U.S. flag An official website of the United States government
  1. Home
  2. News & Events
  3. FDA Meetings, Conferences and Workshops
  4. Scientific Computing Days Posters
  1. FDA Meetings, Conferences and Workshops

Scientific Computing Days Posters


A Comprehensive Simulation Analysis of TMB Estimation by Targeted Oncology Panels Dan Li, Binsheng Gong, Yifan Zhang, Joshua Xu Dan.Li@fda.hhs.gov
A General Statistical Framework for Exploring FAERS Wang Dong, Zhiyuan Lu Zhiyuan.Lu@fda.hhs.gov
A Novel Natural Language Processing and Machine Learning Classifier that Streamlines Extracting Drug-Adverse Event Data from Literature Reports Alfred Sorbello, Rashed Hasan, Henry Francis, Isaac Chang, Mitra Ahadpour, Max Laponsky, Jeremy Walsh, Caroline Trier Alfred.Sorbello@fda.hhs.gov
A Showcase of HIVE RNAseq Pipeline - Identifying Molecular Features of Neural Stem Cells in Varied Differentiation Stages Sydney Fenstermaker, Ge Ma, Viswanadham Sridhara, Wei-Lun Alterovitz, Ilya Mazo, Luis Santana-Quintero, Brent McCright Sydney.Fenstermaker@fda.hhs.gov
An Automated AI Tool for the Analyses of Phase I, II, III Clinical Trials to Identify Pharmacokinetics Anomaly Md Nayeem Hossain, Gunjan Gugale, Le Wang, Peter Lee. Mdnayeem.Hossain@fda.hhs.gov
An Overview of the Office of Computational Science Core DataFitness Service Tejas Patel, David Jacobs, Qingying Lu, Kathryn Matto, Jamal Horne, Janie Ma David.Jacobs@fda.hhs.gov
Characterization of the Immune-Driven Drug Hypersensitivity by Single-Cell RNA Sequencing Technologies Masahide Yano, Marco Cardone, Krizia Chambers, Viswanadham Sridhara, Mike Mikailov, Montserrat Puig, Michael Norcross Masahide.Yano@fda.hhs.gov
CIRDS: CTP Integrated Research Data System Mark Gingrass, Vibha Kumar, Christine Wang, Wei Chen, Geetha Potluri, Alex Abramson, Nirmala Uralikrishna, Wei Wu Mark.Gingrass@fda.hhs.gov
Computational Pipeline Engine in FDA HIVE: Adventitious Agent Detection from NGS Data Ilya Mazo, Alexander Lukyanov, Anton Golikov, Luis Santana- Quintero Ilya.Mazo@fda.hhs.gov
Data Scaling for Efficient Processing on HPC Clusters Mike Mikailov, Weijie Chen, Weizhe Li, Nicholas Petrick, Fu-Jyh Luo, Stuart Barkley, Dillip Emmanuel, Rusif Eyvazli Mike.Mikailov@fda.hhs.gov
Developing Risk Assessment Applications at the FDA using AWS (Amazon Web Services) Hong Yang, Yin Huang, Richard Forshee, Mark Walderhaug, Jason Claeys, Rebecca Kahn, Leslie Eberhardt, Guangfan Zhang Rebecca.Kahn@fda.hhs.gov
D-VIDE: A Dashboard for Visualizing Infectious Disease Epidemiology and its Applications to COVID-19 for Local Counties Osman N. Yogurtcu, Artur A. Belov, Richard A. Forshee, Carolyn A Wilson Osman.Yogurtcu@fda.hhs.gov
Elucidating Interactions Between SARS-CoV-2 Trimeric Spike Protein and ACE2 Using Homology Modeling and Molecular Dynamics Simulations Sugunadevi Sakkiah, Huixiao Hong Suguna.Sakkiah@fda.hhs.gov
Enterprise Business Data Analytics (EBDA) Platform – FDA’s Multifaceted Shared Federated Analytical Ecosystem Swati Kulkarni, Will Stevenson Swati.Kulkarni@fda.hhs.gov
Evaluating the Utility of Computational and Cheminformatic Analyses to Screen for Potential Toxicological Hazard of Flavor Compounds Relevant to Tobacco Products Reema Goel, Luis G. Valerio, Jr. Reema.Goel@fda.hhs.gov
Exploring the Application of Informatics Tools to Visualize the Chemical Space of Compounds Released from Medical Devices Candice J. Gordon, Keaton Nahan, Diego Rua, Robert M. Elder Robert.Elder@fda.hhs.gov
Genome Analysis Toolkit (GATK) Pipeline Programming Platform on HPC Cluster Xiaoqing (Janet) He, Pamela Callier, Elvia Butler Xiaoqing.He@fda.hhs.gov
geoMapr : An Analytic Dashboard for Prescription Drug Utilization with Geographically Referenced Data Enrichment and Machine Learning Meilan Chen, Jaejoon Song, Yueqin Zhao, Yong Ma, Rose Radin, Grace Chai,
Shekhar Mehta, Travis Ready,  Corinne Woods, Saranrat Wittayanukorn
Project Description and Pilot Study for a Pathologist-Annotated AI/ML Validation Dataset Sarah N Dudgeon, Si Wen, Matthew Hanna, Rajendra Gupta,Mohamed Amgad,Manasi Sheth,Hetal Marble,Richard Huang,Cliff Szu,Darick Tong,Bruce Werness,Denis Larsimont,Anant Madabhushi,Evangelos Hytopoulos,Raj Singh,Steven Hart,Joel Saltz,Roberto Salgado,Brandon D Gallas Sarah.dudgeon@yale.edu
How the Office of Innovation Supports Scientists Federico Grau, Nacinader Melo, Irving Reeves, Eric Reinhold, Rilwan Sogbesan, John Spafford, Rebecca Thomas, Allen Vuong OIMScientificIT@fda.hhs.gov
Crowdsourcing Advances Reproducibility Standards and Biomarker Development Holly Stephens, Elaine Johanson, Emily Boja, Yuriy Gusev, Krithika Bhuvaneshwar, Subha Madhavan, Jonathon Keeney, Hadley King, Janisha Patel, Raja Mazumder, Sean Watford, Ezekiel Maier Sarah.Stephens@fda.hhs.gov
Power Analysis and Data Augmentation for
Real World Evidence with Uncertain Genetic Information
Wei (Vivian) Zhuang, Joshua Xu Wei.Zhuang@fda.hhs.gov
Preliminary Investigative Analysis of Flavor Compounds Crossing Blood-Brain Barrier Using Computational Models Kim Stratford, Sheila Healy, Alex Tu, Luis G. Valerio Jr. Kimberly.Stratford@fda.hhs.gov
Novel Statistical Approaches for Leveraging Real-World Data to Support Regulatory Decisions Wei-Chen Chen, Heng Li, Nelson Lu, Changhong Song, Ram Tiwari, Chenguang Wang, Yunling Xu, Lilly Yue Wei-Chen.Chen@fda.hhs.gov
Real-World Evidence Synthesis on the Sex-related Modifying Effects on Development of Periprosthetic Osteolysis in Hip Arthroplasty Wei-Lun Alterovitz, John Dougherty, Elaine Thompson, Hussein Ezzeldin, Luis Santana- Quintero, Mark O Walderhaug, Richard Forshee, Yelizaveta Torosyan Wei-Lun.Alterovitz@fda.hhs.gov
RNA-seq Differential Expression (DE) Toolkit Alexis Norris, Mamatha Garige, Fu-Jyh Luo, Mike Mikailov, Nicholas Petrick, Heather Lombardi, Mayumi Miller Alexis.Norris@fda.hhs.gov
Scalnet: Scalable Network Estimation with L0 Penalty Junghi Kim, Hongtu Zhu, Xiao Wang, Kim-Anh Do Junghi.Kim@fda.hhs.gov
Secure Platforms for Distributed RWE-based Clinical Studies Ryan Weil, Magizhan Tamilarasu, Angela Carrigan, Chetan Paul Chetan.Paul@fda.hhs.gov
Single Cell RNA-Seq Analyses to Investigate Sub-Populations of Bone-Marrow and Adipose Derived Multipotential Stromal Cells (MSCs) from Three Donors Furtak Vyacheslav, Viswanadham Sridhara, Malcolm Moos Vyacheslav.Furtak@fda.hhs.gov
Statistical Comparisons of Product Quality Comparability Michael Daniel Lucagbo, Tianjiao Dai, Yixin Ren, Meiyu Shen, Yi Tsong Tianjiao.Dai@fda.hhs.gov
The Global Substance Registration System (GSRS):  An Agency-Wide System for Organizing Scientific and Regulatory Data within the FDA and Throughout the World Lawrence Callahan, Tyler Peryea, Frank Switzer, Elaine Johanson, Samir Lababidi, Archana Newatia, Niko Anderson Daniel Katzel, Noel Southall, Sarah Stemann Lawrence.Callahan@fda.hhs.gov
The National Evaluation System for Health Technology Coordinating Center (NESTcc) – Key Learnings in Enhancing the Access to Generate Real-World Evidence (RWE) for Medical Devices Dure Kim, Keondae Ervin, Tiffany Abushaikha, Daniel A. Caños, Jose (Pablo) Morales, Flora S. Siami, Robbert Zusterzeel dkim@mdic.org
Towards Automated Species Identification of Food Contaminating Beetles Through Elytral Pattern Recognition Tanmay Bera, Leihong Wu, Hongjian Ding, Halil Bisgin, Zhichao Liu, Amy Barnes, Monica Pava-Ripoll, Himansu Vyas, Weida Tong, Joshua Xu Tanmay.Bera@fda.hhs.gov
Potential Blood Transfusion Adverse Events Can be Found in Unstructured Text in Electronic Health Records Using Natural Language Processing Tools Roselie A Bright,
Summer K Rankin, Katherine Dowdy, Serge Blok, Susan J. Bright-Ponte, Lee Anne Palmer
New and Increasing Rates of Adverse Events Can be Found in Unstructured Text in Electronic Health Records using Natural Language Processing Tools Roselie A Bright, Katherine Dowdy, Summer K Rankin, Serge Blok, Lee Anne Palmer, Susan J. Bright-Ponte Roselie.Bright@fda.hhs.gov
Use of Ontologies, Such as UNII, to Link Within and Across Data Sources David Milward, Matt Garber, Nicolas Joannin, Qais Hatim Qais.Hatim@fda.hhs.gov
Visualizing Historical Changes to the Bacteriological Analytical Manual (BAM) Pamela Mesite Pamela.Mesite@fda.hhs.gov
Using Gibbs Sampling and Data Augmentation to Compare Diagnostic Tests in RWE Studies with Extreme Verification Bias Gene Pennello, Qin Li Gene.Pennello@fda.hhs.gov
Using Machine Learning on ICD-10 Data to Enhance an Expert Anaphylaxis Case Definition Kamil Can Kural, Ilya Mazo, Mark Walderhaug, Lei Huang, Luis Santana-Quintero and Ravi Goud Kamil.Kural@fda.hhs.gov
Back to Top