Use of G-CSF in Hematopoietic Stem Cell Donors

Victor M. Santana, MD
December 9, 2008

Outline

• Biologic effects of G-CSF
• Current indications
• Side effects profile
• Data on G-CSF and Risks
 – In vitro/in vivo studies
 – Patients with hematologic disorders and mutations in G-CSF receptor
 – Children with ALL
 – Studies in stem cell donors
 • Adults
 • Children
• Summary
Biologic Effects of G-CSF

- Hematopoietic cytokine produced by monocytes, fibroblasts and endothelial cells
- Maintain normal steady state hematopoiesis by regulating production, differentiation, and functional activation of neutrophils
- Recombinant G-CSF at pharmacologic doses augments this response and stimulates development of committed and primitive stem cell progenitors and their release from marrow into peripheral blood (i.e., CD34+ progenitors, other subsets)
- Other effects: ↑mononuclear cell procoagulant activity and thrombin generation, ↑in other cytokines (IL-1ra, TNF receptors, etc.)
- Pharmacokinetics: short half life ~ 3.5 hours

Current Indications

- To decrease the duration and severity of chemotherapy induced neutropenia in both adults and children.

- Guidelines for the use of CSFs are published by the American Society of Clinical Oncology (ASCO)
 - It recommends the use of CSFs as primary prophylaxis in adults, when the expected incidence of febrile neutropenia is greater than 40%
 - The guideline states that pediatric patients should be treated by the above recommendation (which is based on adult data), because pediatric data is too limited.
Other Indications

- Congenital neutropenia of childhood and cyclical neutropenia
- Autologous peripheral blood stem cell donors (patients undergoing ASCT): adults and children
- Healthy adult peripheral blood stem cell (PBSC) and bone marrow donors for stem cell mobilization (granulocyte donation, allogeneic stem cell donors)
- Sepsis ? (off-label)

Acute side effects associated with G-CSF administration

<table>
<thead>
<tr>
<th>Common (>20% rate)</th>
<th>Bone pain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Headache</td>
</tr>
<tr>
<td></td>
<td>Myalgia</td>
</tr>
<tr>
<td>Less Common (5-20% rate)</td>
<td>Nausea</td>
</tr>
<tr>
<td></td>
<td>Vomiting</td>
</tr>
<tr>
<td></td>
<td>Diarrhea</td>
</tr>
<tr>
<td></td>
<td>Fatigue</td>
</tr>
<tr>
<td></td>
<td>Redness at the injection site</td>
</tr>
<tr>
<td></td>
<td>Insomnia</td>
</tr>
<tr>
<td>Rare (<5%)</td>
<td>Splenic rupture</td>
</tr>
<tr>
<td></td>
<td>Acceleration of autoimmune disease</td>
</tr>
<tr>
<td></td>
<td>Allergic reactions</td>
</tr>
<tr>
<td></td>
<td>Vascular problems</td>
</tr>
<tr>
<td>Hypothetical</td>
<td>MDS and/or AML</td>
</tr>
</tbody>
</table>
Outline

- Biologic effects of G-CSF
- Current indications
- Side effects profile
- Data on G-CSF and Risks
 - In vitro/In vivo studies
 - Patients with hematologic disorders and mutations in G-CSF receptor
 - Children with ALL
 - Studies in stem cell donors
 - Adults
 - Children
- Summary

Allelic Replication

- Normal DNA replication during S-phase is highly correlated with gene expression
- Temporal order of allelic replication is important: counterpart alleles replicate synchronously – biologically expressed genes
- Asynchronous replication: one allele is replicated earlier than the other one or there is monoallelic expression (i.e. silencing – imprinting, X-inactivation, allellic exclusion)
 - Common in regulation of T and B cell antigen specific receptors
 - Transition to the asynchronous mode of replication is a non-disease specific, cancer associated phenomenon (epigenetic)
Asynchronous Allelic Replication

FIGURE 1 – Fluorescence signals in PHA-stimulated lymphocytes after FISH with AML1. (a) Cell with 1 singlet and 1 doublet (SD cell) representing S-phase cells where only 1 of the allelic sequences has replicated. (b) Cell with 2 singlets (SS cell) representing cells in which both alleles have not yet replicated. (c) Cell with 2 doublets (DD cell) representing cells in which both alleles have replicated.

Granulocyte colony-stimulating factor generates epigenetic and genetic alterations in lymphocytes of normal volunteer donors of stem cells

Experimental Hematology. 2004, 32: 122–130

• 18 healthy allogeneic stem cell donors, treated with G-CSF @ 10 mcg/kg x 5 days
• Lymphocytes:
 – ↑epigenetic asynchronous allelic replication; transient phenomenon lasting about 140 days
 – genetic alterations (aneuploidy), persistent in some donors
• Implications:
 – unmasking of mutated recessive genes
 – vulnerability to a “second-hit”
Other Observations: Changes in gene expression pattern
Leukemia 2005: 19, 1088-1091

• Adult donors treated with G-CSF x 4 days
• Affymetrix gene array studies: up regulation of key genes involved in hematopoiesis (GM-CSF receptor, macrophage receptor gene, CD34 antigen); down regulation of others
• Normalization over 6 months
• Interpretation:
 – transient de-differentiation
 – signature print of rare mobilized stem cells

Proposed Mechanism for Leukemogenesis

- Inhibit apoptosis
- Enhance leukemogenic effects of other factors
- Clonal proliferation
- CSF
- Alter tumor cell differentiation
CSFs in Children: Leukemogenesis?

Rosenberg et al. Blood. 2006;107(12):4628-4635

- 403 patients with congenital neutropenias
 - Severe congenital neutropenia = 374
 - Shwachman-Diamond Syndrome = 29

- Results (incidence of secondary AML/MDS):
 - Cumulative incidence after 10 yrs G-CSF treatment = 21%
 - Cumulative incidence after 12 yrs G-CSF treatment = 36%
 - Cause-specific hazard increases 2.9% per year after 6+ years of G-CSF therapy
 - G-CSF dose correlated with increased risk of secondary AML/MDS
 » 2.5 fold higher in patients receiving ≥ 6 mcg/kg/day vs. patients on < 6 mcg/kg/day

- Prolonged G-CSF treatment in patients with congenital neutropenias increases risk of secondary AML/MDS

CSFs in Children: Leukemogenesis?

- Identical therapy with respect to topoisomerase-II inhibitors and alkylating agents
- TXIIIA: randomized to receive G-CSF (10 mcg/kg) or placebo x 15 days for neutrophil recovery post-remission induction
- TXIIIB: G-CSF used at prescriber’s discretion for severe/prolonged neutropenia

- Results:
 - 20 pts developed t-ML (16 AML; 3 MDS; 1 CML)
 - Incidence higher in patients who received G-CSF vs. those who received placebo
 » 11% G-CSF group vs. 2.7% placebo group (p=0.019)

- Increased incidence of secondary t-ML and MDS in pediatric ALL patients treated with CSF
Studies in Healthy Donors: Long-term follow-up data on donors who received G-CSF

- Anderlini et al. (MD Anderson)
 - Peripheral blood donors: n=281
 - Follow-up 3.3 years (median)
 - Cases of HM: none

- NMDP Registry

<table>
<thead>
<tr>
<th></th>
<th>Peripheral Blood Donors</th>
<th>Marrow Donors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>4015</td>
<td>1160</td>
</tr>
<tr>
<td>Follow-up</td>
<td>Up to 9 years</td>
<td>Up to 3 years</td>
</tr>
<tr>
<td>Cases of HM</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

Studies in Healthy Donors: Long-term follow-up data on donors who received G-CSF

- Japanese Registry
 - Peripheral blood donors: n=3264
 - Follow-up time: not available
 - Cases of HM: 1 AML (sibling with MM)

- German Bone Marrow Donor Center

<table>
<thead>
<tr>
<th></th>
<th>Peripheral Blood Donors</th>
<th>Marrow Donors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>7236</td>
<td>3713</td>
</tr>
<tr>
<td>Follow-up</td>
<td>5 years (18,000 observation yrs)</td>
<td>Periodic contact</td>
</tr>
<tr>
<td>Cases of HM</td>
<td>1 HD</td>
<td>1 CLL, 1 AML</td>
</tr>
</tbody>
</table>
Studies in Healthy Donors: Long-term follow up data on donors who received G-CSF

 - Peripheral blood donors: n=101
 - Follow-up 43 months (range, 35-73)
 - Cases of HM: none
 - 1 case lymphadenopathy, 1 breast Ca, 1 prostate Ca

Studies in Healthy Donors

- Conclusion: Low rates of hematologic malignancies
- Caveats:
 - Retrospective reporting
 - Relatively short periods of follow-up
 - Under-reporting
- In cases of HM: Sibling-effect (shared genetic susceptibility)
Studies in Healthy Children: Spanish Cooperative Group

- 61 donors < 18 years of age
 - median 14 yrs. (range, 1-17)
- G-CSF dose 10-15 mcg/kg/day x 5 days (4-6)
- Common side effects: bone pain (90.5%), headache (21.5%)
- Overall mild symptoms, managed with minor analgesics; no discontinuation secondary to toxicity
- Few donors with follow-up at 4 years: 9 of 61 (< 15%)

Studies in Healthy Children: Japanese Studies

- 19 donors < 18 years of age
 - Median 6 yrs. (range, 2-16)
- G-CSF dose 10 mcg/kg/day x 5 days
- No side-effects in donors < 10 years; older donors commonly had mild headaches, general fatigue, treated with acetaminophen p.r.n.
- No follow-up data

- 57 donors < 18 years of age
 - Median 8 yrs. (range, 9 mo 24 yrs)
- G-CSF dose 7.5-10 mcg/kg/day x 5-6 days
- Older donors commonly had bone pain (17.5%), mild headaches (5.3%), treated with NSAID p.r.n.
- Follow-up data: in 40 of 56 donors at a median follow up 25 months (range, 6-56 months) --- normal blood counts and medical examination
Studies in Healthy Children: Pediatric Blood and Marrow Transplantation Consortium (USA)

– 201 donors < 18 years of age
 • median 11.8 yrs. (range, 18 months – 17 yrs)
– G-CSF dose 10 mcg/kg/day x 4 days
– Common side effects: bone pain and myalgias 11-15%
– 21 of 197 treated with a minor analgesic; 1 older child required oral narcotic
– No long term follow-up data reported

In Summary

• G-CSF in normal healthy adults and children:
 – Acute, mild side effects are common
 – In vitro/In vivo studies suggest genomic changes that appear to be transient and present at very low levels --- clinical significance is unknown
 – Adult studies do not suggest increased risk of HM
 – Lack of long-term follow up data in children