Human Immunodeficiency Virus-1 Infection: Developing Systemic Drug Products for Pre-Exposure Prophylaxis Guidance for Industry

DRAFT GUIDANCE

This guidance document is being distributed for comment purposes only.

Comments and suggestions regarding this draft document should be submitted within 60 days of publication in the Federal Register of the notice announcing the availability of the draft guidance. Submit electronic comments to https://www.regulations.gov. Submit written comments to the Dockets Management Staff (HFA-305), Food and Drug Administration, 5630 Fishers Lane, Rm. 1061, Rockville, MD 20852. All comments should be identified with the docket number listed in the notice of availability that publishes in the Federal Register.

For questions regarding this draft document, contact Kimberly Struble, Pharm. D., at 301-796-1500.

U.S. Department of Health and Human Services
Food and Drug Administration
Center for Drug Evaluation and Research (CDER)

June 2018
Clinical/Antimicrobial
Human Immunodeficiency Virus-1 Infection: Developing Systemic Drug Products for Pre-Exposure Prophylaxis
Guidance for Industry

Additional copies are available from:

Office of Communications, Division of Drug Information
Center for Drug Evaluation and Research
Food and Drug Administration
10001 New Hampshire Ave., Hillandale Bldg., 4th Floor
Silver Spring, MD 20993-0002
Phone: 855-543-3784 or 301-796-3400; Fax: 301-431-6353; Email: druginfo@fda.hhs.gov
https://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm
TABLE OF CONTENTS

I. INTRODUCTION... 1

II. DEVELOPMENT CONSIDERATIONS... 2
 A. Nonclinical Considerations ... 2
 B. Clinical Pharmacology and Clinical Considerations for Long-Acting Products 2
 C. Dose Selection ... 3
 D. Drug Product Characteristics That Affect End-User Acceptability 3

III. PHASE 3 CLINICAL TRIAL DESIGN FEATURES — KEY CONSIDERATIONS... 4
 A. Enrollment Criteria .. 4
 B. Trial Design ... 4
 C. Efficacy Endpoint ... 5
 D. Other Trial Features ... 5
 E. Specific Population Considerations .. 6
 1. Pregnant Women .. 6
 2. Adolescents ... 6
I. INTRODUCTION

The purpose of this guidance is to provide to sponsors nonclinical and clinical recommendations specific to the development of systemic drug products, with a focus on long-acting systemic drug products, regulated within the Center for Drug Evaluation and Research at the Food and Drug Administration (FDA) for the prevention of sexually acquired human immunodeficiency virus-1 (HIV-1) infection. Specifically, this guidance addresses the FDA’s current thinking regarding the overall development program and clinical trial designs to support the development of systemic drug products for the prevention of HIV-1 infection. Investigational drug products for further development as pre-exposure prophylaxis (PrEP) can include the following: (1) an oral drug product approved for the treatment of HIV-1 infection that is subsequently developed as oral PrEP; (2) an oral drug product approved for the treatment of HIV-1 infection that is reformulated as a long-acting drug product or other delivery system for PrEP; or (3) a new investigational drug product.

This guidance does not address the development of vaginal microbicide drug products. That topic is discussed in the guidance for industry Vaginal Microbicides: Development for the Prevention of HIV Infection (vaginal microbicides guidance). The following additional information can be found in the vaginal microbicides guidance: detailed nonclinical development including in vitro virologic studies, developing drugs for topical use, specific information related to trials in female subjects, and more detailed information relating to protocol data collection and procedures. In general, the vaginal microbicides guidance also is applicable to the development of systemic drug products, except for the assessment of local microbicide effects that are unique to vaginal microbicide development.
II. DEVELOPMENT CONSIDERATIONS

A. Nonclinical Considerations

- Nonclinical virology considerations presented in the guidance for industry Human Immunodeficiency Virus-1 Infection: Developing Antiretroviral Drugs for Treatment are applicable to the development of systemic drug products for HIV-1 prophylaxis and should be reviewed.

- Depending on the mechanism of action of some systemic drug products for HIV-1 prophylaxis, sponsors should consider the potential of a drug to enhance HIV infectivity. For example, sponsors should evaluate monoclonal antibodies for potential antibody-dependent enhancement of infection.

- Animal models of HIV-1 infection (e.g., macaque/SHIV rectal challenge models) can be used to further support clinical development (e.g., by determining threshold drug concentrations at which infection occurs to aid in initial dose selection or explore potentially effective drug combinations, delivery formulations, and dosing regimens).

B. Clinical Pharmacology and Clinical Considerations for Long-Acting Products

- An oral lead-in (using an immediate-release formulation, if available) can be used to achieve and maintain desired targeted drug concentrations or address early safety

2 We update guidances periodically. For the most recent version of a guidance, check the FDA guidance web page at https://www.fda.gov/RegulatoryInformation/Guidances/default.htm.

contains Nonbinding Recommendations
Draft — Not for Implementation

82 concerns before administration of a long-acting formulation. If an adverse reaction
83 occurs during the lead-in period, an oral formulation allows for immediate withdrawal of
84 an investigational drug product, which is typically not feasible after a long-acting
85 formulation has been dosed.

86 • Long-acting drug products can be developed in the absence of an immediate-release
87 formulation (oral lead-in) depending on the drug characteristics, including the known in
88 vitro and in vivo safety profile of the drug product.

89 • In cases where desired targeted drug concentrations are not expected to be reached for a
90 considerable period, sponsors can consider other dosing strategies such as the use of a
91 loading dose (larger than the maintenance dose).

92 • Early in development, evaluation of the complete systemic concentration time course of
93 the drug after the last administered dose is critical to assess the impact of residual drug
94 concentrations on drug safety, development of resistance, and potential for continued
95 drug interactions after stopping PrEP. In phase 1 multiple-dose studies, sponsors should
96 fully characterize the complete systemic concentration time course, with collection of
97 blood samples for the measurement of drug concentration (pharmacokinetic (PK)
98 samples) until the concentration is no longer detectable in plasma.

99 C. Dose Selection

100 • Sponsors should use model-informed drug development approaches that leverage the
101 available information (nonclinical and clinical) across the development program to
102 inform dose selection whenever possible.

103 • Sponsors should generally target systemic drug exposures consistent with those of HIV-1
104 treatment (if available) or target systemic drug exposures that are several-fold above the
105 cell culture protein-binding-adjusted EC90 value.

106 • Sponsors can also select dose(s) that result in exposures that are similar to or several-fold
107 higher than animal exposures that showed protection (if studies using animal models
108 were conducted), if acceptable safety margins exist. Exposures below a known human
109 HIV-1 treatment dose (if previously studied for treatment), but similar to animal model
110 exposures that showed protection, may be acceptable for phase 2 and phase 3 clinical
111 trials.

112 D. Drug Product Characteristics That Affect End-User Acceptability

113 • The effectiveness of any intervention for HIV-1 prevention is strongly correlated with
114 adherence. Therefore, subject adherence and retention are critical to the overall
115 evaluation of safety and efficacy of an investigational drug product. A drug with less
116 frequent and more convenient dosing may be associated with greater adherence. Early in
117 development, sponsors should focus on drug product characteristics (such as the number,
118 frequency, and volume of injections; duration and characteristics of an implant, among
others) that might affect end-user adherence. The Division of Antiviral Products (DAVP) strongly encourages pretrial feasibility assessments to understand user preferences and to ensure drug product attributes do not adversely affect subject ability to adhere to a study regimen.

- Data obtained in early development can guide drug product reformulation, if needed, to optimize acceptability before starting large-scale trials.

III. PHASE 3 CLINICAL TRIAL DESIGN FEATURES — KEY CONSIDERATIONS

A. Enrollment Criteria

- The trial population should include healthy, non-HIV-infected sexually active adult men and women at substantial risk of acquiring HIV. Confirmation of HIV infection status before trial entry is critical, preferably by use of a diagnostic test that is sensitive to acute infection (e.g., capable of detecting HIV-1 RNA).

B. Trial Design

- HIV prevention trials should be randomized, double-blind, placebo-controlled trials or active-controlled superiority or noninferiority (NI) trials. Trials designs for the following populations should be considered.
 - **Trials in men who have sex with men:** Trials should use an active control and can be either superiority trials or NI trials. The NI margin is determined using historical evidence of the treatment effect of an active control based on adequate and well-controlled superiority trials. Assumptions based on historical data, however, may be influenced by previous levels of adherence. These assumptions should be considered when estimating the HIV infection rate in subjects receiving an active control based on historical data. Likewise, interpretation of the trial findings can be affected by lack of treatment adherence or dropouts.
 - **Trials in high-risk women:** Superiority designs are recommended because determination of an NI margin is difficult or impossible in this population because of the variable historical evidence of HIV prevention efficacy in at-risk women.

- In general, two adequate and well-controlled trials are often needed to provide substantial evidence of effectiveness. However, evidence based on a single phase 3 trial can be considered acceptable if the results are statistically persuasive and supported by additional evidence (e.g., if the drug is already demonstrated to be effective for HIV treatment). If sponsors are considering using a single trial approach, they should discuss this with DAVP.

4 For trials in other high-risk adult populations (e.g., serodiscordant couples), trial designs should be discussed with DAVP.
C. Efficacy Endpoint

- The primary endpoint is based on the intent-to-treat population, including all randomized subjects, and the HIV infection rate per 100 person-years. Subjects should not be excluded based on factors impacted by postrandomization selection.

- All enrolled subjects should be followed for a minimum of 12 months and should be followed until the last enrolled subject completes the trial and the majority of subjects have received 24 months of follow-up.

D. Other Trial Features

- A plan to assess adherence should be submitted as part of the protocol and statistical analysis plan for review and should include: (1) objective methods, such as plasma drug levels to provide estimates of drug product use over time; and (2) methods to document information on known factors that affect HIV transmission, such as condom usage and use of other prevention modalities. However, the primary analysis should not be adjusted for actual use or compliance.

- If the baseline/screening test does not use an HIV-1 RNA-specific assay(s) sensitive for acute infections, baseline samples should be stored for retrospective HIV-1 RNA analysis (e.g., by RT-PCR) for all subjects. Retrospectively identified HIV-infected subjects missed by the screening assay should not be considered prophylaxis failures and can be excluded from the primary efficacy analysis.

- Long-acting antiretroviral drugs may persist for extended periods after drug product discontinuation, potentially at concentrations too low for effective prophylaxis but high enough to select drug-resistant virus in case of infection. Sponsors should consider providing oral drugs for prophylaxis (e.g., emtricitabine/tenofovir DF) to those subjects who discontinue a drug product with a long half-life, who are uninfected at the time of drug product cessation, but who remain at risk of HIV-1 infection. Oral prophylaxis coverage should continue until the investigational drug has been cleared. If oral prophylaxis coverage is deemed necessary, then these considerations should be included in the proposed labeling.

- PK samples should be obtained from all subjects at trial visits at which HIV testing is performed and the samples archived for future analysis. The time of previous doses and the time of sample collection should be recorded for all PK samples. PK samples for seroconverting subjects should be analyzed and compared to that of a matched seronegative cohort.

- Drug or drug metabolite concentration data can be used to examine drug product adherence.
Depending on the drug product characteristics (e.g., if there is a device component for self-administration), human factor and label comprehension studies may be needed to ensure labeling instructions for use are appropriate for the U.S. population. See the draft guidance for industry and FDA staff Human Factor Studies and Related Clinical Study Considerations in Combination Product Design and Development.5

E. Specific Population Considerations

1. Pregnant Women

- Women who become pregnant during premarketing trials may be able to continue dosing; the FDA’s decision on a sponsor’s proposal to dose pregnant women is made on a case-by-case basis and is dependent on the available data.6
- Before inclusion of pregnant women in clinical trials can be considered, the sponsor should provide the following data. Findings from the toxicology studies should support the benefit-risk assessment to continue dosing in pregnant women.
 - Completed reproductive toxicology studies, including data from fertility and early embryonic development studies, embryo-fetal development studies, and pre- and postnatal development studies
 - Completed genotoxicity studies
 - Toxicity studies in two species to support the duration of exposure in human trials

2. Adolescents

- The vaginal microbicides guidance outlines a two-stage approach for development of microbicides for use in adolescents, consisting of collection of initial safety data from subjects 16 to 18 years old, followed by recruitment of adolescents younger than 16 years (depending on the clinical needs and pediatric research requirements of participating trial sites). A two-stage approach may be appropriate for microbicide development given the potential differences in vaginal epithelial inflammation/toxicity and absorption within adolescent age groups. For systemic drug development, the preferred approach for adolescents is enrollment in the adult clinical trials, or for sponsors to conduct an adolescent trial in parallel with the adult trials. Sponsors should make every effort to submit data from adolescents with the new drug application submission.
- Adolescent extrapolation of efficacy is acceptable for systemic HIV prevention drug products because acquisition of HIV infection in adolescents and the effects of systemic drugs are sufficiently similar between adult and adolescent populations. Therefore, after

5 When final, this guidance will represent the FDA’s current thinking on this topic.

6 See section III.A.5.c., Safety in specific populations, of the vaginal microbicides guidance for more specific details on the types of data to be collected for women who become pregnant and continue dosing in clinical trials.
critical PK parameters for a systemic HIV drug product are identified from adult data, the adolescent development program can rely on matching the relevant adolescent and adult exposure parameters to demonstrate effectiveness in the adolescent population. Additional data should be submitted to support safety in adolescents and to assess adherence.

- Sponsors should collect supportive safety data in adolescents, unless the safety profile of the drug product is already established in pediatrics.

- Adolescent adherence data are important because lack of adherence could undermine adolescent efficacy and safety. Collection of usage data in adolescents is desirable until adolescent adherence is better understood for a given prevention modality (e.g., pill, injection). After usage data are collected for a given prevention modality, sponsors should discuss with DAVP the utility of existing data to address adolescent adherence for a similar prevention modality (e.g., second oral drug product seeking approval) and whether additional usage data are needed (e.g., if the dosing regimen differs).