U.S. flag An official website of the United States government

On Oct. 1, 2024, the FDA began implementing a reorganization impacting many parts of the agency. We are in the process of updating FDA.gov content to reflect these changes.

  1. Home
  2. Medical Devices
  3. Products and Medical Procedures
  4. Home Health and Consumer Devices
  5. Consumer Products
  6. The Artificial Pancreas Device System
  7. What is the pancreas? What is an artificial pancreas device system?
  1. The Artificial Pancreas Device System

What is the pancreas? What is an artificial pancreas device system?

On this page:


What is the pancreas?

The pancreas is an organ in the body that secretes several hormones, including insulin and glucagon, as well as digestive enzymes that help break down food. Insulin helps cells in the body take up glucose (sugar) from the blood to use for energy, which lowers blood glucose levels. Glucagon causes the liver to release stored glucose, which raises blood glucose levels.

Type 1 diabetes occurs when the pancreas produces little or none of the insulin needed to regulate blood glucose. Type 2 diabetes occurs when the pancreas does not produce enough insulin or the body becomes resistant to the insulin that is present. Patients with type 1 diabetes and some patients with type 2 diabetes inject insulin, and occasionally glucagon, to regulate their blood glucose, which is critical to lower their risk of long-term complications such as blindness, kidney failure and cardiovascular disease.

When managing diabetes, many patients must vigilantly test blood glucose with a glucose meter, calculate insulin doses, and administer necessary insulin doses with a needle or insulin infusion pump to lower blood glucose. Glucagon may be injected in an emergency to treat severe low blood glucose. Some patients benefit from additional monitoring with a continuous glucose monitoring system.

For more information on what diabetes is and how it is treated and managed, refer to the following websites:

What is an artificial pancreas device system?

The Artificial Pancreas Device System is a system of devices that closely mimics the glucose regulating function of a healthy pancreas.

Most Artificial Pancreas Device Systems consists of three types of devices already familiar to many people with diabetes: a continuous glucose monitoring system (CGM) and an insulin infusion pump. A blood glucose device (such as a glucose meter) is used to calibrate the CGM.

A computer-controlled algorithm connects the CGM and insulin infusion pump to allow continuous communication between the two devices. Sometimes an artificial pancreas device system is referred to as a "closed-loop" system, an "automated insulin delivery" system, or an "autonomous system for glycemic control."

An Artificial Pancreas Device System will not only monitors glucose levels in the body but also automatically adjusts the delivery of insulin to reduce high blood glucose levels (hyperglycemia) and minimize the incidence of low blood glucose (hypoglycemia) with little or no input from the patient.

The FDA is collaborating with diabetes patient groups, diabetes care providers, medical device manufactures, researchers, and academic investigators to foster innovation by clarifying agency expectations for clinical studies and product approvals. These efforts have accelerated the development of the first hybrid closed loop system, the Medtronic's MiniMed 670G System.

The FDA's guidance, The Content of Investigational Device Exemption (IDE) and Premarket Approval (PMA) Applications for Artificial Pancreas Device Systems, addresses requirements for clinical studies and premarket approval applications for and artificial pancreas device system, and provided a flexible regulatory approach to support the rapid, safe and effective development of artificial pancreas device systems. (See below).

The Artificial Pancreas System (An Autonomous System for Glycemic Control)

The illustration below describes the parts of a type of artificial pancreas device system and shows how they work together.

This image is a diagram showing each part that makes up an artificial pancreas.  It has items numbered one through four.  Item one is the continuous glucose monitor.  Item two is the computer-controlled algorithm.  Item three is the insulin pump.  Item four is the patient effect.
  1. Continuous Glucose Monitor (CGM). A CGM provides a steady stream of information that reflects the patient’s blood glucose levels. A sensor placed under the patient's skin (subcutaneously) measures the glucose in the fluid around the cells (interstitial fluid) which is associated with blood glucose levels. A small transmitter sends information to a receiver. A CGM continuously displays both an estimate of blood glucose levels and their direction and rate of change of these estimates.
    • Blood Glucose Device (BGD). Currently, to get the most accurate estimates of blood glucose possible from a CGM, the patient needs to periodically calibrate the CGM using a blood glucose measurement from a BGD; therefore, the BGD still plays a critical role in the proper management of patients with an APDS. However, over time, we anticipate that improved CGM performance may do away with the need for periodic blood glucose checks with a BGD.
  2. Control algorithm. A control algorithm is software embedded in an external processor (controller) that receives information from the CGM and performs a series of mathematical calculations. Based on these calculations, the controller sends dosing instructions to the infusion pump. The control algorithm can be run on any number of devices including an insulin pump, computer or cellular phone. The FDA does not require the control algorithm to reside on the insulin pump.
  3. Insulin pump. Based on the instructions sent by the controller, an infusion pump adjusts the insulin delivery to the tissue under the skin.
  4. The Patient. The patient is an important part of Artificial Pancreas Delivery System. The concentration of glucose circulating in the patient’s blood is constantly changing. It is affected by the patient’s diet, activity level, and how his or her body metabolizes insulin and other substances.

Additional Resources

Back to Top