Research into the mechanical causes of higher rates of hip implant failure in women

James Coburn
FDA/CDRH/OSEL

Functional Performance and Device Use Laboratory

Health of Women Workshop – 25 June 2013
Background

• Lab objective

To investigate where patient factors and behavior can induce adverse outcomes from regulated medical devices

• Staff Expertise
 • Clinical kinematic and gait analysis
 • Computational modeling and image analysis
 • Human factors
 • Neuro-prosthetics and neuro-ergonomics
Outline

• Brief introduction
 • Patient population
 • Clinical symptoms

• Current Research
 • Research Avenues
 • Findings

• Female-specific research
Patient population

• Per year\(^1\)
 • Over 430,000 hip replacements in 2009
 • Generally favorable outcomes\(^2\)

• Younger and more active patients\(^1\) (1990-2009)
 • 160% increase for ages 45-64
 • 50% increase for ages 65-85

• New technologies developed

1 National Center for Health Statistics. Health, United States, 2011
3 Photo: www.nevadahomebuy.com
Clinical Symptoms

- Adverse Reactions to Metal Debris (ARMD)

- Bearing wear and taper wear / corrosion

1 Matthies AK, et al. CORR 2012; 470(7):1895-906
4 Goldberg et al. CORR. 2002 401:149
Research Avenues

• Biological and Histological
 • Pseudotumors
 • Immune reaction

• Patient reported outcomes
 • Pain Scale
 • Function indices

• Metal ions
 • Systemic effects
 • Serum
 • Urine

• Corrosion
 • Chemical environment
 • Interaction between materials

• Lubrication
 • Type (boundary, fluid film)
 • Changes

• Mechanical
 • Design parameters
 • Positioning Accuracy
 • Patient activity
Potential Factors - Femoral Component

Design parameters

- Angular mismatch2,5
- Contact length$^{3-5}$
- Head diameter & offset$^{3-5}$
- Cup features6

Health of Women Workshop - 25 June 2013
Femoral Component Results

- Coefficient of friction
- Angular mismatch
- Taper thickness
- Trunnion diameter
- Trunnion contact length
- Head center offset

Health of Women Workshop - 25 June 2013
Potential Factors - People-based

Surgical and Patient variables

- Body weight
- Positioning
- Size
- Activities
- Anatomy

Langton, 2011
Potential Factors - Positioning

• Often outside safe zone\(^1\)

• Anatomic differences

• Complications

\(^1\)Saxler 2004
Positioning Results

- Edge loading\(^1,2\)
- Micro-separation\(^3\)
- Compromised lubrication\(^4\)
- Increased metal ion concentrations\(^5\)
- Larger heads less affected by position\(^5\)

\(^1\)De Haan JBJS Br 2008; \(^2\)Campell CORR 2010; \(^3\)Sariali JoB 2012; \(^4\)Bishop JOR 2012; \(^5\)Langton JBJS Br 2008
Research Gap

• Implants fail at higher rate in women\(^1\)

• Size may be an issue - Doesn’t explain it \(^2,3,4\)
 • Multivatiable retrospective studies
 • Controlling for size, sex is still a significant factor

\(^1\)Latteier 2011, \(^2\)Glyn-Jones 2009, \(^3\)Hinsch 2011, \(^4\)Kordas 2012
Research Gap

• Sex-based analysis from retrieval data
 • Unknown usage patterns
 • Secondary factors

• Laboratory studies are idealized

• Computational models use “generic” geometries or often male bones and muscles
Female anatomic models

- Leverage existing collaboration with the Foundation for Research on Information Technologies in Society (IT'IS)
- Bones and tendon insertions
- May include ligaments
Human data acquisition

• System components
 • 3-D motion from video-based infrared cameras

• Force platforms

• Surface Electromyography (muscle activity)

• Accelerometry

• Eye gaze tracking
Movement and muscle data
Analyzing Subject Movements

- Anybody Modeling System
- Utilize custom geometry and muscle locations
- Calculate forces on implant
- Several purposes
 - Inputs to a device-based computational model
 - Vary parameters, analyze change in muscle force
 - Analyze effort of different activities
Mechanical testing

- **Class II Special Controls Guidance Document:**
 Hip Joint Metal/Polymer Constrained Cemented or Uncemented Prosthesis

- Wear simulator
 - Gait based: cyclic
 - Ideal orientation
 - 5-10 million cycles

- Taper junctions
 - Guidance Document for Testing Non-Articulating, 'Mechanically Locked', Modular Implant Components

INTERNATIONAL STANDARD
ISO 14242-1

Designation: F 1814 – 97a (Reapproved 2009)
Future Mechanical Testing - ASTM

• WK38566 – Standard Method for Measuring Metal Ions in Retrieved Fluid Samples from Total Joint Arthroplasty

• WK24686 – Guide for Hard on Hard Hip Devices

• WK34813 – Guide for High Demand Hard on Hard Hip Simulator Testing
Acknowledgements

• Funding
 • Office Women’s Health
 • Critical Path

• FDA Machine Shop

• Metal-on-Metal Workgroup members
Questions