P060023
BRYAN Cervical Disc

FDA Presenters:
Ann Ferriter
Jason Schroeder, PhD
Cunlin Wang, MD, PhD

Orthopedic and Rehabilitation Devices Panel Meeting
July 17, 2007
Review Team

- Ann Ferriter (ODE)
- Khan Li, MD (ODE)
- Patty Jahnes (OC)
- Dan McGunagle (OSB)
- Jennifer Medicus (OC)

- Jason Schroeder (OSB)
- Steve Turtil (ODE)
- Cunlin Wang (OSB)
- Mary Ann Wollerton (OCER)
FDA Presentation

- Introduction
- Pre-Clinical Issues
- Clinical Study
- Statistical Analysis
- Post-Approval Study
- Panel Questions
Rationale for Bringing to Panel

- Polyurethane-on-Titanium articulation
- Fixation to Bone
- Type of Constraint
- Novel encapsulated joint design
Indications for Use

The BRYAN Cervical Disc is indicated in skeletally mature patients with cervical degenerative disc disease (DDD) at one level from C3-C7. DDD is defined as any combination of the following: disc herniation with radiculopathy, spondylotic radiculopathy, disc herniation with myelopathy, or spondylotic myelopathy. The BRYAN® device is to be implanted via an open anterior approach.
Device Description

Polyurethane Nucleus

Polyurethane Sheath

Titanium shell, with porous, beaded coating and shell post
FDA Presentation

• Introduction
• Pre-Clinical Issues
• Clinical Study
• Statistical Analysis
• Post-Approval Study
• Panel Questions
Pre-Clinical Issues

• Device Wear
• Response to Generated Particulates
• Device Migration or Expulsion
• Device Reliability
• Joint Encapsulation
Wear Test Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Values Tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexion/Extension</td>
<td>±4.9°</td>
</tr>
<tr>
<td>Axial Rotation</td>
<td>±3.8°</td>
</tr>
<tr>
<td>Axial Compressive Load</td>
<td>130 and 300N</td>
</tr>
<tr>
<td>Test Cycle Frequency</td>
<td>2, 4 and 6 Hz</td>
</tr>
<tr>
<td>Test media</td>
<td>Saline, Bovine Serum</td>
</tr>
</tbody>
</table>
Wear Test Results

- No nucleus cracking or large particles generated
- Bovine serum generated comparable results
Wear Observations

• Clinical Trial
 – Explanted devices had minimal wear
 – Wear not observed clinically

• Goat study
 – 10-150 μm urethane particles
Wear

- In the BRYAN Cervical Disc the titanium shells move with respect to the polyurethane nucleus. Please consider whether the combination of engineering testing, functional animal studies, device retrievals and analysis, radiographic follow up and clinical observations are sufficient to address issues about device wear.
Wear Particle Characterization

![Graph showing wear particle distribution](image)

- **Particle Diameter (μm)**
 - <0.5
 - 0.6
 - 0.75
 - 1
 - 1.5
 - 2
 - 3
 - 4
 - 5
 - 6
 - 7
 - 8
 - 9
 - 10
 - 12
 - 14
 - 16
 - 18
 - 20

- **Number (%)**
 - 0%
 - 5%
 - 10%
 - 15%
 - 20%
 - 25%
 - 30%
 - 35%
 - 40%
 - 45%
 - 50%

- **Legend**
 - Animal Model
 - Wear Test Particles
Particulate Response

Rabbit Particulate Injection Study

- Nucleus and Sheath materials tested
- Low and High particulate concentration doses
- 3 month and 6 month sacrifices
- Particle shape and size were tailored to match bench test particles

- Sponsor’s Conclusions: Materials are non-irritant and non-toxic
Explant Information

• Polymer particles observed
• Metal particles observed in a single patient
• Adverse Reaction to particles was not observed
 – No osteoclastic resorption,
 – No osteolysis and
 – No evidence of infection
Particulate Response

Urethane is a novel material for use in a cervical disc prosthesis. Please reflect on whether the biocompatibility testing, the particulate injection studies in rabbits, the human tissue analysis and clinical observations are sufficient to address material reaction issues?
Device Expulsion or Migration

Device Fixation

• Fits into spherical milled pocket

• Anterior wings resist posterior migration

• Beaded coating for bone ingrowth
Expulsion Test Results

<table>
<thead>
<tr>
<th>Test Parameter</th>
<th>Low Load</th>
<th>High Load</th>
<th>Low load with Extension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressive Load</td>
<td>40N</td>
<td>130N</td>
<td>50N</td>
</tr>
<tr>
<td>Extension Angle</td>
<td>0º</td>
<td>0º</td>
<td>11º</td>
</tr>
<tr>
<td>Antepulsion (N)</td>
<td>120</td>
<td>270</td>
<td>113</td>
</tr>
<tr>
<td>Retropulsion (N)</td>
<td>309</td>
<td>429</td>
<td></td>
</tr>
</tbody>
</table>
Expulsion Observations

• No patients re-operated for migration or expulsion
• No device migration >3.5 mm
• No clinical study failures due to device expulsion or migration
Expulsion and Migration

The BRYAN Cervical Disc is set in a milled spherical pocket in the vertebrae above and below the affected disc space. The shell porous coating may encourage bone ingrowth. Flanges extend up and down to prevent posterior motion. Please consider whether the engineering testing, radiographic evaluations and clinical observations are adequate to address issues of device expulsion or migration.
Device Reliability

Static and fatigue testing of the shell post
Static and fatigue testing of the shell in bending
Static testing of the nucleus in axial compression
Fatigue testing of the nucleus in axial compression
Creep testing of the nucleus
Test Results, Radiographic Data and Explant Analysis

- Shells and Nucleus met test acceptance criteria
- No radiographic device failures
- No observations of shell or nucleus failures on explant
Implant Reliability

• The design of the BRYAN Cervical Disc includes a spherical bearing surface and also a post integrated in the shell which extends into the polyurethane nucleus. The sponsor has provided engineering testing of the shell and nucleus, radiographic evaluations, retrieved devices and clinical observations on implant durability.
Joint Encapsulation

- Sheath Tensile testing
- Sheath Torsion testing
- Seal Plug Pressurization testing
Joint Encapsulation Results

• Bench testing
• Animal testing
• Clinical Observations
Joint Encapsulation

The BRYAN Cervical Disc includes a polyurethane sheath which provides some joint encapsulation. Are there additional issues to consider in the sheath testing?
FDA Presentation

• Introduction
• Pre-Clinical Issues
• Clinical Study
• Statistical Analysis
• Post Approval Study
• Panel Questions
Clinical Trial Design

- Randomized (1:1), multicenter, prospective, unblinded trial
- 463 patients (242 BRYAN, 221 Control) at 30 centers
- Follow-up at 6 weeks, and 3, 6, 12, and 24 months
Primary Endpoint

• Overall Success Components:
 1) At least 15 point improvement on NDI
 2) Maintained/improved neurological status
 3) No serious AEs that were implant/surgery related
 4) No additional surgery classified as “failure”
Safety Endpoints

- Adverse events (AEs)
- Serious AEs (WHO grade 3 or 4)
- AEs classified as implant/surgery related
- Radiological findings
- Secondary surgical procedures (revisions, removals, supplemental fixations, reoperations)
- Neurological status
Secondary Endpoints

- Operative time
- Blood Loss
- Hospital Stay
- Treatment levels
- External Orthosis
- Overall Neuro Status
- NDI Score
- Neck Pain Score
- Arm Pain Score
- SF-36 Health Survey
- FSU Height/Implant Subsidence
- AP Implant Migration
- Change in Angular Motion
- Translation
- Summary of Radiographic Success
- Bending at Target level
- Fusion Status
- Angular Motion at Adjacent levels – above
- Angular Motion at Adjacent levels – below
- Gait
- Patient Satisfaction
Patient Accounting

<table>
<thead>
<tr>
<th></th>
<th>6 Months</th>
<th></th>
<th>12 Months</th>
<th></th>
<th>24 Months</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BRYAN</td>
<td>Contr</td>
<td>BRYAN</td>
<td>Contr</td>
<td>BRYAN</td>
<td>Contr</td>
</tr>
<tr>
<td>Enrolled Patients</td>
<td>242</td>
<td>221</td>
<td>242</td>
<td>221</td>
<td>242</td>
<td>221</td>
</tr>
<tr>
<td>Theoretical Follow-up</td>
<td>242</td>
<td>221</td>
<td>242</td>
<td>221</td>
<td>168</td>
<td>165</td>
</tr>
<tr>
<td>Deaths (Cumulative)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1(1)</td>
</tr>
<tr>
<td>Deaths not Due</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Expected</td>
<td>242</td>
<td>221</td>
<td>242</td>
<td>221</td>
<td>168</td>
<td>164</td>
</tr>
<tr>
<td>Number of Patients who had Overall Success Outcomes</td>
<td>227</td>
<td>196</td>
<td>235</td>
<td>196</td>
<td>160</td>
<td>140</td>
</tr>
<tr>
<td>Percent of Patients who had Overall Success Outcomes</td>
<td>93.8%</td>
<td>88.7%</td>
<td>97.1%</td>
<td>88.7%</td>
<td>95.2%</td>
<td></td>
</tr>
</tbody>
</table>
Patient Demographics

<table>
<thead>
<tr>
<th>Variable</th>
<th>BRYAN (n = 242)</th>
<th>Control (n = 221)</th>
<th>Unadjusted P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)*</td>
<td>44.4</td>
<td>44.7</td>
<td>0.723</td>
</tr>
<tr>
<td>Height (in)*</td>
<td>67.6</td>
<td>67.6</td>
<td>0.991</td>
</tr>
<tr>
<td>Weight (lb)*</td>
<td>173.3</td>
<td>180.0</td>
<td>0.061</td>
</tr>
<tr>
<td>Sex (% male)</td>
<td>45.5</td>
<td>51.1</td>
<td>0.228</td>
</tr>
<tr>
<td>% Worker’s compensation</td>
<td>6.2</td>
<td>5.0</td>
<td>0.687</td>
</tr>
<tr>
<td>% Tobacco use</td>
<td>25.5</td>
<td>24.0</td>
<td>0.746</td>
</tr>
<tr>
<td>% Preop work status</td>
<td>64.5</td>
<td>65.0</td>
<td>0.923</td>
</tr>
</tbody>
</table>

*Average values are reported.
Baseline Clinical Assessments

<table>
<thead>
<tr>
<th>Variable*</th>
<th>BRYAN (n = 242)</th>
<th>Control (n = 221)</th>
<th>Unadjusted P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDI Pain Score</td>
<td>51.4</td>
<td>50.2</td>
<td>0.392</td>
</tr>
<tr>
<td>SF-36 PCS</td>
<td>32.6</td>
<td>31.8</td>
<td>0.208</td>
</tr>
<tr>
<td>SF-36 MCS</td>
<td>42.3</td>
<td>44.6</td>
<td>0.041</td>
</tr>
<tr>
<td>Neck pain</td>
<td>75.4</td>
<td>74.8</td>
<td>0.765</td>
</tr>
<tr>
<td>Arm Pain</td>
<td>71.2</td>
<td>71.2</td>
<td>0.976</td>
</tr>
</tbody>
</table>

*Average values are reported.
Cervical Levels Treated

<table>
<thead>
<tr>
<th>Treatment levels</th>
<th>BRYAN n (% of 242)</th>
<th>Control n (% of 221)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C3-C4</td>
<td>3 (1.2)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>C4-C5</td>
<td>12 (4.9)</td>
<td>17 (7.7)</td>
</tr>
<tr>
<td>C5-C6</td>
<td>140 (57.9)</td>
<td>110 (49.8)</td>
</tr>
<tr>
<td>C6-C7</td>
<td>87 (36.0)</td>
<td>94 (42.5)</td>
</tr>
</tbody>
</table>
Treated Levels

In the US IDE study only 3 patients were treated with the investigational device at the C3-4 level; no patients in the control group were treated at this level.
Misrandomized Patients

<table>
<thead>
<tr>
<th>Reason</th>
<th># of Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disc space smaller than 14 mm</td>
<td>5</td>
</tr>
<tr>
<td>Poor intraoperative visualization of C6-7</td>
<td>4</td>
</tr>
<tr>
<td>Prominent clavicle preventing device placement</td>
<td>1</td>
</tr>
<tr>
<td>Retraction of airway at C4-5 leading to airway obstruction</td>
<td>1</td>
</tr>
<tr>
<td>Inadequate fit of prosthesis at C6-7</td>
<td>1</td>
</tr>
</tbody>
</table>
Surgical and Hospitalization Assessments

<table>
<thead>
<tr>
<th>Variable</th>
<th>Posterior mean BRYAN</th>
<th>Posterior mean Control</th>
<th>BRYAN – Control (95% HPD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operative time (hrs)</td>
<td>2.2</td>
<td>1.4</td>
<td>0.8 (0.7, 0.9)</td>
</tr>
<tr>
<td>Blood loss (mls)</td>
<td>91.5</td>
<td>59.6</td>
<td>31.9 (20.7, 43.1)</td>
</tr>
<tr>
<td>Hospital stay (days)</td>
<td>1.1</td>
<td>1.0</td>
<td>0.1 (-0.02, 0.22)</td>
</tr>
</tbody>
</table>
Operative Time

The mean operative time for the investigational procedure was higher than that of the control procedure. The operative time required for the investigational procedure decreased with surgeon experience.
Primary Composite Endpoint

<table>
<thead>
<tr>
<th>Components</th>
<th>Investigational</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>An improvement of at least 15 points from the baseline Neck Disability Index score</td>
<td>84.3%</td>
<td>75.7%</td>
</tr>
<tr>
<td>Maintenance or improvement in neurological status</td>
<td>93.7%</td>
<td>91.4%</td>
</tr>
<tr>
<td>No serious adverse event classified as implant-associated or implant/surgical procedure-associated</td>
<td>98.3%</td>
<td>96.8%</td>
</tr>
<tr>
<td>No additional surgical procedure classified as “Failure.”</td>
<td>97.5%</td>
<td>95.9%</td>
</tr>
</tbody>
</table>
Results – Safety Endpoints

<table>
<thead>
<tr>
<th>Complication</th>
<th>BRYAN (% of 242)</th>
<th>Control (% of 221)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serious AE (WHO grade 3 or 4)</td>
<td>26.4</td>
<td>24.9</td>
<td>0.782</td>
</tr>
<tr>
<td>Neck and/or Arm Pain</td>
<td>47.5</td>
<td>43.4</td>
<td>0.431</td>
</tr>
<tr>
<td>Neurological</td>
<td>19.8</td>
<td>20.8</td>
<td>0.884</td>
</tr>
<tr>
<td>Implant or surgical procedure related Serious Adverse Events</td>
<td>1.7</td>
<td>3.2</td>
<td>0.445</td>
</tr>
<tr>
<td>Implant or surgical procedure related Adverse Events</td>
<td>2.9</td>
<td>5.4</td>
<td>0.254</td>
</tr>
<tr>
<td>Subsequent Surgical Interventions</td>
<td>2.5</td>
<td>4.1</td>
<td>0.481</td>
</tr>
<tr>
<td>Implant migration or failure related adverse events</td>
<td>2.9</td>
<td>5.4</td>
<td>0.254</td>
</tr>
</tbody>
</table>
Results – Secondary Surgical Procedures

<table>
<thead>
<tr>
<th>Procedure</th>
<th>BRYAN n (% of 242)</th>
<th>Control n (% of 221)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revision</td>
<td>1 (0.4)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Removal</td>
<td>3 (1.2)</td>
<td>2 (0.9)</td>
</tr>
<tr>
<td>Supplemental fixation</td>
<td>0 (0)</td>
<td>6 (2.7)</td>
</tr>
<tr>
<td>Reoperation</td>
<td>2 (0.8)</td>
<td>1 (0.5)</td>
</tr>
</tbody>
</table>
Results – Motion at Treated Level

- Evaluated in n=154 BRYAN patients
- Mean angular motion values:
 - Preoperative – 6.4°
 - 12 months – 7.8°
 - 24 months – 7.7°
- Angular motion success = 79.6%
Results – Motion at Adjacent Levels

<table>
<thead>
<tr>
<th></th>
<th>Preoperative</th>
<th>12 Months</th>
<th>24 Months</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BRYAN</td>
<td>Contr</td>
<td>BRYAN</td>
</tr>
<tr>
<td>Mean Angular Motion (Above)</td>
<td>8.3°</td>
<td>7.8°</td>
<td>9.8°</td>
</tr>
<tr>
<td>Mean Angular Motion (Below)</td>
<td>5.0°</td>
<td>5.2°</td>
<td>6.2°</td>
</tr>
</tbody>
</table>
Preservation of Motion

The sponsor has presented radiographic data to demonstrate preservation of motion at the index level in the patients receiving the investigational device. Motion at the index level did not correlate with clinical success. Further analysis has demonstrated that the motion, as measured by dynamic radiographs, was not significantly different at adjacent levels for the investigational device and for controls. Please consider how index level and adjacent level motion contribute to the effectiveness of the investigational device.
Heterotopic Ossification

• Not included among study endpoints and assessments were not planned
• Recent report suggests rate may be as high as 18% following treatment with BRYAN in Europe
• Six BRYAN patients had osteophytes observed on follow-up radiographs.
• US IDE protocol included 14 days of treatment with NSAIDs
Heterotopic Ossification

FDA will ask the panel a question about heterotopic ossification. Prior reports in the literature have described a high rate of heterotopic ossification (HO) following implantation of cervical disc arthroplasty devices. HO was not specifically studied as a radiographic outcome measure in the US IDE study.
Summary of Clinical Study

• Non-inferiority study → Superiority Study
• Effectiveness
 – Overall success based on 300 implanted patients followed for 24 months
• Safety based on 463 implanted patients
FDA Presentation

- Introduction
- Pre-Clinical Issues
- Clinical Study
- Statistical Analysis
- Post-Approval Study
- Panel Questions
P060023
BRYAN Cervical Disc
Statistical Analysis

Jason Schroeder, PhD
Division of Biostatistics
Office of Surveillance and Biometrics

Orthopedic and Rehabilitation Devices Panel Meeting
July 17, 2007
Clinical Trial Overview

- Randomized, controlled, multicenter trial
- 463 patients (242 BRYAN, 221 Control) treated at 30 centers
- Follow-up evaluations at 6 weeks, and 3, 6, 12, and 24 months
- Pre-planned Bayesian interim analysis when 300 patients had 24-month data
Trial Objectives

• Assess whether overall success rate at 24 months for BRYAN is non-inferior to Control
• Determine whether BRYAN is superior to Control with respect to overall success rate
• Determine whether BRYAN is non-inferior (or superior) to Control with respect to individual effectiveness and radiographic variables
• Compare adverse event rates between BRYAN and Control
Randomization

• 1:1 randomization, stratified by center, fixed block size of 4

• 463 patients randomized and received treatment
 – 12 patients randomized to BRYAN, but received Control instead
 – 1 patient randomized to Control, but received BRYAN instead

• An additional 117 patients (37 BRYAN, 80 Control) were randomized, but never received treatment
Randomization, continued

<table>
<thead>
<tr>
<th>Reason</th>
<th>BRYAN</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insurance denied</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Condition improved</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>Dissatisfied w/ randomization</td>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td>Inclusion/exclusion criteria not met</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Decided not to participate</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Combination</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Other</td>
<td>11</td>
<td>18</td>
</tr>
<tr>
<td>Unknown</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>TOTAL</td>
<td>37</td>
<td>80</td>
</tr>
</tbody>
</table>
Randomization, continued

• Imbalance between randomized Control (80) and BRYAN (37) patients dropping out prior to receiving treatment

• In particular,
 – Control: 40% (32/80) dissatisfied w/ randomization
 – BRYAN: None (0/37) dissatisfied w/ randomization

• Comparisons between the 463 study and 117 non-study patients with respect to demographics and baseline variables
 – No clinically relevant differences found
Primary Endpoint

- Was the patient an “Overall Success” at 24 months?
- Overall Success is a composite endpoint with both effectiveness and safety components:
 1) At least 15 point improvement on NDI
 2) Maintained/improved neurological status
 3) No serious AEs that were implant/surgery related
 4) No additional surgery classified as “failure”
- Patient must succeed on all 4 parts to be considered an overall success
Study Hypotheses

• Non-inferiority hypothesis (with non-inferiority delta = 10%):
 – Overall success rate for BRYAN \((p_B)\) is not lower than Control \((p_C)\) by more than 10%:
 Non-inferiority: \(p_B > p_C - 0.10\)

• BRYAN non-inferior to Control if posterior probability of Non-inferiority is at least 95%:
 \(\Pr(\text{Non-inferiority} | \text{Data}) > 0.95\)
Study Hypotheses, continued

• If non-inferiority claimed, follow with test of superiority hypothesis:
 – Overall success rate for BRYAN (p_B) is greater than Control (p_C):
 Superiority: $p_B > p_C$

• BRYAN superior to Control if posterior probability of Superiority is at least 95%:
 $\Pr(\text{Superiority} \mid \text{Data}) > 0.95$
Interim Analysis Plan

- PMA based on results of pre-specified Bayesian interim analysis of primary endpoint
- Non-informative priors were used
- Interim analysis was scheduled to occur when 300 patients had 24-month overall success evaluated
- At time of interim analysis, 333 patients (168 BRYAN, 165 Control) had reached 24-month evaluation window, but only 300 (160 BRYAN, 140 Control) with outcomes evaluated
Interim Analysis, continued

• Bayesian interim analysis method:
 – Since 12-month outcomes may carry information about 24-month outcomes, use all available 12- and 24-month data
 – Any patient with at least 12-month data contributes to analysis, but focus is on overall success rate at 24 months
 – Using all available 12- and 24-month data, posterior probability of non-inferiority:
 \[
 \Pr(\text{Non-inferiority} \mid Data) = \Pr(p_B > p_C - 0.10 \mid Data)
 \]
Analysis Datasets

• Primary analysis dataset
 – All patients receiving a device; analyzed according to treatment received

• Per-protocol dataset
 – Excludes patients with major protocol violations (e.g., not meeting entry criteria, received wrong device)
Primary Analysis Dataset

• Of 242 BRYAN patients, 5 (2.1%) have neither 12- nor 24-month data – these 5 do not contribute to analysis
• Of 221 Control patients, 17 (7.7%) have neither 12- nor 24-month data – these 17 do not contribute to analysis
• All other treated patients contribute to the Bayesian interim analysis
Results – Overall Success

Primary analysis dataset

<table>
<thead>
<tr>
<th></th>
<th>Estimated 24-mo success rate*</th>
<th>95% HPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRYAN, p_B</td>
<td>80.4%</td>
<td>(74.3%, 85.8%)</td>
</tr>
<tr>
<td>Control, p_C</td>
<td>71.8%</td>
<td>(65.0%, 78.9%)</td>
</tr>
</tbody>
</table>

$$\Pr(p_B > p_C - 0.10 \mid \text{Data}) > 99.9\%$$

→ Non-inferiority criterion met

*Posterior means.
Per-Protocol Dataset

• Of 242 BRYAN patients, 27 (11.2%) excluded for per-protocol analysis
• Of 221 Control patients, 48 (21.7%) excluded for per-protocol analysis

• There appears to be an imbalance in number of patients excluded due to major protocol violations
Per-Protocol Dataset, continued

- Of 215 BRYAN patients, 5 (2.3%) have neither 12- nor 24-month data – these 5 do not contribute to analysis
- Of 173 Control patients, 13 (7.5%) have neither 12- nor 24-month data – these 13 do not contribute to analysis
- Remaining patients contribute to Bayesian interim analysis
Results – Overall Success

Per-protocol dataset

<table>
<thead>
<tr>
<th></th>
<th>Estimated 24-mo success rate*</th>
<th>95% HPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRYAN, p_B</td>
<td>82.7%</td>
<td>(76.7%, 88.3%)</td>
</tr>
<tr>
<td>Control, p_C</td>
<td>75.0%</td>
<td>(67.2%, 82.6%)</td>
</tr>
</tbody>
</table>

$\Pr(p_B > p_C - 0.10 \mid \text{Data}) > 99.9$

\rightarrow Non-inferiority criterion met

*Posterior means.
Results – Overall Success

Sensitivity Analyses

• Sensitivity analyses conducted to assess impact of the 33 patients (8 BRYAN, 25 Control) missing 24-month data
• Non-inferiority claim supported by all sensitivity analyses…
• …even in worst-case scenario:
 Any missing BRYAN = failure
 Any missing Control = success
 – Estimated difference $p_B - p_C = 1.6\%$ (95% CI: -7.5\%, 10.8\%)
 – Test for non-inferiority yielded p-value = 0.0065
Results – Overall Success

Sensitivity Analyses

• If all missing outcomes are counted as failures:
 – Estimated BRYAN success rate $p_B = 76.8\%$ (129/168)
 – Estimated Control success rate $p_C = 60.0\%$ (99/165)

• But, this analysis may be biased against Control group due to its higher rate of missingness
Results – Overall Success

• Sponsor tested for superiority after meeting non-inferiority criterion

• Primary analysis dataset
 – Pr(Superiority | Data) = 96.9%
 – Superiority criterion met

• Per-protocol dataset
 – Pr(Superiority | Data) = 94.4%
 – Superiority criterion not met
FDA will ask the panel a question about superiority of the device. The sponsor has presented comparisons of the investigational and control procedures based on a variety of datasets. Please consider whether these analyses support the sponsor’s claim that the investigational device is superior to the control procedure with respect to the overall success endpoint.
Results – Neck Disability Index (24-month interim results)

<table>
<thead>
<tr>
<th></th>
<th>BRYAN (n=159)</th>
<th>Control (n=140)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean NDI (min, max)</td>
<td>16.4 (0, 74.0)</td>
<td>20.0 (0, 78.0)</td>
</tr>
<tr>
<td>Mean change from baseline</td>
<td>-32.1</td>
<td>-28.7</td>
</tr>
<tr>
<td>NDI success: > 15 points improvement?</td>
<td>84.3% (134/159)</td>
<td>75.7% (106/140)</td>
</tr>
</tbody>
</table>
Results – Neurological Status
(24-month interim results)

<table>
<thead>
<tr>
<th></th>
<th>BRYAN (N=159)</th>
<th>Control (N=140)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall: n (%)</td>
<td>149 (93.7%)</td>
<td>128 (91.4%)</td>
</tr>
<tr>
<td>Motor: n (%)</td>
<td>157 (98.7%)</td>
<td>136 (97.1%)</td>
</tr>
<tr>
<td>Sensory: n (%)</td>
<td>154 (96.9%)</td>
<td>135 (96.4%)</td>
</tr>
<tr>
<td>Reflexes: n (%)</td>
<td>155 (97.5%)</td>
<td>136 (97.1%)</td>
</tr>
</tbody>
</table>
Results – Secondary Effectiveness

Primary analysis dataset

<table>
<thead>
<tr>
<th>Variable</th>
<th>BRYAN p_B (%)</th>
<th>Control p_C (%)</th>
<th>$p_B - p_C$ (95% HPD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDI</td>
<td>85.0</td>
<td>76.2</td>
<td>8.8 (0.2, 16.9)</td>
</tr>
<tr>
<td>Neuro</td>
<td>92.4</td>
<td>90.9</td>
<td>1.5 (-4.5, 7.5)</td>
</tr>
<tr>
<td>FSU</td>
<td>97.9</td>
<td>97.1</td>
<td>0.8 (-3.2, 5.1)</td>
</tr>
<tr>
<td>Neck pain</td>
<td>93.6</td>
<td>91.6</td>
<td>2.0 (-3.9, 8.0)</td>
</tr>
<tr>
<td>Arm pain</td>
<td>93.3</td>
<td>88.3</td>
<td>4.9 (-1.7, 11.1)</td>
</tr>
<tr>
<td>SF-36 PCS</td>
<td>84.9</td>
<td>88.9</td>
<td>-4.0 (-11.8, 3.0)</td>
</tr>
<tr>
<td>SF-36 MCS</td>
<td>68.4</td>
<td>72.8</td>
<td>-4.3 (-14.1, 5.4)</td>
</tr>
</tbody>
</table>
Summary

• Sponsor conducted a randomized, controlled, multicenter trial, with 463 patients at 30 centers

• All analyses support claim that BRYAN Cervical Disc is non-inferior to the Control with respect to Overall Success rate at 24-months

• Results are inconclusive regarding claim of superiority of BRYAN Cervical Disc compared to Control
FDA Presentation

- Introduction
- Pre-Clinical Issues
- Clinical Study
- Statistical Analysis
- Post-Approval Study
- Panel Questions
P060023
BRYAN Cervical Disc
Post-Approval Study (PAS)

Cunlin Wang, MD, PhD
Epidemiology Branch
Office of Surveillance and Biometrics

Orthopedic and Rehabilitation Devices Panel Meeting
July 17, 2007
Outline

• General Principles/Rationale for PAS
• Postmarket Questions
• Proposed PAS Outline
• Discussion of PAS Outline
• PAS Issues for Panel Discussion
Reminder

• The discussion of a Post-Approval Study (PAS) prior to a formal recommendation on the approvability of this PMA should not be interpreted to mean that FDA is suggesting the Panel find the device approvable.

• The plan to conduct a PAS does not decrease the threshold of evidence required to find the device approvable.

• The premarket data submitted to the Agency and discussed today must stand on its own in demonstrating a reasonable assurance of safety and effectiveness in order for the device to be found approvable.
PAS General Principles

- Objective is to evaluate device performance and potential device-related problems in a broader population over an extended period of time after premarket establishment of reasonable device safety and effectiveness.

- Post-approval studies **should not** be used to evaluate unresolved issues from the premarket phase that are important to the initial establishment of a reasonable assurance of device safety and effectiveness.
Post-Approval Study Uses

• Gather postmarket information
 – Longer-term device performance
 – Community performance (clinicians & patients)
 – Effectiveness of training programs
 – Sub-group performance
 – Real world experience & rare adverse events

• Address Panel recommendations
Long-Term Issues for BRYAN Cervical Disc

• Survival of the implant
• Overall success of the device, compared to Arthrodesis
• Effect on adjacent levels
• New complications from particle and wear debris
• Reported complications that may affect the longer-term use of the device:
 – anterior-posterior disc migration
 – heterotopic ossification
 – kyphosis of the functional spinal unit
Overview of Sponsor’s PAS Outline

<table>
<thead>
<tr>
<th>Study Design</th>
<th>Prospective Cohort, non-inferiority design, with Arthrodesis patients as concurrent controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>Patients from IDE and CAS, minimum 200 (100 each from control and investigational arms)</td>
</tr>
<tr>
<td>Data Collection</td>
<td>4, 5, 7 years post-operation</td>
</tr>
<tr>
<td>Primary Outcome</td>
<td>A composite success outcome: NDI, Neurological status, no serious adverse event, no device failure</td>
</tr>
<tr>
<td>Secondary Outcomes</td>
<td>All other effectiveness and safety outcomes in IDE study</td>
</tr>
</tbody>
</table>
Discussion of Sponsor’s PAS
Study Design

• Study is hypothesis-driven with non-inferiority design

• Delta level to be defined
Discussion of Sponsor’s PAS (cont.)
Success Outcome

• Primary outcome is a composite success outcome, including NDI improvement, neurological status, no serious adverse event, and no device failure

• Criteria for NDI improvement

• Radiographic measurements
Discussion of Sponsor’s PAS (cont.)
Study Population

• Consists of patients from PMA cohort.
• Data on representativeness of patients and physicians in PMA study are needed

• Inclusion of new patients:
 – the generalizability of the study results
 – device performance under actual conditions of use
 – sample size requirements
Discussion of Sponsor’s PAS (cont.)
Sample Size

• A minimum of 200 patients from PMA cohort

• To be clarified/developed:
 – how the patients will be selected
 – whether this will provide sufficient power for statistical analysis
 – plan to minimize loss to follow-up
 – measures to be taken if the number falls below 200 during follow-up
PAS Issues for Panel Discussion

1) Adjacent Segment Degeneration:

• Cervical disc replacement may preserve segmental motion and reduce the progression of adjacent segment degeneration.

• The effect of BRYAN Cervical Disc prosthesis on adjacent levels is not yet known.

2) Other Complications:

- *Heterotopic ossification (HO), which may result in subsequent loss of movement of the implanted disc* [2]

- *Post-operative Kyphotic change of the Functional Spinal Unit (4-6°) and overall cervical spine (4°) has been reported and clinical significance is unclear* [3]

PAS Issues for Panel Discussion

3) “Real-World” Performance

• The current PAS outline only includes patients from the PMA cohort

• Patients selection on the effects of BRYAN Cervical Disc implantation has been noted ⁴

4) Length of Follow-up

- The current PAS outline proposes to follow patients up to 7 years post-operation

- The design features and materials used on this device are unique
THANK YOU!
FDA Presentation

• Introduction
• Pre-Clinical Issues
• Clinical Study
• Statistical Analysis
• Post-Approval Study
• Panel Questions
Pre-Clinical Issues

1. The sponsor has provided a combination of engineering testing, biocompatibility testing, functional animal studies, device retrievals and analysis, radiographic follow up and clinical observations to address the degree of constraint, materials of articulation, and other design features of the Bryan Cervical Disc Prosthesis. Please discuss the testing, the data and the clinical observations regarding:

 • device wear
 • material and particulate reaction
 • device expulsion or migration
 • implant durability and reliability and
 • sheath purpose and function.
Preservation of Motion

2. The sponsor has presented radiographic data to demonstrate preservation of motion at the index level in the patients receiving the investigational device. Motion at the index level did not correlate with clinical success. Further analysis has demonstrated that the motion, as measured by dynamic radiographs, was not significantly different at adjacent levels for the investigational device and for controls. Please discuss how index level and adjacent level motion contribute to the effectiveness of the investigational device.
Labeling

3. Please discuss the adequacy of the device labeling.

What information related to mean operative time should be included in the labeling?

What information related to cervical levels should be included?
Safety

4. Under CFR 860.7(d)(1), safety is defined as reasonable assurance, based on valid scientific evidence, that the probable benefits to health under conditions of the intended use, when accompanied by adequate directions for use and warnings against unsafe use, outweigh any probable risks.

Considering the adverse event rates for the subject device, please discuss whether the clinical data in the PMA provide reasonable assurance that the device is safe.
Efficacy

5. Please discuss whether the clinical data in the PMA provide reasonable assurance that the proposed device is effective.
Superiority

6. The sponsor has presented comparisons of the investigational and control procedures based on a variety of datasets (e.g., as randomized, as implanted). Please discuss whether these prespecified secondary analyses support the sponsor’s claim that the investigational device is superior to the control procedure with respect to the overall success endpoint.
NOTE TO PANELISTS: FDA’s inclusion of a question regarding a Post approval study should not be interpreted to mean that FDA has made a decision or is making a recommendation on the approvability of this PMA device. The presence of a post approval study plan or commitment does not in any way alter the requirements for premarket approval and a recommendation from the Panel on whether or not to approve a device must be based on the pre-market data. The pre-market data must reach the threshold for providing reasonable assurance of safety and effectiveness before the device can be found approvable and any post-approval study could be considered.
Post-Approval Study

7. Please discuss the following issues related to a potential post-approval study (PAS):

Is it necessary to recruit new patients/physicians in the PAS or to use an alternative approach to evaluate the device’s “real-world” performance after approval?

Is 7 year follow up appropriate for this device?
Post-Approval Study

Question continued from previous slide

7. Please discuss the following issues related to a potential post-approval study (PAS):

Should treated level and adjacent level motion and the occurrence or progression of adjacent-segment disease be assessed in both groups in the PAS?

Should the rate of HO and kyphosis after Bryan Cervical Disc implantation be investigated in the PAS?