Healthful composition obtained from the hot water extract of Coratceps sinensis mycelia

Abstract

This invention is a healthful composition comprising a hot-water extract of the cultivated mycelia of Cordyceps sinensis. The healthful composition of the invention is an oral healthful composition which is highly safe and has excellent cardiotonic, hypotensive, antitussive and anti-fatigue effects.
Other References

Primary Examiner: Lankford, Jr.; Leon B.
Assistant Examiner: Tate; Christopher R.
Attorney, Agent or Firm: Browdy and Neimark

Parent Case Text

This application is a continuation-in-part of application Ser. No. PCT/JP95/01298, filed Jun. 29, 1995.

Claims

We claim:

1. A method for enhancing the contractile force of a cardiac muscle in a patient in need thereof, comprising administering to said patient a composition comprising an effective amount of a hot water extract of the cultivated mycelia of Cordyceps sinensis wherein the extract does not contain extraction residue and the extract is in the form of a member selected from the group consisting of liquid, paste, and dry solid.

2. The method according to claim 1, wherein the hot water extraction has been carried out in the

temperature range of from 85 to 100 degree. C.

3. The method according to claim 2, wherein the hot water extraction has been carried out in the temperature range of from 90 to 100 degree. C.

4. The method according to claim 1, wherein the Cordyceps sinensis is Cordyceps sinensis MF-20008.

5. The method according to claim 2, wherein the Cordyceps sinensis is Cordyceps sinensis MF-20008.

6. The method according to claim 3, wherein the Cordyceps sinensis is Cordyceps sinensis MF-20008.

7. A method for enhancing the contractile force of a cardiac muscle in a patient in need thereof comprising administering to said patient a composition comprising an effective amount of a hot water extract of the cultivated mycelia of Cordyceps sinensis wherein the extract contains extraction residue and the extract is in the form of a member selected from the group consisting of liquid, paste, and dry solid.

8. The method according to claim 7, wherein the hot water extraction has been carried out in the temperature range of from 85 to 100 degree. C.

9. The method according to claim 8, wherein the hot water extraction has been carried out in the temperature range of from 90 to 100 degree. C.

10. The method according to claim 7, wherein the Cordyceps sinensis is Cordyceps sinensis MF-20008.

11. The method according to claim 8, wherein the Cordyceps sinensis is Cordyceps sinensis MF-20008.

12. The method according to claim 9, wherein the Cordyceps sinensis is Cordyceps sinensis MF-20008.

13. A method for relaxing the bronchi in a patient in need thereof comprising administering to said patient a composition comprising an effective amount of a hot water extract of the cultivated mycelia of Cordyceps sinensis wherein the extract does not contain extraction residue and the extract is in the form of a member selected from the group consisting of liquid, paste, and dry solid.

14. The method according to claim 13, wherein the hot water extraction has been carried out in the temperature range of from 85 to 100 degree. C.

15. The method according to claim 14, wherein the hot water extraction has been carried out in the temperature range of from 90 to 100 degree. C.

16. The method according to claim 13, wherein the Cordyceps sinensis is Cordyceps sinensis MF-20008.

17. The method according to claim 14, wherein the Cordyceps sinensis is Cordyceps sinensis MF-20008.

18. The method according to claim 15, wherein the Cordyceps sinensis is Cordyceps sinensis MF-20008.

19. A method for relaxing the bronchi in a patient in need thereof comprising administering to said patient a composition comprising an effective amount of a hot water extract of the cultivated mycelia of Cordyceps sinensis.
Cordyceps sinensis wherein the extract contains extraction residue and the extract is in the form of a member selected from the group consisting of liquid, paste, and dry solid.

20. The method according to claim 19, wherein the hot water extraction has been carried out in the temperature range of from 85 to 100 degree. C.

21. The method according to claim 20, wherein the hot water extraction has been carried out in the temperature range of from 90 to 100 degree. C.

22. The method according to claim 19, wherein the Cordyceps sinensis is Cordyceps sinensis MF-20008.

23. The method according to claim 20, wherein the Cordyceps sinensis is Cordyceps sinensis MF-20008.

24. The method according to claim 21, wherein the Cordyceps sinensis is Cordyceps sinensis MF-20008.

25. A method for providing a hypotensive effect in a patient in need thereof comprising administering to said patient a composition comprising an effective amount of a hot water extract of the cultivated mycelia of Cordyceps sinensis wherein the extract does not contain extraction residue and the extract is in the form of a member selected from the group consisting of liquid, paste, and dry solid.

26. The method according to claim 25, wherein the hot water extraction has been carried out in the temperature range of from 85 to 100 degree. C.

27. The method according to claim 26, wherein the hot water extraction has been carried out in the temperature range of from 90 to 100 degree. C.

28. The method according to claim 25, wherein the Cordyceps sinensis is Cordyceps sinensis MF-20008.

29. The method according to claim 26, wherein the Cordyceps sinensis is Cordyceps sinensis MF-20008.

30. The method according to claim 27, wherein the Cordyceps sinensis is Cordyceps sinensis MF-20008.

31. A method for providing a hypotensive effect in a patient in need thereof comprising administering to said patient a composition comprising an effective amount of a hot water extract of the cultivated mycelia of Cordyceps sinensis wherein the extract contains extraction residue and the extract is in the form of a member selected from the group consisting of liquid, paste, and dry solid.

32. The method according to claim 31, wherein the hot water extraction has been carried out in the temperature range of from 85 to 100 degree. C.

33. The method according to claim 32, wherein the hot water extraction has been carried out in the temperature range of from 90 to 100 degree. C.

34. The method according to claim 31, wherein the Cordyceps sinensis is Cordyceps sinensis MF-20008.
35. The method according to claim 32, wherein the Cordyceps sinensis is Cordyceps sinensis MF-20008.

36. The method according to claim 33, wherein the Cordyceps sinensis is Cordyceps sinensis MF-20008.

37. A method for prolonging the inter-contraction interval of a cardiac muscle in a patient in need thereof comprising administering to said patient a composition comprising an effective amount of a hot water extract of the cultivated mycelia of Cordyceps sinensis wherein the extract does not contain extraction residue and the extract is in the form of a member selected from the group consisting of liquid, paste, and dry solid.

38. The method according to claim 37, wherein the hot water extraction has been carried out in the temperature range of from 85 to 100 degree C.

39. The method according to claim 38, wherein the hot water extraction has been carried out in the temperature range of from 90 to 100 degree C.

40. The method according to claim 37, wherein the Cordyceps sinensis is Cordyceps sinensis MF-20008.

41. The method according to claim 38, wherein the Cordyceps sinensis is Cordyceps sinensis MF-20008.

42. The method according to claim 39, wherein the Cordyceps sinensis is Cordyceps sinensis MF-20008.

43. A method prolonging the inter-contraction interval of a cardiac muscle in a patient in need thereof comprising administering to said patient an effective amount of a composition comprising a hot water extract of the cultivated mycelia of Cordyceps sinensis wherein the extract contains extraction residue and the extract is in the form of a member selected from the group consisting of liquid, paste, and dry solid.

44. The method according to claim 43, wherein the hot water extraction has been carried out in the temperature range of from 85 to 100 degree C.

45. The method according to claim 44, wherein the hot water extraction has been carried out in the temperature range of from 90 to 100 degree C.

46. The method according to claim 43, wherein the Cordyceps sinensis is Cordyceps sinensis MF-20008.

47. The method according to claim 44, wherein the Cordyceps sinensis is Cordyceps sinensis MF-20008.

48. The method according to claim 45, wherein the Cordyceps sinensis is Cordyceps sinensis MF-20008.

Description

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u
TECHNICAL FIELD OF THE INVENTION

The present invention relates to a composition having excellent pharmaceutical and health-preserving effects and, more precisely, to a Cordyceps sinensis-derived medicine-type and/or food-and-drink-type composition.

Prior Art

Vegetative wasps (plant worms) are fungi of Ascomycota, Pyrenomycetes, Clavicipitales, Clavicipitaceae and Cordyceps, undergoing both a complete metamorphic phase and an incomplete metamorphic phase.

Their fruit bodies have been valued from ancient times as drugs marvelously effective for perennial youth and longevity or for nourishment and tonicity. The fruit bodies of vegetative wasps that have heretofore been considered extremely valuable as Chinese medicines are generally powdered and administered powders.

According to the present invention, the mycelia of particular vegetable wasps are cultivated and the thus cultivated mycelia are extracted with hot water. The fact that the resulting extract from such mycelia has a cardiotonic effect and an anti-fatigue effect has heretofore been completely unknown.

Problems to be Solved by the Invention

The present invention has been made for the purpose of developing new drugs having excellent cardiotonic, hypotensive, antitussive and anti-fatigue effects or foods and drinks having such effects and for the purpose of developing natural substances that can surely be administered for a long period of time without serious concern for their safety.

Means for Solving the Problems

Having investigated variously in order to attain the above-mentioned objects, we, the present inventors have specifically noted Chinese medicines and vegetative wasps, especially those of Cordyceps sinensis and further studied them and, as a result, have found that the mycelia to be obtained by cultivating them, especially the products to be obtained by extracting the cultivated mycelia with hot water have mild cardiotonic and anti-fatigue effects. On the basis of this finding, we have further studied and at last have achieved the present invention. The present invention is described in detail hereinunder.

DESCRIPTION OF THE DRAWINGS

FIG. 1 shows the effect of a hot-water extract of the mycelia of Cordyceps sinensis MF-20008 on the contractile force of the right atrial muscle of a rat.

FIG. 2 shows the effect of a hot-water extract of the mycelia of Cordyceps sinensis MF-20008 on the inter-contraction interval of automatic contractions of the rat right atrium.

FIG. 3 shows the ulcer index (cm) of the ulcer formed in the gastric mucosa of a rat, to which a hot-water extract of the mycelia of Cordyceps sinensis MF-20008 was administered.

FIG. 4A shows the intake of .sup.3 H-thymidine in the primary culture hepatocytes of a rat; and FIG. 4B
shows the intake of 14C-valine in the same.

FIG. 5 shows the effect of a hot-water extract of the mycelia of Cordyceps sinensis MF-20008 for the inhibition of the gastric acid secretion in a rat.

To carry out the present invention, it is necessary to cultivate the mycelia of vegetative wasps of Cordyceps sinensis and to collect the thus-cultivated mycelia. All fungi of Cordyceps sinensis can be used in the present invention, and these will be referred to as the fungi of the invention. For example, Cordyceps sinensis MF-20008 is useful, and this strain has been deposited in the National Institute of Bioscience and Human-Technology of the Agency of Industrial Science and Technology under the accession FERh4 BP-5149.

According to the present invention, the mycelia of Cordyceps sinensis are cultivated.

These are cultivated in a medium comprising malt extract, yeast extract, peptone, potato broth, glucose, vitamins, amino acids, nucleic acids, proteins and optionally host components such as insects, etc., by liquid or solid culture, by which the mycelia are fully propagated.

Liquid culture, especially stirring culture by aeration is preferred for cultivating a large amount of the mycelia, which is conducted at pH of from 4 to 7 and at from 15 to 32 degree C., preferably from 20 to 30 degree C., while gently stirring the medium at approximately from 50 to 500 rpm, preferably from 100 to 300 rpm, for 3 to 10 days.

After the culture, the thus-cultivated mycelia are extracted with hot water. Water is added to the mycelia, and these are, optionally after having been ground, heated at from 60 to 100 degree C., preferably from 85 to 100 degree C., more preferably from 90 to 95 degree C., and thus extracted with the hot water, optionally with stirring. The amount of water to be added is not specifically defined but is preferably from 1 ml to 1 liter, per gram of the dry mycelia.

The residual substances are removed from the thus-obtained hot-water extract, and the resulting liquid extract is used directly or after having been further processed, as the active ingredient of the present invention. The products to be obtained by processing the liquid extract broadly include the concentrated product, the paste product, the dried product and/or the diluted product of the liquid extract. As the case may be, the hot-water extract or its processed products may be directly used, without removing the residual substances therefrom, for example, as foods and drinks.

The hot-water extract (including its processed products) of the mycelia has mild cardiotonic, hypotensive, antitussive and anti-fatigue effects, and the composition of the present invention containing it can be used as foods and drinks having these effects, foods and drinks for particular health, healthful drinks, healthful foods, nutritious foods, and other various types of foods and drinks, and also as medicines such as cardinals, hypotensors, antitussives, tonics, etc.

For food-and-drink-type compositions, the active ingredient of the hot-water extract (or its processed product) may be directly used or may be combined with other foods or food components by-ordinary methods. The composition of the present invention containing the active ingredient may be in any form of a solid (powder, granules, etc.), a paste, a liquid and a suspension, and it is suitably formulated into healthful drinks along with sweeteners, sours, vitamins and other various additives for ordinary drinks.

For medicine-type compositions, the active ingredient may be administered as various forms. As the forms, mentioned are various oral compositions, including, for example, tablets, capsules, granules, powders, syrups, etc. These various preparations can be formulated by ordinary methods with known

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1& S ect2=HITOFF&d=PA I I & p=1 & u
auxiliary additives which are generally used in the technical field of formulating medicines, such as vehicles, binders, disintegrators, lubricants, flavorings, dissolution aids, suspending agents, coating agents, etc. The dose of the active ingredient to be administered varies, depending on the condition, the age and the weight of the person to which it is administered, as well as on the administration route and the form of the preparation, etc., but is generally from 0.1 mg/adult to 1,000 mg/adult for one administration.

The active ingredient of the present invention is derived from natural resources which have been used for many years as Chinese medicines, and this is completely non-toxic or is only slightly toxic. Therefore, it is safe. Its oral administration to rats in a dose of 500 mg/day resulted in no acute toxicity. Therefore, the amount of the active ingredient to be in food-and-drink-type compositions is not specifically limited for any of disease-preventing use, health-preserving and ordinary use. For medicines, the amount of the active ingredient to be included therein may be defined within the above-mentioned range in accordance with the patients. Since the active ingredient of the present invention exhibits no toxicity even when a large amount of it is taken, its dose to be administered may be over the above-mentioned range, if desired, with no problem.

The present invention is described in detail by means of the following Production Examples and Examples.

Production Example 1

One liter of M20Y2 medium (comprising 20 g of malt extract (Oxoid) and 2 g of yeast extract (Difco) in one liter and having pH of 5.5) was put into each of 46 3-liter Erlenmeyer flasks, which were then sterilized in an autoclave at 121 degree C. for 15 minutes.

One platinum loop of the mycelia of Cordyceps sinensis MF-20008 (obtained from The Sanming Mycological Institute, Fujian, China), FERM BP-5149, that had been pre-cultivated by M20Y2 agar slant culture was inoculated in each sterilized medium and cultivated therein at 25 degree C. by shaking culture at 180 rpm for 5 days. Thus, 46 liters of the culture was obtained in these 46 flasks.

46 liters of the culture were centrifuged, and the mycelia thus separated were freeze-dried to obtain 323.6 g of dry mycelia. The dry mycelia were put into a stainless container, 7 liters of water were added thereto, and these were ground with a polytoron, then heated at from 90 to 95 degree C. for 2 hours while stirring and extracted. After the extraction, the residual substances were removed by filtration, and the resulting filtrate was freeze-dried to obtain 130 g of a lightly yellow powder.

Production Example 2

In the same manner as in Production Example 1, 150 ml of M20Y2 medium was put into a 500-ml Erlenmeyer flask and sterilized by autoclaving, and 1 ml of freeze-dried Cordyceps sinensis MF-20008 was inoculated therein and cultivated by shaking culture at 25 degree C. and 180 rpm for 5 days. This was used as a seed culture and cultivated in 150 liters of the following medium in the manner mentioned below.

150 liters of D medium (comprising 40.0 g of sucrose, 4.0 g of K.sub.2 HPO.sub.4, 0.5 g of asparagine, 2.0 g of (NH.sub.4).sub.2 HPO.sub.4, 2.0 g of MgSO.sub.4.7H.sub.2 O, 0.25 g of CaCO.sub.3, 0.1 g of CaCl.sub.2 and 4.0 g of yeast extract B-2 in one liter and having pH of 5.6) was, after having been sterilized and filtered, put into a 150-liter fermenter, and 150 ml of the above-mentioned seed culture was inoculated therein and cultivated under a controlled condition at 25 degree C., pH of 5.5 and DO of 50%, while stirring at 157 rpm, for 3 days. The foams formed during the cultivation were removed by
adding a silicone de-foaming agent to the fermenter. 150 liters of the culture thus obtained was treated
with a clarifier to thereby isolate the mycelia. Thus, an aqueous suspension of the mycelia was obtained.
This was heated at from 90.degree. C. to 95.degree. C. for 2 hours and extracted. Then, this was clarified
with a clarifier to isolate a supernatant. This was filtered through 0.45-.mu.m and 0.22-.mu.m sterile
filters to obtain 80 liters of a lightly yellow hot-water extract (the dry weight of the solid content: 800 g).

EXAMPLE 1

The cultivated mycelia (dry mycelia) of Cordyceps sinensis MF-20008 that had been prepared in
Production Example 1 and the hot-water extract thereof (lightly yellow powder) were subjected to a
swimming fatigue test with mice, to which the cultivated mycelia and the hot water extract thereof these
were orally administered.

The test animals were male ICR mice (5 to 7 week-age), and these were grouped into three groups and
subjected to a fatigue test under the conditions mentioned below.

Administration:

The hot-water extract of the mycelia of Cordyceps sinensis MF-20008 or the mycelia themselves were
mixed with powdery CRF-1 feed at a proportion of 2.5% or 5%, respectively, and the resulting powdery
feed mix was administered to the mice all the time for 16 days.

Groups of mice: Each group was comprised of 20 mice.

(1) Control group: Fed with only powdery CRF-1 feed.

(2) Group to which the hot-water extract was administered: Fed with the feed mix containing 2.5% of
the hot-water extract.

(3) Group to which the mycelia were administered: Fed with the feed mix containing 5% of the dry
mycelia.

Test schedule:

On the 15th day after the start of the administration, the mice were subjected to a swimming fatigue test.
On the 16th day, all the blood was collected from each mouse and subjected to whole blood analysis and
serum analysis.

(1) The swimming fatigue test is as follows: A 36-liter swimming tank (49 cm.times.33.5 cm.times.22
cm (depth)) was filled with water at 17.degree. C., and 10 ml of a neutral detergent was added thereto.
The mice were forced to swim in the tank under no load, and the swimming test for each mouse was
stopped at the time at which the mouse sank in water up to the tip of its nose for 5 seconds. The results
obtained are shown in Table 1 below.

<table>
<thead>
<tr>
<th>Gauge No.</th>
<th>No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
<td></td>
<td>(1)</td>
<td>(Control)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>9' 55"</td>
<td>7' 06"</td>
<td>7' 41"</td>
<td>10' 34"</td>
</tr>
</tbody>
</table>

The above-mentioned results were analyzed by the Aspin-Welch test of significance. There was admitted a significant difference between the first group and the second group, as the level of significance of the test was 1%. However, there was admitted no significant difference between the first group and the third group, as the level of significance of the test was 5%.

The swimming fatigue test is one of the tests which are generally employed for the purpose of evaluating the anti-fatigue effect of test substances on the basis of the variation in the total reaction of test animals. Therefore, the above-mentioned results are nothing but ones that have scientifically verified the excellent effect of the active ingredient of the present invention for increasing the sustaining capacity for power of locomotion and the excellent anti-fatigue effect of the same.

(2) On the 16th day after the start of the administration, the whole blood was collected from each mouse that had been subjected to the above-mentioned swimming fatigue test and analyzed in terms of the number of the platelets (times.10,000/mm.sup.3), the amount of hemoglobin (g/dl), the number of erythrocytes (times.10,000/mm.sup.3), the number of leucocytes (/mm.sup.3), and the hematocrit (%).

The results of the analysis of the whole blood are shown in Table 2 below. As is obvious from these results, there was admitted no significant difference between the test groups and the control group in all the test items, as the level of significance of the test was 5%. (To analyze the whole blood, a Student test was used. To count the number of the platelets in the third group, however, an Aspin-Welch test was used.)

TABLE 2

<table>
<thead>
<tr>
<th></th>
<th>No.</th>
<th>.times. 10000/mm.sup.3</th>
<th>g/dl</th>
<th>.times. 10000/mm.sup.3</th>
<th>Leucocytes/mm.sup.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Platelets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amount of Hemoglobin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Erythrocytes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Hematocrit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

First Group (Control Group)

<table>
<thead>
<tr>
<th></th>
<th>106.5</th>
<th>14.5</th>
<th>8/9</th>
<th>4300</th>
<th>55.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>130.5</td>
<td>15.5</td>
<td>984</td>
<td>4200</td>
<td>57.9</td>
</tr>
<tr>
<td>3</td>
<td>107.5</td>
<td>16.3</td>
<td>1075</td>
<td>3600</td>
<td>59.2</td>
</tr>
<tr>
<td>4</td>
<td>120.1</td>
<td>16.4</td>
<td>1104</td>
<td>5700</td>
<td>58.5</td>
</tr>
<tr>
<td>5</td>
<td>109.4</td>
<td>15</td>
<td>963</td>
<td>6300</td>
<td>58.6</td>
</tr>
<tr>
<td>6</td>
<td>95.8</td>
<td>15.5</td>
<td>984</td>
<td>5100</td>
<td>59.5</td>
</tr>
<tr>
<td>7</td>
<td>108.4</td>
<td>14.5</td>
<td>898</td>
<td>2700</td>
<td>57.5</td>
</tr>
<tr>
<td>8</td>
<td>89.4</td>
<td>15</td>
<td>943</td>
<td>4400</td>
<td>55.5</td>
</tr>
<tr>
<td>9</td>
<td>114.4</td>
<td>15</td>
<td>1065</td>
<td>4600</td>
<td>57.8</td>
</tr>
</tbody>
</table>

Average

109.11 15.41 988.33 4544.44 57.73

Second Group (Fed with Hot-water Extract of Cultivated Mycelia of MF-20008)

<table>
<thead>
<tr>
<th></th>
<th>102.6</th>
<th>15</th>
<th>939</th>
<th>4500</th>
<th>56.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>121.8</td>
<td>14.7</td>
<td>923</td>
<td>5300</td>
<td>52.6</td>
</tr>
<tr>
<td>3</td>
<td>136.1</td>
<td>14.5</td>
<td>869</td>
<td>5200</td>
<td>56.4</td>
</tr>
<tr>
<td>4</td>
<td>97.7</td>
<td>14.5</td>
<td>866</td>
<td>4800</td>
<td>53.6</td>
</tr>
<tr>
<td>5</td>
<td>77.1</td>
<td>16.4</td>
<td>1011</td>
<td>4200</td>
<td>58</td>
</tr>
<tr>
<td>6</td>
<td>119</td>
<td>15.3</td>
<td>932</td>
<td>6400</td>
<td>56.5</td>
</tr>
<tr>
<td>7</td>
<td>107.8</td>
<td>14.7</td>
<td>863</td>
<td>4000</td>
<td>50.7</td>
</tr>
<tr>
<td>8</td>
<td>100.8</td>
<td>16.2</td>
<td>1016</td>
<td>4400</td>
<td>58.9</td>
</tr>
<tr>
<td>9</td>
<td>121</td>
<td>15.7</td>
<td>1004</td>
<td>5800</td>
<td>56.3</td>
</tr>
<tr>
<td>10</td>
<td>128</td>
<td>16.1</td>
<td>1015</td>
<td>5000</td>
<td>57.9</td>
</tr>
</tbody>
</table>

Average

111.19 15.21 943.0 5020 55.76

Third Group (Fed with Dry Mycelia of MF-20008)

<table>
<thead>
<tr>
<th></th>
<th>88.3</th>
<th>13.7</th>
<th>835</th>
<th>7000</th>
<th>51</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>97.6</td>
<td>15.9</td>
<td>994</td>
<td>3200</td>
<td>56.3</td>
</tr>
<tr>
<td>3</td>
<td>103.6</td>
<td>15.3</td>
<td>916</td>
<td>3300</td>
<td>55.3</td>
</tr>
<tr>
<td>4</td>
<td>116</td>
<td>14.7</td>
<td>951</td>
<td>7000</td>
<td>56.7</td>
</tr>
<tr>
<td>5</td>
<td>155.7</td>
<td>15.5</td>
<td>936</td>
<td>7000</td>
<td>57.4</td>
</tr>
<tr>
<td>6</td>
<td>131.6</td>
<td>15.2</td>
<td>943</td>
<td>4100</td>
<td>56.6</td>
</tr>
<tr>
<td>7</td>
<td>119.3</td>
<td>16.6</td>
<td>1010</td>
<td>4700</td>
<td>59.3</td>
</tr>
<tr>
<td>8</td>
<td>130.9</td>
<td>16.2</td>
<td>991</td>
<td>5200</td>
<td>57.9</td>
</tr>
<tr>
<td>9</td>
<td>113.1</td>
<td>15.7</td>
<td>1026</td>
<td>7700</td>
<td>58.8</td>
</tr>
<tr>
<td>10</td>
<td>58.6</td>
<td>15.0</td>
<td>994</td>
<td>6400</td>
<td>57.4</td>
</tr>
</tbody>
</table>

Average

111.47 15.46 959.6 5560 56.67

(3) The body weight of each test mouse was weighed during the period of the test, and the variation in the mean weight (g) of the test mice is shown in Table 3 below (Variation in Weight of Mice Tested by Forcedly Swimming Test).

<table>
<thead>
<tr>
<th>Mean Body Weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Days after the Start of Administration</td>
</tr>
<tr>
<td>1st Group</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1st Group</th>
<th>2nd Group</th>
<th>3rd Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>32.19</td>
<td>32.24</td>
<td>32.14</td>
</tr>
<tr>
<td>2</td>
<td>33.74</td>
<td>33.94</td>
<td>33.75</td>
</tr>
</tbody>
</table>
EXAMPLE 2

The hot-water extract of the mycelia of Cordyceps sinensis MF-20008 that had been prepared in Production Example 1 was tested in terms of its effects on the right atrium, the papillary muscle of the right ventricle, the aorta and the bronchi taken out of an SD rat, according to a Tsunoo et al's method (see Kurokawa M. and Tsunoo A., J. Physiol., 407, 135-153, 1988; Tsunoo A. et al., J. Physiol., 433, 163-181, 1991), and the effectiveness of the extract was evaluated.

(1) Specimen of Cardiac Muscle

By applying the hot-water extract to the specimen of the cardiac muscle of a male SD rat, the contractile force of the cardiac muscle of the right atrium and the interval thereof were measured.

The right atrium with intact pacemaker activity was taken out of a male SD rat (380 to 450 g). The specimen of the right atrium was fixed in a horizontal perfusion container having a volume of 0.8 ml, and its contractile force was isometrically recorded. As the perfusate, a Krebs solution was used that had been equilibrated with 95% oxygen and 5% carbon dioxide, or an aerated salt solution comprising 140 mM of sodium chloride, 5 mM of potassium chloride, 2.6 mM of calcium chloride, 1.3 mM of magnesium chloride, 10 mM of glucose and 5 mM of HEPES. The perfusate was kept at from 36 to 37 degree C. and at a flow rate of from 3 to 4 ml/min.

As a result, the hot-water extract of the mycelia (from 50 to 100 µg/ml) increased the contractile force of the cardiac muscle of the right atrium by 9.3% of the control (mean value ± standard deviation, n=5). The interval of the pacemaker-driven spontaneous contractions was prolonged by 14.1% of the control (n=4). FIG. 1 and FIG. 2 show the time course of increase in the contractile force of the cardiac muscle of the right atrium and the time course of prolongation of the inter-contraction interval of the same, respectively.

In FIGS. 1 and 2, the extract solution (60 µg/ml) was applied to the test system during the period of time expressed by the thick solid line. The vertical axis indicates the relative value of the contractile force relative to the standard value of the control (before application of the extract solution) of being 1 (one). The horizontal axis indicates the time, on which 0 (zero) means the time at which the extract solution was applied to the test system and the minus number means the time before the application.

As is obvious from the above, the effectiveness of the hot-water extract on the spontaneous contraction of the right atrium was verified by the illustrated data. In addition, the papillary muscle of the right ventricle was taken out of the rat and fixed in a perfusion container in the same manner as above, to which was applied electric stimulation (2 Hz) via a pair of platinum wires, and the effectiveness of the extract on the electrically-driven contractions of the papillary muscle of the right ventricle was examined. As a result, the extract (from 30 to 100 µg/ml) increased the tension of the papillary muscle of the right ventricle to be caused by the electric stimulation by 13.1% of the control (n=3).

(2) Specimen of Aorta