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PROTOCOL FOR PRIMATE
RESEARCH

o Exposefetal (G120) or neonatal (P6) rhesus monkeysto |soflurane,
ketamine or propofol for 5 hours, and examinethe brains 3 hrslater for
histological documentation of apoptotic cell death.

*Fetuses are exposed in utero by administering the drug to the pregnant
dam. Thefetusisdeivered by C-Section, then immediately euthanized.

*The anesthetic drug isadministered to the dam or neonate in an amount
sufficient to maintain an inter mediate surgical plane of anesthesia.

Ansgar Brambrink, MD, PhD, Prof of Anesthesiology, OHSU
personally supervisesthe administration of anesthetic drugs. All
proceduresare | ACUC approved and arein full accordance with the
PHS Policy on Humane Care and Use of Laboratory Animals.



NEURO/GLIOAPOPTOSIS RESPONSE TO ISOFLURANE
P6 RHESUS NEONATE
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GLIOAPOPTOSIS RESPONSE TO ISOFLURANE
P6 RHESUS NEONATE

NO ANESTHESIA ISOFLURANE x5hrs




Apoptotic glia areimmature Oligos engaged in myelination
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POTENTIAL SIGNIFICANCE OF THE
OLIGOAPOPTOSIS PHENOMENON

Oligos are vulnerable during a stage when they are just
beginning to myelinate axons that interconnect neurons
throughout the CNS.

Deletion of oligos at this critical stage may disrupt myelin
formation, which could potentially have adverse long term
neurobehavioral consequences, that might be additive to the
potential consequences of isoflurane-induced neuroapoptosis.

If the window of vulnerability for oligoapoptosis stays open
longer than for neuroapoptosis, this may extend the period of
risk for brain changes that could have adverse neurobehavioral
consequences.



Comparative Toxic impact of three anesthetic drugs
In the fetal vs neonatal monkey brain
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SUMMARY

NON-HUMAN PRIMATE FINDINGS

- 50 The primate brain is quite sensitive to brain cell
S death induced by alcohol* or anesthetic drugs
i . | | .
i 40 Which anesthetic drug is most toxic
g depends on the age at time of exposure.
230 . .
= « Ketamine is most toxic for the fetus
O
<
s 20 | |
h  Isoflurane is most toxic for the neonate.
© P
% 10 | ropofOI__—.
m . - .
= o Naturay  Propofol is least toxic at either age.
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FETAL NEONATAL *Farber et al., 2010




Window of Vulnerability
Brain Growth Spurt (BGS)
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ARE SINGLE AGENTSMORE (OR
LESS) TOXIC THAN MULTI-AGENT
COCKTAILS?

Thereisevidence suggesting that drug combinations containing
both an NM DA antagonist and a GABA , agonist may be more
toxic than either agent alone. Alcohol, which actsthrough both
NMDA and GABA receptors, isquitetoxic in mice, monkeys and
humans.

Thereisalso evidencethat other types of drug combinations may
Increase toxicity of anesthetic agents. For example, we have found
that caffeine potentiatesthetoxicity of both NM DA antagonists
and GABA , agonists, and caffeineisused in very high dosesto

counteract apnea in premature infantswho are ssimultaneoudy
being exposed to anesthetic drugs.



CAFFEINE POTENTIATION of NEUROAPOPTOSIS
INDUCED BY PCP (NMDA ANTAGONIST)

Whole Brain Hippocampus
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CAFFEINE POTENTIATION of NEUROAPOPTOSIS
INDUCED by DIAZEPAM OR ISOFLURANE

WHOLE BRAIN COUNTS WHOLE BRAIN COUNTS
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AFFEINE POTENTIATION OF
| SOFLURANE'SAPOPTOGENICITY
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CAFFEINE

Caffeineisadministered prophylactically in the NICU to apnea-prone premature
infants to stimulate respiration, which reportedly reducesrisk for cerebral palsy.

Prematureinfantstreated with caffeinein the NICU are also exposed semi-
chronically to anesthetic drugs. Our preclinical findings* suggest that while
caffeineis protecting against hypoxic (excitotoxic) cell death, it may combine

with anesthetic drugsto potentiate apoptotic cell death.

Thus, under some circumstances (minimal anesthesia) the effect of caffeine may
be beneficial, and under other circumstances (maximal anesthesia) it may be
detrimental. Unfortunately, the detrimental effect can happen very quietly

without waving red flags.

* Caffeine blood levelsin our infant mice arein the range consider ed safe
and therapeutic for premature human infants.



INTERESTING PARADOX

Our infant mouse studies support the following conclusions:

Caffeine stimulates respir ation, enhances brain oxygenation,
counteracts hypoxia and prevents excitotoxic neur odegener ation.

| soflurane, at 75% MAC, suppressesrespiration and renders mouse
pups apneic, hypoxic and cyanotic unto death within about 2 hrs.

|f we co-administer caffeine with isoflurane (75% MAC), the mouse
pupsare pink, healthy and happy at 2 hrs.

When we examine the brains, the pale, cyanotic pups exposed to
Isoflurane alone have a modest amount of neur oapoptos's, whereas
the pink and happy caffeine + isoflurane pups have a massive display
of neur oapoptosis.

What is caffeinetrying to tell us?



Translating Developmental Time
From Experimental Species To Humans:
An Interdisciplinary Approach
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Model systems are required
DIFFERENT MODELS, GOOD REASONS

gestation (d) % of studies

Precocial
M acagques 165 1%
Cats 65 <1%
Guinea pigs 69 <1 %
Spiny mice 39 <1%
Altricial
Rabbits 31 <1%
Hamsters 16 1%
Ferrets 41 1%
Rats 22 50%
Mice 19 45%

Birth/gestation % may not be ideal milestones for comparisons



Addressing the Challenge

 Proportions devel opment Robinson & Dreher 1990
« Anatomical/stages compariSoONS  carnegie stages, Bayer et al. 1993
« VVulnerabil |ty patterns Dobbing & colleagues 1970s

*RULES OF THUMB Rat brain PN 5-7 = Human newborn?
of f *Vague
*Restricted rat/primate/human

*All neural regions grouped together
But different vulnerability patterns
for different brain regions?




Comparisons using “anchor” events

RAT | MONKEY | HUMAN
conception 1 1 1
\4
Event 1 18
(exampl e;\gg;zg callosum *
Event 2 85
(example: lrooedalr(]Se)urogenesis * *
36 126 160
eye opening ‘




A novel approach for this critical challenge

EVOLUTIONARY PRINCIPLES
Development

* constrained

* conserved

HOW DO BRAINS GET BIGGER?



Striking conservation in the order of neural development

In (PC day — k) =SP + ST

derived to understand brain evolution
Finlay and Darlington, 1995, Science 268:1537-1668

Clancy, Darlington and Finlay 2000, Neuroscience, 105:7-17

Clancy, Darlington and Finlay, 2001, Developmental Science, 3:57-66

Clancy and Finlay, 2001, Readings in Language Development, Blackwell Publishers
Finlay, Clancy and Kingsbury, 2003 Advancesin Infancy Research, Praeger Press



M any mathematical methods tested

Genera Linear Modé

Scores derived from regression coefficients
guantifies “goodness’ of fit

- Events — late score high

» Species— slow developing score high

Darlington 1995
Darlington et al. 1999



» Express PC days on log scale (Y)
— “dog years” do not work

o Adjust using constant (4.34)

* Predict Y using “dummy” variables
— 1 for event or species, 0 for all others

In (PC day —k) =SP + ST



2000 - 9 mammalian species

90 different developmental events
Gleaned from empirical literature

Currently
11 mammalian species

>225 different developmental events




model takes Al relationsh PS INto account

PC

st conception da
MONKEY

conception

Event 1

(example: corpus
callosum

appears)

Event 2

(example: rod
neurogenesis peaks)

eye
opening




RAT MONKEY | HUMAN
conception 1 1 1
Event 1 18
(example: corpus callosum
appears)
Event 2 85
(example: rod neurogenesis
peaks)
36 126 160

eye opening




RAT MONKEY | HUMAN
conception 1 1 1
Event 1 18 %
(example: corpus callosum 73 9 1
appears)
(example: rod neurogenesis
peaks)
36 126 160
eye opening

* PC88 Ashwell et al 1996 — date of conception?
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Mouse Mouse

Hat Rat

Rabbil " Rabbit

Spiny mouse IRANSLAIE Spiny mouse

Guinea pig b Guinesa pig

Ferrel - Reiulins Fermet

Cat Cal

Macaque 21.5 PC days In Rt neurodevelopment Macagque

Human = equates to Human neurodevelopment as follows. Human &

; Cortical Events: 112.6 PC days -
o - Limbi Events: 824 PC days p .
* MIN<-Range—>MAX Nor-conticaimbic Events: 88.8 PC days CN<=range=>MAX
1055 | 60 BACK ] [ 345e= 973 |
*Why do pnimates have 3 prediclions? The Model

Clancy, et a NeuroToxicology, 2007; Clancy, et a Neuroinformatics, 2007
Site accessed > 50,000 by >600 universities, medical centers, research centers; Citations>125



predict specific events

retinal amacrine cells - peak of nevroge

retinal bipolar ceils - peak of newrogenesis

retinal ganglion cell generation - end of neurogenesis

uthulgmn'lm cell putml:rn = start of neurogenesis
cells - peak of neuregenesis

mlml ﬁ?ﬂ]mu cells - peak of newrogenesis

rods - peak of neurogenesis

septal nuclel - peak of neurogenesis

stria medullaris thalaml appears

stria terminalis appears

subdculum - peak of neurogenesis

subplate - end of neurogent 5is

subplate - peak of neurogenesis

subplate -start of neurogenesis

mh'-u-ritll nigra - peak of neurcgenesis

P rﬂdll hmim- £tan of Revrogenesis
supenior colfculus ak of peurogenesis
s - peak of neurogenesis

of neurogenssis
nuciei- peak of ReuTegenesis




What can “trandations’ from experimental speciestell
us about anesthesia, and human brain development?

1) Ismodeling useful/preferable for humans?

2) Are primatesdifferent?

3) Does somatic development detach from neural?

4) How torelate anesthesia ages and timing? Arethere
different timesfor different region?



| s modeling useful for humans?
(Preferable? controls, conception dates, sampling intervals)

Example EYE OPENING

Mouse PN 12.5

Rat PN 14.5

Humans 28 weeks?
Model 22 weeks?
4D sonogram imaging — model was right

bootstrap effect



PRIMATES

ARE
DIFFERENT

() cortical events
A limbicevents

Modeling allows specific
adjustments

. 6
C_Om (_33| events — add Y predicted from unadjusted mode!
Limbic events — subtract Note early (limbic) and late (cortical) deviations




PRIMATES A RE DIEFERENT

GABA?
Modeling will allow trandations

Unadjusted
Humans Empirical Model
GABAergic Events PC day PC day
MGE produces Lhx6 in GABAergic cells - start
GABAIr cells lower intermediate zone/subventricular 771
border
Lhx6 first in cortex in GABAergic cells
GABA cells in subplate/ cells from MGE reach cortex 140 ’
MGE produces Lhx6 in GABAergic cells - end
GAD activity adult-like 280°

1 Zecevic and Milosavic, 1997. 2 Letinicet d., 2002. 3 Romijnet ., 1991

Clancy, Teague-Ross & Nagargjan (2009) Frontiersin Neuroanatomy
Clancy, DeFelipe, Espinosa, Fairen, Jinno, Rockland, Tamamaki, & Y an (2010) Frontiersin Neuroanatomy.



NOT EVERYTHING FITS
Some events need adjustments Limbic/Cortical/ GABA

Some events cannot be included (in THIS model)

*BIRTH
*SYNAPTOGENESIS SURGE

WWEANING

Differences in maternal/ fetal interactions



POSTNATAL EVENTS

Reflexes, behavior
Does somatic development detach from neural?

Currently testing SOmMati c/motor
Onset:
*Rooting
*Crawling
«Social play
*Walking (carwiczet al. 2009)

«Sexual maturation may NOT fit
*Onset of walking may fit



HOW TO RELATE ANESTHESIA INTERVALS
WHEN DATA ISBASED ON EXPERIMENTAL SPECIES

SIMILAR NEURAL EVENTS

Mouse PN 11 = Rat PN13 = Human Limbic PC 142
Cortical PC196

Other PC154
Post conception  Rat Macaque Human
Limbic| Other| Cortex| Limbic| Other| Cortex
Ikonomidou et al. 1999 27 85 92 116 107 116 147
Jevtovic-Todorovic et al. 2003
: 30 95 103 131 121 131 166
Fredriksson, et al. 2004

Timing of rodent brain events may not be not comparabl e to primate dates




e

human

7 8 10
& 9 10

timing??

2-4 hoursinrats=1-2 DAY S In humans?
LENGTH OF EXPOSURE TO STRESS, DRUGS, TOXINS, ETC.

METABOLIC DEVELOPMENT?



Modeling useful similarities (and difference) across species in any
process constrained to occur in sequence

METABOLIC RATES
MALE/FEMALE DIFFERENCES
CRITICAL WINDOWS?

GENE EXPRESSION

AGES (birth — puberty)

ORGANS (heart/lung)
NEW STRAINS, NEW SPECIES (cows? need somatic data)

TEST NEW SYSTEMS (GABA, NMDA receptors)



VALUE OF AN INTERDISCIPLINARY APPROACH

e |ndividual Event - does It fit?

'f

 |s any system different?
— Systems - visual, limbic, cortical)

— Systems - GABAergic, dopamine, cholinergic
(Zhou et al. 2011)



*PRIMATE/RODENT SIMILARITIES AND DIFFERENCES
*DISPARITIESIN DEVELOPMENT OF BRAIN REGIONS
*COMPARISIONS NEURAL /MOTOR/SOMATIC DEVELOPMENT
*SAVINGS IN RESOURCES (TIME, FUNDING, ETC.)

*APPROXIMATIONS, BUT CURRENTLY FEW OTHER OPTIONS

NEEDED: |
DATABASE FROM EMPIRICAL LITERATURE #%
‘MATHEMATICAL ANALY SES '



Cornél University
Barbara Finlay
Richard Darlington

University of Central Arkansas
James Hyde
Brandon Kersh

University of Arkansasat Little Rock

Roger Hall University of Central Arkansas Students
Steve Jennings
Dan Berleant : ,
Josh Hanna Jessica Harrison
Nathan Crabtree Amanda James
Travis Kersh
University of Arkansasfor Medical Sciences Susan Lantz
Radha Nagarajan Rachel Smith
KJS Anand Julie Staudinger

Terri Teague-Ross

Supported by: UCA, UALR, Cornéll University
NSF : DB10848612; DBI0849627; DB10849626; DBI0849684
NIH : P20 RR16460 National Center for Research Resources /Arkansas INBRE program



Ketamine and the neonatal brain:
rat pups vs. human babies

K.J.S. Anand, MBBS, D.Phil.
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Professor of Pediatrics, Anesthesiology, & Neurobiology
Division Chief, Pediatric Critical Care Medicine
University of Tennessee Health Science Center, Memphis, TN
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The New England
Journal of Medicine

©Copyright, 1992, by the Massachusetts Medical Society

Volume 326 JANUARY 2, 1992 Number |

HALOTHANE-MORPHINE COMPARED WITH HIGH-DOSE SUFENTANIL FOR ANESTHESIA
AND POSTOPERATIVE ANALGESIA IN NEONATAL CARDIAC SURGERY

K.J.S. Ananp, M.B., B.S., D.PuiL., anp P.R. Hickey, M.D.
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Best Practice & Research Clinical Anaesthesiology 24 (2010) 475484
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Use of Analgesic and Sedative Drugs in the NICU: Integrating
Clinical Trials and Laboratory Data
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Can Adverse Neonatal Experiences
Alter Brain Development and Subsequent

Behavior?
ehavio Biology of the Neonate 2000; 77. 69-82

K.J.S. Anand Frank M. Scalzo

Department of Pediatrics, University of Arkansas for Medical Sciences, and Pain Neurobiology Laboratory,
Arkansas Children’s Hospital Research Institute, Little Rock, Ark., USA

Pain, plasticity, and premature birth: a prescription for
permanent suffering?

A collection of clinical and animal studies suggest that exposure to pain during the neonatal period leads to long-term
changes in neural circuitry and behavior, contradicting the theory that infants don't ‘remember’ painful experiences.

ABOUT 11,000 NEWBORN infants are receiv- " sponse to tactile or noxious stimuli. This
ing intensive care in the U.S. todav. K.I1.S. ANAND led to an increase in pain response behav-

NATURE MEDICINE « VOLUMEG6 « NUMBER9 « SEPTEMBER 2000 971




Anand & Scalzo. Biology of the Neonate 77:69-82, 2000

Repetitive Pain
(inflammation, procedures,
prolonged ventilation)

Maternal Separation Normal Neonate

(isolation,neglect, lack of
tactile / social stimulation)

Maternal Infant Interaction

Increased Pain Sensitivity

Plasticity in the Neonatal Brain

Developmental apoptosis,
neuronal differentiation

Hyperexcitability, windup

!

Excessive NMDA activation

!

Excitotoxic Damage
(altered EAA receptor
structure and function)

Decreased Afferent Input

!

Lack of NMDA Activity

!

Increased Apoptosis

Normal Childhood

Behavioral Development

Cognitive Abilities

Adolescent/Adult Behavior
Childhood pain

Increased Anxiety Decreased Pain Sensitivity

Hyper-responsive HPA Axis Increased anxiety

Increased Pain Sensitivity Hyperactivity

Decreased Exploration Attention Deficit disorder

Cognitive Impairment
Behavioral problems

Poor Socialization Skills



NMDA receptor antagonists induce widespread
neurodegeneration in developing rat brains

Blockade of NMDA Receptors
and Apoptotic
Neurodegeneration in the
Developing Brain

Chrysanthy lkonomidou,* Friederike Bosch, Michael Miksa,
Petra Bittigau, Jessica Vockler, Krikor Dikranian,
Tanya I. Tenkova, Vanya Stefovska, Lechoslaw Turski,
John W. Olney

1999 VOL 283 SCIENCE www sciencemagorg




Ketamine and neurodegener ative mechanisms

(Anand et al., Anesthesiology, 2004, 2005, 2007
Bhutta, ... Anand et al. Acta Paediatrica, 2007)

Acta Padiatrica 155N 0803-5253

A DIFFERENT VIEW

Anaesthetic neurotoxicity in rodents: is the ketamine controversy real?

Adnan T Bhutta', Ajay K Venkatesan®, Cynthia R Rovnaghi®, K 1 5 Anand®
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Ontogeny of NMDA receptor subunitsin
the Rat Brain

Subunit Fetal PND 6 PND 19  Adult
NRI1 + ++ +

NR2B +++ +

NRI1 +

NR2A + ++ +++
NR2B  Ceres
NR2C - ot o bellum

NR2D

> Cortex

Haberny et al., ToxSci, 68:9-17, 2002



Ontogeny of NMDA receptor subunitsin the
Human Cortex

Subunit Fetal Neonatal Adult
NR1 +-+ + +

NR2A + ++ +++
NR2B ++ +

NR2C + +4 +++
NR2D ++

Haberny et al., ToxSci, 68:9-17, 2002



* All substances are poisons; thereis none
which isnot a poison. Theright dose
differentiates a poison from a remedy”

Philipus Aureolus Theophrastus
Bombastus von Hohenheim-Paracelsus




Supraspinal responsesto repetitive
Inflammatory pain

¢ Long-Evans rat pups (n=62), cross-fostered at PO,

stimulated daily from P1 to P4

¢ Randomly assigned to Control gr. vs. 4%formalin Vs,
Ketamine (5mg/kg) vs. Ketamine + formalin

¢ Sacrificed on P35, perfused with 4% PFA (0-4°C)

¢ Cryostat sections (20um) immunostained with
FluoroJade-B, a specific marker for cell death

¢ Cell counts were made using MC
Research Inc., St. Catharines, Ont., Canada)

software (Imaging

¢ Counts verified by two blinded observers
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. ~_Time required for bait consumption in an 8-arm
Radial Maze Test
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Ketamine Reduces the Cell Death Following Inflammatory Pain
in Newborn Rat Brain

EANWALIEET 1.5, ANAND, SARITA GARG, CYNTHIA R. ROVNAGHI, UMESH NARSINGHANI, ADNAN T. BHUTTA,
AND RICHARD W. HALL

Pain Neurobiology Lab, AR Children’s Hospital Research Institute, Little Rock, Arkansas 72202; Department of Pediatrics, University af
Arkansas for Medical Sciences, College of Medicine, Little Rock, Arkansay 72205




Pilot RCT: Background

¢ Significant organ dysfunction follows cardiopulmonary
bypass (CPB) > Affects all major organs including brain

¢ CPB-induced cellular injury 1s mediated via Glutamate
€XC1tOtOXICItY (Redmond et al, 1994, 1995)

¢ Immature neurons are potentially more susceptible to
excitotoxic cell death

Pilot RCT: Hypothesis

¢ Ketamine (2 mg/kg), via NMDA receptor blockade and
anti-inflammatory effects, will block excitotoxic neuronal
cell death and inflammation, thereby offering
neuroprotective effects during CPB




Pilot RCT: Methods

(Bhutta, Anand, et al, PCCM, 2011)

¢ Blinded, placebo-controlled RCT in children age < 1 year, with no
chromosomal abnormalities, undergoing surgical VSD repair

¢ Cases received Ketamine 2 mg/kg pre-CPB (n=13), Controls
received Saline (n=11); same anesthetic & surgical protocols

¢ Plasma markers of inflammation and CNS injury measured at end of
surgery, 6 hrs, 24 hrs, and 48 hrs after surgery

¢ MRI/MR-Spectroscopy before CPB and at hospital discharge in
cases and controls (n=5 in each group)

¢ Plasma ketamine enantiomers measured during/after surgery

¢ Bayley Scales for Infant Development (BSID-II) assessed before
and 2-3 weeks after surgery



Pilot RCT: Effects on inflammation

(Bhutta, Anand, et al, PCCM, 2011)

C Reactive Protan

—&— Control
Ketamine




Pilot RCT: Effectson Neuronal injury

(Bhutta, Anand, et al, PCCM, 2011)

Neuron Specific Enolase

ng/ml

Pre Post ohr 24hr 48hr



Pilot RCT: MR Spectroscopy

(Bhutta, Anand, et al, PCCM, 2011)

¢ TE 35 data: Glx levels lower in the Ketamine group vs.
Control group (p=0.02) in the Frontal White Matter (FWM)
postop. Glx decreased in Ketamine group pre- vs. post-

surgery (p=0.02)

¢ TE 144 data: Creatine (Cr) levels increased in the Control
group pre- vs. post-surgery in the Basal Ganglia (BG)

(p=0.02)

¢ In the BG and FWM, Choline (Cho) levels decreased pre-
vs. post-surgery (p<0.03) in the Ketamine group, but no
changes occurred 1n the control group



Pilot RCT: Conclusions

¢ Ketamine (2 mg/kg) prior to CPB may reduce CNS
injury and inflammation following CPB 1n infants

¢ Infants receiving Ketamine show less glutamate release,
lower choline (decreased neuronal metabolism) and
creatine levels (less energy requirements) in
postoperative MR Spectroscopy scans

¢ NIRS signal postop shows greater chaos/complexity in
the Control group

¢ We propose a large, multicenter RCT to confirm these
results and examine the safety of Ketamine use
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Effects of high-dose Ketamine

¢ Effects on non-NM DA receptor populations

¢ Roles of synaptic vs. extra-synaptic NM DA
receptor activity

¢ Effectson Neural-Stem Progenitor Cells (NSPCs)

Non-NMDA receptor effects:

¢ Agonist activity on dopamine D,, serotonin 5-HT,
receptors, u- and K-opioid receptors (Kapur & Seeman, 2002)

¢ Non-competitive antagonism of nicotinic Ach
receptors



¢ Extra-synapt 47/

R EV I EWS NATURE REVIEWS | NEUROSCIENCE

682 | OCTOBER 2010 | VOLUME 11

Synaptic versus extrasynaptic NMDA
receptor signalling: implications for
neurodegenerative disorders

Giles E. Hardingham* and Hilmar Bading*

Abstract | There is a long-standing paradox that NMDA (N-methyl-D-aspartate) receptors
(NMDARs) can both promote neuronal health and kill neurons. Recent studies show
that NMDAR-induced responses depend on the receptor location: stimulation of synaptic

NMDARs, acting primarily through nuclear Ca** signalling, leads to the build-up of a

neuroprotective ‘shield’, whereas stimulation of extrasynaptic NMDARs promotes cell death.
] o = ol - e




Synaptic NMDAR
activity

///\\\

] m&mapnc NMDAR
pu T I

Extrasynaptic NMDAR

(@

P3K FOXO1/ FD@{__ -
\A

—| Apoptosis

Nucleus MNucleus

Opposing effects of synaptic and extrasynaptic NMDAR signalling on gene expression.

Hardingham GE, Bading H. Nature Reviews Neuroscience 11: 682-696, 2010.
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I'é_c;Iﬂati on of NSPCs from the cortex of the embryonic
brain at E1/
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NMDA receptor subunits expressed in NSPCs
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N SPCs areresistant to the neuf otoxic
effects of Ketamine
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Dose Response - Apoptosis Dose Response - Necrosis
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NSPCs are resistant to the neurotoxic effects of
prolonged Ketamine exposure
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Ketamine inhibits the proliferation of NSPCs

X uM Ketamine + 10 pM BrdU
Proliferation medium
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Mﬁizke_fami ne reduces proliferative cellsin thé VZISVZ
regions of rat fetal brain

X mg/kg ketamine 100 mg/kg BrdU
Fix>BrdU/DAPI Staining
0 (E17) 24 hrs (E18) 48 hrs (E19)

BrdU* cells in VZ

§ 5 5 - * i o

BrdU* cells in VZ and SVZ

3500 ! : : . : :
Vehicle 1 2 10 20 40

3000 +* # Ketamine dose (mg/kg)
2500 +*
2000 BrdU*cells in SVZ
1500 ° * * * *
S (v Vi | {\’_'_—}—‘\\‘;

Ketamine Dose (mg/kg)

BrdU* cells

1 2 10 20 40
Ketamine dose (mg'kq)




exposure inhibits
proliferation of
NSPCs

Control:

10 uM BrdU + Proliferation medium
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~ Ketamine promotes neuronal

—

differentiation of NSPCs

Time response

Dose response
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Conclusions: I n vitro studies

NSPCs are resistant to the neurotoxic effects of ketamine
at a low or clinically relevant high doses

Proliferation of NSPCs is inhibited by ketamine 1n a
concentration- and time-dependent manner (from In Vivo
and N VItro experiments)

Ketamine enhances the neuronal differentiation of NSPCs
in a concentration- and time-dependent manner

Thank you for your attention
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