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More than 170,000 new cases of lung cancer are diagnosed every 
year in the United States.1 Lung cancer accounted for the high-
est cancer-related death rate during the past decade, exceed-
ing the combined rates of colon, breast, and prostate cancers. 
Despite the existence of a significant unmet medical need for 
new cancer treatments, oncology drugs have one of the lowest 
rates of successful drug development, at only 5% (ref. 2). Even 
compounds that reach the phase III development stage have a 
failure rate of ~60%.

The Critical Path Initiative of the US Food and Drug 
Administration calls for leveraging existing knowledge from 
clinical data through the use of quantitative modeling to 
improve the drug development process. We therefore initiated 
this project to quantify the relationship between early tumor 
size reduction and patient survival, using the combined clini-
cal data submitted to the Food and Drug Administration by 
multiple pharmaceutical companies. From the various cancer 
types, we selected non-small-cell lung cancer (NSCLC) because 
it is associated with a high death rate in the clinical trials, this 
being a required element for developing reliable survival models. 
Here we show how data mining of four drug registration trials 

for NSCLC agents enabled us to develop a pharmacostatistical 
model that links time of death to risk factors and the percent-
age change in tumor size at 8 weeks after start of therapy. The 
model can facilitate clinical screening of novel compounds and 
provides a tool for drug developers to use in performing clini-
cal trial simulations to improve the design of future trials. This 
model will also be of great value in addressing the limitation 
inherent in the unknown relationship between mean tumor size 
change and patient benefit in a phase II trial that used continu-
ous change in tumor size as the primary end point.3

Results
Baseline risk factors that influence survival
Among the 11 risk factors evaluated, Eastern Cooperative 
Oncology Group (ECOG) performance score and baseline 
tumor size were consistent significant predictors of time to 
death across the nine treatments (Table 1). These two risk fac-
tors were retained for developing the survival model. Although 
lactate dehydrogenase level was found to be a significant fac-
tor in all the treatments for which these data were available, 
it was not included in our model because the erlotinib and 
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pemetrexed trials did not have lactate dehydrogenase informa-
tion. This finding suggests, however, that lactate dehydrogenase 
data should be collected in future trials and may serve as a 
stratification factor.

Dynamic model of tumor size
Figure 1 shows individual and population predictions of tumor 
size dynamics in six representative patients, derived from the 
mixed exponential decay and linear growth model. The mean 
profiles of the patient population indicate that the tumors gen-
erally undergo shrinkage initially and that this is followed by 
tumor progression. Although the tumor size in an individual 
patient can differ substantially from the population prediction, 
the model is flexible enough to describe various types of indi-
vidual profiles. Diagnostic plots of the observed and predicted 
tumor size data for individual patients show that the data are 
uniformly and closely distributed around the line of identity 
(Supplementary Figure S1 online). Table 2 lists the parameter 
estimates and their estimation precisions. Each treatment was 

modeled separately so as to obtain the best individual predic-
tion. During model diagnosis of the erlotinib trial, two distinct 
subpopulations of tumor shrinkage rates were identified. The 
proportion of patients with a faster shrinkage rate was 12% for 
placebo and 20% for erlotinib.

Survival model
Baseline tumor size (centered at 8.5 cm), ECOG status (0/1/2/3 
as a categorical variable) and percentage tumor reduction from 
baseline at week 8 (PTRwk8) were found to be the best predictors 
of time to death (T), as shown in Eq. 1.
log(T) ECOG (Baseline 8.5) PTR ,0 1 2 3 wk8 D= + × + × − + × + εΤα α α α � (1)

where T is the time to death (day), α0 is the intercept, α1, α2, 
and α3 are the slopes for ECOG, centered baseline, and PTRwk8, 
respectively, and εTD is the residual variability following a normal 
distribution with a mean of zero and variance of σTD (TD; time 
to death). Because ECOG status is a categorical variable, α1 rep-
resents the difference between ECOG 0 (intercept) and each of 
the other levels (1/2/3). Log-normal distribution was selected for 
the survival model (Eq. 1) on the basis of likelihood ratio tests 
(Supplementary Table S1 online). An exploratory analysis of the 
first- and second-line treatments revealed significantly different 
slopes for PTRwk8 and marginally different slopes for ECOG, 
centered baseline, and intercept. Therefore, different models were 
fitted to first- and second-line treatments. A separate model was 
developed for the placebo group of the second-line-treatment 
population because of the significant differences in several 
parameter estimates between placebo and other groups, for both 
included and excluded populations. Parameter values and their 
estimation precisions are listed in Table 3.

Efforts were made to develop separate survival models for 
the excluded patients on the basis of baseline risk factors. The 
median survival times for the excluded patients were consistently 
shorter than those for the included population. The excluded 
population contained a higher percentage of patients with 
higher ECOG scores (Table 4). For clinical trial simulations, 
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Figure 1  The time course of tumor change for representative individual 
patients. The symbols represent the observed tumor sizes, the solid line 
represents the mean tumor size for the overall population, and the broken 
line represents the individual predicted tumor size.

Table 1  Significance of risk factors

Factors PCB PC DC DCb VC PB ET DT PT

ECOG performance status • • • • • • • • •
Baseline tumor size • ° • • • • • • •
Lactate dehydrogenase • • • • •
6-month weight loss (<5% vs. ≥5%) ° • ° ° ° • •
Sex • • ° ° ° ° ° ° °
Prior radiation ° ° ° ° ° ° ° • •
Prior surgery ° • ° ° ° ° ° ° °
Stage (III or IV) ° ° ° ° ° ° ° ° °
Age ° ° ° ° ° ° ° ° °
Number of prior chemotherapy treatments ° ° ° °
Best response to prior therapy: CR, PR, SD, or PD ° ° • °
•, significant; °, not significant.

CR, complete response; DC, docetaxel and cisplatin; DCb, docetaxel and carboplatin; DT, docetaxel; ECOG, Eastern Cooperative Oncology Group; ET, erlotinib; PB, placebo; PC, paclitaxel 
and carboplatin; PCB, paclitaxel, carboplatin, and bevacizumab; PD, progressive disease; PR, partial response; PT, pemetrexed; SD, stable disease; VC, vinorelbine and cisplatin.
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it is important to model the excluded patients in proportion to 
their representation in past trials. In the excluded population, 
only ECOG score could be identified as a significant predictor 
of survival time across all nine treatments. In addition, in a sig-
nificant portion of these patients, baseline tumor measurement 
data were not available. Therefore, a simplified survival model 

(Eq. 2) including only ECOG as the predictor was fitted to the 
excluded population.

log(T) ECOG .= + × +α α ε0 1 TD
�(2)

The parameter estimates and their estimation precisions are 
listed in Table 3. The variance–covariance matrix for the para
meter estimates is listed in Supplementary Table S2 online.

The graphic comparison of survival curves with simulated data 
and those with observed data showed reasonably good predic-
tive ability in the survival model for each treatment (Figure 2). 
As compared with the observed median survival times (Table 5), 
the simulated median survival times tend to shrink toward the 
mean median survival time of pooled treatments, leading to 
a conservative estimate of the relative survival benefit. This is 
reflected in the survival benefit and unstratified hazard ratio 
(Table 5). For erlotinib and bevacizumab, the model captured 

Table 2  Parameter estimates and their precisions (SE) for the tumor size model; interpatient and residual variability expressed 
as percentages

Treatment M_BASE (cm) M_SR (1/week) M_PR (cm/week) ωBASE ωSR ωPR σTS

PCB 9.1 (0.33) 0.06 (0.004) 0.13 (0.02) 59% (0.04) 73% (0.11) 110% (0.39) 15% (0.01)

PC 8 (03) 0.038 (0.01) 0.14 (0.04) 63% (0.06) 98% (0.47) 74% (0.18) 16% (0.03)

DC 8.7 (0.31) 0.052 (0.01) 0.16 (0.02) 57% (0.07) 74% (0.17) 74% (0.14) 20% (0.02)

DCb 9.2 (0.38) 0.047 (0.005) 0.16 (0.02) 64% (0.09) 77% (0.19) 67% (0.12) 18% (0.02)

VC 8.5 (0.28) 0.063 (0.01) 0.17 (0.02) 50% (0.04) 75% (0.18) 92% (0.34) 16% (0.02)

DT 8.5 (0.82) 0.033 (0.01) 0.13 (0.02) 77% (0.23) 190% (1.79) 14% (1.02) 26% (0.06)

PT 7.4 (0.47) 0.023 (0.01) 0.25 (0.05) 70% (0.11) 270% (1.46) 49% (0.18) 14% (0.02)

PBa 8.6 (0.44) 0.0047 slow (0.001) 
0.13 fast (0.004)

0.20 (0.02) 66% (0.08) 430% (1.63) 60% (0.56) 9% (0.02)

ETa 8.4 (0.32) 0.0045 slow (0.001) 
0.11 fast (0.05)

0.058 (0.02) 67% (0.09) 280% (0.53) 80% (0.34) 15% (0.02)

DC, docetaxel and cisplatin; DCb, docetaxel and carboplatin; DT, docetaxel; ET, erlotinib; PB, placebo; PC, paclitaxel and carboplatin; PCB, paclitaxel, carboplatin, and bevacizumab; 
PT, pemetrexed; VC, vinorelbine and cisplatin.
aPatient tumors in the  study arm that included the PB and ET groups had two distinct populations of shrinkage rates; the fast group constituted 12% of the population in PB and 
20% in ET.

Table 3  Parameter estimates and precision (SE) for the survival model for each line of treatment

Treatment α0 α1
a α2 α3 σTD

Included population

  First-line 5.75 (0.033) −0.21 (0.038) −0.029 (0.0035) 1.07 (0.080) 0.71 (0.015)

  Second-line (treatment) 5.91 (0.071) −0.34 (0.079) 
−0.61 (0.098) 
−0.62 (0.19)

−0.029 (0.0048) 0.42 (0.075) 0.72 (0.023)

  Second-line (placebo) 5.93 (0.15) −0.51 (0.16) 
−0.53 (0.19) 
−0.94 (0.25)

−0.043 (0.0097) 0.38 (0.16) 0.68 (0.04)

Excluded population

  First-line 5.42 (0.091) −0.51 (0.12) 1.40 (0.048)

  Second-line (treatment) 5.86 (0.21) −1.25 (0.23) 
−2.15 (0.25) 
−2.39 (0.31)

1.14 (0.054)

  Second-line (placebo) 5.32 (0.34) −0.68 (0.37) 
−1.41 (0.39) 
−1.75 (0.45)

0.94 (0.074)

aFor first-line treatment, α1 represents ECOG1–ECOG0; for second-line treatment, α1 represents ECOG1–ECOG0, ECOG2–ECOG0, and ECOG3–ECOG0 (top to bottom).

Table 4 ECO G distributions for included and excluded 
populations

ECOG

First line Second line

Included Excluded Included Excluded

0 799 (52%) 254 (45.8%) 157 (17.3%) 41 (11.3%)

1 739 (48%) 300 (54.2%) 575 (63.4%) 187 (51.7%)

2 148 (16.3%) 98 (27.1%)

3 27 (3%) 36 (9.9%)
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one-half to two-thirds of the survival benefit. For docetaxel, 
however, the model did not indicate any survival benefit.

Discussion
Two previous reports from the Food and Drug Administration 
summarize the regulatory basis and experience using response 
rate (i.e., change in tumor size) as the basis for accelerated 
approvals.4,5 In contrast, the focus of the research described 
herein is to demonstrate that information in prior registra-
tion trials can be leveraged to develop quantitative models that 
relate patient baseline risk factors and the time course of tumor 
response to the probability of survival. In addition, the models 
we have developed can be incorporated into clinical trial simula-
tions to aid early drug development decisions such as molecule 
screening, mortality trial design, and dose selection.

In agreement with the data published by Brundage et al.,6 we 
found that ECOG performance status is by itself an important 
risk factor in NSCLC patients. Previously, Mery et al.7 and Port 
et al.8 reported hazard ratios for overall survival reflecting the 

relationship between tumor size category (1–1.9 cm, 2–2.9 cm, 
3–3.9 cm, 4–4.9 cm, and 5–6 cm) and time to death in stage 1 or 
1A NSCLC patients. According to Mery et al., in a population of 
9,191 patients, the hazard ratio gradually increased from 1.27 to 
1.95 with increasing baseline tumor size relative to the 1–1.9-cm 
group. Port et al. found that, among 244 stage 1A patients, the 
hazard ratio was ~1.5 for the group having tumors larger than 
2 cm as compared with those with smaller tumors. By contrast, 
Patz et al.9 found, in a study involving 510 stage 1A NSCLC 
patients, that there was no correlation between tumor size, 
whether as a continuous variable or as a categorical variable, 
and overall survival. Black10 subsequently offered multiple rea-
sons to explain why the findings of Patz et al. might not reflect 
current understanding of this disease. Although our database 
had more advanced (stage IIIA/B or IV) NSCLC patients, our 
results support the conclusions of Mery et al. and Port et al. This 
finding in patients with more advanced cancer strengthens the 
observed relationship between baseline tumor size and prog-
nosis for survival.
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Figure 2  Survival curves for predicted data vs. observed data. The gray line and shaded area represent the mean survival curve and its 95% confidence interval 
(CI), respectively, relating to predicted data; the solid and broken black lines represent the survival curve and its 95% CI, respectively, relating to observed data.
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The time course of tumor growth can be described using 
several approaches. The Gompertz model is widely applied 
for modeling tumor growth.11 Swan12 describes numerous 
mathematical models involving differential equations that deal 
with the dynamic, or time-course, variation of cancer. A more 
recent model, by Iliadis and Barbolosi,13 incorporated a cell-loss 
component into a Gompertz-type growth equation in order to 
quantify the effect of drug exposure on cell death. Claret et al.14 
modified this model in an effort to link drug dose with the sparse 
tumor size data collected in late-stage clinical trials. A time-
varying resistance term was used to link drug dose with tumor 
growth suppression, whereas another term involving the natural 
log of tumor size in the Gompertz growth equation was omit-
ted. Tham et al.15 developed an empirical pharmacodynamic 
model to link drug dose/exposure with tumor growth, using a 
hypothetical effect compartment. Because the main objective of 
the tumor model in this project was to interpolate tumor sizes 
for cases in which observations were not available, we used a 
more empirical model that includes an exponential component 
and a linear component to describe the longitudinal tumor size 
data. This empirical model offered a more stable estimation of 
tumor size for our database as compared with the other, more 
complicated models. Patients with a better response to treatment 
(i.e., decrease in tumor size from baseline) show larger shrink-
age rate constants and shallower slopes of linear tumor growth, 
whereas patients with a poorer treatment response show smaller 
shrinkage rate constants and steeper slopes of linear tumor 
growth. Given the sparse data relating to measurements of 
tumor size in the database and the single-dose regimen in each 
treatment, this model is flexible enough to describe individual 
tumor observations well within the time window in the trials 
(Figure 1 and Supplementary Figure S1 online). The limitation 
of the current model is that it cannot be used to simulate tumor 
profiles under new dosing regimens because the model does 
not include dose or exposure. However, if the relevant infor-
mation, such as longitudinal tumor data from a dose-ranging 
trial, is available, the tumor size model can be easily expanded 
to include dose or drug exposure effect on the shrinkage and/or 

linear growth rate constants, depending on the mechanism of 
action of the compound.

In order to develop the survival model, tumor size measure-
ments at various time points were explored as potential pre-
dictors in addition to those identified as baseline risk factors. 
Among the time points at which tumor size was evaluated, the 
week-8 tumor size change was selected because it was consis
tently identified as a significant predictor across all nine treat-
ments. Importantly, it is also early enough in the treatment to 
serve as an early biomarker for survival prediction and assist 
in early drug development decisions. The modeling of survival 
using tumor size change as a continuous variable offers poten-
tially greater statistical power than treating the tumor size data 
as a categorical response for comparisons of responses among 
different treatment groups.3 The significantly smaller slope 
for PTRwk8 (α3) for second-line treatment indicates that the 
survival times for patients under second-line treatment were 
significantly less sensitive to PTRwk8 as compared with those 
under first-line treatment. The median PTRwk8 ranged from 
15 to 29% for patients under first-line treatments, whereas it 
ranged from −14 (tumor size increase) to 12% for patients under 
second-line treatments. This observation suggests that achieving 
a median zero tumor growth (stable disease) within 8 weeks is 
not an adequate end point for a first-line treatment. The placebo 
group had to be modeled separately, and this may reflect a differ-
ent tumor shrinkage–survival relationship for certain patients 
under placebo (best supportive care) as compared with those 
under active treatments.

The predictive ability of the survival model was evaluated by 
comparing the survival curves from simulated data with those 
from the observed data (Figure 2). The overlapping of the curves 
suggests that the model can reasonably reproduce the observed 
survival curves. Two populations (included and excluded) were 
simulated and combined to represent the full population for 
each treatment. The simulated median survival times (Table 5) 
tend to shrink toward the mean median survival time of pooled 
treatments relative to the observed median survival times. As 
a result, simulation will generate conservative estimates of the 

Table 5 C omparison of statistics relating to observed and simulated data

Treatment (trial)

Median survival time in days (95% CI) Survival benefit in days (95% CI) Hazard ratioa (95% CI)

Observed Simulated Observed Simulated Observed Simulated

PCb (1) 315 (285, 357) 328 (289, 371)

PCB (1) 374 (344, 418) 364 (321, 410) 59 41 (−5, 84) 0.8 (0.69, 0.93) 0.88 (0.78, 1.01)

VCb (2) 304 (269, 341) 317 (281, 354)

DC (2) 331 (292, 368) 309 (274, 347) 27 −7 (−55, 41) 0.89 (0.76, 1.04) 1.04 (0.9, 1.19)

DCb (2) 277 (254, 307) 295 (261, 333) −27 −22 (−71, 24) 1.03 (0.88, 1.2) 1.07 (0.93, 1.25)

PBb (3) 143 (125, 191) 164 (137, 194)

ET (3) 203 (168, 237) 196 (173, 222) 60 32 (2, 64) 0.76 (0.65, 0.91) 0.83 (0.7, 0.96)

DTb (4) 237 (189, 276) 243 (210, 280)

PT (4) 249 (210, 282) 247 (212, 283) 12 4 (−40, 48) 0.99 (0.82, 1.2) 0.99 (0.85, 1.17)

DC, docetaxel and cisplatin; DCb, docetaxel and carboplatin; DT, docetaxel; ET, erlotinib; PB, placebo; PC, paclitaxel and carboplatin; PCB, paclitaxel, carboplatin, and bevacizumab; 
PT, pemetrexed; VC, vinorelbine and cisplatin.
aUnstratified. bReference arm in each trial.
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relative survival benefit. This suggests that the model may be fur-
ther improved by including more predictors. An improvement 
in tumor imaging data may increase the predictive power of 
tumor size for survival.16 The lack of treatment-related effect in 
the survival model for the excluded population also contributed 
to the diminished overall treatment effect. Therefore, we believe 
that the PTRwk8—measured as the sum of the unidimensional 
measurements of all measurable lesions based on the Response 
Evaluation Criteria in Solid Tumors criteria—cannot capture 
the full survival benefit of a treatment and can serve only as a 
biomarker for early decision making and as a tool for designing 
survival trials. However, the conservative estimate of the relative 
survival benefit between two treatments can prevent overopti-
mism about the potential survival benefit associated with the use 
of a new compound, although a slightly better treatment may be 
discontinued prematurely on the basis of the simulation.

Because survival is an end point that reflects both a drug’s 
effectiveness and its toxicity, an ideal survival model would also 
take the drug’s toxicity into account. In fact, the parameter esti-
mates in Eqs. 1 and 2 may be influenced by each treatment’s 
toxicity, although in our model we included only an effective-
ness-related biomarker. The influence of drug toxicity, however, 
is likely to be minimal, given that the death rate due to this cause 
is negligible (0.3–3%) as compared with the death rate due to 
progressive disease (86–94%). It is possible that a drug’s toxicity 
may affect compliance and indirectly influence its effectiveness 
or a biomarker such as tumor size. Unless an oncology drug’s 
toxicity is severe enough to compete with the disease as a sig-
nificant factor in causing death, the influence of drug toxicity 
on overall survival may not be very significant relative to the 
disease itself.

To the best of our knowledge, our work utilizes the largest 
database of NSCLC trials to develop a quantitative model of 
survival benefit using patient risk factors and tumor size data. 
Similar work for colorectal cancer was performed by Claret 
et al.14 We show that PTRwk8, along with baseline tumor and 
ECOG status, can be useful for predicting survival outcome, 
and this enables drug development decisions to be made earlier. 
Therefore, a scheduled visit at week 8 with computed tomogra-
phy imaging for tumor size measurements can provide a critical 
signal for drug effect. Such information can then be utilized to 
decide whether to develop that particular drug molecule fur-
ther. In addition, if a molecule is selected for further develop-
ment, pivotal trial designs can be optimized using clinical trial 
simulations. Specifically, we propose the use of baseline tumor 
size, ECOG status, and PTRwk8 in each patient from a phase II 
trial to simulate the survival benefit based on our model. These 
simulations should build in 20–30% patients with missing post-
baseline measurements, although we urge that every effort be 
made to collect all relevant data.

The criteria and end points for screening drug molecules are 
highly variable across investigators. Typically, tumor response 
rates, time to progression, progression-free survival, and overall 
survival are reported for phase II studies. Some of these stud-
ies are single-arm trials. For example, Monnerat et al. reported 
the median survival time for gemcitabine plus pemetrexed to 

be 10.1 months (95% confidence interval (CI): 7.9–13.0) for 
58 chemonaive patients with stage IIIB/IV NSCLC and ECOG 
performance scores of 0 or 1 (ref. 17). More recently, Gridelli 
et al. reported the median survival times for patients treated 
with pemetrexed without and with gemcitabine to be 4.7 months 
(95% CI: 3.2–6.8) and 5.4 months (95% CI: 3.8–7.6), respec-
tively, for 87 chemonaive patients with stage IIIB/IV NSCLC 
and ECOG performance scores of 0–2 (ref. 18). Herbst et al. 
found the hazard ratio of progression-free survival for treat-
ment with bevacizumab and chemotherapy was 0.66 (95% CI: 
0.38–1.16), and for treatment with bevacizumab and erlotinib, 
it was 0.72 (95% CI: 0.42–1.23), both in comparison with the 
standard chemotherapy arm.19 These estimates of median sur-
vival time and hazard ratios are consistently highly uncertain 
(i.e., wide CIs), mainly because the trials have small numbers 
of patients and short durations. The lack of reasonable confi-
dence in the predicted outcome hinders decision making for 
pivotal trial design, and we believe that this contributes to the 
high failure rate of drugs in phase III trials.2 The survival model 
we report here, on the other hand, might reduce the failure rate 
of drugs in phase III trials by selecting for further development 
only those candidate compounds that have highly significant 
survival benefit, on the basis of a conservative estimate of such 
survival benefit. However, this needs to be evaluated prospec-
tively in future trials. We encourage pharmaceutical sponsors 
and academic investigators to prospectively employ our model 
in designing future trials. Routine application of this model will 
allow us to evaluate the strengths and weaknesses of the model 
and identify potential improvements. We also believe that fac-
tors affecting the tumor size, such as dose or dosing regimen, 
can be optimized via the tumor model with dose or exposure 
information incorporated into the model. Finally, we believe that 
there is value in applying the approach described in this article 
to the investigation of other cancers and, more important, to 
linking tumor size effects with animal and/or in vitro data so that 
this model-based approach can be implemented throughout the 
drug development process.

Methods
The analysis database included four randomized clinical trials for 
NSCLC treatments that were submitted for registration: bevacizumab,20 
docetaxel,21 erlotinib,22 and pemetrexed.23 Trial selection was driven by 
availability of electronic datasets containing longitudinal tumor size mea
surements and survival data. Eight active treatments and one placebo 
group were tested in these trials: paclitaxel, carboplatin and bevacizu-
mab, paclitaxel and carboplatin, docetaxel and cisplatin, docetaxel and 
carboplatin, vinorelbine and cisplatin, placebo, erlotinib, docetaxel, and 
pemetrexed. The four trials enrolled and followed up a total of 3,398 
patients. Patients received either first-line (bevacizumab, docetaxel) or 
second-line (erlotinib and pemetrexed) treatments for locally advanced 
or metastatic NSCLC (stages IIIA/B or IV).

First, baseline risk factors for all 3,398 patients were screened to iden-
tify factors that influence survival. Next, a dynamic model was devel-
oped to describe tumor size changes over time for individual patients for 
whom both pre- and post-baseline tumor measurements were available. 
Subsequently, a survival model was developed to link baseline risk factors 
and change in tumor size to survival time. Therefore, only patients who 
had both pre- and post-baseline tumor size data and had survived up to at 
least 8 weeks (2,445 patients, 72%) were included in the survival modeling 
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(included population). There were 485 patients with no baseline measure-
ments, 404 patients with no post-baseline measurements, 38 patients with 
unknown ECOG status, and 350 patients who did not survive to 8 weeks. 
Multiple data variables for a patient could be missing.

Baseline risk factors for survival. The risk factors were selected on the 
basis of the stratification factors used in the four trials and the potential 
risk factors for NSCLC identified by Brundage et al.6 These are listed in 
the first column of Table 1. A Cox model was used to screen for consis
tent significant factors across the nine arms. A stepwise selection method 
was used with inclusion significance at 0.1 and exclusion significance at 
0.05. Risk factors identified by this method were then used in the survival 
model to account for patient baseline heterogeneity so that the results for 
the nine arms could be compared.

Tumor size model. Tumor size was recorded as the sum of longest dimen-
sions, using the Response Evaluation Criteria in Solid Tumors criteria.24 
The majority of tumors were measured using computed tomography scan 
(76–98%) or X-ray (0.8–13%). The remaining tumors were measured by 
other methods (0.2–6.1%).

The longitudinal tumor size data were analyzed using nonlinear 
mixed effect models (NONMEM V; Icon Development Solutions, 
Ellicott City, MD). A model with mixed exponential-decay (shrinkage) 
and linear-growth (progression) components described the time course 
of tumor change (Eq. 3).

TS ( ) BASE PRSR
i i

t
it e ti= ⋅ + ⋅− ⋅ , �(3)

where TSi(t) is the tumor size at time t for the ith individual, BASEi is 
the baseline tumor size, SRi is the exponential tumor shrinkage rate 
constant, and PRi is the linear tumor progression rate. The exponential 
tumor shrinkage component characterizes the treatment effect on tumor 
shrinkage over time that would result in reducing the tumor size asymp-
totically toward zero. The rate constant for the shrinkage was restricted 
to be non-negative. The linear growth component is an approximation 
of tumor growth under a specific treatment. Therefore, in our model, the 
slope of linear growth is also treatment dependent. This parameter was 
also restricted to be non-negative.

Random variability was attributed to two sources: interpatient vari-
ability and residual variability. The residual variability captures error 
caused by model mis-specification and/or in tumor measurements. The 
unique shrinkage and progression rates (i.e., interpatient variability) of 
each patient were taken into account, and the population was assumed 
to follow a log-normal distribution (Eq. 4).

BASE M_BASEi i= ⋅exp( ),� � (4)

where M_BASE is the population median baseline tumor size and ηi is 
the difference between the individual and population median baseline 
values on a log scale that is assumed to follow a normal distribution with 
a mean of zero and variance of ωBASE

2 (interpatient variability, BPVBASE). 
The individual SR and PR parameters were also described using simi-
lar equations. An exponential error model (Eq. 5) was used for residual 
variability.

TSO TSi i it t( ) ( ) exp( ),= ⋅ ε �(5)

where TSOi(t) is the observed tumor size at time t for the ith individual, 
TSi(t) is the expected tumor size at time t for the ith individual, and εi is 
the difference between the observed and expected values on a log scale. 
εi is assumed to follow a normal distribution with a mean of zero and 
variance of σTS

2 (TS: tumor size).
The main purpose of the tumor model was to predict (interpolate) 

tumor sizes in cases for which observations were not available. There-
fore, the main diagnostic criterion in the model was the match between 
individual predicted values and observed data. When necessary, a 
mixture model was used to statistically separate the patient population 
into subgroups so as to arrive at a better individual prediction.

Survival model. Survival modeling comprised two steps: model building 
and model evaluation. In order to determine the relationship between 

tumor size change and time to death, the individual tumor size model 
was used to predict tumor size change at early time points, e.g., 4, 6, and 
8 weeks. Predicted tumor size changes were then used to develop a sur-
vival model, taking the identified baseline risk factors into consideration. 
Because the main purpose of our research was to establish a quantitative 
link between tumor size and survival for use in the design of future trials, 
a parametric survival model was utilized to relate risk factors and tumor 
size change with time to death. Several widely used survival functions, 
including exponential, log normal, Weibull, and gamma, were tested. 
Likelihood ratio tests and diagnostic plots were applied for selection of 
an appropriate survival function. This model was fitted to each treatment 
arm separately in order to assess whether it would be appropriate to pool 
these arms. Final parameters were updated with a pooled analysis when 
necessary. A similar approach was applied to derive a survival model 
based on baseline risk factors for those who were excluded from the 
tumor size–related survival model (excluded population). SAS version 
9.1 (SAS Institute, Cary, NC) was used for these analyses.

Evaluation of the final pooled survival model was conducted through 
internal evaluation. One thousand sets of parameters were simulated 
based on the parameter estimates and their variance–covariance matrix 
from the final pooled models for included and excluded populations, 
respectively. Then, 1,000 replicates of survival data were simulated for 
each treatment on the basis of the simulated parameters, the baseline 
covariates, and PTRwk8 observed in the trials. The two simulated popula-
tions (included and excluded) were combined to form the full population. 
Median survival curves and 95% CIs were constructed across the 1,000 
replicates. The simulated survival curves were compared to the observed 
survival curves (median and 95% CI). In addition to the graphic com-
parison of survival curves, different statistical estimates, such as median 
survival time for each arm, survival benefit, and unstratified hazard ratio 
relative to the comparator in each trial, were calculated and compared 
with the observed ones.

SUPPLEMENTARY MATERIAL is linked to the online version of the paper at 
http://www.nature.com/cpt
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