U.S. flag An official website of the United States government
  1. Home
  2. About FDA
  3. FDA Organization
  4. Office of the Commissioner
  5. Office of the Chief Scientist
  6. National Center for Toxicological Research
  7. Science & Research (NCTR)
  8. Nathan Koonce
  1. National Center for Toxicological Research

Nathan Koonce Ph.D.

Nathan Koonce

Staff Fellow — Office of Scientific Coordination

Dr. Nathan Koonce bio photo

Nathan Koonce, Ph.D.
(870) 543-7391
NCTRResearch@fda.hhs.gov  

Back to NCTR Principal Investigators page


About  |  Publications 


Background

Dr. Nathaniel Anthony Koonce received his Bachelor of Arts in chemistry from the University of Arkansas in 2004. He went on to the University of Arkansas for Medical Sciences (UAMS) to receive a Master of Science in pathology. He then worked as a research associate at UAMS for several years in the Department of Radiation Oncology before returning to graduate school for his Ph.D. Dr. Koonce earned his Ph.D. through the Interdisciplinary Biomedical Sciences program with an emphasis in cancer biology at UAMS. His work focused on developing imaging and therapeutic strategies related to tumor vasculature. Dr. Koonce received “Young investigator” awards from the Society of Thermal Medicine and the Radiation Research Society while in graduate school. He also received a foundation grant as Principal Investigator (PI) for “Identification of vascular hypoxia using targeted microbubbles”. Dr. Koonce went on to pursue postdoctoral research at the National Center for Toxicological Research (NCTR) in the Nanotechnology Core Facility. At NCTR, he worked on a number of projects related to physicochemical characteristics of nanomaterials and effects on toxicity and in vivo biodistribution. Following his postdoctoral work, he was recruited as a staff fellow to continue his work in the Nanotechnology Core Facility.

Research Interests

Dr. Koonce’s main research interest is in regulatory science with a focus on physico-chemical characteristics of nanomaterials and the structure-activity relationship on safety and efficacy. His background in cancer therapeutics and tumor models has led to an interest in FDA-approved and next-generation nano-based therapeutics for cancer therapy. Dr. Koonce also has an interest in non-pharmaceutical based nanomaterials as they relate to public safety/toxicity. He has expertise in nanomaterial characterization, toxicity and immunotoxicity assays, rodent models, and in vivo imaging techniques. Dr. Koonce’s current research investigates:

  • Physico-chemical characteristics of nanomaterials and effects on toxicity and biodistribution
  • Toxicity of nanomaterial in feminine-hygiene products
  • Characterization and efficacy of nano-based therapeutics

Professional Societies/National and International Groups

Nanotechnology Task Force
Standards Sub-Committee member
2018 - Present

Nanotechnology for Health Care Conference
Planning committee
2018

Society of Thermal Medicine
Program committee
2014-2016

New investigator mini symposium co-chair
2014

BACK TO TOP

Selected Publications

Galectin-1 Inhibitor OTX008 Induces Tumor Vessel Normalization and Tumor Growth Inhibition in Human Head and Neck Squamous Cell Carcinoma Models.
Koonce N., Griffin R. and Dings R.
Int J Mol Sci. 2017 Dec 9, 18(12). pii: E2671. doi: 10.3390/ijms18122671.

Real-Time Monitoring of Circulating Tumor Cell (CTC) Release After Nanodrug or Tumor Radiotherapy Using In Vivo Flow Cytometry.
Koonce N., Juratli M., Cai C., Sarimollaoglu M., Menyaev Y., Dent J., Quick C., Dings R., Nedosekin D., Zharov V. and Griffin R.
Biochem Biophys Res Commun. 2017 Oct 21, 492(3):507-512. doi: 10.1016/j.bbrc.2017.08.053. Epub 2017 Aug 16.

Combination of Gold Nanoparticle-Conjugated Tumor Necrosis Factor-α and Radiation Therapy Results in a Synergistic Antitumor Response in Murine Carcinoma Models.
Koonce N., Quick C., Hardee M., Jamshidi-Parsian A., Dent J., Paciotti G., Nedosekin D., Dings R. and Griffin R.
Int J Radiat Oncol Biol Phys. 2015 Nov 1, 93(3):588-96. doi: 10.1016/j.ijrobp.2015.07.2275. Epub 2015 Jul 26.

Targeting Artificial Tumor Stromal Targets for Molecular Imaging of Tumor Vascular Hypoxia.
Koonce N., Levy J., Hardee M., Jamshidi-Parsian A., Vang K., Sharma S., Raleigh J., Dings R. and Griffin R.
PLoS One. 2015 Aug 26, 10(8):e0135607. doi: 10.1371/journal.pone.0135607. eCollection 2015.

Indirect Tumor Cell Death After High-Dose Hypofractionated Irradiation: Implications for Stereotactic Body Radiation Therapy and Stereotactic Radiation Surgery.
Song C., Lee Y., Griffin R., Park I., Koonce N., Hui S., Kim M., Dusenbery K., Sperduto P. and Cho L.
Int J Radiat Oncol Biol Phys. 2015 Sep 1, 93(1):166-72. doi: 10.1016/j.ijrobp.2015.05.016. Epub 2015 May 16.

Nanoparticle Delivered Vascular Disrupting Agents (VDAs): Use of TNF-Alpha Conjugated Gold Nanoparticles for Multimodal Cancer Therapy.
Shenoi M., Iltis I., Choi J., Koonce N., Metzger G., Griffin R. and Bischof J.
Mol Pharm. 2013 May 6, 10(5):1683-94. doi: 10.1021/mp300505w. Epub 2013 Apr 17.

Photothermal Nanodrugs: Potential of TNF-Gold Nanospheres for Cancer Theranostics.
Shao J., Griffin R., Galanzha E., Kim J., Koonce N., Webber J., Mustafa T., Biris A., Nedosekin D. and Zharov V.
Sci Rep. 2013, 3:1293. doi: 10.1038/srep01293.

Microbeam Radiation Therapy Alters Vascular Architecture and Tumor Oxygenation and is Enhanced by a Galectin-1 Targeted Anti-Angiogenic Peptide.
Griffin R., Koonce N., Dings R., Siegel E., Moros E., Bräuer-Krisch E. and Corry P.
Radiat Res. 2012 Jun, 177(6):804-12. Epub 2012 May 18.

Conductive Thermal Ablation of 4T1 Murine Breast Carcinoma Reduces Severe Hypoxia in Surviving Tumour.
Przybyla B., Shafirstein G., Koonce N., Webber J. and Griffin R.
Int J Hyperthermia. 2012, 28(2):156-62. doi: 10.3109/02656736.2011.636783.

Vascular Disrupting Agent Arsenic Trioxide Enhances Thermoradiotherapy of Solid Tumors.
Griffin R., Williams B., Koonce N., Bischof J., Song C., Asur R. and Upreti M.
J Oncol. 2012, 2012:934918. doi: 10.1155/2012/934918. Epub 2012 Jan 4.

Repression of Multiple Myeloma Growth and Preservation of Bone with Combined Radiotherapy and Anti-Angiogenic Agent.
Jia D., Koonce N., Halakatti R., Li X., Yaccoby S., Swain F., Suva L., Hennings L., Berridge M., Apana S., Mayo K., Corry P. and Griffin R.
Radiat Res. 2010 Jun, 173(6):809-17. doi: 10.1667/RR1734.1.

Prevention and Mitigation of Acute Death of Mice After Abdominal Irradiation by the Antioxidant N-Acetyl-Cysteine (NAC).
Jia D., Koonce N., Griffin R., Jackson C. and Corry P.
Radiat Res. 2010 May, 173(5):579-89. doi: 10.1667/RR2030.1.

BACK TO TOP


Contact Information
Nathan Koonce
(870) 543-7391
Expertise
Approach