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Introduction 

 
On August 25, 2010, the Food and Drug Administration (FDA or the Agency) published 
a proposed rule in the Federal Register1 (75 FR 52299) for 4 preamendments devices, one 
of which was breast transilluminators.  The current regulation for these devices is 21 CFR 
§892.1990 which reads as follows: 
 

§ 892.1990 Transilluminator for breast evaluation. 

(a) Identification. A transilluminator, also known as a diaphanoscope or 
lightscanner, is an electrically powered device that uses low intensity emissions of 
visible light and near-infrared radiation (approximately 700–1050 nanometers 
(nm)), transmitted through the breast, to visualize translucent tissue for the 
diagnosis of cancer, other conditions, diseases, or abnormalities. 
(b) Classification. Class III (premarket approval). 
(c) Date premarket approval (PMA) or notice of completion of a product 
development protocol (PDP) is required. The effective date of the requirement for 
premarket approval has not been established. 
See § 892.3.  

 
Transilluminators, also know as lightscanners or diaphanoscopes, are electrically 
powered and emit low intensity visible light and near-infrared radiation on the order of 
700 to 1050 nanometers (nm).  The device is placed in contact with a woman’s breast and 
is used to illuminate her mammary tissue in a darkened environment.  Light in the 700 – 
1050 nm range is transmitted relatively easily through breast tissue and is preferentially 
absorbed by hemoglobin in the blood.  When used properly, the transilluminator is 
intended to illuminate the vasculature of the breast, and abnormalities, such as a cyst or 
breast cancer, would appear to the user as an area of darker absorption. 
 
Regulatory History 
 
Breast transilluminators are considered pre-amendment devices since they were in 
commercial distribution prior to May 28, 1976 when the Medical Device Amendments 
law became effective.  On January 11, 1991, the Obstetrics and Gynecology Devices 
Advisory Panel2 met to discuss and reach consensus on the classification of several pre-
amendment devices including breast transilluminators. 
 
The Agency classifies medical devices into Class I, II, or III generally determined by the 
risks or hazards to the patient or user associated with the device.  Class I devices are 
those devices which are considered low risk and present minimal potential harm to a user 
and/or patient.  The risks from harm of a Class I device can be adequately mitigated by 
general controls which include the following: 
 

                                                 
1 75 FR 52299 
2 Obstetrics and Gynecology Devices Panel, Forty-fifth Meeting.  Transcript and Meeting Minutes, January 
11, 1991. 
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 establishment registration and listing; 
 510(k) premarket notification unless exempt; 
 Good Manufacturing Practices (GMPs); and 
 other regulatory controls, e.g., adverse event reporting, misbranding, adulteration of 

the device, etc. 
 
Class II devices are those devices which are considered to have moderate risk such that 
general controls alone are not sufficient to mitigate the risks of harm to a user and for 
which there is sufficient information to establish special controls, existing methods 
specific to the device that can control the risks not controlled by the general controls.  
Special controls for medical devices may include: 
 
 performance standards; 
 post-market surveillance; 
 patient registries; 
 guidelines;  
 design controls; and 
 other appropriate action deemed necessary for mitigating the risks of the device. 
 
Class III devices are those devices considered to be high risk and whose risk may not be 
completely mitigated by general controls and special controls alone.  For Class III 
devices there is insufficient information to provide a reasonable assurance of safety and 
effectiveness so data from a well-controlled, statistically significant clinical study is 
needed to establish their safety and effectiveness.   
 
Dr. Carl D’Orsi, a recognized expert in the field of breast imaging and mammography, 
presented a summary of findings from his study of breast transilluminators to the 
Obstetrics and Gynecology Advisory Panel during the 1991 meeting.  He explained to the 
Panel that light with wavelengths in the red and near infrared range (700 – 2500 nm) was 
used since the absorption of light from this part of the spectrum is the greatest in biologic 
tissue.  The fundamental basis of the research at that time was that the absorption of light 
in red and near infrared range would create patterns which would render cancer and non-
cancerous lesions more distinguishable.  The purpose of lightscan exams was to locate 
any areas in the breast that were unusual in their ability to transmit light. 
 
The Spectrascan was one example cited by Dr. D’Orsi who explained that penumbra was 
a major problematic aspect of the device since structural shadows could obscure smaller 
intervening structures.  Equally important was the finding that exam results were highly 
dependant on the examiner’s technique.  In order to achieve reasonable results using the 
Spectrascan, it was necessary to attempt to get all portions of the breast close to the skin 
surface in order to alleviate the penumbra effect.  This would frequently require 6 or 
more views of the breast. 
 
Dr. D’Orsi stated that absorption is the critical diagnostic criteria for a lightscan exam, 
and absorption may be focal, may occur in a larger portion of the breast, or may occur 
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throughout the entire breast.  He also commented that there were several indirect signs 
which were difficult to evaluate and were not necessarily accurate.  These signs included 
vascular asymmetry, vessel clustering, and abrupt vessel caliber changes.  From his 
experience, Dr. D’Orsi found that vascular asymmetry was not very helpful since benign 
lesions have increased vascularization as much as malignant lesions. 
 
In his opinion, Dr. D’Orsi commented to the Panel that the basic “pitfall” of the exam 
was that blood is the detector and will absorb light regardless whether it is in a tumor, in 
a vein, or free in the breast.  Skin lesions filled with blood, such as blood leakage from a 
needle biopsy, scars, and ink from tattoos, may easily be mistaken for malignancies. 
 
Dr. D’Orsi studied 3,000 women in an NIH-funded grant3 to evaluate the efficacy of 
breast transillumination.  Each lightscan case was read by 4 independent radiologists, and 
the study found the sensitivity of these devices ranged from 43-98%.  The large variation 
in sensitivity was ascribed to the disparity of interpretation when lightscans were read 
blinded (without a mammogram) and to exam results being both device dependent and 
technique dependent. 
 
Overall, the study did not find 1 case of carcinoma detected by lightscanning alone that 
either a physical exam and/or mammography did not detect, and the size of a carcinoma 
is a key factor because of the penumbra effect which may render a lesion undetectable.  
In Bartrum’s study4 the sensitivity of a blinded lightscan for tumors less than 1 cm was 
0.44, which means breast transilluminators are not effective as a screening modality 
where the goal is to visualize masses smaller than 1 cm.   Dr. D’Orsi summarized the 
results from his NIH study and concluded that breast transillumination: 
 

 cannot be used for screening; 

 cannot be used alone; and 

 has no known adjunctive use (with breast self-exam or mammography). 
 

During the discussion of the Obstetrics and Gynecology Panel meeting in 1991, 3 major 
risks of breast transilluminators were identified:  misdiagnosis, delayed diagnosis, and 
delayed treatment.  The Panel recommended that breast transilluminators be place in 
Class III because a reasonable assurance of safety and effectiveness could not be 
established and additional clinical studies are needed prior to approval for marketing. 
 
On January 13, 1995, the FDA published a proposed rule in the Federal Register5 (60 FR 
3171) that would place breast transilluminators in Class III.  FDA proposed to require at a 

                                                 
3 D'Orsi CJ, Smith EH:  Double blind study of breast diaphanography.  National Institute of Health Grant 

(N.I.H.) G2736 1984-1989 approved $195,196/yr RNM# 1RO1CA37970-AIA. 
 
4 Bartrum RJ, Crow HC: Transillumination Lightscanning to Diagnose Breast Cancer: A Feasibility Study.  

Am J Roentgenol 1984 Feb; 142(2): 409-14. 
 
5 Proposed Rule Federal Register (60 FR 3171). 
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later undetermined date, that device manufacturers submit a Premarket Approval 
Application (PMA) when notified via a future regulation under section 515(b) of the 
Federal Food, Drug and Cosmetic Act (the FD&C Act) (21 U.S.C. 360e(b).  In February 
1994, the Agency formally notified manufacturers in writing6 that breast 
transilluminators had been reclassified and subsequently, the FDA published a Final 
Rule7 (60 FR 36639) on July 18, 1995 that placed breast transilluminators into Class III 
based on the recommendation of the Obstetrics and Gynecology Devices Panel without 
setting a date that PMAs would be required. 
 

Citizen’s Petition  
 
On August 25, 2010, FDA issued a proposed rule calling for PMAs for breast 
transilluminators.  In response to the proposed rule, the Agency received a Citizens 
Petition on September 9, 2010, from Mr. Russell Overend of pwbHealth Ltd.8  The 
petition requested a change in classification to Class I stating breast transilluminators are 
already Class I devices in a number of other countries around the world including Canada 
and the European Union.  pwbHealth Ltd also states that the risks of breast 
transilluminators (electrical shock risk, optical radiation risk, and the potential for missed 
or delayed diagnosis) raised in 1991 by the Obstetrics and Gynecology Devices Panel 
have been adequately mitigated.    
 
The petition also cites results from a U.K. clinical trial9, 10 in which a breast 
transilluminator was found to have sensitivity of 67% (95% C.I. 41%-87%) when 
compared to cytological/histological findings.  Specificity for this study was determined 
to be 85% (95% C.I. 80%-89%) as 240 of 282 breasts with no known malignancy were 
correctly identified as negative.  The petition compares these results to x-ray 
mammography, considered the “gold standard,” and states that mammography is 60-90% 
accurate depending on the age of the patient.  These studies cited in the petition are 
posted on the petitioner’s website and include an article by Bundred et al11 from 1983 
that describes an early clinical investigation of breast transillumination, and another 
article by Brittenden et al.12 that clinically evaluated the combination of breast 
                                                 
6 Letter to Breast Transilluminator Manufacturers, Office of Compliance. 
7 Final Rule Federal Register (60 FR 36639). 
8 Citizens Petition from pwbHealth Ltd., U.K., September 9, 2010. 
9 Iwuchukwa O, Dordea M, and Keaney N:  Analysis of Breastlight Findings in Patients with Biopsies.  
Abstract presented at the European Institute of Oncology’s 12th Breast Cancer Conference, Milan Italy, 
June 17, 2010. 
 

10 Iwuchukwa O and Dordea M: A Clinical Investigation to Develop an Evidence Base for the use of 
Breastlight™ in examining the Breast. http://www.breastlight.com/clinical-evidence. 

 
11 Bundred N, Levack P, Watmough D, and Watmough J: Preliminary results using computerized 

telediaphanography for investigating breast disease.  http://www.breastlight.com/clinical-evidence. 
 

12 Brittenden J, Watmough D, Heys S, and Eremin O: Preliminary clinical evaluation of a combined optical 
Doppler ultrasound instrument for the detection of breast cancer. British Journal of Radiology, vol. 68 
(816): 1344-1348.  
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transillumination with ultrasound and found that the combined optical/Doppler 
instrument was not suitable for screening due to low sensitivity.  However, the cited 
results could not be evaluated and confirmed. 
 
Current Literature 
 
Several MEDLINE/PubMed literature searches were performed using the key words 
‘breast’ or ‘mammary’, ‘lightscanner’ or ‘transilluminat’ or ‘lightscan’ or ‘lightscanning’ 
or ‘illuminator.’  Also used was ‘mammography’ AND ‘transilluminat,’ ‘breast’ or 
‘mammary’ AND ‘near-infrared’ or ‘near infrared’ along with ‘breast’ or ‘mammary’ or 
‘carcinoma’ or ‘cancer’ or ‘tumor’ or ‘malignant.’  The searches were for published 
literature from January 1, 1995 to February 23, 2012 and yielded 322 articles reporting 
randomized controlled trials, observational studies, and systematic literature reviews.  
Articles were excluded if they were:  (1) non-clinical study (i.e., editorials, 
commentaries, discussions, or overviews); (2) non-human studies (i.e., animal and in 
vitro studies); (3) not relevant to breast transilluminators; (4) combination 
devices/approaches; and (5) not relevant to the breast transilluminator device indication.   
 
Ten of the studies were reviewed for qualitative analysis by the Division of 
Epidemiology, Office of Surveillance and Biometrics.  The analysis primarily evaluated 
effectiveness and safety.  Contributing factors of effectiveness considered were the 
primary study endpoint, adjunctive use of optical imaging, reader variability, the 
reference or gold standard, and performance by lesion characteristics.  Although there 
were no reported adverse events from exposure to light from these devices or the 
injection of contrast agent (indocyanine green) use for diffuse optical tomography, the 
primary safety concern is misdiagnosis resulting from delayed treatment (i.e., false 
negative cases) or unnecessary biopsies (i.e., false positive case) with associated 
morbidity and cost. 
 
A majority of the studies (7 of 10) used pathology as a reference which was considered a 
strength of the analysis.  However, there was a lack of subgroup analysis for factors such 
as breast density, menopausal status, race, body mass index (BMI), and age to assess their 
impact on the effectiveness of optical imaging.  There was some evidence that the 
effectiveness of breast transilluminators varied with reader ability, and for a retrospective 
study it was not known if the readers were blinded to the subject’s breast cancer status. 
 
The qualitative analysis reached the following conclusions: 
 

 the rates of false positives and false negatives for breast transilluminators in 
asymptomatic women with a nonpalpable mass could not be determined; 

 the current literature does not address safety concerns related to misdiagnosis with 
resulting delayed treatment or unnecessary biopsies; and  

 additional clinical studies are needed to provide valid scientific evidence to 
establish the effectiveness of breast transilluminators according to their indication 
for use in the intended use population. 
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The complete report of the qualitative analysis performed by the Division of 
Epidemiology may be found in Appendix A.  FDA identified 4 additional publications 
from the U.K. as related to the Citizens Petition which are briefly discussed below. 
 
Summary and Conclusion 

 
The Radiological Devices Panel is asked to discuss all the risks associated with breast 
transilluminators and their known mitigations in an effort to determine what the 
appropriate classification should be for this device.  The Panel should discuss the benefit 
to risk ratio and the potential impact on public health for these devices.  Based on current 
evidence of the safety and effectiveness of these devices either based on the Panel’s 
knowledge and imaging expertise and the existing literature, the Panel will be asked to 
assess whether the evidence allows for this device to be classified as class I, II or III in 
accordance with the medical device regulations.  
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Radiological Devices Advisory Panel 

April 12, 2012 
 

Breast Transilluminators 515(i) 
 

Panel Discussion Questions 
 

1. Considering the key risks to health (missed diagnosis, delayed diagnosis, delayed 
treatment, electrical shock, and optical radiation) of breast transilluminators 
identified by the Obstetrics and Gynecology Devices Panel meeting on January 11, 
1991 and your own knowledge and expertise of breast imaging, please discuss 
whether you agree or disagree with the inclusion of these risks to health.  Please 
also identify any additional risks to health you feel may have been omitted. 

 
2. Based on your understanding of general controls, e.g., establishment registration & 

listing, 510(k) premarket notification, Good Manufacturing Practices (GMPs), and 
other reporting such as adverse event reporting, discuss whether you believe these 
controls adequately mitigate the risks associated with breast transilluminators.  Is 
there sufficient information to determine whether general controls alone are 
sufficient to provide reasonable assurance of safety and effectiveness of breast 
transilluminators? 

 
3. For medical devices considered to have moderate risk such that general controls 

alone are not sufficient to mitigate the risk of harm, special controls are often 
developed, which may include performance standards, post-market surveillance, 
patient registries, guidelines, design controls, and other appropriate actions deemed 
necessary for mitigating the risks of the device.  If general controls are insufficient 
to mitigate the risks to health associated with these devices, is there sufficient 
information to establish special controls for breast transilluminators in addition to 
general controls that would provide reasonable assurance of the safety and 
effectiveness of these devices?  If yes, please identify the special controls needed. 

 
4. If the device remains a class III device and becomes subject to PMA, discuss the 

important clinical study design features necessary to demonstrate that the device is 
safe and effective. 
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FDA Literature Review of Breast Transilluminators 
 
I. Introduction 
 
Transilluminators, also known as lightscanners or diaphanoscopes, are electrically 
powered and emit low intensity visible light and near-infrared radiation on the order of 
700 to 1050 nanometers (nm).  The device is placed in contact with a woman’s breast and 
is used to illuminate her mammary tissue in a darkened environment.  Light in the 700 – 
1050 nm range is transmitted relatively easily through breast tissue and is preferentially 
absorbed by hemoglobin in the blood.  When used properly, the transilluminator is 
intended to illuminate the vasculature of the breast, and abnormalities, such as a cyst or 
breast cancer, would appear to the user as an area of darker absorption. 
 
A team at FDA conducted a systematic literature review to assess the safety and 
effectiveness of breast transilluminators by analyzing the existing clinical literature. We 
sought to address the following questions: 
 

1. What is the evidence for the effectiveness of breast transilluminators for the 
detection of cancer, other conditions, diseases, or abnormalities? 

2. What are the reported adverse events associated with the use of breast 
transilluminators for the detection of cancer, other conditions, diseases, or 
abnormalities? 

 
II. Methods 
 
A systematic search of the literature was conducted on February 23, 2012 using the 
MEDLINE database. The following terms were used to capture clinical studies regarding 
breast transilluminator devices:  
 

MEDLINE/Pubmed 
#1 ("breast or mammary") AND ("lightscanner" OR (transilluminat*) OR 

"light scan" OR "light scanning" OR "illuminator") 
#2 ("mammography") AND transilluminat* 
#3 #1 OR #2, Limits: English, Publication Date from 1995/01/01 to 

2012/02/23 
#3 #1 OR #2, Limits: English, Publication Date from 1995/01/01 to 

2012/02/23 
#4 ("breast or mammary") AND ("near-infrared" OR “near infrared") Limits: 

English, Publication Date from 1995/01/01 to 2012/02/23 
#5 ("breast or mammary or carcinoma or cancer or tumor or malignant") 

AND ("optical") Limits: English, Publication Date from 1995/01/01 to 
2012/02/23 

#6 #3 OR #4 OR #5, Limits: English, Publication Date from 1995/01/01 to 
2012/02/23 

#7 #3 OR #4 OR #5, Limits: Human, English, Publication Date from 
1995/01/01 to 2012/02/23 
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Results were limited to articles published in English from January 1, 1995 to the present. 
The initial search yielded 332 results. Titles, abstracts, and full text when needed were 
reviewed for clinical studies involving breast transilluminators. Randomized controlled 
trials, observational studies, and systematic literature reviews were considered for 
inclusion. Articles were excluded for the following reasons: (1) non-clinical study (i.e., 
editorials, commentaries, discussions, or overviews); (2) non-human studies (i.e., animal 
and in vitro studies); (3) not relevant to Breast Transilluminators; (4) combination 
devices/approaches; and (5) not relevant to the breast transilluminator device per 
indication. The list of 322 articles that were excluded is provided as Appendix.   
 
Ten articles were included as part of the qualitative synthesis 1-10. A summary of article 
retrieval and selection is provided in Figure 1.  
 
III. Results 
 
The results of our systematic literature review are presented for the use of Breast 
Transilluminators for the detection of cancer, other conditions, diseases, or abnormalities. 
In this literature review, we included studies that contained clinical data to evaluate the 
diagnostic accuracy of the breast transilluminators. We provide a brief description of the 
studies, main findings regarding effectiveness, concerns on safety, and discussion of the 
critical findings.   
 
IV. Overview of Published Literature 
 
Imaging modalities that were evaluated included the hand-held transilluminator2, optical 
mammography1,3,7 (e.g., Time-domain optical mammography) and optical tomography4-

6,8-10 (e.g., Dynamic optical tomography with or without contrast agents, diffuse optical 
tomography).  Ten articles were identified; two articles3,7 that studied different technical 
aspects, but used identical clinical data, and eight independent studies are considered in 
this review.  Most studies were conducted in European countries such as France1, 
Germany3-5,7,8 and the Netherlands9,10. There were only two studies that were conducted 
in the United States2,6. Nine of the ten studies were cross-sectional1,2,4-10 where optical 
imaging and reference, i.e., pathology and conventional radiology, were performed in the 
same time interval. One study was retrospective3 where the reference, i.e., 
histopathology, was performed prior to the optical imaging . None of the studies were 
prospective or a randomized controlled trial. Sample size ranged from 18 to 154 breast 
lesions or patients. The optical imaging modalities were compared to histopathological 
findings in 7 of the studies1-5,7,8. In the remaining 3 studies, conventional breast 
imaging6,9,10 (x-ray mammography, ultrasound, MRI) was used as reference.  
 
The Citizens Petition from Mr. Russell Overend of pwbHealth Ltd (Citizens Petition 
from pwbHealth Ltd., U.K.), received by FDA on September 9, 2010, cites results from a 
United Kingdom clinical trial where a breast transilluminator was found to have a 
sensitivity of 67% (95% C.I. 41%-87%) when compared to cytological/histological 
findings and a specificity of 85% (95% C.I. 80%-89%).  To our knowledge, this reference 
is not peer-reviewed  and an abstract of the clinical trial was presented at the 
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European Institute of Oncology's 12th Breast Cancer Conference in Milan on 17th June 
2010 (http://www.breastlight.com/clinical-evidence, last accessed 2012/03/01).    
 
A. Effectiveness 
 
Primary Study endpoints   
The primary endpoints in the ten studies included were sensitivity, specificity and area 
under the curve (AUC) estimated in receiver operator curves analyses (ROC).  The scale 
of reporting for all studies was categorical, i.e., cancer/non-cancer or malignant/benign; 
none reported on a continuous probability rating scale or as an actionable item (e.g., no 
action versus follow-up or biopsy). 
   
Most of the studies were estimates of sensitivity and specificity using histologically-
confirmed malignant lesions or mammographic lesions coded as Breast Imaging 
Reporting and Data System (BI-RADS) 4/5.  The reported sensitivity for optical imaging 
in detecting malignant lesions included: 30%10 (6 of 20 for absorption images) and 65% 
with physiological maps9 (13 of 20 cysts), 85.7%8 (12 of 14 malignant lesions) and  
90%3,7 (92 of 102 tumors).  Poplack et al. reported a modest AUC of 0.67 (95% 
confidence interval, 0.52, 0.82) that discriminates 97 mammograms classified as 
BIRADS 4/5 with 53 women with normal mammograms using hemoglobin properties 
derived from the optical imaging6. Van den Ven et al. estimated discriminatory values for 
the presence of malignancy of 0.92-0.93 and 0.97-0.99 for quantitative and qualitative 
ROC10 .  
 
Only one estimated sensitivity for benign cyst (>10mm) was reported where the 
sensitivity was 30% using absorption images and 65% via physiological maps9.   
 
No study estimated the sensitivity and specificity in women with negative screening 
mammographic findings of BI-RADS category 1. Thus, there was limited information on 
the rate of false positives and false negatives of optical imaging modalities in 
asymptomatic women with no palpable mass.  
 
Adjunctive use of optical imaging 
In terms of study hypotheses and possible translation to indication of use, four study 
designs evaluated the adjunctive use of the optical imaging modalities, not use in the 
standalone mode.  The lesions were localized in x-ray mammography1,2,4,5  prior to 
optical breast imaging.  Thus, the study results are not interpretable for assessment of the 
effectiveness of the breast transilluminators for the detection of cancer, other conditions, 
diseases, or abnormalities. 
 
Athanasious et al. reported a sensitivity of 73% and specificity of 38% for 72 malignant 
lesions in non-palpable BIRADS 4/5 mammograms1.  Their false positive results were 
seen in benign proliferative lesions.  However, Athanasious1excluded women with 
submuscular breast implants, tattoos, piercing, inflammatory breast or skin disease. Their 
assessment of the performance of optical imaging may not reflect the performance 
expected in the United States general population as these factors are thought to contribute 
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to false positive rates and lower specificity for detecting breast lesions. Cheng et al. 
included 48 women with anomalous mammograms and biopsies with the objective of 
distinguishing subjects with benign lesions from mammogram-positive patients2.  They 
reported an overall 92% sensitivity and 67% specificity.  Based on ROC curve analyses, 
Poellinger et al. presented a mean AUC difference of 0.07 between optical imaging 
(computed tomography laser mammography) and x-ray mammography modality versus 
x-ray mammography alone in 82 patients5.  Poellinger et al. estimated a mean sensitivity 
of 92% and a mean specificity of 75% with three-dimensional optical imaging obtained 
with contrast agent injection (indocyanine green)4.   
 
Reader variability  
Only two studies 4,10 estimated intra- and inter-observer agreement for the optical 
imaging devices.  In a German study population from a single center4, the agreement 
between two independent, blinded, untrained radiologists in optical imaging with 
indocyanine green infusion was as follows:   κ=0.48, precontrast, κ =0.41, late 
fluorescent; and κ =0.24 early fluorescent.  In comparison, the agreement for x-ray 
mammography was κ=0.43.  In a Dutch study population10, the agreement of region of 
interest between two readers was as follows: Intraobserver agreements: κ 0.88 and 0.88; 
interclass correlation, ICC 0.978 and 0.987. Interobserver agreements: κ 0.77–0.95; ICC 
0.96–0.98. 
 
Reference 
In terms of reference for comparison with optical imaging modalities, seven1-5,7,8 studies 
used histologically-confirmed breast lesions that is considered as the gold standard in 
breast cancer classification.  Of these seven, only one2 has a United States study 
population; six were from Western European populations.  In the European studies, 
information was insufficient with regards to the comparison to the standard United States 
breast cancer classification practices, e.g. the type of histopathological classification (e.g., 
WHO classification) and grading (e.g., Scarff-Bloom-Richardson system or Nottingham 
grading system).  One study6, in a US population, employed x-ray mammography as 
reference.  Two 9,10 studies used magnetic resonance imaging for comparisons with their 
3-dimensional optical images.  These two studies were in a Dutch population and their 
classification used the same BI-RADS lexicon commonly used in United States 
mammography reading.    
 
Performance by lesion characteristics    
The performance of optical imaging modalities are thought to differ by lesion size and 
lesion depth11.  Five studies4,5,8-10 included information regarding lesion sizes. The ranges 
varied 8mm to 80mm for malignant lesions and 10mm to 52mm for benign 
(fibroadenoma) lesions.  Of these, none reported subgroup analyses of quantitative 
differences in optical imaging modalities across lesion sizes.  Two studies did 
qualitatively report in their discussion that their optical imaging devices performed 
relatively worse for lesions smaller than 10 mm1 and 6 mm8; formal statistical analyses 
with the corresponding estimates of diagnostic performance and statistical significance 
were not presented . None of the studies provided diagnostic performance by lesion 
depth.   
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B. Safety 
 
There are no reported adverse events associated with the exposure to near infrared light 
which is utilized in breast transilluminators nor from injection of contrast dye 
(indocyanine green) in the 3-dimensional optical imaging (diffuse optical tomography). 
However, the safety concern related to this device is misdiagnosis which may lead to 
either delayed treatment (i.e., false negative cases) or unnecessary biopsies (i.e., false 
positive cases) with attendant morbidity and cost.  
 
C. Discussion of Strengths and Limitations 
 
In the published literature, there were ten studies that evaluated the effectiveness and 
safety of breast transilluminators. For the assessment of effectiveness of breast 
transilluminators, the highest level of evidence can be obtained by randomized controlled 
trials. However, no randomized controlled trials have been reported. The vast majority of 
the studies (n=9) were cross-sectional; there was one retrospective study.  There was lack 
of information in the retrospective study if the readers were blinded to the breast cancer 
status of the optical scans.  None of the studies were prospective studies where the 
patients are followed and imaged again at a later time point. 
 
The studies included women with suspicious breast lesions and ages ranging from 22 to 
93 years. However, none of the studies performed subgroup analysis for women with 
high breast density versus low breast density which may be influenced by the menopausal 
status, race, BMI and age. The effect of breast density on device performance is not clear.  
 
Two studies4,10 provided information on the variability of readers evaluating the results of 
optical imaging.  The effectiveness of the optical imaging devices is influenced by reader 
variability.  
 
A strength of the studies was the use of pathology results as reference, which is the gold 
standard for the detection of abnormalities in the breast. The majority of the studies (n=7) 
compared optical findings to histopathological results from biopsies.  
 
V. Conclusions 
 
In the published literature, the limited number of studies does not adequately demonstrate 
the effectiveness of breast transilluminators. The rate of false positives and false 
negatives of optical imaging modalities in asymptomatic women with no palpable mass 
could not be ascertained.  Thus, the current literature does not address the safety concerns 
regarding the extent of misdiagnosis resulting in delayed treatment or unnecessary 
biopsies in asymptomatic women. 
 
There is a need for additional studies which will address the effectiveness and safety of 
transilluminators for the detection of cancer, other conditions, diseases, or abnormalities. 
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VI. Attachments 
 
Figure 1: Inclusion and exclusion of articles from literature search 
Appendix: List of articles which were not included in the literature review 
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Figure 1. Article Retrieval and Selection 
 

 
 
 
 

Records identified through 
Pubmed/MEDLINE database 

search  
(n =332) 

Titles, abstracts, and full-text articles 
assessed for eligibility 

 (n = 332) 

Records excluded:  
(n=322)  

 
 Non-human study (n=22) 
 Not specific to Breast 

Transillumination (n= 46) 
 Non-clinical study (n= 139) 
 Not relevant to breast 

transilluminator devices per 
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