1) It would appear that the term ‘Cell Selection Devices’ is being used generically to cover both cell separation devices that use centrifugation or other mechanical methods for the separation of blood components and devices that perform positive or negative selection to isolate specific cell populations. Please clarify which devices are covered by the Guidance document and, in particular, specify whether cell separation devices are covered?

2) The Draft Guidance document covers the production of autologous peripheral blood stem cells (PBSC) at point of care. Most PBSC products are obtained following a cell mobilization protocol that can take many days. Are we to understand that the present Draft Guidance relates to non-mobilized PBSC or both mobilized (if feasible) and non-mobilized PBSC? It would be helpful if the Guidance would describe a scenario where this point-of-care processing and administration of PBSC would be applicable.

3) The Draft Guidance would seem more appropriate for other sources of stem cells, particularly autologous bone marrow which is routinely aspirated and processed at point of care. Therefore, we are inquiring as to whether this Draft Guidance would also apply to the production of minimally manipulated autologous bone marrow at point of care? If not, does the Agency have the intention of preparing a similar Guidance document relating to the production of minimally manipulated autologous bone marrow?

4) Article IIIB: Devices Used to Minimally Manipulate Autologous PBSCs in the Draft Guidance suggests that device manufacturers should "demonstrate that the device produces clinically effective cells for each specific clinical indication under consideration." However, a number of Cell Selection Devices and, in particular, cell separation devices, should such devices be covered by the Guidance, do not claim effectiveness for any specific clinical indication. The manufacturers of these devices only claim effective or equivalent automated cell separation to obtain autologous HCT/Ps or other HCT cells. Such is the case for the Sepax cell processing system manufactured by Biosafe, Switzerland. Sepax can separate cells from a variety of sources including cord blood, PBSC and bone marrow and is presently 510(k) cleared for cord blood processing in the U.S. Biosafe claims to effectively automate established manual cell separation procedures to obtain equivalent results in a safe, functionally closed and sterile environment. The ‘results’ being measured pertain to the ability of the device to recover a maximum number of cells-of-interest when compared to the quantity of those cells in the original product and the manufacturer makes no claim of clinical effectiveness.

It is our belief that requiring device manufacturers to demonstrate such clinical effectiveness will severely hinder the adoption of functionally-closed, automated devices in therapeutic applications that inherently reduce the risks of contamination and operator error.

5) Biosafe’s Sepax technology is and has been used by laboratories around the world in the routine processing of both autologous and allogeneic PBSC, cord blood and bone marrow in many hundreds of thousands of procedures. Biosafe does not make any claim of clinical effectiveness in any of these applications. However, while the functionally-closed, automated Sepax device reduces the risk of contamination and the risk of operator error, there are
significant outcome data available demonstrating that use of the device does not in any way adversely affect clinical outcome.

Biosafe remains at the Agency’s disposal to further present its significant experience in automated cell processing and the various applications in which its Sepax technology has been adopted in routine use. At present, in the United States, Sepax is only cleared for use in cord blood processing.