Characterization of ARALAST Compared to other A1PI Preparations

Hans Peter Schwarz, MD
Vice President, Global Preclinical R&D
Baxter
Agenda

1) Background Information
2) Modifications to primary structure of A1PI in all commercial products
3) Potential cause for microheterogeneity of A1PI protein in Aralast
4) Implications of microheterogeneity on protein structure and function
Aralast - Introduction

- December 23, 2002:
 FDA approval of Aralast, developed and manufactured by Alpha Therapeutics (now: Grifols Biological Inc.)

- Q2 2003:
 Baxter acquired Aralast and Aralast associated assets from Alpha Therapeutics
IEF Observations:

IEF-gel provided by the FDA regarding their concerns of an anodal shift of M6 and M4 in ARALAST, suggesting that a population of AAT isoforms carry approximately one extra negative charge.
2DIGE Analysis of Aralast and Prolastin

Fluorescence scan overlay

Anodal shift of spots derived from Aralast seen on 2DIGE analysis in the presence of urea
Anodal shift of spots derived from Aralast seen on 2DGE analysis in the presence of urea
Agenda

1) Background Information

2) Modifications to primary structure of A1PI in all commercial products

3) Potential cause for microheterogeneity of A1PI protein in Aralast

4) Implications of microheterogeneity on protein structure and function
Modifications with Potential Impact on Protein Charge

Secondary structure:

- Heterogeneity of glycosylation
 - Influence on the number of sialic acids

Primary structure:

- Deamidation (addition of a negative charge):
 - Non-enzymatic conversion of Asn116 or Asn314 to aspartic or isoaspartic acid

- Cysteine modification:
 - Attachment (covalent) of another molecule to A1PI (a free available cysteine exists in A1PI)

- Removal of terminally located charged amino acids
 - N-terminal truncation of 5 amino acids, loss of negatively charged glutamic and aspartic acids \(\rightarrow \) M7, M8
 - C-terminal truncation, loss of positively charged lysine \(\cdots \text{des-Lys} \) A1PI
No difference in the N-glycan profile between Aralast, Prolastin and Zemaira and the pattern is similar to that found for A1PI from human plasma
N-glycan pattern of all 3 A1PI concentrates used for treatment of Hereditary Emphysema is similar to that of plasma, therefore ethanol fractionation and downstream purification have no impact.
Relation of N-glycan pattern to IEF bands

N-glycans are **NOT** responsible for the IEF pattern characteristic for Aralast
Modifications with Potential Impact on Protein Charge

Secondary structure:

• Heterogeneity of glycosylation
 - Influence on the number of sialic acids

Primary structure:

→ • Deamidation (addition of a negative charge):
 - Non-enzymatic conversion of Asn116 or Asn314 to aspartic or isoaspartic acid

• Cysteine modification:
 - Attachment (covalent) of another molecule to A1PI (a free available cysteine exists in A1PI)

• Removal of terminally located charged amino acids
 - N-terminal truncation of 5 amino acids, loss of negatively charged glutamic and aspartic acids → M7, M8
 - C-terminal truncation, loss of positively charged lysine …des-Lys A1PI
Deamidation Analysis

- **Quantitative measurement** of deamidation using an enzymatic assay (IsoQuant Kit, Promega) based on the methylation of *iso-aspartate*, a final product of Asn-deamidation.

<table>
<thead>
<tr>
<th>Product</th>
<th>% of molecules with one iso-aspartate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aralast (3 lots)</td>
<td>6%</td>
</tr>
<tr>
<td>Zemaira (1 lot)</td>
<td>7%</td>
</tr>
<tr>
<td>Prolastin (1 lot)</td>
<td>10%</td>
</tr>
</tbody>
</table>

- **Confirmed qualitative detection** of deamidation in all products by MS-analysis of two deamidation candidate tryptic peptides containing the sequence Asn-Gly (peptides 102-125 and 311-331).

Deamidation as primary sequence modification occurs in all A1PI concentrates.
Modifications with Potential Impact on Protein Charge

Secondary structure:

• Heterogeneity of glycosylation
 - Influence on the number of sialic acids

Primary structure:

• Deamidation (addition of a negative charge):
 - Non-enzymatic conversion of Asn116 or Asn314 to aspartic or isoaspartic acid

• Cysteine modification:
 - Attachment (covalent) of another molecule to A1PI (a free available cysteine exists in A1PI)

• Removal of terminally located charged amino acids
 - N-terminal truncation of 5 amino acids, loss of negatively charged glutamic and aspartic acids → M7, M8
 - C-terminal truncation, loss of positively charged lysine …des-Lys A1PI
Cysteinylation of Cys232

Arallast, Prolastin, and A1PI from plasma all exhibit cysteinylation on Cys232, however this modification was not detected in Zemaira.
Modifications with Potential Impact on Protein Charge

Secondary structure:

- Heterogeneity of glycosylation
 - Influence on the number of sialic acids

Primary structure:

- Deamidation (addition of a negative charge):
 - Non-enzymatic conversion of Asn116 or Asn314 to aspartic or isoaspartic acid

- Cysteine modification:
 - Attachment (covalent) of another molecule to A1PI (a free available cysteine exists in A1PI)

- Removal of terminally located charged amino acids
 - N-terminal truncation of 5 amino acids, loss of negatively charged glutamic and aspartic acids → M7, M8
 - C-terminal truncation, loss of positively charged lysine …des-Lys A1PI
C-terminal Lys Truncation Analysis

HPLC Analysis

Detail of the Aralast tryptic peptide map (detected at 214 nm) showing the region with the C-terminal truncated peptide and allowing quantitation of the modification.

MS Analysis

MS spectra showing C-terminal peptides of A1PI

Des-Lys A1PI found in all products: Aralast (67%), Zemaira (6%) and Prolastin (2%)
Summary of A1PI Modifications

Glycoisoforms
- Site specific N-Glycan patterns analyzed for the first time; detection of tetra-antennary structures and Lewis X structures on A1PI

<table>
<thead>
<tr>
<th>Product</th>
<th>Glycoisoforms</th>
<th>Deamidation</th>
<th>Methionine Oxidation</th>
<th>C-terminal Lys Truncation</th>
<th>Cys232 Cysteinylation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aralast</td>
<td></td>
<td>detectable</td>
<td>not observed (A1PI fully functionally active)</td>
<td>67%</td>
<td>+</td>
</tr>
<tr>
<td>Prolastin</td>
<td></td>
<td>6%</td>
<td>2%</td>
<td>6%</td>
<td>+</td>
</tr>
<tr>
<td>Zemaira</td>
<td></td>
<td>10%</td>
<td></td>
<td>6%</td>
<td>-</td>
</tr>
<tr>
<td>Plasma/BAL</td>
<td></td>
<td>7%</td>
<td></td>
<td>? *2</td>
<td>+</td>
</tr>
</tbody>
</table>

*1 Site specific N-Glycan patterns analyzed for the first time; detection of tetra-antennary structures and Lewis X structures on A1PI

*2 under investigation

→ A1PI in all products differs from A1PI found in plasma
Agenda

1) Background Information
2) Modifications to primary structure of A1PI in all commercial products

➔ 3) Potential cause for microheterogeneity of A1PI protein in Aralast
 4) Implications of microheterogeneity on protein structure and function
Carboxypeptidases

- Basic carboxypeptidases are enzymes that cleave COOH-terminal basic amino acids lysine and arginine from different peptides and proteins.
- They are involved in food digestion (CPB), modulation of peptide activity (CPM, CPN), pro-hormone processing (CPD, CPE), regulation of the plasminogen system (CPU).

 - **Carboxypeptidase B (pancreas)**
 - **Carboxypeptidase U**
 - present in plasma as a pro-enzyme, pro-CPU
 - synonyms: CPU = carboxypeptidase R = TAFIa (TAFI = pro-CPU)
 - activated by thrombin, plasmin and trypsin
 - potent inhibitor of fibrinolysis, possibly involved in inactivation of activated complement proteins and anaphylatoxins
 - **Carboxypeptidase N**
 - plasma enzyme constitutively active in plasma, 30 µg/mL plasma
 - inactivation of activated complement proteins C3a, C4a and C5a and bradykinin; maturation of hormones
 - **Carboxypeptidase M**
 - GPI-anchored membrane protein, highly expressed in lung tissues
CPN and Pro-CPU Activity in Cohn Ethanol Fractionation

CPN test method:
Cleavage of hippuryl-L-Arg measured by RP-HPLC.
1 U CPN releases 1 µM hippuric acid/min

ProCPU test method:
Activation with Thrombin-Thrombomodulin, cleavage of hippuryl-L-Arg and measurement with RP-HPLC.
ProCPU = (CPN+CPU) - CPN

![Diagram of fractionation process with plasma levels and immunoglobulin concentration](image)
Ethanol Dependence of C-terminal Lys Cleavage by CPN

- At EtOH concentrations of $\geq 10\%$ lysine cleavage showed a linear increase in dependence of the EtOH concentration
- The C-terminal Lysine of A1PI in both Aralast and Prolastin are susceptible to cleavage upon exposure to ethanol
- IEF analysis of these samples corroborates lysine truncation to anodal band shift

\Rightarrow The concentration of EtOH determines the amount of Lys-truncation
C-terminal lysine cleavage of A1PI by CPN in absence and presence of ethanol

Expressed as ratio: Lysine cleaved/internal standard

![Bar chart showing lysine cleavage ratio for Prolastin and rA1PI in 0% and 15% ethanol](chart.png)
Removal of C-terminal lys as function of time (rA1PI)
Generation of Anodal Isoforms of A1PI by Treatment with rCPM

Aralast (A) LH02031A
Experimental Lot 900304B (IV,1)
A1PI Isoform Pattern in Human BAL

A highly sensitive IEF gel was used to detect A1PI in BAL samples from subjects not on A1PI augmentation therapy.

- A1PI was detected in all BAL samples, and the IEF pattern resembles the A1PI shift observed for Aralast.

- This suggests that an isoform shift can naturally occur, possibly induced by CPM.

1 ... PROLASTIN #PR4HA43A, 5 µg/ml
2 ... ARALAST #LH03002A, 5 µg/ml
3 ... Human BAL sample, 3.5 µg/ml
4 ... Human BAL sample, 6 µg/ml
5 ... Human BAL sample, 2.7 µg/ml
• All basic CPs cleave C-terminal lysine from A1PI
• Cleavage of C-terminal Lys occurs in absence of ethanol
• Ethanol enhances the reaction CPN (20-fold effect of 15% ethanol on kcat/Km)*
• CPN is the most likely candidate causing the C-terminal Lys cleavage in plasma

* Similar to findings reported by Folk et.al. JBC 1962, vol. 237 pg. 3105 “Kinetics of Carboxypeptidase B Activity - Effects of alcohol.”
Agenda

1) Background Information
2) Modifications to primary structure of A1PI in all commercial products
3) Potential cause for microheterogeneity of A1PI protein in Aralast

4) Implications of microheterogeneity on protein structure and function
Implications of Higher Degree of C-terminal Truncation in Aralast: Investigation

- Structural bioinformatics analysis
- In vitro function: anti-elastase activity
- Pharmacokinetics
- Tissue distribution and diffusion
Results

- There is no conservation between species of the C-terminal Lys in A1PI. Lys394 is unlikely to play a major structural or functional role.
- 3D analysis of available structures for A1PI and its complex with protease do not support a major structural role for Lys394.
- C-terminal loop region is stabilized by an H-bond network in which Lys394 is not involved.

→ Lys394 plays no major structural role in A1PI when uncleaved and cleaved as well as when forming complexes with a protease.
Functional Relevance of C-terminal Truncation of A1PI

A1PI dependent inhibition of porcine elastase:
Response of different A1PI concentrates

No difference in activity of Aralast, Prolastin, Zemaira & des-Lys A1PI
Higher Degree of C-terminal Truncation has no Impact on:

- **Metabolic clearance in rats**
 - Comparability of A1PI-preparations with differing degrees of C-terminal lys-truncation

- **Distribution to lung (rat)**
 - Comparability of A1PI-preparations with differing degrees of C-terminal lys-truncation including a 100% Δ-Lys A1PI in a rat BAL study

- **Diffusion from vasculature into interstitium (guinea pig)**
 - Comparability of A1PI-preparations with differing degrees of C-terminal lys-truncation including a 100% Δ-Lys A1PI in a guinea pig suction blister model

- **Confocal studies to assess diffusion and lung tissue distribution**
 - Comparability of A1PI-preparations with differing degree of C-
Conclusions

1) A1PI in all products approved for augmentation therapy demonstrate at least one primary structure modification (deamidation, cysteine modification, and C-terminal lysine truncation)

2) The des-Lys A1PI is induced by carboxypeptidases, and the ubiquitous presence of carboxypeptidases in plasma and in lung tissue (CPM) will likely result in exposure and hence tolerance to the des-Lys394 form of A1PI

3) des-Lys is one of many known isoforms of A1PI that does not affect the inhibitor activity, immunogenicity or essential functions of A1PI
REFERENCE SLIDES
Molecular characteristics of A1PI

- Single chain glycoprotein consisting of 394 AA
- Carries a high negative charge because of sialic acid residues on three complex glycans attached to Asn46, Asn83 and Asn247
- Exhibits multiple bands reflecting microheterogeneity upon isoelectric focusing (M1 [M0] anodal-low pI to M8 cathodal–high pI)
 - Two minor cathodal isoforms, M7 and M8, are truncated at the N-terminus lacking five AA (1-5) leading to an additional cathodal shift due to the loss of negatively charged glutamic and aspartic acid
- 1 single Cysteine residue in position 232 covalently bound to either free Cys or Glutathione via a disulfide bridge
- Asn116 and Asn314 are susceptible to deamidation (Asn → Asp) due to sequence as followed by Gly
Isolated A1PI N-glycans are labelled with a fluorescent dye

Different structural isomers can be separated and characterized by HPLC retention time before and after treatment with specific exoglycosidases

1. PNGase F
2. Isolation + labelling
3. HPLC and MS

* Other for glycan analysis widely used fluorophores are e.g. 2-aminobenzamide (AB)
Cysteinylation of Cys-232: Electrostatic Surface Potential Maps

(A) cysteinylated cys-232; (B) free cys-232
Deamidation of Asparagine in Proteins

A

Asparagine

\[\text{Asparagine} \]

\[\text{Succinimide Intermediate} \]

B

Degradation of

\[\text{Succinimide Intermediate} \]

Aspartic Acid

IsoAspartic Acid

\[\text{Aspartic Acid} \]

\[\text{IsoAspartic Acid} \]
Carboxypeptidase N, Ethanol Fractionation and Aralast

Carboxypeptidase N (CPN) is the most likely candidate causing the IEF pattern of Aralast:

- Plasma does not contain CPU (only proCPU or TAFI)
- Trace amounts of plasmin/thrombin/thrombomodulin could activate some CPU

Experiments with the basic carboxypeptidase inhibitor Mergetpa support CPN; however, Mergetpa also inhibits CPU, but at a lower potency (Ki=2nM for CPN and 750 for CPU)

Mergetpa = DL-2-mercapto-methyl-3-guanidino-ethylthiopropanoic acid
A1PI Isoform Shift Induced by Treatment with CPU (TAFIa)

A1PI from IV,1

Enzyme: CPU (0.5 U/ml)
A1PI (+4°C, 2mg/ml) + 96% EtOH (-20°C), 20 min at −20°C;
+ 10 mM TRIS/HCl, pH 8.8 (+4°C) + CPU (4°C); incubated for 60 min at +37°C

BPAC Meeting - November 4, 2005
Microscopic distribution of Aralast

CENTRAL AIRWAY

Airway Epithelium

Interstitial Compartment

Airway Epithelium