L., Fang H., Harris S., Perkins R.G., and Tong W.
BMC Proc. 2009, 3 Suppl 2:S4.
2008 The Balance of Reproducibility, Sensitivity, and Specificity of Lists of Differenctially Expressed Genes in Microarray Studies Shi L., Jones W.D., Jensen R.V., Harris S.C., Perkins R.G., Goodsaid F.M., Guo L., Croner L.J., Boysen C., Fang H., et al. The Balance of Reproducibility, Sensitivity, and Specificity of Lists of Differenctially Expressed Genes in Microarray Studies.
Shi L., Jones W.D., Jensen R.V., Harris S.C., Perkins R.G., Goodsaid F.M., Guo L., Croner L.J., Boysen C., Fang H., et al.
BMC Bioinformatics. 2008, 9 Suppl 9:S10.
2008 Reproducible and Reliable Microarray Results Through Quality Control: Good Laboratory Proficiency and Appropriate Data Analysis Practices are Essential Shi L., Perkins R.G., Fang H., and Tong W. Reproducible and Reliable Microarray Results Through Quality Control: Good Laboratory Proficiency and Appropriate Data Analysis Practices are Essential.
Shi L., Perkins R.G., Fang H., and Tong W.
Curr Opin Biotechnol. 2008, 19(1):10-18.
2006 Evaluation of DNA Microarray Results with Quantitative Gene Expression Platforms Canales R.D., Luo Y., Willey J.C., Austermiller B., Barbacioru C.C., Boysen C., Hunkapiller K., Jensen R.V., Knight C.R., Lee K.Y., et al. Evaluation of DNA Microarray Results with Quantitative Gene Expression Platforms.
Canales R.D., Luo Y., Willey J.C., Austermiller B., Barbacioru C.C., Boysen C., Hunkapiller K., Jensen R.V., Knight C.R., Lee K.Y., et al.
Nat Biotechnol. 200624(9):1115-1122.
2006 Evaluation of External RNA Controls for the Assessment of Microarray Performance Tong W., Lucas A.B., Shippy R., Fan X., Fang H., Hong H., Orr M.S., Chu T.M., Guo X., Collins P.J., et al. Evaluation of External RNA Controls for the Assessment of Microarray Performance.
Tong W., Lucas A.B., Shippy R., Fan X., Fang H., Hong H., Orr M.S., Chu T.M., Guo X., Collins P.J., et al.
Nat Biotechnol. 2006, 24(9):1132-1139.
2006 The MicroArray Quality Control (MAQC) Project Shows Inter- and Intraplatform Reproducibility of Gene Expression Measurements Shi L., Reid L.H., Jones W.D., Shippy R., Warrington J.A., Baker S.C., Collins P.J., de Longueville F., Kawasaki E.S., Lee K.Y., et al. The MicroArray Quality Control (MAQC) Project Shows Inter- and Intraplatform Reproducibility of Gene Expression Measurements.
Shi L., Reid L.H., Jones W.D., Shippy R., Warrington J.A., Baker S.C., Collins P.J., de Longueville F., Kawasaki E.S., Lee K.Y. et al.
Nat Biotechnol. 2006, 24(9):1151-1161.
2006 Performance Comparison of One-Color and Two-Color Platforms Within the MicroArray Quality Control (MAQC) Project Patterson T.A., Lobenhofer E.K., Fulmer-Smentek S.B., Collins P.J., Chu T.M., Bao W., Fang H., Kawasaki E.S., Hager J., Tikhonova I.R., et al. Performance Comparison of One-Color and Two-Color Platforms Within the MicroArray Quality Control (MAQC) Project.
Patterson T.A., Lobenhofer E.K., Fulmer-Smentek S.B., Collins P.J., Chu T.M., Bao W., Fang H., Kawasaki E.S., Hager J., Tikhonova I.R., et al.
Nat Biotechnol. 2006, 24(9):1140-1150.  
2006 Rat Toxicogenomic Study Reveals Analytical Consistency Across Microarray Platforms Guo L., Lobenhofer E., Wang C., Shippy R., Harris S., Zhang L., Mei N., Chen T., Herman D., and Goodsaid F. Rat Toxicogenomic Study Reveals Analytical Consistency Across Microarray Platforms.
Guo L., Lobenhofer E., Wang C., Shippy R., Harris S., Zhang L., Mei N., Chen T., Herman D., and Goodsaid F.
Nat Biotechnol. 200624:1162-1169.
2006 Using RNA Sample Titrations to Assess Microarray Platform Performance and Normalization Techniques Shippy R., Fulmer-Smentek S., Jensen R.V., Jones W.D., Wolber P.K., Johnson C.D., Pine P.S., Boysen C., Guo X., Chudin E., et al. Using RNA Sample Titrations to Assess Microarray Platform Performance and Normalization Techniques.
Shippy R., Fulmer-Smentek S., Jensen R.V., Jones W.D., Wolber P.K., Johnson C.D., Pine P.S., Boysen C., Guo X., Chudin E., et al.
Nat Biotechnol. 2006, 24(9):1123-1131.

 

Resources For You

Back to Top