SECTION VIII

REGULATORY CONTROL OF RISKS

Preceding sections of this petition have shown, based on the literature and on unpublished clinical results, that total hip arthroplasty incorporating the use of a constrained liner as part of a total hip system is a highly successful procedure in a properly selected patient group. Neither it, nor any other surgical procedure is free of complications, and this petition has demonstrated that a body of clinical experience has defined those complications. The risks inherent in this procedure are similar to those for total hip replacement surgery utilizing a class II device.

Complications can be distinguished between those that relate to surgery in general, and those that are specific to the device. Separation of the polymer liner from the metal shell is a failure of the device. Loosening may involve device design, but it also depends upon surgical technique as well as uncontrollable patient factors. The complications specific to the device are similar to those specific to class II hip joint replacement devices. Complications such as infection, pulmonary embolism, gastrointestinal and genitourinary problems are not generally device specific, but are risks associated with most major surgical procedures.

The primary difference between the constrained acetabular component (class III) and the semi-constrained acetabular component (class II) is the inherent stability of the device. The constrained liner provides joint stability by the design of mechanical constraint that interlocks the acetabular component onto the femoral component. The semi-constrained liner depends more heavily on the effectiveness of the surgical reconstruction and the soft tissue to provide joint stability, than it does on device design. Due to the mechanical resistance to dislocation, the constrained liner cannot be restored by closed reduction and requires additional surgery in the event it dislocates.

Based upon the above considerations, this petition recommends that the approach to regulatory risk control should be the same for a constrained total hip acetabular liner as for a semi-constrained total hip acetabular liner. Regulatory control of the device can be simple and straightforward. Device risks can be handled through material standards, with substantial equivalence determinations serving to control device design. Patient and surgical risks can be minimized through device labeling, and device quality through good manufacturing practices (GMP). FDA has authority through the 510(k) process, as well as its general authority over misbranding and adulteration to impose controls along these lines. Additionally, guidance documents are commonly used and provide vehicles for specific provisions regarding materials, testing, and labeling. The risks defined by clinical experience are well suited to controls of these types, and this petition’s specific recommendation on controls is presented in Table VIII-A.

Warnings and precautions that might be included in labeling are described in Appendix 1 – General labeling Information.
<table>
<thead>
<tr>
<th>Risks/Complications Identified in this Petition</th>
<th>Means to Control/Minimize Risks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infection</td>
<td>5 \text{ \textit{10(k) Requirement}} – Sterility</td>
</tr>
<tr>
<td></td>
<td>Adulteration Authority – GMP Sterility</td>
</tr>
<tr>
<td></td>
<td>Misbranding Authority – Labeling</td>
</tr>
<tr>
<td></td>
<td>Indications/contraindications/warnings precautions</td>
</tr>
<tr>
<td>Loosening of components</td>
<td>5 \text{ \textit{10(k) Requirement}} – SE Design</td>
</tr>
<tr>
<td></td>
<td>Misbranding Authority – Labeling precautions/warnings</td>
</tr>
<tr>
<td>Revision of components</td>
<td>5 \text{ \textit{10(k) Requirement}} – SE Design</td>
</tr>
<tr>
<td>Dislocation of the hip prosthesis</td>
<td>5 \text{ \textit{10(k) Requirement}} – Pre-clinical Testing</td>
</tr>
<tr>
<td></td>
<td>Femoral head pull-out/acetabular insert dislocation</td>
</tr>
<tr>
<td></td>
<td>10(\text{k}) Requirement – Conformance to Material Standards</td>
</tr>
<tr>
<td></td>
<td>Misbranding Authority – Labeling precautions/warnings</td>
</tr>
<tr>
<td>Implant failure/fracture/wear Osteolysis</td>
<td>5 \text{ \textit{10(k) Requirement}} – SE Design</td>
</tr>
<tr>
<td>Sensitivity to implant materials</td>
<td>5 \text{ \textit{10(k) Requirement}} – Conformance to Material Standards</td>
</tr>
<tr>
<td></td>
<td>5 \text{ \textit{10(k) Requirement}} – Pre-clinical Testing</td>
</tr>
<tr>
<td></td>
<td>Femoral head pull-out/wear/acetabular insert dislocation/FDA guidance documents</td>
</tr>
<tr>
<td></td>
<td>Adulteration Authority – GMP Manufacturing and Design</td>
</tr>
<tr>
<td>Nerve impingement/damage</td>
<td>Misbranding Authority – Labeling</td>
</tr>
<tr>
<td>Pain</td>
<td>warnings/precautions</td>
</tr>
<tr>
<td>Vascular disorders</td>
<td></td>
</tr>
<tr>
<td>Pulmonary embolism</td>
<td></td>
</tr>
<tr>
<td>\textit{Gastrointestinal/genitourinary} complications</td>
<td></td>
</tr>
<tr>
<td>TEST PERFORMED</td>
<td>BIOMET 32MM</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>LEVER-OUT RESISTANCE LINER/SHELL</td>
<td>1630 LBS. AVE.</td>
</tr>
<tr>
<td>PUSH-OUT RESISTANCE LINER/SHELL</td>
<td>740 LBS.</td>
</tr>
<tr>
<td>PUSH-IN FEMORAL HEAD</td>
<td>40.4 LBS.</td>
</tr>
<tr>
<td>PULL-OUT FEMORAL HEAD/CUP</td>
<td>361.4 LBS.</td>
</tr>
<tr>
<td>TOGGLE-OUT FEMORAL HEAD/CUP</td>
<td>622 INCH LBS. AVE.</td>
</tr>
</tbody>
</table>
LIST OF SPECIAL CONTROLS

ASTM STANDARDS
FDA GUIDANCE DOCUMENTS
SUGGESTED LABELING FORMAT
LIST OF SPECIAL CONTROLS

The special controls identified below in this document, in addition to general controls, are adequate to control the identified risks to health for this device. Consensus standards and FDA guidance documents are appropriate special controls to reasonably assure the safety and effectiveness of the device.

Based on available information, we identified the following 10 voluntary standards from the American Society for Testing and Materials (ASTM), and 6 FDA guidance documents as the specific special controls to reasonably assure the safety and effectiveness of the constrained metal/polymer hip prosthesis.

ASTM Standards

1. ASTM F67-95 Standard Specification for Unalloyed Titanium for Surgical Implant Applications. This specification covers the chemical, mechanical, and metallurgical requirements for four grades of unalloyed titanium used for the manufacture of surgical implants.

2. ASTM F75-92 Standard Specification for Cast Cobalt-Chromium-Molybdenum alloy for Surgical Implant Applications. This specification covers the requirements for Cast cobalt-chromium molybdenum alloy, shot, bar, or ingot for surgical implant applications.

3. ASTM F136-98 Standard Specification for Wrought Titanium-6 Aluminum-4 Vanadium ELI (Extra Low Interstitial) Alloy (R56401) for Surgical Implant Applications. This specification covers the chemical, mechanical, and metallurgical requirements for wrought annealed Titanium-6 Aluminum-4 Vanadium ELI (extra low interstitial alloy (R56401) to be used in the manufacture of surgical implants.

5. ASTM F1044-95 Standard Test Method for Shear Testing of Porous Metal Coatings. This test method covers “lap shear” testing of porous and non-porous metal coatings adhering to dense metal substrates.

6. ASTM F1147-95 Standard Test Method for Tension Testing of Porous Metal Coatings. This test method covers tension testing of porous and nonporous metal coatings adhering to dense metal substrates at ambient temperatures and determination of the degree of adhesion of coatings to substrates, or the internal cohesion of a coating in tension normal to the surface plane.

8. ASTM F1580-95 Standard Specification for Titanium and Titanium-6% Aluminum-4% Vanadium Alloy Powders for Coatings of Surgical Implants. This specification
covers the requirements for unalloyed titanium and Ti-6Al-4V alloy powders for use in fabricating coatings on titanium alloy implants.

9. ASTM F18-1497a Standard Guide for Evaluating Modular Hip and Knee Joint Components. This guide covers a procedure to assist the developer of a modular joint replacement implant in the choice of appropriate tests and evaluations to determine device safety.

10. ASTM F1820-97 Standard Test Method for Determining the Axial Disassembly force of a Modular Acetabular Device. This test method covers a standard methodology by which to measure the attachment strength between the modular acetabular shell and liner. Although the methodology described does not replicate physiological loading conditions, it has been described as means of comparing integrity of various locking mechanisms.

The ASTM standards define implant material specifications and testing methods applicable to the constrained hip prosthesis. Adherence to these standards and comparison of the results from these standard tests can control the risks to health of adverse tissue reaction, pain and/or loss of function, and revision by having the manufacturer use surgical implant quality materials and assuring that the device has acceptable performance through mechanical testing.

The ASTM standards are FDA recognized consensus standards. ASTM standards may be obtained from ASTM Customer Services, 100 Barr Harbor Dr., West Conshohocken, PA 19428 (Telephone 610-832-9585). ASTM has a site on the World Wide Web at http://www.astm.org/.

FDA Guidance Documents

1. Guidance Document for Testing Orthopedic Implants with Modified Metallic Surfaces Apposing Bone or Bone Cement. (Facts-on-Demand #827)
2. Guidance Document for Testing Non-Articulating, “Mechanically Locked” Modular Implant Components (Facts-on-Demand #916)
4. Data Requirements for Ultrahigh Molecular Weight Polyethylene (UHMWPE) Used in Orthopedic Devices (Call 301-443-9435 flash fax for this document)
5. Use of International Standard ISO-10993, Biological Evaluation of Medical Devices Part I: Evaluation and Testing (Facts-on-Demand #361)
6. 510(k) Sterility Review Guidance...and Revisions of 11/18/94 and ORDB 7/3/97 (K90-1) (Facts-on-Demand #361)

FDA guidance documents provide guidance on how to meet general orthopedic device premarket notification (510(k)) requirements, including biocompatibility testing, sterility testing, mechanical performance testing, and physician and patient labeling. Use of the preclinical section of the FDA guidance documents can control the risks to health of adverse tissue reaction, infection, pain, and/or loss of function, and revision by having...
manufacturers use surgical quality implant materials, adequately test and sterilize their devices, and provide adequate directions for use (and patient information).

Guidance documents can be received via fax machine by telephoning the Center for Devices and Radiological Health’s (CDRH) CDRH Facts-on-Demand system at 800-399-0381, or 301-827-0111 from a touch tone telephone. At the first voice prompt, press 1 to access the Division of Small Manufacturers Assistance FAX, at the second voice prompt, press 2, and then enter the document number followed by the pound sign (#). Then follow the remaining voice prompts to complete the request. The guidance documents are also available from CDRH World Wide Web address at http://www.fda.gov/cdrh.
SUGGESTED LABELING FORMAT

INFORMATION FOR PRESCRIBERS

DEVICE DESCRIPTION

The constrained hip is intended for use only in special situations where the patient has a high risk of dislocation due to previous history of dislocation, severe joint laxity, and/or palsy of surrounding musculature.

<insert compatible cup shells and liners>
<insert compatible femoral head sizes/neck lengths>

Material: <insert applicable ASTM standard for polyethylene>
<insert applicable ASTM standard for metal>

<insert a description of the components and how they function>

INDICATION FOR USE

The metal/polymer constrained hip is indicated for use as a component of a total hip prosthesis in primary and revision patients at high risk of dislocation due to a history of prior dislocation, bone loss, joint or soft tissue laxity, neuromuscular disease, or intraoperative instability.

CONTRAINDICATIONS, WARNINGS, AND PRECAUTIONS, and POTENTIAL ADVERSE EFFECTS

Relative Contraindications

1. Bone or musculature compromised by disease, infection, or prior implantation that cannot provide adequate support or fixation for the prosthesis.
2. Any active or suspected infection in or about the hip
3. Skeletal immaturity

Warnings
1. Closed reduction of a dislocation of a constrained hip prosthesis is not possible. Patients should be made aware that treatment of device dislocation would require additional surgery.

2. Patients should be warned on the impact of excessive loading that can result if the patient is involved in an occupation or activity that includes substantial walking, running, lifting, or excessive muscle loading due to patient weight causing extreme demands on the constrained hip that can result in the failure of the device. Extreme demands on the device may also cause loosening of the acetabular shell.

3. Alteration of any factory pre-assembled components can result in improper function of the retaining mechanisms, and failure of the device. Discard or return any prosthetic components if the retaining mechanism appears damaged or mishandled.

4. Improper alignment of the acetabular insert within the acetabular shell prior to impaction may result in damage to the locking mechanism, or improper seating of the constrained acetabular insert.

5. Bending, contouring, or modifying the device may adversely affect the implant potentially leading to early implant failure.

6. Do not use steam autoclaving for resterilization of the UHMWPE liner, as it may result in serious deformation and material deterioration.

7. Do not combine components from different manufacturers. This may lead to premature wear or failure of the device.

Precautions

1. Careful selection of components and familiarity with all aspects of the surgical technique are important to the success of the surgery.

2. An implant should be handled carefully to avoid damage that could compromise the mechanical integrity of the device and cause failure of the implant.

3. Inspect implants for nicks, scratches, or other defects that may cause failure of the implant.

4. To prevent contamination of the prosthesis, keep free of lint and powders. Do not open the package until surgery. Do not place the implant in contact with prepared bone surfaces before the final decision to implant has been made.

5. An implant should never be reused. Any implant once assembled and disassembles should be discarded. Even though it appears undamaged, it may have small defects and internal stress patterns that may lead to failure.
6. The wear rate of prosthetic surfaces is greatly accelerated if loose fragments of bone cement become detached and act as an abrasive in the bearing surfaces. When using bone cement, care should be taken to remove all excess cement from the periphery of the implant.

7. If a metal acetabular shell is affixed without bone cement, an additional method of initial fixation (e.g. bone screws, spikes, screw threads, fins, etc.) should be utilized to assure early stabilization of the cup.

Potential Adverse Effects

1. Infection
2. Pain
3. Loosening, wear, or mechanical failure of prosthetic components
4. Dislocation of the hip prosthesis requiring additional surgery
5. Localized progressive bone resorption (osteolysis)
6. Nerve impingement or damage, vascular disorders (including thrombus)
7. Heterotopic bone formation
8. Sensitivity to implant materials
9. Gastrointestinal and/or genitourinary complications
10. Pulmonary embolism
11. Death
12. Myocardial infarction

ANALYSIS OF PERTINENT CLINICAL STUDIES

<insert bibliography>

PATIENT COUNSELING INFORMATION

In addition to the patient related information contained in the Warnings and Potential Adverse Effects sections, the following information should be conveyed to the patient.

1. Joint prostheses will not restore function to the level expected with a normal healthy joint, and the patient should be instructed as to the limitations of the device. The range of motion achievable with a constrained hip is less than the range of motion with a semi-constrained hip prosthesis. The patient should be told that, although the constrained hip provides resistance to dislocation, it could dislocate if subjected to
excessive loading. Once dislocated, additional surgery will be required to reduce the joint.

2. Wear of the components can occur and potentially lead to future complications, including bone resorption and loosening, necessitating the removal and replacement of the prosthetic components.

3. The patient should be advised that the expected life of the joint replacement components is difficult to estimate, and that many factors may contribute to the longevity of the prosthesis. The patient can expect a restoration of mobility and reduction of pain, however device components cannot be expected to indefinitely withstand the activity level and loads of normal healthy bone.

4. Adverse effects may necessitate reoperation, revision, or fusion of the involved joint.

5. Patients should be instructed that significant reduction in the range of motion is inherent to the design characteristics of a constrained hip prosthesis, and that activities that may force the joint to exceed those range of motion limits should be avoided.

PRODUCTS ARE SUPPLIED STERILE

<insert sterilization method>

Do not resterilize. Do not use any component from an opened or damaged package. Do not use implants after expiration date.

Caution: Federal Law (USA) restricts this device to sale by or on the order of a physician.
FOLLOWING ARE TESTS AND TEST METHODS RECOMMENDED TO ESTABLISH THE SUBSTANTIAL EQUIVALENCE OF

Constrained Acetabular Cups
Summary of Laboratory Testing of the Biomet Ringloc Constrained Acetabular Liner:

Testing was conducted on the Ringloc Constrained Acetabular Liner to establish its resistance to potential failure modes. Five potential failure modes were identified and tests were designed to address each of the five modes. Note that all of the implant components used for the testing met the specifications of the implants being produced for commercial sale.

The first potential failure mode is the polyethylene liner pulling loose from the well fixed acetabular shell. The Ringloc mechanism must be sufficiently strong to resist the forces that act upon the shell to liner interface.

Tests were designed to simulate a direct pull out condition along the polar axis of the shell as well as the potential levering out of the liner from the shell. (Test# MT0197) The lever out loads could be created if the femoral head partially dislocated from the spherical socket and instead exerted a load on the raised lip of the liner.

From this testing, it was determined that an average push out load of 440 lbs was required to dislodge the polyethylene from the shell. This is well above any loads that are expected to be seen in vivo and is not the primary pull out failure mode of the device. This will be explained further during the discussion of the third potential failure mode.

It was also determined from this testing that an average lever out force required to dislocate the polyethylene liner from the shell was 1630 lbs. Again, this greatly exceeds any forces that the device is expected to see in vivo.

To validate our in-house testing, we also sent implant samples to Dr. A. Seth Greenwald at the Orthopaedic Research laboratories, Mount Sinai Medical Center. Dr. Greenwald found and reported in his 1996 AAOS Scientific Exhibit that the push out force required to disassemble the polyethylene liner from the acetabular shell was 660 lbs. He also found that in his version of a lever out test, it required more than 661 in-lbs. to lever the polyethylene liner from the shell. These values indicate that our Ringloc design would rank at least #2 when compared to competitive devices as was published by Dr. Greenwald.

The second potential failure mode of the device would be an insufficient area for stress transfer between the polyethylene liner and the titanium shell. The lack of area could cause a stress environment in the polyethylene that might lead to deformation, promote the onset of surface fatigue failures, and generation of particulate debris.

To insure that our product provided an area of support to the polyethylene that was comparable to other clinically successful devices that were currently on the market, we submitted our design to Dr. A. Seth Greenwald of the Orthopaedic Research Laboratories at Mount Sinai Medical Center.

Dr. Greenwald and his associates determined that our Ringloc shell without holes left only about 16% of the polyethylene unsupported. Our Ringloc shell with 7 screw holes left only 28% of the polyethylene unsupported. The actual contact areas of the shells were approximately 22cm^2 and 18cm^2. Overall, our design was second best out of the 10 devices studied by Dr. Greenwald.

The third potential failure mode of the device would be if the femoral head dislocated from the polyethylene liner.

Tests were designed to determine the device’s resistance to two loading configurations that could cause dislocation. (Test Numbers MT 1603 and MT789)

The device was subjected to a force attempting to pull the femoral head out of a well fixed cup along the polar axis of the shell. It was determined that a mean force of 361 lbs. was required to pull the femoral head from the polyethylene liner. This dislocation mode would be a result of the weight of the leg attempting to pull the femoral head from its socket. The 361 lbs. seen in this test far exceed the weight of the human leg and any direct pull forces that would be expected in vivo. (Note: the failure mode was always the head pulling out of the liner and never the liner pulling out of the shell.)

This mean force of 361 lbs. exceeds that of a comparable test performed on the Johnson & Johnson S-Rom Poly-Dial Constrained liner as reported in their summary of safety and effectiveness included in the P960054 PMA. The J & J device had an average pull out load of 273.6 lbs.

Next a second set of devices were subjected to a force which simulated the neck of a femoral implant moving to a position of impingement against the edge of the polyethylene liner. This could happen in cases of extreme motion or when the acetabular cup is malpositioned.

A load and thus a resulting bending moment were applied to the simulated hip stem until the head levered out of the polyethylene liner. This was always the failure mode for this test and the liner never became dislodged from the shell as a result of this extreme loading configuration.

From this test it was found that a mean torque of 622 inch pounds was required to dislocate the femoral head. This is much greater than the 270 to 410 inch pounds reported for the Osteonics Constrained Acetabular Insert as reported in the summary of safety and efficacy included in their PMA P960047.

These results indicate that the device should survive physiologic loading.

A fourth failure mode for the device would be the inability to assemble the components at the time of surgery. The surgeon is required to snap the femoral head into the polyethylene socket without meeting too much resistance.
A test was designed to quantify the force required for this assembly process (Test # MT 0789). It was determined that a mean force of 40.4 lbs was required for assembly. This force can easily be generated in the hands of the surgeon within the surgical arena.

A fifth and final failure mode for the device was identified to be the “wearing out” of the polyethylene due to repeated articulations during the gait cycle. To address this concern, the Ringloc Constrained Acetabular Liners are made of Biomet’s ArCom Ultra High Molecular Weight Polyethylene. The ArCom polyethylene is a proven material that was cleared for commercial marketing via K 926 107 on July 28, 1993.
LEVER-OUT AND PUSH-OUT RESISTANCE
OF THE
LINER FROM THE METAL SHELL
CUP / LINER CONFORMITY TESTING
RING-LOC LINER STABILITY TESTING

DATE: January 21, 1992

PREPARED BY: Kevin Stone

TESTING PERFORMED BY: Kelly Howard

TEST NUMBER: 0197

OBJECTIVE: Determining the push-out and lever-out forces for the Ring-Lot Liner.

SPECIMENS: Specimens prepared in normal manufacturing area conforming to part number 105905 (liner), 105458-03 (ring), and 106058-02 (cup).

PROCEDURE: The liners were tested in push-out as shown in the diagram below. Liner level-out was also performed as indicated below. A single cup was used for all tests. The cup was inspected after each test for visible wear and none was found.

The following data was gathered for the push-out test.

<table>
<thead>
<tr>
<th>Specimen</th>
<th>1st Push (lb)</th>
<th>2nd Push (lb)</th>
<th>3rd Push (lb)</th>
<th>4th Push (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>776</td>
<td>421</td>
<td>*960</td>
<td>329</td>
</tr>
<tr>
<td>2</td>
<td>713</td>
<td>619</td>
<td>400</td>
<td>670</td>
</tr>
<tr>
<td>3</td>
<td>806</td>
<td>544</td>
<td>683</td>
<td>395</td>
</tr>
<tr>
<td>4</td>
<td>702</td>
<td>374</td>
<td>669</td>
<td>384</td>
</tr>
<tr>
<td>5</td>
<td>705</td>
<td>673</td>
<td>643</td>
<td>473</td>
</tr>
<tr>
<td>x = 740</td>
<td>48</td>
<td>127</td>
<td>133</td>
<td>133</td>
</tr>
</tbody>
</table>

| Reduction from original | 29% | 19% | 39% |

* value excluded from averaging due to error during test
The following data was gathered for the lever-out tests.

<table>
<thead>
<tr>
<th>Specimen</th>
<th>1st Push (lb)</th>
<th>2nd Push (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6A</td>
<td>1121</td>
<td>1567</td>
</tr>
<tr>
<td>7A</td>
<td>1764</td>
<td>930</td>
</tr>
<tr>
<td>8A</td>
<td>1883</td>
<td>1406</td>
</tr>
<tr>
<td>9A</td>
<td>1518</td>
<td>1378</td>
</tr>
<tr>
<td>10A</td>
<td>1866</td>
<td>1708</td>
</tr>
</tbody>
</table>

\[
\bar{x} = 1630 \quad \text{s.d.} = 319 \quad 1398 \quad 293
\]

reduction from original 14%

CONCLUSION: All failures occurred by shearing of the liner. There was never any damage to the ring or the cup. All tests show adequate stability of the liner in the shell. These values compare favorably with those presented by Tradonsky et al. It is encouraging to note that successive push-pulls still maintained over 70% of their original values. Although the practice of reinserting a liner will be warned against, one ignoring these warnings will still have a high degree of stability of the two components. The same conclusions hold true for the lever-out test.
Competitive Push Out Test Results

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Initial Push Out Force [lbf]</th>
<th>Repeat Push Out Force [lbf]</th>
</tr>
</thead>
<tbody>
<tr>
<td>APR</td>
<td>347</td>
<td>262</td>
</tr>
<tr>
<td>Integrity</td>
<td>103</td>
<td>85</td>
</tr>
<tr>
<td>PFC</td>
<td>460+</td>
<td>*</td>
</tr>
<tr>
<td>Reflection</td>
<td>65</td>
<td>60</td>
</tr>
<tr>
<td>Ringloc</td>
<td>660+</td>
<td>*</td>
</tr>
<tr>
<td>Trilogy</td>
<td>722+</td>
<td>*</td>
</tr>
</tbody>
</table>

+ NO DISASSEMBLY
* SIGNIFICANT DAMAGE PRECLUDED RETESTING

All data derived from:

This data is the property of the Orthopaedic Research Laboratories of The Mt. Sinai Medical Center, Cleveland, Ohio. The reproduction and distribution of this data are restricted.
Competitive Lever Out Test Results

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>APR</td>
<td>429</td>
<td>215</td>
</tr>
<tr>
<td>Integrity</td>
<td>221</td>
<td>108</td>
</tr>
<tr>
<td>PFC</td>
<td>408+</td>
<td>*</td>
</tr>
<tr>
<td>Reflection</td>
<td>92</td>
<td>92</td>
</tr>
<tr>
<td>Ringloc</td>
<td>660+</td>
<td>*</td>
</tr>
<tr>
<td>Trilogy</td>
<td>890+</td>
<td>*</td>
</tr>
</tbody>
</table>

+ NO DISASSEMBLY
* SIGNIFICANT DAMAGE PRECLUDED RETESTING

All data derived from:

This data is the property of the Orthopaedic Research Laboratories of The Mt. Sinai Medical Center, Cleveland, Ohio. The reproduction and distribution of this data are restricted.
A Comparison of the Disassociation Strength of Modular Acetabular Components

STEVEN TRADONSKY, M.D., PAUL D. POSTAK, B.SC., AYRUM I. FROMSON, M.D. AND A. SETH GREENWALD, D. PHIL. (OXON.)

Five short-term in vivo disassembly of two-piece acetabular cup designs have been reported. This study evaluates the liner retention strengths of eight contemporary cup systems. Roth push-out (663 ± 65.5 pounds force to 29 ± 1.4 pounds force) and lever-out (684 ± 114 inch-pounds to 1.5 inch-pounds) test modes show a wide variation in retention strength. Repeat liner separation testing demonstrates a 26% and 32% respective decrease in locking mechanism integrity. These findings indicate that reseating modular liners at the time of surgery or reassembling a previously separated liner should be avoided.

Two-piece acetabular components have gained a wide degree of clinical popularity in total hip arthroplasties (THAs) and have been advocated for cementless and hybrid applications. Their advantages include an ability to maximize stability between the cup and pelvic bony bed, through the adjunctive use of screw fixation. The enhanced stability provided by these constructs serves to facilitate biologic fixation. Additionally, metal backing has been shown to improve stress distribution in the pelvic bed when used in conjunction with cement.10 Secondarily, modular polyethylene liners offer variable head coverage as well as the potential for replacement in situations of clinical difficulty or material failure.

These modular constructs are not without short-term problems. There are numerous case reports in the literature as well as manufacturer citations to the FDA Medical Devices Register documenting the early in vivo disassembly of modular acetabular components.1,2,4,6,10-12 These cases are typified by the following one-year retrieval from The Mt. Sinai Medical Center, Cleveland, Ohio. The initial postoperative (Fig. 1A) and ten-month radiographs (Fig. 1B) of a 50-year-old woman who experienced left hip pain four months after THA for degenerative joint disease are shown. At revision, liner separation was confirmed. The retrieved components demonstrated polyethylene fracture, and significant galling of the cup interface attributed to six months of continued ambulation after the onset of hip pain (Fig. 2). Similar problems have led to the recall of one system1 and more careful scrutiny of two-piece cup performance.

This study investigates the disassociation strength of eight contemporary two-piece acetabular systems and addresses the practice of liner reinsertion after cup-liner separation.

MATERIALS AND METHODS

Eight contemporary two-piece acetabular cup designs were evaluated in a controlled laboratory investigation at The Mt. Sinai Medical Center, Cleveland, Ohio. These systems included the Dur-
Related Research

The potential for revised clinical difficulty as well as numerous other differences in the early in vivo acetabular components validated by evaluation at The Mt. Sinai Medical Center, New York. The 50-year-old woman who experienced left hip pain for four months after THA for degenerative joint disease are shown. Liner separation is suggested from the proximal-lateral apposition of the head and cup surfaces.

METHODS

A modified acetabular cup in a controlled laboratory setting at the Mt. Sinai Medical Center, New York. The Dur-
For both push-out and lever-out tests, all cup-liner assemblies failed by disassociation of the liner from the cup, reflecting a failure of the liner retention mechanism.

The results demonstrate a wide variation in the push-out strength measurements between systems (Fig. 5). The force required to dislodge the liners varied from 663 ± 65.5 pounds force in the Duraloc to 29 ± 1.4 pounds force in the Triloc (Table I).

For the repeat testing, the forces required for liner separation were consistently lower than those measured in the initial tests. The average reduction in repeat push-out force for all systems combined was 26%. This was found to be significantly different from zero at an alpha level of $p = 0.0005$ using a two-tailed Student's t-distribution analysis. In two systems, damage to the locking mechanism during initial separation was so extensive that repeat testing was not possible. These systems are excluded from the average.

The results of the initial and repeat lever-out tests are presented in Figure 6. Considerable variation in the locking mechanism strength of the different systems was noted. The torque required to dislodge a liner varied from 684 ± 114 inch-pounds in the Duraloc to 43 ± 6 inches in the Triloc.

RESULTS

For both push-out and lever-out tests, all cup-liner assemblies failed by disassociation of the liner from the cup, reflecting a failure of the liner retention mechanism.

The results demonstrate a wide variation in the push-out strength measurements between systems (Fig. 5). The force required to dislodge the liners varied from 663 ± 65.5 pounds force in the Duraloc to 29 ± 1.4 pounds force in the Triloc (Table I).

For the repeat testing, the forces required for liner separation were consistently lower than those measured in the initial tests. The average reduction in repeat push-out force for all systems combined was 26%. This was found to be significantly different from zero at an alpha level of $p = 0.0005$ using a two-tailed Student's t-distribution analysis. In two systems, damage to the locking mechanism during initial separation was so extensive that repeat testing was not possible. These systems are excluded from the average.

The results of the initial and repeat lever-out tests are presented in Figure 6. Considerable variation in the locking mechanism strength of the different systems was noted. The torque required to dislodge a liner varied from 684 ± 114 inch-pounds in the Duraloc to 43 ± 6 inches in the Triloc.
PUSH OUT TESTS

![Bar graph demonstrating the variation in push-out strengths between acetabular cup designs.](image)

FIG. 5. The bar graph demonstrates the variation in push-out strengths between acetabular cup designs. For six systems, the combined mean repeat push-out strength was significantly less than the initial strength. In two designs, repeat testing was not possible because of extensive damage during initial testing. Error bars represent plus or minus one standard deviation.

to 33 ± 1.5 inch-pounds in the Triloc (Table 2). Lever-out strength was only minimally influenced by the variations in liner thickness that contributed no more than 8% to the arm length.

For the repeat testing, the torques required for liner separation were consistently lower than those measured in the initial tests. The average reduction in repeat torque-out strength for all systems combined was 32%. This was found to be significantly different from zero at an alpha-level of p = 0.0005 using a two-tailed Student's t-distribution analysis. In three systems, damage to the locking mechanism during initial separation was so extensive that repeat testing was not possible. These systems were excluded from the average.

To determine the extent to which the results evaluate the locking mechanism, the test methods were compared for each design. Using linear regression analysis, a significant correlation was found between the initial push-out and lever-out test method, \(r^2 = 0.889 \) (n = 8).

Visual inspection of the systems suggests general types of locking mechanisms. Three systems, the PCA, the Optifix, and the APR, employ a circumferential polyethylene flange on the liner that locks into a circumferential retaining slot in the cup. During liner insertion, the flange initially compresses and then expands into the retaining slot. The retention strength of this method is directly related to the geometry of the flange and its engagement in the slot. After initial testing,

<table>
<thead>
<tr>
<th>Component</th>
<th>Initial Push Out [lb]</th>
<th>Repeat Push Out [lb]</th>
<th>Reduction of Initial Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duraloc</td>
<td>663 ± 65.5</td>
<td>463 ± 174.6</td>
<td>30% Cup retaining wire bent and liner damaged</td>
</tr>
<tr>
<td>S-ROM</td>
<td>482 ± 4.7</td>
<td>*</td>
<td>Extensive damage to liner flange</td>
</tr>
<tr>
<td>APR</td>
<td>325 ± 10.8</td>
<td>219 ± 69.3</td>
<td>33% Cup retention prongs bent and liner damage</td>
</tr>
<tr>
<td>HGP II</td>
<td>119 ± 67</td>
<td>89 ± 34.7</td>
<td>25% Extensive damage to liner and liner retaining wire</td>
</tr>
<tr>
<td>Omnifix</td>
<td>103 ± 19.8</td>
<td>*</td>
<td>Liner flange tip deformed</td>
</tr>
<tr>
<td>PCA</td>
<td>85 ± 29.6</td>
<td>61 ± 17.7</td>
<td>28% Liner flange damaged</td>
</tr>
<tr>
<td>Optifix</td>
<td>61 ± 2.6</td>
<td>44 ± 2.2</td>
<td>27% Material loss from liner cutouts</td>
</tr>
<tr>
<td>Triloc</td>
<td>39 ± 1.4</td>
<td>26 ± 3.3</td>
<td>9%</td>
</tr>
</tbody>
</table>

-3 for all tests mean 267, \(p = 0.0005 \)

<table>
<thead>
<tr>
<th>Failure Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cup retaining wire bent and liner damaged</td>
</tr>
<tr>
<td>Extensive damage to liner flange</td>
</tr>
<tr>
<td>Cub retention prongs bent and liner damage</td>
</tr>
<tr>
<td>Extensive damage to liner and liner retaining wire</td>
</tr>
<tr>
<td>Liner flange tip deformed</td>
</tr>
<tr>
<td>Liner flange damaged</td>
</tr>
<tr>
<td>Material loss from liner cutouts</td>
</tr>
</tbody>
</table>

* Initial damage precluded repeat testing.

![Table 1. Retention Strengths of Two Piece Acetabular Cups: Initial and Repeat Push Out Test](image)
LEVER OUT TESTS

Fig. 6. The bar graph demonstrates the variation in lever-out strengths between acetabular cup designs. For five systems, the combined mean repeat lever-out strength was significantly less than the initial strength. (p < 0.017). In three designs, repeat testing was not possible because of extensive damage during initial testing. Error bars represent plus or minus one standard deviation.

these flanges were markedly deformed, accounting for the observed strength reduction in subsequent separation. No deformation of the cups for these designs occurred.

A second locking mechanism, seen in the S-ROM design, is similar to the first. The liner flange is interrupted, however, facilitating its insertion into intermittent gaps in the retaining slot of the cup. The liner then is rotated so that the flanges are completely engaged within the slot. Further rotation is limited by secondary, peripheral pins or screws. The S-ROM has the advantage that no damage is done to the liner or cup during assembly, thus allowing multiple liners to be inserted without concern. The damage to the liner after forcible separation was considerable, however, and prohibited subsequent testing of that liner.

A third locking mechanism is present in the Triloc design. Two protrusions on the rim of the cup engage two of six undersized cutouts in the lip of the liner at their mid-thickness. After separation, the liners exhibited evidence of material shaving in the cutouts caused by the sharp locking edges of the protrusions. A reduction in retention strength for this device was demonstrated when the same two slots were reused.

A fourth locking mechanism, used in the HGP II design, employs five pairs of spring-loaded prongs on the rim of the cup that lock into a circumferential slot in the liner. After separation, scoring of the liner in the region of the new locking mechanism occurred, with the same two slots being reused.

A fifth locking mechanism, used in the PCA design, employs a series of slots of various shapes and sizes. After separation, the liners exhibited extensive damage to the liner flange and liner retaining wire.

TABLE 2. Retention Strengths of Two Piece Acetabular Cups: Initial and Repeat Lever Out Test

<table>
<thead>
<tr>
<th>Cup</th>
<th>Mean SD</th>
<th>Repeat Out [in-lb]</th>
<th>Percent of Initial Strength</th>
<th>Failure Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duraloc</td>
<td>684 ± 113.9</td>
<td>*</td>
<td>*</td>
<td>Extensive damage to cup retaining wire and liner</td>
</tr>
<tr>
<td>S-ROM</td>
<td>569 ± 153.9</td>
<td>*</td>
<td>*</td>
<td>Extensive damage to liner flange</td>
</tr>
<tr>
<td>APR</td>
<td>456 ± 34.0</td>
<td>229 ± 46.5</td>
<td>50%</td>
<td>Extension damage to liner flange and liner retaining wire</td>
</tr>
<tr>
<td>Omnifit</td>
<td>332 ± 13.0</td>
<td>148 ± 20.6</td>
<td>50%</td>
<td>Cup retention prongs bent with liner damage</td>
</tr>
<tr>
<td>PCA</td>
<td>228 ± 9.2</td>
<td>148 ± 20.6</td>
<td>35%</td>
<td>Liner flange deformed</td>
</tr>
<tr>
<td>HGP II</td>
<td>145 ± 26.0</td>
<td>75 ± 10.9</td>
<td>48%</td>
<td>Liner flange deformed</td>
</tr>
<tr>
<td>Optifx</td>
<td>73 ± 2.6</td>
<td>67 ± 10.0</td>
<td>8%</td>
<td>Material loss from liner cutouts</td>
</tr>
<tr>
<td>Triloc</td>
<td>43 ± 1.5</td>
<td>35 ± 1.5</td>
<td>17%</td>
<td>Material loss from liner cutouts</td>
</tr>
</tbody>
</table>

n = 3 for all tests

* Initial damage precluded repeat testing.

000143
of the prongs was observed. Repeat testing of new liners in the same cup resulted in continually decreasing retention strengths. This can only be explained by the permanent deformation of the metal prongs. The results reported represent the initial and repeated retention strengths for six new cup-liner assemblies, three for each test mode.

A fifth locking mechanism, employed in the Duraloc and Omnifit designs, is characterized by the use of a metal wire retaining ring. In the case of the Duraloc, this wire is configured into a multiple series of bends and inserted into a slot in the cup. During assembly, the wire expands into a circumferential slot in the liner. After separation, the liners exhibited considerable deformation in the region of the slot. Deformation of the metal retaining ring was also observed, requiring a new wire ring for each test. In the case of the Omnifit, the metal wire ring is integral to the liner and engages four hooks located on the interior edge of the cup. After separation, deformation of the wire prohibited subsequent testing.

DISCUSSION

This study addresses the short-term dissociation of two-piece acetabular cups. A failure mechanism is attributed to design and material deficiencies. Although it is reasonable that polyethylene creep and wear may increase the occurrence of liner disassociation over time, this mode of failure has not, as yet, been reported clinically or demonstrated experimentally. Because the *in vivo* failure of these systems is complex and the mechanism of liner separation is not completely understood, the results do not infer the clinical superiority of one system over another. These results do provide a basis for comparison of liner locking mechanisms. It is not known how much force a cup-liner assembly should be able to withstand *in vivo*. It is reasonable, however, that those designs with a stronger locking mechanism, if appropriately assembled, are less likely to disassociate.

Although it is unlikely that pure push-out forces represent a component of *in vivo* hip loading, they do by comparison provide a measure of system integrity. By contrast, the lever-out test does simulate the torque acting on the liner during the extremes of hip flexion and extension. These orientations as well as liners that offer variable head coverage have been implicated as possible causes of liner disassociation. The significant correlation between the push-out and lever-out tests in the current study supports the contention that both tests in fact measure the integrity of the retention mechanism.

The repeat push-out and lever-out tests for all systems evaluated indicate a significant reduction in retention strength. This is indicative of permanent material degradation of the cup-liner locking mechanism. In two designs, specifically the HGP II and Duraloc, failures in retention structures integral to the metal cup were observed. For the Duraloc, deformation of the retention wire necessitated its replacement in subsequent testing. This requires routine wire exchange in clinical situations where liner replacement is necessary and suggests that additional wires be available in the operating theater. For the HGP II, deformation of the retention prongs caused its replacement in subsequent testing. Although it is possible in the clinical setting to forcibly bend the prongs, an attempt to improve the retention strength, this practice is neither recommended nor proven effective, and is potentially dangerous because of the risk of long-term prong fracture caused by metal fatigue. In clinical practice, the potential for subsequent liner disassociation arising from damage to the prongs must be weighed against the difficulty of cup replacement.

Given the significant decrease in retention strength in both push-out and lever-out tests, the practice of reseating modular liners at the time of surgery or reassembling a previously separated liner is strongly discouraged.
REFERENCES

INTRODUCTION

Two piece acetabular cups have gained widespread use in total hip arthroplasty. As the optimizations of mechanical design and surgical technique have centered solutions to short term failure, considerable attention has turned towards long-term survivorship. In particular, debris generated from polyethylene has been implicated in prompting progressive osteolysis, resulting in long-term implant instability[1,2].

While the incorporation of metal backings with polyethylene components was intended to distribute loads more evenly to the pelvic bed, the subsequent compromise in the thickness of the polyethylene posed the risk of increasing contact stresses[3]. Moreover, the presence of holes for fixation screws, and lack of conformity at the polyethylene/metal interface compromised the area available for stress transfer between the polymer and metal[4]. This combination of holes and nonconformity provides a stress environment in the polyethylene that not only may lead to deformation, but may promote the onset of surface fatigue failures and the generation of debris.

This study examines the degree of conformity between the polyethylene liners and metal shells of ten modular acetabular designs, and discusses the relationship between conformity and polyethylene wear.

MATERIALS AND METHODS

Ten acetabular cup systems were analyzed for metal-cup/polyethylene-liner conformity. The dimensions for each system studied were approximately 52mm OD/32mm ID. Cups representing all available hole configurations for each system were obtained for analysis. Regions of nonconformity were attributed to holes, gaps, or both. According to the following protocol, three cups representing the minimum hole configuration for each system were analyzed for gap information.

A self curing acrylic was poured into each metal cup immediately prior to cup/liner assembly. After curing for 24 hours under a 10 lbf. compressive load, each assembly was sectioned with a diamond wire saw and digital images were obtained with a Hewlett Packard digital scanner. Macroscopic dimensions and geometric information were obtained from both the digital images and vernier caliper measurements. Using an ocular micrometer and dissecting microscope, gap dimensions between the polyethylene liners and metal shells were determined. Based on reasonable machining tolerances, regions of contact were characterized by gaps less than 0.20±0.01 mm.
As shown in Figure 1 A, gap dimensions were recorded at $\pm \theta$ degrees from the central axis of the section. A solid of 180 degree revolution about this axis was assumed to have gap characteristics similar to those measured at the section face. When the polyethylene was supported at both $\pm \theta$ from the axis, the revolution was considered entirely supported at that angle. Conversely, when the polyethylene was unsupported at both $\pm \theta$ from the axis, the revolution was considered entirely unsupported at that angle. If supported polyethylene was indicated at any θ and unsupported polyethylene indicated at the opposite angle, the polyethylene and metal surfaces of revolution were assumed to resemble a semicircle of radius r_1 offset within a semicircle of radius r_2, where $r_1 < r_2$, as shown in Figure 1 B. The supported portion of this surface was determined from the calculated location of 0.20mm separation. Gap information obtained from the minimum hole configuration for each system was applied directly to analogous designs with more numerous holes. Surface maps of gaps and holes were constructed separately, assembled, and duplicate data was removed. Areas of polyethylene/metal contact were similarly determined for each system.
RingLoc

Minimum Hole Geometry:
- 0: 0 Apical Holes
Other Hole Geometries:
- 7: 1 Apical Hole + 6 Dome Holes

PFC

Minimum Hole Geometry:
- 1: 1 Apical Hole
Other Hole Geometries:
- 9: 1 Apical Hole + 8 Dome Holes

Duraloc

Minimum Hole Geometry:
- 1: 1 Apical Hole
Other Hole Geometries:
- 8: 1 Apical Hole + 7 Dome Holes
- 11: 1 Apical Hole + 10 Dome Holes

Omnifit

Minimum Hole Geometry:
- 1: 1 Apical Hole
Other Hole Geometries:
- 9: 1 Apical Hole + 8 Dome Holes

000148
Minimum Hole Geometry:
(1) 1 Apical Hole
Other Hole Geometries:
(4) 1 Apical Hole + 3 Dome Holes

Minimum Hole Geometry:
(0) 0 Apical Holes
Other Hole Geometries:
(3) 0 Apical Holes + 3 Dome Holes
(11) 0 Apical Holes + 11 Dome Holes

Minimum Hole Geometry:
(7) 1 Apical Hole + 6 Dome Holes
Other Hole Geometries:
None

Minimum Hole Geometry:
(1) 1 Apical Hole
Other Hole Geometries:
(7) 1 Apical Hole + 6 Dome Holes
RESULTS

The cup sections presented are of the minimum hole configuration for each system. Figure 2 describes the percent of unsupported polyethylene in each cup, covering the outer polyethylene surface up to, but not including the rim. Hole, gap, and hole/gap overlap information are graphed for the cup whose total percentage is the median for that system. Range values for total percentages are also presented. Unsupported polyethylene in cups containing only apical holes varied from 10.3% to 96.9% as evidenced in Figure 2. Note the relatively small contribution to non-contact in the cups of minimum hole configuration by comparison to the large contribution evident in the multiple hole systems. The percent of unsupported polyethylene in cups containing multiple holes ranged from 20.7% to 96.9%.

Supported regions of polyethylene were characterized by the area of conformity up to, but not including the rim. Figure 3 demonstrates median areas of contact for each system, including indications of the ranges observed. Areas of contact varied from 25.0 cm² to 0.7 cm² for apical hole cups, and from 22.1 cm² to 0.7 cm² for multiple hole cups.

Percent of Unsupported Polyethylene

![Percent of Unsupported Polyethylene Graph](image1)

Figure 2. Percent of unsupported polyethylene over outer surface of hip implant, but not including the rim. Overlap regions are defined as locales where a calculated percentage overlaps with a hole.

Contact Area of Supported Polyethylene

![Contact Area of Supported Polyethylene Graph](image2)

Figure 3. Contact area of supported polyethylene over inner surface up to, but not including the rim.
The significance of polyethylene/metal conformity rests in the understanding that high contact and subsurface stresses in polyethylene lead to wear and debris formation. It has been suggested that the most active mechanisms in polyethylene wear are pitting and delamination[5]. These mechanisms are more appropriately referred to as forms of surface fatigue failure. Dynamic tensile and compressive stresses, often reaching greatest magnitudes near the outer and inner surfaces of the polyethylene, drive crack propagation, eventually resulting in pitting and delamination[6]. Moreover, as unsupported polyethylene is cyclically loaded, any plastic deformation that takes place, may incur residual stresses in the polymer. Although such residual stresses typically increase material strength for future loads applied in the same direction, load distributions in the polyethylene not only vary in direction, but in amplitude as well.

The presence of gaps and holes adjacent to the polyethylene prevent the transfer of stresses directly to the underlying metal, concentrating these stresses in regions of conformity. Based on this premise, the ideal stress transfer configuration, as suggested by the following models, would be an assembly where maximum conformity is assured throughout the dome of the metal shell. The first model assures full conformity throughout the dome providing a large area of contact directly beneath the loaded polyethylene. The second model assures full conformity initially on the rim with full conformity throughout the dome occurring only after elastic deformation. In the latter model, initial stresses are taken up at the rim, followed by a load sharing scenario between the rim and the dome. If plastic deformation results, however, residual stresses may remain within the polyethylene which could weaken the polymer’s resistance to surface fatigue failure. Because it seems unlikely that all deformation throughout the lifetime of the implant will be of an elastic nature, the first model is believed to be most realistic as an optimum design configuration. Alternative interface configurations with incomplete conformity and a lower potential for wear may exist as a result of specific design. The extent to which any design presented fits this description is unknown, and the issue remains undocumented in the literature.

The degree to which actual cups appear to approximate the first model is apparent qualitatively in the cross sections, and quantitatively in Figures 2-3. Note in Figure 2, that in general, gaps account for the majority of nonconformity, even in cups with multiple holes. Other than rim contact preventing the liner from fully seating in the dome, large gap nonconformity may be attributable to locking mechanism geometries, poor machining tolerances, or simply design of the interface. In many of the multiple hole cups, lack of support attributable to the holes themselves is considerable. Thus, selective placement of a minimal number of holes is strongly recommended as an effective means of achieving greater conformity.

While it is valuable to understand the causes of nonconformity, the areas of conformity as shown in Figure 3 suggest an absolute context by which average contact stresses may be inerced. The goal to increase conformity is synonymous with the goal to increase contact area. Although certain locales of contact will be of much greater relevance than others for stress transfer in any single loading condition, dynamic loading in common activities such as gait, suggest the necessity for contact over a relatively wide range. Not only is it likely that an increase in contact area may reduce stress-induced redefinition of the polyethylene surface, but as a result it may inhibit calysis of wear mechanisms. Thus, to decrease polyethylene wear and increase implant longevity, it is recommended that areas of unsupported polyethylene should be minimized by increasing cup-liner conformity and by eliminating unnecessary holes.

These ongoing laboratory evaluations assist in understanding the anticipated performance of contemporary acetabular cup designs. The results are intended to aid the surgeon in device selection when considering patient factors. Further, they provide the manufacturer (with design criteria and assist regulator) agencies in determining the safety and efficacy of specific cup designs.

REFERENCES

PUSH-IN, PULL-OUT, AND TOGGLE-OUT
OF FEMORAL HEAD IN ASSEMBLED CUP
March 1, 1999

Testing of Ring-Lot 32mm
Constrained 10” One-Piece Liner

Test Conducted by: Troy Hershberger
 Director of Product Development
 Dan Williamson
 Development Engineer
 Kelly Howard
 Laboratory Technician

Test Conducted at: Biomet, Inc.
 P.O. Box 587
 Warsaw, IN 46580

Report Prepared by: Troy Hershberger

Test Numbers: MT 1603 – Completed 3/1/99 and MT 0789 – Completed 2/23/95

Objective: Determine head push-in, pull-out and toggle-out strength for new one-piece
 constrained 10” liner design.

Materials: Size 23 constrained liners (1 I-105833) and RD 114570 (identical design
t to 1 1-105833)
 Constrained liner lock bands (RD 11 45761
 Appropriate acetabular components
 Custom test fixtures
 Interlaken testing apparatus
 All components were off-the-shelf components representing standard
 production procedures.

Methods: Push-in tests were performed on 3 Size 23 constrained liner test samples as
 shown in Figure 1. The femoral head was pushed into the liner and the
 corresponding load was recorded.

 Pull-out tests were performed on 3 Size 23 liners as shown in Figure 2.
 These pull-out tests were done following the push-in test for each specific
 sample.
Lever-out tests were performed on 6 Size 23 liners as shown in Figure 3. Toggling of the head was allowed until there was contact between the shaft on the head and the wall of the liner opposite the 10° raised side. The shaft of the test head was the same diameter as an implant neck taper. The load was then increased until the head levered out of the constrained liner.

For each test a rate of .008"/second was used. Load versus displacement was recorded for each test.

Results:

Push-In Tests

<table>
<thead>
<tr>
<th>Test Sample</th>
<th>Max. Load (1 lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size 23 Liner</td>
<td>38.4</td>
</tr>
<tr>
<td>Size 23 Liner</td>
<td>44.7 Mean 40.4</td>
</tr>
<tr>
<td>Size 23 Liner</td>
<td>38.2 S.D. ± 3.7</td>
</tr>
</tbody>
</table>

Pull-Out Test

<table>
<thead>
<tr>
<th>Test Sample</th>
<th>Max. Load (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size 23 Liner</td>
<td>361.2</td>
</tr>
<tr>
<td>Size 23 Liner</td>
<td>371.0 Mean 361.4</td>
</tr>
<tr>
<td>Size 23 Liner</td>
<td>351.9 S.D. ± 9.5</td>
</tr>
</tbody>
</table>

Lever-Out Tests

<table>
<thead>
<tr>
<th>Test Sample</th>
<th>Max. Load (lbs) Resulting Torque (inch lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size 23 Liner</td>
<td>164 656</td>
</tr>
<tr>
<td>Size 23 Liner</td>
<td>154 616</td>
</tr>
<tr>
<td>Size 23 Liner</td>
<td>147 588 Mean 422</td>
</tr>
<tr>
<td>Size 23 Liner</td>
<td>149 596 S.D. ± 33</td>
</tr>
<tr>
<td>Size 23 Liner</td>
<td>152 608</td>
</tr>
<tr>
<td>Size 23 Liner</td>
<td>167 668</td>
</tr>
</tbody>
</table>

Figures 4-7 show a graphical representation of the test results.

Discussion/Conclusion:

The 32mm constrained liner will be offered in sizes ranging from 23 to 28. The Size 23 liner was used for the tests because it has the least amount of polyethylene that would resist the head from distracting from the liner.

Push-in was achieved when the head component snapped into the liner. Pull-out and toggle-out tests were performed until the head distracted from the liner. This would be considered failure of the device.
Push-in tests indicate that assembly by the surgeon during surgery will be possible.

Head distraction force for the constrained liner yielded results similar to those reported in the literature for a competitive constrained liner (Joint Medical Products, head pull-out 300 lbs\(^1\)).

The failure mode for the Lever-out test was as expected. The 32mm diameter ball levered out of the liner leaving the liner in the shell and the locking band in place. The average torque to failure of 622 inch pounds was significantly greater than Osteonics’ 270-4 10 inch lbs., as reported in their FDA submission, and 150 inch lbs. for the Joint Medical Products device.\(^1\)

These results indicate that dislocation of the femoral head component from the acetabular component is unlikely to occur at a rate greater than what is currently accepted as state-of-the-art technology.

FORCE

HEAD

ACETABULAR COMPONENT

LINER

LOCK RING

SUPPORT

FIGURE 1
FIGURE 2
FIGURE 3