This recommendation represents the Food and Drug Administration’s (FDA’s) current thinking on this topic. It does not create or confer any rights for or on any person and does not operate to bind FDA or the public. You can use an alternative approach if the approach satisfies the requirements of the applicable statutes and regulations. If you want to discuss an alternative approach, contact the FDA staff responsible for implementing the Q3C guidance. If you cannot identify the appropriate FDA staff, call the appropriate number listed on the title page of the guidance.
For questions regarding this document, contact (CDER) Timothy J. McGovern 240-402-0477.

**IMPURITIES: RESIDUAL SOLVENTS (MAINTENANCE)**

**PDE FOR TRIETHYLAMINE AND PDE OF METHYLISOBUTYLKETONE**

**Triethylamine**

**Introduction**

Triethylamine (TEA) is used as catalytic solvent in chemical synthesis (1,2). It is a colourless liquid that is soluble in water, ethanol, carbon tetrachloride, and ethyl ether, and very soluble in acetone, benzene, and chloroform. TEA has a vapour pressure of 54 mmHg (20°C), and has been reported to be irritating to the lung and nasal passage with strong ammoniac odour (2,3).

Data from human studies show that TEA is easily absorbed via the oral or inhalation route and is rapidly excreted, mainly in the urine, as the parent compound and/or its N-oxide (4-6).

In studies in human volunteers, exposures of more than 2.5 ppm (10 mg/m³) caused transient visual disturbance (4,7) due to a locally induced cornea swelling; no systemic effects were observed at the exposures which showed the cornea effect. The odour thresholds ranged from 0.0022 to 0.48 mg/m³ (8-10).

**Genotoxicity**

In an Ames test TEA did not induce mutations in standard Salmonella strains with or without metabolic activation (11). TEA did not induce sister chromatid exchanges in Chinese hamster ovary cells with or without metabolic activation (12). In an *in vivo* study, TEA induced aneuploidy but was not clastogenic in the bone marrow of rats exposed to 1 mg/m³ (0.25 ppm) and 10 mg/m³ (2.5 ppm) TEA via continuous inhalation for 30 or 90 days (13). The weak aneugenic effect was observed at the low dose and early time point only; due to study deficiencies the relevance of this finding is highly questionable. Overall, the available data do not provide evidence for a relevant genotoxic potential of TEA.

**Carcinogenicity**

No data available.

**Reproductive toxicity**

No reliable information about reproductive toxicity is available. A three-generation reproductive study in which rats (10/sex/group) were administered 0, 2, or 200 ppm (c.a. 0, 0.14 or 14 mg/kg/day) TEA in drinking water was cited in the United States Environmental Protection Agency (US EPA) Integrated Risk Information System assessment review (14). The high dose was increased to 500 ppm in the third
generation due to a lack of observed symptoms. No apparent effects occurred at 200 ppm through two generations. However, due to deficiencies in end-points measured the study data were disregarded from determining a Permitted Daily Exposure (PDE).

Replaced dose toxicity

A sub-chronic inhalation study (similar to Organisation for Economic Cooperation and Development [OECD] Test Guideline 413 and OECD Test Guideline 452) in rats is considered to be the most relevant published animal study for deriving a PDE. F344 rats (50 rats/group/sex) were exposed by whole body inhalation at concentrations of 0, 25, or 247 ppm (0, 0.10 or 1.02 mg/L) for 6 hours/day, 5 days/week for 28 weeks (15). No statistically significant treatment-related systemic effects were observed at all dose groups. Body weight gain was not statistically affected, although a slight dose-related decrease of body weight in male rats was observed. The No Observed Effect Level (NOEL) of this study was 247 ppm.

Molecular weight of TEA: 101.19 g/mol

NOEL 247 ppm

\[
247 \text{ ppm} = \frac{247 \times 101.19}{24.45} = 1022.2 \text{ mg/m}^3 = 1.022 \text{ mg/L}
\]

For continuous dosing \[
\frac{1.022 \times 6 \times 5}{24 \times 7} = 0.183 \text{ mg/L}
\]

Daily dose \[
\frac{0.183 \text{ mg L}^{-1} \times 290 \text{ L day}^{-1}}{0.425 \text{ kg}} = 124.9 \text{ mg/kg/day}
\]

Rat respiratory volume: 290 L day\(^{-1}\)
Rat body weight: 0.425 kg

\[
PDE = \frac{124.9 \times 50}{5 \times 10 \times 2 \times 1 \times 1} = 62.5 \text{ mg/day}
\]

F1 = 5 to account for extrapolation from rats to humans
F2 = 10 to account for differences between individual humans
F3 = 2 because long duration of treatment (28 weeks)
F4 = 1 because no severe effects were observed
F5 = 1 because a NOEL was established

\[
\text{Limit} = \frac{62.5 \times 1000}{10} = 6250 \text{ ppm}
\]

Due to obvious study deficiencies other published animal toxicity data were disregarded from determining a PDE.

**Conclusion**

The calculated PDE for TEA based upon the NOEL of the rat sub-chronic inhalation study is 62.5 mg/day. Since the proposed PDE is greater than 50 mg/day it is recommended that TEA be placed into Class 3 (“solvents with low toxic potential”) in Table 3 in the ICH Impurities: Residual Solvents Guideline.

**References**

METHYLISOBUTYLKETONE

Introduction

Methylisobutylketone (MIBK) is listed in the ICH Q3C parent Guideline of 1997 in Class 3, i.e., as a solvent with low toxicity based on a review of toxicity data available at that time resulting in a Permitted Daily Exposure (PDE) value for MIBK of 100 mg/day (1). Due to new toxicity data including results from National Toxicology Program (NTP) 2-year rat and mouse inhalation carcinogenicity studies and published studies on reproductive and developmental toxicity the Expert Working Group has re-evaluated the PDE value of MIBK.

Genotoxicity

No additional information about genotoxicity has been reported, since the last assessment was conducted in 1997. The available data suggest that MIBK is not genotoxic.

Carcinogenicity

MIBK has been studied by NTP in 2-year rat and mouse inhalation studies. F344/N rats and B6C3F1 mice (50 animals/sex/group) were exposed to MIBK at concentrations of 0, 450, 900, or 1800 ppm by inhalation, 6 hours per day, 5 days per week for two years. Survival was decreased in male rats at 1800 ppm (4). Body weight gains were decreased in male rats at 900 and 1800 ppm and in female mice at 1800 ppm. The primary targets of MIBK toxicity and carcinogenicity were the kidney in rats and the liver in mice. The NTP Technical Report concluded that there was some evidence of carcinogenic activity of MIBK in rats and mice (4,5). Based on these NTP data, IARC has classified MIBK as a group 2B carcinogen (“possibly carcinogenic to humans”) (6).

In the rat NTP study, MIBK caused an increase in Chronic Progressive Nephropathy (CPN) and a slight increase in the incidences of renal tubule adenoma and carcinomas in males at the highest dose. Further mechanistic studies provide clear evidence that the renal tubular tumors in male rats are most likely caused through the well-known male rat specific α2u-nephropathy-mediated mode of action, which is considered to be without relevance to humans (7). Exacerbated CPN was also observed in female rats (increases in the incidence of CPN in all exposure concentrations and in the severity at 1800 ppm) the human relevance of which is currently unclear. Increases in mononuclear cell leukemias in male rats at 1800 ppm and the occurrence of two renal mesenchymal tumors (very rare tumor, not observed in NTP historical control animals) in female rats at 1800 ppm were findings with uncertain relationship to MIBK exposure (5).

From the results of the rat carcinogenicity study with MIBK, PDEs are calculated based on two different scenarios:
(i) tumor findings in male and female rats are not treatment-related and/or not relevant to humans and therefore the CPN in female rats observed at the lowest dose (LOEL\(^1 = 450\) ppm) is used for PDE calculation.

or

(ii) relationship to MIBK exposure and relevance of rat tumor findings at 1800 ppm in males (mononuclear cell leukemias) and/or females (renal mesenchymal tumors) to humans cannot be excluded; the NOEL for tumors of 900 ppm is used for PDE calculation.

Molecular weight of MIBK: 100.16 g/mol

**Scenario 1:** LOEL\(_{CPN}\; 450\) ppm (rat)

\[
450 \text{ ppm} = \frac{450 \times 100.16}{24.45} = 1843 \text{ mg/m}^3 = 1.843 \text{ mg/L}
\]

For continuous dosing \[
\frac{1.843 x 6 x 5}{24 x 7} = 0.329 \text{ mg/L}
\]

Daily dose \[
\frac{0.329 \text{ mg L}^{-1} x 290 \text{ L day}^{-1}}{0.425 \text{ kg}} = 225 \text{ mg/kg/day}
\]

Rat respiratory volume: 290 L day\(^{-1}\)
Rat body weight: 0.425 kg

\[
PDE = \frac{225 x 50}{5 x 10 x 1 x 1 x 5} = 45 \text{ mg/day}
\]

F1 = 5 to account for extrapolation from rats to humans
F2 = 10 to account for differences between individual humans
F3 = 1 because long duration of treatment (2 years)

\(^1\) Lowest Observed Effect Level
F4 = 1 low severity of effect (CPN in females) with unclear relevance for humans
F5 = 5 because a NOEL for CPN was not established

\[
\text{Limit} = \frac{45 \times 1000}{10} = 4500 \text{ ppm}
\]

**Scenario 2:** NOEL\(_{\text{tumor}}\) 900 ppm (rat)

\[
900 \text{ ppm} = \frac{900 \times 100.16}{24.45} = 3687 \text{ mg/m}^3 = 3.687 \text{ mg/L}
\]

For continuous dosing = \[
\frac{3.687 \times 6 \times 5}{24 \times 7} = 0.658 \text{ mg/L}
\]

\[
\text{Daily dose} = \frac{0.658 \text{ mg L}^{-1} \times 290 \text{ L day}^{-1}}{0.425 \text{ kg}} = 449 \text{ mg/kg/day}
\]

Rat respiratory volume: 290 L day\(^{-1}\)
Rat body weight: 0.425 kg

\[
PDE = \frac{449 \times 50}{5 \times 10 \times 1 \times 10 \times 1} = 44.9 \text{ mg/day}
\]

F1 = 5 to account for extrapolation from rats to humans
F2 = 10 to account for differences between individual humans
F3 = 1 because long duration of treatment (2 years)
F4 = 10 severity of endpoint (cancer)
F5 = 1 because a NOEL was established

\[
\text{Limit} = \frac{44.9 \times 1000}{10} = 4490 \text{ ppm}
\]
In the mouse study, MIBK increased the incidence of hepatocellular adenomas, and adenoma or carcinoma (combined) in male and female mice exposed to 1800 ppm. Further mechanistic studies provide clear evidence for a constitutive androstane receptor (CAR)-mediated mode of action (MOA) for the mouse liver tumors (8). Since this MOA has been identified as not relevant for humans (9), no PDE calculation was done based on the mouse 2-year study data.

**Reproductive and developmental toxicity**

In a developmental toxicity study, pregnant F-344 rats were exposed to MIBK by inhalation at doses 0, 300, 1000, or 3000 ppm, 6 hours/day on gestational day 6 through 15. Some fetotoxicities (reduced fetal body weight and reductions in skeletal ossification) observed at 3000 ppm are considered to be secondary to maternal toxicities. There was no maternal, embryo, or fetal toxicity at 1000 ppm (2).

In a two-generation reproduction study, SD rats were exposed to MIBK via whole-body inhalation at concentrations of 0, 500, 1000, or 2000 ppm, 6 hours/day, for 70 days covering the period prior to mating of F0 generation through the lactation period of F2 generation. The NOEL for reproductive effects was 2000 ppm, the highest concentration tested; the NOEL for neonatal toxicity was 1000 ppm, based on acute Central Nervous System depressive effects (3).

**Conclusion**

The former PDE of MIBK was greater than 50 mg/day (100 mg/day) and the solvent was placed in Class 3. The newly calculated PDE of MIBK is based upon the NOEL for tumors in male and female rats and the LOEL for chronic progressive nephropathy in female rats from the NTP 2-year inhalation study; in both cases a PDE of 45 mg/day was calculated. Therefore, it is recommended that MIBK be placed into Class 2 in Table 2 in the ICH Impurities: Residual Solvents Guideline.

**References**

5. Stout MD, Herbert RA, Kissling GE, Suarez F, Roycroft JH, Chhabra RS et al. Toxicity and carcinogenicity of methyl isobutyl ketone in F344N rats and
B6C3F1 mice following 2-year inhalation exposure. Toxicology 2008;244:209–19.


