Regulation of *Clostridium difficile*

Toxin Gene Expression

Abraham L. Sonenshein
Tufts University School of Medicine
Relationships between \textit{C. difficile} sporulation and pathogenesis:

- Spores act as the reservoir of disease-causing organisms

- Germination in the GI tract is essential for pathogenesis

- Toxins A and B are only synthesized during stationary phase/sporulation
Motility and chemotaxis
Secretion of degradative enzymes
Transport of secondary nutrients
Intracellular catabolic pathways
Genetic competence
Antibiotic and toxin production

Sporulation
Figure 2 The stages of sporulation and germination.

R. Losick and P. Youngman
Transcriptional regulation during sporulation

Spo0A~P - a major transcription factor for early sporulation genes

RNA polymerase sigma factors - dissociable subunits that direct RNA polymerase to specific promoter sites
Regulation of Sporulation Gene Expression in *Bacillus subtilis*
RNA polymerase Sigma Factors of \textit{C. difficile}

σ^{70} Family

Primary σ^A, σ^A-like

Sporulation $\sigma^H, \sigma^F, \sigma^E, \sigma^G, \sigma^K$

Alternative

Stress σ^B

Toxin gene expression TcdR

ECF $\sigma^W, \sigma^V, \sigma^X$

σ^{54} Family σ^L
Toxin Gene Locus (PaLoc) in *C. difficile*

- **PtcdR**
- **PtcdB**
- **PtcdA**

Gene products: **tcdR**, **tcdB**, **tcdE**, **tcdC**, **tcdA**

- **tcdB**: Toxin B
- **tcdE**: Holin?
- **tcdA**: Toxin A
TcdR is a sigma factor for toxin gene transcription
C. difficile Paloc locus

C. botulinum toxin locus

C. perfringens bacteriocin locus

C. tetani toxin locus
Questions:

1) What is the metabolic signal for nutrient deprivation?

2) What regulatory protein senses this signal?

3) By what mechanism does this regulatory protein control expression of toxin genes?
CodY protein

- a dimeric DNA binding protein first discovered in *Bacillus subtilis*.

- Helix-Turn-Helix region (HTH), located between residues 202-223, is required for DNA binding.

- represses mostly strongly in vivo in cells growing in a complex medium or a medium containing glucose and a mixture of amino acids.

- homologs are found in almost all low G+C gram-positive bacteria.
CodY is activated additively by two different effectors
CodY Homologs

- Nearly ubiquitous in low G+C Gram-positive bacteria

- Strong conservation in putative motifs
Table 4. CodY HTH motifs

<table>
<thead>
<tr>
<th>Organism</th>
<th>Helix 1 Turn Helix 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillus subtilis</td>
<td>ASKIADRVGITRSVIVNALR</td>
</tr>
<tr>
<td>Bacillus stearothermophilus</td>
<td>ASKIADRVGITRSVIVNALR</td>
</tr>
<tr>
<td>Bacillus halodurans</td>
<td>ASKIADRVGITRSVIVNALR</td>
</tr>
<tr>
<td>Bacillus anthracis</td>
<td>ASKIADRVGITRSVIVNALR</td>
</tr>
<tr>
<td>Listeria innocua</td>
<td>ASKIADRVGITRSVIVNALR</td>
</tr>
<tr>
<td>Listeria monocytogenes</td>
<td>ASKIADRVGITRSVIVNALR</td>
</tr>
<tr>
<td>Staphylococcus epidermidis</td>
<td>ASKVADRVGITRSVIVNALR</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>ASKVADRVGITRSVIVNALR</td>
</tr>
<tr>
<td>Clostridium perfringens</td>
<td>ASKIADKVGITRSVIVNALR</td>
</tr>
<tr>
<td>Clostridium difficile</td>
<td>ASKIADRVGITRSVIVNALR</td>
</tr>
<tr>
<td>Clostridium acetobutylicum</td>
<td>ASKIADKVGITRSVIVNALR</td>
</tr>
<tr>
<td>Clostridium botulinum</td>
<td>ASKIADKVGITRSVIVNALR</td>
</tr>
<tr>
<td>Desulfitobacterium hafniense</td>
<td>ASKIADRVGITRSVIVNALR</td>
</tr>
<tr>
<td>Carboxydothermus hydrogenoformans</td>
<td>ASKIADRVGITRSVIVNALR</td>
</tr>
<tr>
<td>Streptococcus equi</td>
<td>ASVIADRIGITRSVIVNALR</td>
</tr>
<tr>
<td>Streptococcus pyogenes</td>
<td>ASVIADRIGITRSVIVNALR</td>
</tr>
<tr>
<td>Streptococcus pneumoniae</td>
<td>ASVIADRIGITRSVIVNALR</td>
</tr>
<tr>
<td>Streptococcus mutans</td>
<td>ASVIADRIGITRSVIVNALR</td>
</tr>
<tr>
<td>Enterococcus faecalis</td>
<td>ASSIADEIGITRSVIVNALR</td>
</tr>
<tr>
<td>Lactococcus lactis</td>
<td>ASVIADKIGITRSVIVNALR</td>
</tr>
</tbody>
</table>
CodY represses \textit{tcdA-gusA} expression in \textit{B. subtilis}
Comparison of putative GTP binding motifs in CodY homologs.

<table>
<thead>
<tr>
<th>Small GTPases</th>
<th>G1</th>
<th>G3</th>
<th>G4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consensus sequences</td>
<td>GXXGKT</td>
<td>DXXG</td>
<td>NKxD</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>S</td>
<td>TQ</td>
</tr>
</tbody>
</table>

CodY

- **B. subtilis**
 - GGERLGLTL DRVG VLNNKFL
- **B. stearothermophilus**
 - GGERLGLTL DRVG VLNDKFL
- **B. halodurans**
 - GQQRLGLTL DRVG VLNDKFL
- **B. anthracis**
 - GGERLGLTL DRVG VLNDKFL
- **B. cereus**
 - GGERLGLTL DRVG VLNDKFL
- **S. aureus**
 - GGERLGLTL DRVG VKEKFL
- **S. epidermidis**
 - GGERLGLTL DRVG VKKDKFL
- **L. innocua**
 - GGERLGLTL DRVG VLNDKFL
- **L. monocytogenes**
 - GGERLGLTL DRVG VLNDKFL
- **C. hydrogenoformans**
 - GGQRLGLTL DRVG VLNDKFL
- **D. hafniense**
 - GGERVGLTL DRVG DLYNDLL
- **S. pneumoniae**
 - SGERGLGLSL DRIG VLSIDIF
- **S. equi**
 - GGMRLGLTL DRIG VINEGIF
- **S. mutans**
 - GGMRLGSL DRIG VINEGIF
- **S. pyogenes**
 - GGMRLGSL DRIG VINEGIF
- **E. faecalis**
 - AGKRLGTL DEIG VLNQQFI
- **L. lactis**
 - SGMLRLGTF DKIG VNTGLF
- **C. difficile**
 - SGQRLGLTL DRVG ILNDKLT
- **C. perfringens**
 - NGDRLGTL DKVG ILNEKLM
- **C. acetobutylicum**
 - NRRRLGTL DKVG ILNDRLL
- **C. botulinum**
 - NRRRLGTL DKVG ILNDKLK
Crystal Structure of CodY with Ile

V. Levdikov
E. Blagova
A. J. Wilkinson
<table>
<thead>
<tr>
<th></th>
<th>61</th>
<th>62</th>
<th>65</th>
<th>71</th>
<th>72</th>
<th>75</th>
<th>97</th>
<th>98</th>
<th>99</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bsu</td>
<td>R</td>
<td>M</td>
<td>M</td>
<td>F</td>
<td>P</td>
<td>Y</td>
<td>A</td>
<td>F</td>
<td>P</td>
<td>V</td>
</tr>
<tr>
<td>Ban</td>
<td>R</td>
<td>M</td>
<td>M</td>
<td>F</td>
<td>P</td>
<td>Y</td>
<td>A</td>
<td>F</td>
<td>P</td>
<td>V</td>
</tr>
<tr>
<td>Bli</td>
<td>R</td>
<td>M</td>
<td>M</td>
<td>F</td>
<td>P</td>
<td>Y</td>
<td>A</td>
<td>F</td>
<td>P</td>
<td>V</td>
</tr>
<tr>
<td>Lmo</td>
<td>R</td>
<td>M</td>
<td>M</td>
<td>F</td>
<td>P</td>
<td>Y</td>
<td>A</td>
<td>F</td>
<td>P</td>
<td>I</td>
</tr>
<tr>
<td>Efa</td>
<td>R</td>
<td>I</td>
<td>M</td>
<td>F</td>
<td>P</td>
<td>Y</td>
<td>A</td>
<td>F</td>
<td>P</td>
<td>F</td>
</tr>
<tr>
<td>Sau</td>
<td>R</td>
<td>I</td>
<td>M</td>
<td>I</td>
<td>P</td>
<td>Y</td>
<td>V</td>
<td>F</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Sep</td>
<td>R</td>
<td>I</td>
<td>M</td>
<td>I</td>
<td>P</td>
<td>Y</td>
<td>V</td>
<td>F</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Spy</td>
<td>R</td>
<td>V</td>
<td>F</td>
<td>F</td>
<td>P</td>
<td>Y</td>
<td>I</td>
<td>F</td>
<td>P</td>
<td>V</td>
</tr>
<tr>
<td>Sag</td>
<td>R</td>
<td>V</td>
<td>F</td>
<td>F</td>
<td>P</td>
<td>Y</td>
<td>I</td>
<td>F</td>
<td>P</td>
<td>V</td>
</tr>
<tr>
<td>Smu</td>
<td>R</td>
<td>V</td>
<td>F</td>
<td>L</td>
<td>P</td>
<td>Y</td>
<td>I</td>
<td>F</td>
<td>P</td>
<td>I</td>
</tr>
<tr>
<td>Sth</td>
<td>R</td>
<td>V</td>
<td>F</td>
<td>L</td>
<td>P</td>
<td>Y</td>
<td>I</td>
<td>F</td>
<td>P</td>
<td>V</td>
</tr>
<tr>
<td>Spn</td>
<td>R</td>
<td>V</td>
<td>F</td>
<td>F</td>
<td>P</td>
<td>Y</td>
<td>I</td>
<td>F</td>
<td>P</td>
<td>I</td>
</tr>
<tr>
<td>Ila</td>
<td>R</td>
<td>V</td>
<td>F</td>
<td>L</td>
<td>P</td>
<td>Y</td>
<td>I</td>
<td>F</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Cdi</td>
<td>V</td>
<td>I</td>
<td>E</td>
<td>F</td>
<td>S</td>
<td>Y</td>
<td>I</td>
<td>F</td>
<td>P</td>
<td>E</td>
</tr>
<tr>
<td>Cpe</td>
<td>I</td>
<td>M</td>
<td>K</td>
<td>F</td>
<td>P</td>
<td>Y</td>
<td>V</td>
<td>F</td>
<td>E</td>
<td>G</td>
</tr>
<tr>
<td>Cte</td>
<td>T</td>
<td>V</td>
<td>K</td>
<td>F</td>
<td>P</td>
<td>Y</td>
<td>A</td>
<td>F</td>
<td>P</td>
<td>F</td>
</tr>
</tbody>
</table>
C. difficile CodY binds tcdR promoter

No effectors

2 mM GTP

10 mM ILV

2 mM GTP + 10 mM ILV
A Model for Toxin Regulation in *C. difficile*

- **GTP**: Influences CodY
- **Ile-Val**: Activates PtcdR
- **PtcdR**: Activates tcdR
- **PtcdB**: Activates tcdB
- **PtcdA**: Activates tcdA
- **TcdR**: Activates TcdR
- **tcdE**: Activates tcdC

CodY

GTP

Ile-Val

PtcdR

PtcdB

PtcdA

tcdR

tcdB

tcdA

tcdC

TcdR
Is TcdC an Inhibitor of TcdR?
CodY interacts with the *tcdC* regulatory region

<table>
<thead>
<tr>
<th></th>
<th>no effectors</th>
<th>+ 2 mM GTP</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ 10 mM BCAA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 2mM GTP, 10 mM BCAA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[Graph showing the interaction of CodY with the tcdC regulatory region under different conditions]
A Model for Toxin Regulation in *C. difficile*

- **CodY**
 - GTP
 - Ile-Val

- **PtcdR**
- **PtcdB**
- **PtcdA**
 - **tcdE**
- **PtcdC**

- **tcdR**
- **tcdB**
- **tcdA**
- **tcdC**

- **TcdR**
- **TcdC**

- **?**
Acknowledgements

Tufts University School of Medicine

Bruno Dupuy

Nagraj Mani

Jeralyn Haraldsen

Sean Dineen

Collaborators

Bruno Dupuy and Susana Matamouros (Institut Pasteur)

Julian Rood (Monash University)

Tony Wilkinson, Vladimir Levdkov, Elena Blagova (University of York)