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Disclaimer

The Views expressed in this presentation do 
not reflect the official policy of the FDA
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Outline


 

Update of DDI guidance on model-based 
predictions


 

Why PBPK


 
“Top-down” aspect of PBPK


 

Evaluating transporter DDI using PBPK, 
a process of predict-learn-confirm
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CYP inhibition
(reversible and time-dependent inhibition, TDI) 

CYP induction

Is AUCR >1.25 (inhibition) or AUCR <0.8 (induction)? [d]

Estimate AUCR of sensitive probe substrate characteristics using  

- a mechanistic static model[e] 
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- or a dynamic model, including PBPK[f] 

Is increase in mRNA > a predefined threshold[a]?
Or, is the calculate R value<1/1.1 (i.e., 0.9)? 

R3=1/(1+dEmax[I]/(EC50
 +[I]))[c] 

Is the calculated R value >1.1 (also, for CYP3A 
inhibitors given orally, is alternate R value>11)[b]? 

 Reversible inhibitor, R1 = 1 + [I]/Ki 
 TDI, R2 = (Kobs+Kdeg)/Kdeg and Kobs=kinact[I]/(KI+[I]) 

Investigational 
drug likely a 
CYP inducer 

Investigational 
drug likely a 

CYP inhibitor 

Conduct a clinical study using an appropriate probe substrate [g] 

Basic models

 Measure mRNA change by  investigational drug in
cultured human hepatocytes from 3 donors [a] 

 Estimate DDI parameters 

 Measure enzyme activity in human 
liver microsomes 

 Estimate DDI parameters 

Yes 
No Label as non inhibitor or non 

inducer based on in vitro data 
No 

Yes 

Yes 

Label as non-
inhibitor or non-

inducer

No 

Mechanistic models 
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General Scheme of Model-Based Prediction: The Investigational Drug (and Metabolite 
Present at ≥25% of Parent Drug AUC) as an Interacting Drug of CYP Enzymes 
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Model-based Prediction of DDI for 
Drug Transporters


 

Multiple decision trees provided for major 
transporters (P-gp, OATP1B1/3, OAT1/3, 
OCT2, and BCRP) using basic and 
mechanistic static models


 

Complexity recognized in “Complex drug 
interactions”

 
section, which proposes the 

use of physiologically-based 
pharmacokinetic modeling (PBPK)
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Such “complex drug interaction” scenarios include, but are not limited 
to: 



 

Concurrent inhibition and induction of one enzyme or concurrent 
inhibition of enzyme and transporter by a drug



 

Increased inhibition of drug elimination by the use of more than one 
inhibitor of the same enzyme that metabolizes the drug 



 

Increased inhibition of drug elimination by use of inhibitors of more 
than one enzyme that metabolizes the drug 



 

Inhibition by a drug and its metabolite or metabolites, both of which 
inhibit the enzyme that metabolizes the substrate drug 



 

Inhibition of an enzyme other than the genetic polymorphic enzyme 
in poor metabolizers taking substrate that is metabolized by both 
enzymes 



 

Use of enzyme/transporter inhibitors in subjects with 
varying degrees of impairment of drug eliminating 
organs

 
(e.g., liver or kidney)

Complex Drug-drug Interactions
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Outline


 

Update of DDI guidance on model-based 
predictions


 

Why PBPK


 
“Top-down” aspect of PBPK


 

Evaluating transporter DDI using PBPK
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Increased Interest in Using PBPK
Rowland M, Peck C, Tucker G,
Physiologically-based pharmacokinetics in Drug Development and 
Regulatory Science
Annu Rev Pharmcol Toxicol, 2011



10

Zhao, Rowland, Huang, Clin Pharmcol Ther 2012
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Courtesy Prof. Rostami-Hodjegan

 

(U Manchester)

Brain

Liver

Kidney

Gut



12

Clinical Pharmacology

Central role: to assess 
PKPD in specific patient 
groups

To make more informed 
decision on drug dosing

To guide our decisions:
 In theory, all situations can be tested clinically.  However, ethical 

and practical issues may limit the numbers of studies one can 
conduct

 Can some situations be predicted using current knowledge?

Huang and Temple, Clin Pharmcol Ther, 2007
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Intrinsic factors

Extrinsic factors
Drug 

disposition

Drug action

System 
component 

(drug-independent)

PBPK Model

Predict, Learn, Confirm

Drug-dependent 
component

A. Patient Factors B. PBPK Model components

Huang and Temple, 2008

PBPK: Predict, Learn, and Confirm

Adapted from Zhao P, et al Clin Pharmacol Ther 2011

Intrinsic factors

Extrinsic factors
Physiology

Anatomy

Biology
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Extrapolating effect of CYP2D6 PM + CYP3A4 moderate inhibitor 
when data on PGx

 PM + Keto

 

(n=6)
PM (n=8)
EM + Keto

 

(n=11)
EM (n=11)

5-
H

M
T 

(n
g/

m
L)

Clin Pharm Review: drugs@FDA

with strong inhibitor are available

Oral Fesoterodine

5-HMT

Absorption
Hydrolysis

6 CYP3A4

Renal CL

P2DCY

Observed

AUCR CmaxR

EM +/- Ketoconazole 2.3 [a] 2.0 [a]

PM +/- Ketoconazole 2.5 [a] 2.1 [a]

PM / EM 2.3 2.1

PM + Keto / EM 5.7 [a] 4.5 [a]

EM +/- Fluconazole 1.3 [b] 1.2 [b]

PM + Fluconazole / EM - -

Vieira et al, ASCPT Annual Meeting, National Harbor, MD, March 2012
[a] Clinical Pharmacology Review (drugs@fda); [b] Malhotra et al (2001) B J Clin Pharmacol 72:226-234.

Predicted

AUCR CmaxR

1.9 1.8

3.3 2.4

1.6 1.5

5.4 3.6

1.3 1.2

2.6
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Or, can we PREDICT

 

DDI BEFORE any DDI/PG study is conducted?  
Which one to do first?  Which one can be waived?

Oral Fesoterodine

5-HMT

Absorption
Hydrolysis

CYP2D6 CYP3A4

Renal CL

Observed

AUCR CmaxR

EM +/- Ketoconazole ? ?

PM +/- Ketoconazole ? ?

PM / EM ? ?

PM + Keto / EM ? ?

EM +/- Fluconazole ? ?

PM + Fluconazole / EM ? ?

Vieira et al, ASCPT Annual Meeting, National Harbor, MD, March 2012
[a] Clinical Pharmacology Review (drugs@fda); [b] Malhotra et al (2001) B J Clin Pharmacol 72:226-234.

Predicted

AUCR CmaxR

1.9 1.8

3.3 2.4

1.6 1.5

5.4 3.6

1.3 1.2

2.6 2.1

EM (n=11)

5-
H

M
T 

(n
g/

m
L)

Clin Pharm Review: drugs@FDA
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Complexity of Transporter DDI



 
Associated with both drug ADME and DDI potential 



 

PK of substrate and interacting drug


 

DDI mechanism(s) of interacting drug



 
At all levels of physiology



 

Organ/tissue level (more than 1 transporters, in more than 1 
organ)



 

Cell level (differential expression, uptake and efflux, more than 1 
cell type)



 

Subcellular system



 
Enzyme-transporter-(permeability) interplay

Need knowledge integration and mechanistic modeling 
of local as well as whole body kinetic events
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Outline


 

Update of DDI guidance on model-based 
predictions


 

Why PBPK


 
“Top-down” aspect of PBPK


 

Evaluating transporter DDI using PBPK
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Modeling of Local And Whole Body 
Kinetics: “Bottom-up”+ “Top-down”


 

Obtaining parameters in a complex in 
vitro system


 

Integrating in vitro parameters in PBPK


 
Refining model parameters using in vivo 
PK data

Predict, Learn, Confirm
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LEARNING Active and Passive Processes Using PBPK: 
Scaling Factors (SF) for Pravastatin

CLint, u, act. CLint, u, pass. CLint, u, bile

In vitro (uL/min/10^6 cells) 1.8 0.1 1.2
Organ level (ml/min/kg?)

No SF 19 1.1 12
+ SF from i.v. data (SF) 406 (21) 4.2 (3.9) 1.5 (0.12)

Jones et al, Drug Metabo Dispo, 2012

+

-

 SF from fitting i.v. data

SF
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Pravastatin
 

DDI: Liver Specific? 

Varma et al, Pharm Res, 2012

Scaling factors for both liver uptake and biliary

 

efflux are needed
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Pravastatin
 

DDI: Liver Specific? 

Varma et al, Pharm Res, 2012

PBPK simulation underestimated pravastatin

 

AUC increase by 
cyclosporine over the reported range of Ki

 

for OATP1B1

Effect on extrahepatic
 

pathway(s)?



22

Handling Multiple Active Processes 
Using PBPK -

 
Pravastatin

Database on expression data were used to parameterize pravastatin

 human PBPK model
k*cat

 
bolism) process

Meyer et al, Drug Metabo Dispo, 2012

as an organ-independent parameter for each active (transport 
or meta

Liver Kidney Intestine
• OATP1B1

• OAT3
• MRP2

• Sulfotransferase

.
• OAT3
• MRP2

• Sulfotransferase

.

.
• MRP2

• Sulfotransferase
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Handling Multiple Active Processes 
Using PBPK -

 

Model integrating experimental 
expression data (array database for 
example)

Pravastatin

Meyer et al, Drug Metabo Dispo, 2012

Basic model: general CLH

 

and CLR
Extended basic model: integration of 
known mechanisms: GI degradation and 
OATP1B1 in the liver

Improved fit with model considering expression data for all tissues
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Outline


 

Update of DDI guidance on model-based 
predictions


 

Why PBPK


 
“Top-down” aspect of PBPK


 

Evaluating transporter DDI using PBPK, 
a process of predict-learn-confirm
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Renal Dysfunction: The Interplay

Yeo, Exp Op Clin Pharmacol, 2011



CONFIRMING
 

the Effect of Renal 
Impairment  (RI) on Hepatic Pathways

26

Zhao P, et al, J Clin Pharmacol 2012

Compound 
(% CL by kidney)

Observed
AUCR Severe RI/Normal

Sildenafil
(<1%)

2.0b

(Mild: 0.9; Moderate: 1.2)

Repaglinide
(<1%)

SD: 2.7; 
MD: 3.0c

(Mild/Moderate: SD: 1.8; MD1.6 ) 

Telithromycin
(~20%)

1.9d

(Mild: 1.4; Moderate: 1.2)

a. SimCYPV10.10; b. Muirhead. Br. J.Clin.Pharmacol. 2002; c. Marbury. Clin.Pharmacol.Ther. 2000; d. Shi, Int.J.Clin.Pharmacol.Ther. 2005

PBPKa Predicted 
AUCR Severe RI/Normal

2.2

SD: 2.5; 
MD: 2.3

1.6



X
X
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CLH = CLCYP3A + CLCYP2C9
• UK-103320: 15% CLH 

(CYP3A:CYP2C9 80%:20%)
• Others: 85% CLH (CYP3A 100%)

ood

Intestine

Liver

oodorgans

Metabolite forming 
organ

CLH = CLCYP2C8+CLCYP3A
• ~ 38 L/h (>99% CL)
• CYP3A4:CYP2C8 50%:50%
• CLuptake mainly by OATP1B1

Hepatocytes

Sinusoid  PS
inf,O

A
TP1B

1

Free drug

C
L

PD

Free drug CL int, met

Qha+Qpv
Qhv

Liver

Kidney CLH = CLCYP3A + CLCYP2C9
• UK-103320: 15% CLH 

(CYP3A:CYP2C9 80%:20%)
• Others: 85% CLH (CYP3A 100%)

ood

Intestine

Liver

oodorgans

Metabolite forming 
organ

CLH = CLCYP2C8+CLCYP3A
• ~ 38 L/h (>99% CL)
• CYP3A4:CYP2C8 50%:50%
• CLuptake mainly by OATP1B1

Hepatocytes

Sinusoid  PS
inf,O

A
TP1B

1

Free drug

C
L

PD

Free drug CL int, met

Qha+Qpv
Qhv

Liver

CLH = CLCYP2C8+CLCYP3A
• ~ 38 L/h (>99% CL)
• CYP3A4:CYP2C8 50%:50%
• CLuptake mainly by OATP1B1

Hepatocytes

Sinusoid  PS
inf,O

A
TP1B

1

Free drug

C
L

PD

Free drug CL int, met

Qha+Qpv
Qhv

Liver

Kidney

LEARNING
 

the Effect of Renal Impairment on CLh

X

Assumption on 
PSinf,OATP1B1

Repaglinide

 

AUC Ratio by Severe Renal Impairment

Single dose Multiple doses

Obs

 

a 2.7 3.0
Pred. No change 1.3 1.2

Pred.  52% 2.5 2.3
Zhao et al, J Clin Pharmacol, 2012 a. Marbury. Clin.Pharmacol.Ther. 2000

X

Hepatic uptake (OATP) is likely to be affected by renal impairment

X: Effect of renal impairment on OATP and CYPs

Repaglinide
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Gemfibrozil: Multiple DDI Mechanisms



X

XX

X

X
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CLH = CLCYP3A + CLCYP2C9
• UK-103320: 15% CLH 

(CYP3A:CYP2C9 80%:20%)
• Others: 85% CLH (CYP3A 100%)

ood

Intestine

Liver

oodorgans

Metabolite forming 
organ

CLH = CLCYP2C8+CLCYP3A
• ~ 38 L/h (>99% CL)
• CYP3A4:CYP2C8 50%:50%
• CLuptake mainly by OATP1B1

Hepatocytes

Sinusoid  PS
inf,O

A
TP1B

1

Free drug
C

L
P

D

Free drug CL int, met

Qha+Qpv
Qhv

Liver

Kidney CLH = CLCYP3A + CLCYP2C9
• UK-103320: 15% CLH 

(CYP3A:CYP2C9 80%:20%)
• Others: 85% CLH (CYP3A 100%)

ood

Intestine

Liver

oodorgans

Metabolite forming 
organ

CLH = CLCYP2C8+CLCYP3A
• ~ 38 L/h (>99% CL)
• CYP3A4:CYP2C8 50%:50%
• CLuptake mainly by OATP1B1

Hepatocytes

Sinusoid  PS
inf,O

A
TP1B

1

Free drug
C

L
P

D

Free drug CL int, met

Qha+Qpv
Qhv

Liver

CLH = CLCYP2C8+CLCYP3A
• ~ 38 L/h (>99% CL)
• CYP3A4:CYP2C8 50%:50%
• CLuptake mainly by OATP1B1

Hepatocytes

Sinusoid  PS
inf,O

A
TP1B

1

Free drug
C

L
P

D

Free drug CL int, met

Qha+Qpv
Qhv

Liver

Kidney

X: Multiple processes by parent and metabolite

X

XX

X

X

Complex DDI of Gemfibrozil
 

–
 

Repaglinide

Repaglinide



Rivaroxaban:
 

PREDICTING
 

Effect of 
Renal Impairment And DDI in The Elderly

30Grillo et al, Biopharm Drug Dispo, 2012

Gut

Portal Vein

Apparent 
Plasma

Liver

Fa*Ka

Qpvpv
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Qhv
Renal Filtr
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flux by Pgp: Ki

 

11 (M)

Rivaroxaban PBPK model

D

Renal impairment on
CL by liver and kidney



Rivaroxaban:
 

PREDICTING
 

Effect of 
Renal Impairment And DDI in The Elderly

31Grillo et al, Biopharm Drug Dispo, 2012
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PREDICTING
 

Effect of Renal 
Impairment And DDI in The Elderly

32Grillo et al, Biopharm Drug Dispo, 2012

Rivaroxaban AUC Ratio Renal functions
Normal Mild Moderate Severe

No Erythromycin 1.0 a 1.4 a 1.5 a 1.6 a

With Erythromycin 1.6 b 2.5 b 2.9 b 3.0 b

a Observed with in older subjects
b

 

Simulated using younger subjects with normal renal function as baseline 

More than 2-fold AUC Ratio is considered clinically significant
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Conclusions
 Transporter-based DDIs

 
are often highly complex

 PBPK can be used to evaluate complex DDI, because 
the model integrates knowledge in drug absorption, 
disposition, DDI mechanisms, and the effect of 
patient factors (disease, age, genetics) for both 
substrate and interacting drugs

 Clinical pharmacokinetic data are valuable for PBPK 
model modification

 PBPK model should be constantly updated with new 
data for improved predictability of untested 
situations
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Integrating Relative Activity Factor (RAF) of 
Brain Active Transport Using PBPK

36Ball et al, J Pharm Sci, 2012

4 mg/kg iv morphine

40 mg/kg iv morphine

CONFIRMING

Passive only

Passive 
+

in vitro efflux

Passive
+

in vitro efflux 
+ 

RAF

LEARNING

1 mg/kg iv
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Obtaining In Vitro Parameters Using 
Mechanistic Models

+ (uptake) transporter inhibitor

No (uptake) transporter inhibitor

Ca2+/Mg2+ free (disrupting canalicular). No inhibitor

Sandwich Culture Human Hepatocytes

Jones et al, Drug Metabo Dispo, 2012

CLints

 

PBPK
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