CLASS

Celecoxib Long-term Arthritis Safety Study

Agenda

Introduction

Philip Needleman, Ph.D.
Senior Executive Vice President
Chief Scientist and Chairman
Research and Development

UGI Safety Profile of NSAIDs and
Celecoxib: Rationale for CLASS Study

G. Steven Geis, Ph.D., M.D.
Vice President
Arthritis Clinical R&D

Safety Profile of Celecoxib:
CLASS, Long Term Safety Trial

James Lefkowith, M.D.
Senior Director
Arthritis Clinical R&D

Summary

Fred Silverstein, M.D.
Chairman
CLASS Executive Committee
Introduction

Philip Needleman, Ph.D.
Pharmacia
Research and Development
The COX-2 Hypothesis: ca. 1990
Mechanism-Based Drug Targeting

Arachidonic Acid

- **COX-1** (Constitutive)
 - Stomach
 - Intestine
 - Kidney
 - Platelet

- **COX-2** (Inducible)
 - Inflammation
 - Pain

NSAIDs

(-)

celecoxib
Clinical Efficacy of Celecoxib in RA Patients

Reduction in Number of Swollen Joints

Change from Baseline (Mean ± SEM)

![Graph showing reduction in swollen joints](image)

Incidence of Gastroduodenal Ulcers

![Graph showing incidence of ulcers](image)

* Significantly different from 0 mg; \(P \leq 0.05 \)

* \(P < 0.001 \) vs other treatments

Celecoxib NDA Perspective

• Advisory Committee unanimously recommended approval of celecoxib (Celebrex) for signs and symptoms of OA and adult RA; approved Dec 29, 1998 by FDA.

• Celebrex demonstrated greater UGI safety than conventional NSAIDs

• Key unresolved issue:

 Would the decrease in endoscopic ulcers with celecoxib translate into improved, clinically meaningful GI safety in a large, well controlled outcomes trial?
CLASS Trial Design: Collaboration with FDA

• Primary objective: assess GI safety profile of Celebrex; may provide insight into other COX-related safety issues

• Rigorous trial of OA and RA patients that mimicked clinical practice – allowed cardioprotective aspirin

• Utilized two NSAIDs, including ibuprofen, at commonly used doses

• Studied Celebrex at 2 to 4 times the maximally effective therapeutic doses in arthritis
The COX-2 Hypothesis
2001

Arachidonic Acid

COX-1
(Constitutive)

- Stomach
- Intestine
- Kidney
- Platelet
- Endothelium

COX-2
(Inducible)

- (-)
- Celebrex

- NSAIDs
- Inflammation/Pain
- Tumors
- Kidney
- Central Nervous System
- Female Reproduction
- Endothelium?

NSAIDs
Areas where CLASS data may shed light on the roles of COX-1 and COX-2

• **Definitely:**
 – GI events
 – Blood loss

• **Possibly:**
 – Effects of Low Dose Aspirin
 – Renal
 – Cardiovascular/Thrombosis

• **Unlikely:**
 – Female Reproduction
 – Central Nervous System
 – Cancer
Low Dose Aspirin

• Aspirin covalently inhibits platelet COX-1, providing cardioprotection and increased bleeding potential
 – NSAIDs transiently inhibit platelet COX-1

• Aspirin causes direct damage to the GI mucosa

• Low dose aspirin shown to increase risk of GI ulcer complications (Lanas et al., NEJM 2000; 343: 834)

CLASS data can provide insight into the GI effects of aspirin
Renal COX-1/COX-2

- Both COX isoforms are expressed constitutively
- Localization in laboratory animals is distinct from that in primate
- NDA database did not distinguish Celebrex from NSAIDs

CLASS database may provide further insight
Cardiovascular/Thrombosis

- Low dose aspirin reduces risk of a myocardial infarction by inhibiting platelet COX-1
 - Clear benefit during an acute MI, unstable angina, and in secondary prevention of MI
 - Marginal benefit in primary prevention of MI

- Blood vessels and endothelium produce PGI2 predominantly by COX-1

- Endothelium also produces the potent anti-thrombotic nitric oxide (NO)
Celecoxib NDA Study 065

Platelet Aggregation

*\textit{p} <0.05 vs placebo
Effect of Celecoxib on Human Urinary PGI$_2$ Metabolites: Potential for COX-2 and the Endothelium?

<table>
<thead>
<tr>
<th>Treatment</th>
<th>PGI-M (pg/mg creatinine)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td>117 +/- 49</td>
</tr>
<tr>
<td>Celecoxib, 400 mg</td>
<td>34 +/- 7</td>
</tr>
<tr>
<td>Celecoxib, 800 mg</td>
<td>23 +/- 9</td>
</tr>
<tr>
<td>Ibuprofen, 800 mg</td>
<td>51 +/- 19</td>
</tr>
</tbody>
</table>

Effect of Celecoxib on Human Urinary PGI$_2$ Metabolites

Potential for COX-2 and the Endothelium?

<table>
<thead>
<tr>
<th>Treatment</th>
<th>PGI-M (pg/mg creatinine)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td>117 +/- 49</td>
</tr>
<tr>
<td>Celecoxib, 400 mg</td>
<td>34 +/- 7</td>
</tr>
<tr>
<td>Celecoxib, 800 mg</td>
<td>23 +/- 9</td>
</tr>
<tr>
<td>Ibuprofen, 800 mg</td>
<td>51 +/- 19</td>
</tr>
</tbody>
</table>

- PGI$_2$ is a potent vasodilator and inhibits platelet aggregation

- McAdam et al. suggested that the endothelium is the source of the COX-2 and PGI$_2$

• NSAIDs inhibit both COX-1 and COX-2
 • No net effect on thrombosis
• COX-2 inhibitors allow unopposed production of TxA₂
 • Potential for increased risk for thrombotic events

If the hypothesis is correct, the expected effect would be similar to that of not taking aspirin in an “at risk” population
CLASS Trial: Potential for assessing CV risk

• The cardioprotective benefits of aspirin in reducing primary CV event (MI) - or for a COX-2 inhibitor to cause a CV event - requires a sample size of >20,000 patients, treated for five years (NEJM 321:129,1989)

• Therefore, the CLASS trial (~4000 pts) was not large enough to detect small CV effects due to COX-2 inhibition of endothelial PGI₂ production

• However, the CLASS trial was large enough to establish the general CV safety profile of Celebrex
Summary

• The preponderance of the clinical data supports the safety of the COX-2 inhibitor – Celebrex compared to NSAIDs
 – Endoscopy
 – Evaluation of ulcers and complications
 – Post-marketing surveillance

• Evaluation of exaggerated doses of Celebrex in a large controlled trial revealed no new safety signals.

• Celebrex did not increase thromboembolic events when compared to NSAIDs, in the absence or presence of aspirin.
CLASS

Celecoxib Long-term Arthritis Safety Study

Agenda

<table>
<thead>
<tr>
<th>Section</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>Philip Needleman, Ph.D.</td>
</tr>
<tr>
<td></td>
<td>Senior Executive Vice President</td>
</tr>
<tr>
<td></td>
<td>Chief Scientist and Chairman</td>
</tr>
<tr>
<td></td>
<td>Research and Development</td>
</tr>
<tr>
<td>UGI Safety Profile of NSAIDs and Celecoxib:</td>
<td>G. Steven Geis, Ph.D., M.D.</td>
</tr>
<tr>
<td>Rationale for CLASS Study</td>
<td>Vice President</td>
</tr>
<tr>
<td></td>
<td>Arthritis Clinical R&D</td>
</tr>
<tr>
<td>Safety Profile of Celecoxib:</td>
<td>James Lefkowith, M.D.</td>
</tr>
<tr>
<td>CLASS, Long Term Safety Trial</td>
<td>Senior Director</td>
</tr>
<tr>
<td></td>
<td>Arthritis Clinical R&D</td>
</tr>
<tr>
<td>Summary</td>
<td>Fred Silverstein, M.D.</td>
</tr>
<tr>
<td></td>
<td>Chairman</td>
</tr>
<tr>
<td></td>
<td>CLASS Executive Committee</td>
</tr>
</tbody>
</table>
Upper GI Safety Profile of NSAIDs and Celecoxib:

Rationale for CLASS Study

G. Steven Geis, PhD MD
Vice President, Arthritis Clinical R&D
Overview

- NSAID-associated upper GI toxicity
- Prospective trials to evaluate upper GI safety
- Upper GI safety of celecoxib
Overview

• **NSAID-associated upper GI toxicity**
 – Definition
 – Incidence
 – Patients at Risk

• Prospective trials to evaluate upper GI safety

• Upper GI safety of celecoxib
Clinical Evidence of NSAID-Related Upper GI Injury

- Symptomatic ulcers
- Ulcer complications
 - Perforation
 - Bleeding
 - Outlet obstruction
Symptomatic Ulcer
Ulcer with Visible Vessel
Bleeding Ulcer
Ulcer Perforation
Spectrum of NSAID-Related Upper GI Injury

Symptomatic Ulcer → Ulcer Complication
Clinical Evidence of NSAID-Related Upper GI Injury

- Symptomatic ulcers
- Ulcer complications
 - Perforation
 - Bleeding
 - Outlet obstruction

POB

PUB
Magnitude of NSAID-Related Upper GI Toxicity

• Observational cohort and retrospective cohort or case control studies
 – Examined hospital records for diagnoses of:
 • Symptomatic ulcers
 • Ulcer complications
Magnitude of NSAID-Related Upper GI Toxicity

Overall Incidence 2-4% per yr

Symptomatic Ulcers

Complicated Ulcers
Incidence of Ulcer Complications

Incidence (cases/100 pt-yr)

NSAIDs
- GI Hospitalizations: 1.31%
- Bleeding/Perforation: 1.66%

Non-NSAIDs
- GI Hospitalizations: 0.28%
- Bleeding/Perforation: 0.25%

NSAIDs: GI Morbidity and Mortality

<table>
<thead>
<tr>
<th></th>
<th>Patient Years</th>
<th>Hospitalizations</th>
<th>Deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. (Rate*)</td>
<td>No. (Rate*)</td>
<td>No. (Rate*)</td>
</tr>
<tr>
<td>Tennessee</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medicaid- ≥65 yrs¹ (est.)</td>
<td>2,340,000</td>
<td>41,000 (17.5)</td>
<td>3,300 (1.41)</td>
</tr>
<tr>
<td>Aramis² (est.)</td>
<td>13,000,000</td>
<td>107,000 (8.2)</td>
<td>16,500 (1.27)</td>
</tr>
</tbody>
</table>

* Per 1000 patient-years

Risk Factors for NSAID-Related Symptomatic Ulcers/Ulcer Complications

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increasing Age</td>
<td>+++</td>
</tr>
<tr>
<td>Female</td>
<td>+</td>
</tr>
<tr>
<td>Concomitant Disease</td>
<td></td>
</tr>
<tr>
<td>RA</td>
<td>++</td>
</tr>
<tr>
<td>CV Disease</td>
<td>++</td>
</tr>
<tr>
<td>History of Ulcer or GI Bleed</td>
<td>+++</td>
</tr>
<tr>
<td>Alcohol or Smoking</td>
<td>+</td>
</tr>
<tr>
<td>Medications</td>
<td></td>
</tr>
<tr>
<td>High dose, long-term NSAIDs</td>
<td>+++</td>
</tr>
<tr>
<td>Low dose ASA</td>
<td>+++</td>
</tr>
<tr>
<td>Anticoagulants</td>
<td>++</td>
</tr>
<tr>
<td>Corticosteroids</td>
<td>+</td>
</tr>
</tbody>
</table>
Odds Ratios for Ulcer Complications: Effect of NSAID Use and Age

<table>
<thead>
<tr>
<th>Age (Years)</th>
<th>15-59</th>
<th>60-79</th>
<th>≥80</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female Nonusers</td>
<td>1.0</td>
<td>3.3</td>
<td>8.8</td>
</tr>
<tr>
<td>Female NSAID Users</td>
<td>4.9</td>
<td>16.6</td>
<td>57.2</td>
</tr>
<tr>
<td>Male Nonusers</td>
<td>2.0</td>
<td>4.8</td>
<td>18.4</td>
</tr>
<tr>
<td>Male NSAID Users</td>
<td>10.4</td>
<td>19.4</td>
<td>50.6</td>
</tr>
</tbody>
</table>

Perez-Gutthan et al. Epidemiology 1997;8:18-24
Risk of Upper GI Bleeding Related to Prophylactic Aspirin

* CI - Confidence interval

Weil et al. BMJ 1995;310:827-830

Aspirin (Daily Dose)

Odds Ratio

- 75 mg: CI* 1.2-4.4
- 150 mg: CI 1.7-6.8
- 300 mg: CI 2.5-6.3
Risk of Upper GI Bleeding – Meta Analysis

<table>
<thead>
<tr>
<th>Drug</th>
<th>Odds Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ibuprofen</td>
<td>1.0 (ref)</td>
</tr>
<tr>
<td>Diclofenac</td>
<td>1.8 (1.4-2.3)</td>
</tr>
<tr>
<td>Diflunisal</td>
<td>2.2 (1.2-4.1)</td>
</tr>
<tr>
<td>Naproxen</td>
<td>2.2 (1.7-2.9)</td>
</tr>
<tr>
<td>Indomethacin</td>
<td>2.5 (1.5-4.1)</td>
</tr>
<tr>
<td>Sulindac</td>
<td>2.1 (1.6-2.7)</td>
</tr>
<tr>
<td>Piroxicam</td>
<td>3.8 (2.7-5.2)</td>
</tr>
<tr>
<td>Ketoprofen</td>
<td>4.2 (2.7-6.4)</td>
</tr>
</tbody>
</table>

Henry et al. BMJ;1996 312:1563-1566
Conclusions: NSAID-Related Upper GI Toxicity

• Symptomatic ulcers and ulcer complications are on a continuum of GI toxicity
• All NSAIDs are associated with symptomatic ulcers and ulcer complications
• Approximately 16,500 deaths/year due to NSAID GI toxicity
Overview

• **NSAID-associated upper GI toxicity**

• **Prospective trials to evaluate upper GI safety**
 – Endoscopic ulcers
 – Ulcer complications

• **Upper GI safety of celecoxib**
Definitions: NSAID-Related Upper GI Toxicity

- **Symptomatic ulcers**
 - GI toxicity encountered in clinical practice
 - Identified by “for cause” endoscopy

- **Endoscopic ulcers**
 - Measure of GI toxicity in clinical investigations
 - Identified by scheduled endoscopy in a clinical trial
Prevalence of Endoscopic Gastroduodenal Ulcers in NSAID Users

*Cefuroxime, sulindac, flurbiprofen, etodolac, ketoprofen, aspirin

Prevalence of Endoscopic Ulcers in NSAID Users

<table>
<thead>
<tr>
<th>Study</th>
<th>No. of Patients</th>
<th>Gastric Ulcer (%)</th>
<th>Duodenal Ulcer (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheatum et al.</td>
<td>1826</td>
<td>14</td>
<td>9</td>
</tr>
<tr>
<td>Nobunaga et al.</td>
<td>1008</td>
<td>24</td>
<td>5</td>
</tr>
<tr>
<td>Roth et al.</td>
<td>239</td>
<td>23</td>
<td>6</td>
</tr>
<tr>
<td>Farah et al.</td>
<td>18</td>
<td>19</td>
<td>7</td>
</tr>
<tr>
<td>Collins et al.</td>
<td>150</td>
<td>28</td>
<td>18</td>
</tr>
<tr>
<td>Sontag et al.</td>
<td>140</td>
<td>30</td>
<td>10</td>
</tr>
</tbody>
</table>
Prevalence of Endoscopic Gastrointestinal Ulcers by Age in NSAID Users

Patients with Ulcer (%)

30-39: n=186
40-49: n=382
50-59: n=127
60-69: n=129
70-79: n=67

Endoscopic Ulcers: Surrogates for Ulcer Complications?
Endoscopic Ulcers: Surrogates for Ulcer Complications?

• **Rationale:**
 – NSAIDs reduce mucosal prostaglandins and cause ulcers
 – Ulcers can result in bleeding, perforation or outlet obstruction

• **Development program for misoprostol (synthetic prostaglandin) investigated the relationship**
Design: 52-Week Endoscopy Study

- **Osteoarthritis or Rheumatoid Arthritis**
 - NSAID + placebo
 - NSAID + misoprostol

<table>
<thead>
<tr>
<th>Months</th>
<th>0</th>
<th>3</th>
<th>6</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endoscopy</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

- NSAID + misoprostol
- NSAID + placebo
- Osteoarthritis or Rheumatoid Arthritis
- Endoscopy

Design: 52-Week Endoscopy Study

Osteoarthritis or Rheumatoid Arthritis
- NSAID + placebo
- NSAID + misoprostol

<table>
<thead>
<tr>
<th>Months</th>
<th>0</th>
<th>3</th>
<th>6</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endoscopy</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Incidence of Endoscopic Gastroduodenal Ulcers Developing Over One Year

- NSAIDs + misoprostol (n=102)
- NSAIDs + placebo (n=102)

p = 0.018
MUCOSA: A Study of Relevant Outcomes

- Prospective randomized double-blind trial
- Primary endpoint
 - Ulcer complications (bleeding, perforation, obstruction)
MUCOSA: Trial Design

- The design paralleled normal medical practice
- No scheduled endoscopy
Ulcer Complications: MUCOSA Definitions

1. Perforation
2. Gastric outlet obstruction
3. Lesion + hematemesis
4. Lesion + melena
5. Lesion + evidence of bleeding (active bleeding, signs of recent hemorrhage, blood in the stomach)
6. Lesions + hemoccult positive stool + evidence of recent bleed (drop in hematocrit, orthostasis)
7. Hematemesis without identified lesion; no alternate cause
8. Melena plus hemoccult positive stool
MUCOSA
Ulcer Complications: Time to Event Analysis

Placebo + NSAIDs (n=4439)
Misoprostol + NSAIDs (n=4404)

Incidence (% per 6 mo)

Time (Days)

p = 0.031

Conclusions: Prospective GI Safety Trials

- Endoscopic ulcers and ulcer complications are reliable endpoints for investigating GI safety
- Endoscopic ulcers are predicative of ulcer complications
 - Exogenous prostaglandins reduce both endoscopic ulcers and ulcer complications by ~50%1,2

Overview

- NSAID-associated upper GI toxicity
- Prospective Trials to Evaluate Upper GI Safety
- Upper GI Safety of Celecoxib
NDA: Celecoxib Endoscopy Studies

- Endoscopies in over 4,700 arthritis patients
- Incidence of upper GI ulcers
 - similar to placebo in replicate studies
 - statistically lower compared to:
 - naproxen
 - diclofenac
 - ibuprofen
NDA: Incidence of Gastroduodenal Ulcers
3 Month Endoscopy Trials

ND = Not Done
* Significantly different from all other treatments; p < 0.05
NDA: Incidence of Gastroduodenal Ulcers
6-Month Endoscopic Study

Patients with Ulcer (%)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Celecoxib 200 mg BID (n=212)</td>
<td>4</td>
</tr>
<tr>
<td>Diclofenac SR 75 mg BID (n=218)</td>
<td>16</td>
</tr>
</tbody>
</table>

* Significantly different from celecoxib; p <0.001
NDA: Prospective Evaluation of GI Effects

- Endoscopy findings
 - 5 arthritis trials
- Analyses of upper GI ulcer complications
Methods: Analyses of Ulcer Complications

- 14 randomized controlled trials and one open-label trial of OA and RA patients
- Criteria for upper GI ulcer complications were prospectively developed
- Cases were adjudicated by Events Committee
 - Blinded to the trial and
 - Blinded to the study drug
Upper GI Ulcer Complications - Definitions

- Upper GI Perforation
- Gastric Outlet Obstruction
- Upper GI Bleeding
NDA: Ulcer Complications

<table>
<thead>
<tr>
<th></th>
<th>Controlled Trials</th>
<th>Open Label Trial</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. Patients</td>
<td>11,008</td>
<td>5155</td>
</tr>
<tr>
<td>Duration</td>
<td>12 weeks</td>
<td>2 years</td>
</tr>
<tr>
<td>Primary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Celecoxib Doses</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>200 – 400 mg /day</td>
<td></td>
</tr>
</tbody>
</table>
NDA: Incidence of Ulcer Complications

* Significantly different from all other treatments; p < 0.05
Goldstein et al. Am J Gastroenterol 2000;95:1681-1690
NDA Conclusions: GI Effects of Celecoxib

• **Incidence of endoscopic ulcers**
 – Similar to placebo
 – Lower than NSAIDs

• **Endoscopic ulcer data were predictive of ulcer complication results**

• **Incidence of ulcer complications**
 – Lower than NSAIDs
Clinical Relevance

• The generalizability of the ulcer complications analysis was uncertain:

 – About 40% of patients were ulcer free by endoscopy at study entry
 – Most studies were 3 months in duration
Rationale for CLASS

• Rigorous assessment of upper GI safety of celecoxib:
 • Using clinically relevant outcomes
 • In patients that fully represent the intended population
 • With chronic exposure
CLASS Design

- Large prospective randomized study
- Mirror usual medical practice
 - Endoscopy performed “for cause”
- Included:
 - OA and RA patients
 - High risk patients
 - Low dose ASA
- Celecoxib 400 mg BID (4X OA dose; 2X highest RA dose)
- Longer duration of exposure (up to 15 mo)
The End
Safety Profile of Celecoxib:

CLASS

Celecoxib Long-term Arthritis Safety Study

James B. Lefkowith, MD
Sr. Director, Arthritis Clinical R&D
CLASS Design Overview

• “Real world” study
 – Clinical practice conditions
 – Low dose aspirin allowed
 – RA and OA patients included

• Stringent test of safety
 – Celecoxib: 2-4x RA and OA doses
 – NSAID Comparators: Ibuprofen, Diclofenac
CLASS Design

• Objectives
• Study design
• Analysis plan
• Oversight committees
Objectives

Celecoxib vs. NSAIDs (ibuprofen, diclofenac)

• Compare the incidence of:
 – ulcer complications
 – symptomatic ulcers
• Evaluate impact of risk factors on outcome: ASA
• Compare general safety and tolerability
CLASS Design

- Objectives
- Study design
- Analysis plan
- Oversight committees
CLASS Trial

Design:
- Double-blind, randomized, parallel group
- Two protocols - pooled analysis
- Minimum 6 months exposure

Inclusions:
- OA and RA patients

Exclusions:
- History of:
 - recent or active GI disease
- Labeled contraindications
CLASS Trial

Co-Meds:
- **Permitted:**
 - ASA ≤ 325 mg/d
 - limited antacid use
- **Excluded:**
 - anti-ulcer drugs (H₂RAs, PPIs)
 - NSAIDs

Treatments:
- Celecoxib 400 mg BID
- Diclofenac 75 mg BID
- Ibuprofen 800 mg TID
CLASS Trial

- Power calculation:
 - Ulcer complication rate:
 - celecoxib vs. NSAIDs
 0.3 vs. 1.2 events/100 pt-yrs
 - assumptions:
 constant incidence rates
 ASA use ~ 12%
 - 40 total events; 8000 patients
 - 4000 celecoxib
 - 4000 NSAIDs (2000 per comparator)
CLASS Design

- Objectives
- Study design
- Analysis plan
- Oversight committees
Analysis Plan

• **Endpoints analyzed**
 – Ulcer complications
 – Symptomatic ulcers/ulcer complications

• **Statistics**
 – Intent-to-Treat Analysis
 – Log-rank test of time-to-event
 – Step-wise comparison
 • Celecoxib vs. NSAIDs combined
 • Celecoxib vs. each NSAID
Analysis Plan

• Risk Factors
 • ASA use
 • Risk factors defined by MUCOSA
 • Age ≥ 75 y
 • History of ulcer
 • History of GI bleeding
 • Cardiovascular disease
 • Others (e.g., alcohol intake, smoking)
CLASS Design

- Objectives
- Study design
- Analysis plan
- Oversight committees
CLASS Committees

Executive Committee
- Fred Silverstein, M.D (Chair)
- Lee Simon, M.D.
- Gerald Faich, M.D.

GI Events Committee
- Jay Goldstein, M.D. (Chair)
- Naurang Agrawal, M.D.
- William Stenson, M.D.
- Glenn Eisen, M.D.

Data Safety Monitoring Board
- Gerald Faich, M.D. (Chair)
- Robert Makuch, Ph.D.
- Andrew Whelton, M.D.
- Theodore Pincus, M.D.
CLASS Committee Charters

- **GI Events Committee - GEC**
 - Review potential GI events

- **Data Safety Monitoring Board - DSMB**
 - Evaluate safety data

- **Executive Committee - EC**
 - Monitor and administer study conduct
Algorithm for Work-Up of Suspected Events by Investigator

Monitor for signs and/or symptoms of ulcer complications (e.g., dyspepsia, abdominal pain, anemia or melena)

If Present

Obtain further clinical data
- stool heme x 3
- Hct and Hgb
- orthostatic vital signs

If Indicated

Endoscope or contrast x-ray

Clinical follow-up as appropriate
Algorithm for Work-Up of Suspected Events by Investigator

Monitor for signs and/or symptoms of ulcer complications (e.g., dyspepsia, abdominal pain, anemia or melena)

If Present
- Obtain further clinical data
 - stool heme x 3
 - Hct and Hgb
 - orthostatic vital signs

If Indicated
- Endoscopy or contrast x-ray

Clinical follow-up as appropriate

Report Case to GEC
Evaluation Process

Potential Events Reported

GEC Review

Ulcer Complication
Symptomatic Ulcer
Other Diagnosis*

*Other diagnoses: esophagitis, gastritis, duodenitis, anemia etc
Ulcer Complications

Prospectively defined:

- Bleeding
- Perforation
- Gastric Outlet Obstruction

All ulcer complications required endoscopic/contrast x-ray evidence of an ulcer or large erosion
Ulcerc Complications: Bleeding

1A. Hematemesis + lesion
1B. Active bleeding/stigmata + lesion
1C. Melena + lesion
1D. Hemoccult positive stool + lesion + clinical evidence of blood loss
Symptomatic Ulcers

Prospectively defined:

- Mucosal break with unequivocal depth
- Found on “for cause” work-up (to investigate a sign or symptom)

All ulcers required endoscopic/contrast x-ray evidence
CLASS Results

GI Outcomes
- Study population
- GI Outcomes
 - Intent-to-treat
 - Risk Factors
 - Effect of ASA Use
 - RA vs OA
- Sources of Bias

General Safety
- Overall Safety
- Analysis by System
 - GI
 - Renal
 - Hepatic
 - CV/Thromboembolic
- Analysis in ASA users
- Analysis by Age
Demographics

<table>
<thead>
<tr>
<th></th>
<th>Celecoxib 400 mg BID (n=3987)</th>
<th>Diclofenac 75 mg BID (n=1996)</th>
<th>Ibuprofen 800 mg TID (n=1985)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yrs, mean)</td>
<td>60.6</td>
<td>60.1</td>
<td>59.5</td>
</tr>
<tr>
<td>Female (%)</td>
<td>69</td>
<td>67</td>
<td>71</td>
</tr>
<tr>
<td>Ethnicity (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caucasian</td>
<td>88.5</td>
<td>89.4</td>
<td>86.3</td>
</tr>
<tr>
<td>Black</td>
<td>7.5</td>
<td>7.6</td>
<td>8.7</td>
</tr>
<tr>
<td>Other</td>
<td>4.0</td>
<td>3.1</td>
<td>5.1</td>
</tr>
<tr>
<td>OA (%)</td>
<td>72.7</td>
<td>72.8</td>
<td>72.2</td>
</tr>
</tbody>
</table>
Baseline Risk Factors for Ulcer Complications

<table>
<thead>
<tr>
<th></th>
<th>Celecoxib 400 mg BID (n=3987)</th>
<th>Diclofenac 75 mg BID (n=1996)</th>
<th>Ibuprofen 800 mg TID (n=1985)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥75 years (%)</td>
<td>12.2</td>
<td>11.8</td>
<td>10.9</td>
</tr>
<tr>
<td>Hx GI Bleed (%)</td>
<td>1.7</td>
<td>1.5</td>
<td>1.4</td>
</tr>
<tr>
<td>Hx of Ulcer (%)</td>
<td>8.4</td>
<td>8.5</td>
<td>7.6</td>
</tr>
<tr>
<td>Hx of CV Dz (%)</td>
<td>40.2</td>
<td>40.3</td>
<td>40.0</td>
</tr>
</tbody>
</table>
Concurrent Medications

<table>
<thead>
<tr>
<th>Medication</th>
<th>Celecoxib 400 mg BID (n=3987)</th>
<th>Diclofenac 75 mg BID (n=1996)</th>
<th>Ibuprofen 800 mg TID (n=1985)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASA (%)</td>
<td>22.1</td>
<td>22.3</td>
<td>20.8</td>
</tr>
<tr>
<td>Steroids(^1) (%)</td>
<td>30.6</td>
<td>28.5</td>
<td>30.6</td>
</tr>
<tr>
<td>Anticoagulants (%)</td>
<td>1.1</td>
<td>1.2</td>
<td>1.0</td>
</tr>
<tr>
<td>OTC NSAIDs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ibuprofen (%)</td>
<td>4.4</td>
<td>4.9</td>
<td>3.3</td>
</tr>
<tr>
<td>Naproxen (%)</td>
<td>1.8</td>
<td>1.3</td>
<td>1.5</td>
</tr>
</tbody>
</table>

1. Includes oral, IA, IM, topical and inhaled steroids
Treatment Exposure

<table>
<thead>
<tr>
<th></th>
<th>Celecoxib 400 mg BID (n=3987)</th>
<th>Diclofenac 75 mg BID (n=1996)</th>
<th>Ibuprofen 800 mg TID (n=1985)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Duration</td>
<td>212</td>
<td>197</td>
<td>206</td>
</tr>
<tr>
<td>(days)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Exposure</td>
<td>446</td>
<td>374</td>
<td>456</td>
</tr>
<tr>
<td>(days)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Exposure</td>
<td>2320</td>
<td>1081</td>
<td>1123</td>
</tr>
<tr>
<td>(pt-yrs)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Demographics - OA

<table>
<thead>
<tr>
<th></th>
<th>Celecoxib 400 mg BID (n=2898)</th>
<th>Diclofenac 75 mg BID (n=1453)</th>
<th>Ibuprofen 800 mg TID (n=1434)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yrs, mean)</td>
<td>62.4</td>
<td>62.0</td>
<td>60.9</td>
</tr>
<tr>
<td>Female (%)</td>
<td>67</td>
<td>68</td>
<td>69</td>
</tr>
<tr>
<td>Duration (yrs)</td>
<td>10.3</td>
<td>10.4</td>
<td>9.9</td>
</tr>
<tr>
<td>Prior NSAID use (%)*</td>
<td>71</td>
<td>71</td>
<td>73</td>
</tr>
</tbody>
</table>

*Excluding ASA
Demographics - RA

<table>
<thead>
<tr>
<th></th>
<th>Celecoxib 400 mg BID (n=1089)</th>
<th>Diclofenac 75 mg BID (n=543)</th>
<th>Ibuprofen 800 mg TID (n=551)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yrs, mean)</td>
<td>55.8</td>
<td>55.1</td>
<td>55.8</td>
</tr>
<tr>
<td>Female (%)</td>
<td>71</td>
<td>65</td>
<td>74</td>
</tr>
<tr>
<td>Duration (yrs)</td>
<td>11.3</td>
<td>10.5</td>
<td>10.9</td>
</tr>
<tr>
<td>Prior NSAID use (%)*</td>
<td>76</td>
<td>74</td>
<td>78</td>
</tr>
<tr>
<td>Steroid use (oral, %)</td>
<td>45</td>
<td>43</td>
<td>48</td>
</tr>
<tr>
<td>Methotrexate use (%)</td>
<td>44</td>
<td>46</td>
<td>39</td>
</tr>
</tbody>
</table>

*Excluding ASA
Patient Disposition

Completers

Adverse Event

Treatment Failure

Other

Lost to Follow Up

 withdrawal

Celecoxib 400 mg BID (n=3987)

Diclofenac 75 mg BID (n=1996)

Ibuprofen 800 mg TID (n=1985)

Percent of Patients

* p < 0.05 versus celecoxib
Study Population - Summary

- Representative OA/RA cohort
 - ASA use: 22%
- No lost to follow up patients
- Substantial exposure: up to 15 months
- Higher incidence of withdrawals vs. celecoxib:
 - ibuprofen: treatment failure
 - diclofenac: adverse events
CLASS Results

GI Outcomes
- Study population
- GI Outcomes
 - Intent-to-treat
 - Risk Factors
 - Effect of ASA Use
 - RA vs OA
- Sources of Bias

General Safety
- Overall Safety
- Analysis by System
 - GI
 - Renal
 - Hepatic
 - CV/Thromboembolic
- Analysis in ASA users
- Analysis by Age
Evaluation Process

Potential Events Reported
(n = 1527)

GEC Review
(n = 1527)

Ulcuer Complication
38 Uncensored
6 Censored
44 Total

Symptomatic Ulcer
(n = 67)

Other Diagnosis*
(n = 1254)

*Other diagnoses: esophagitis, gastritis, duodenitis, anemia etc
Ulcer Complications

Incidence (Events/ 100 pt-yrs)

p = 0.45

p value by log rank test

Celecoxib (n=3987)

NSAIDs (n=3981)
Symptomatic Ulcers/Ulcer Complications

Incidence
(Events/100 pt-yrs)

Celecoxib (n=3987)

NSAIDs (n=3981)

p=0.040

p value by log rank test
Incidence of Symptomatic Ulcers/Ulcer Complications

- Celecoxib 400 mg BID (n=3987)
- NSAIDs (n=3981)

Log Rank p-value
Celecoxib vs. NSAIDs 0.04
Symptomatic Ulcer/Ulcer Complications

Incidence (Events/100 pt-yrs)

- Celecoxib (n=3987)
- Diclofenac (n=1996)

p value by log rank test: p=0.296
Symptomatic Ulcer/Ulcer Complications

Celecoxib (n=3987)
Ibuprofen (n=1985)

\[p = 0.017 \]

\[\text{Incidence (Events/100 pt-yrs)} \]

\[p \text{ value by log rank test} \]
Incidence of Symptomatic Ulcers/ Ulcer Complications

<table>
<thead>
<tr>
<th>Days</th>
<th>Percent (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Celecoxib 400 mg BID (n=3987)</td>
</tr>
<tr>
<td></td>
<td>Ibuprofen 800 mg TID (n=1985)</td>
</tr>
</tbody>
</table>

Log Rank p-value
Celecoxib vs. Ibuprofen 0.017
UGI Outcomes - Summary

• Celecoxib vs. NSAIDs:
 – Lower incidence of symptomatic ulcers/ulcer complications

• Celecoxib vs. ibuprofen:
 – Lower incidence of symptomatic ulcers/ulcer complications
CLASS Results

GI Outcomes

• Study population
• GI Outcomes
 – Intent-to-treat
 – Risk Factors
 – Effect of ASA Use
 – RA vs OA
• Sources of Bias

General Safety

• Overall Safety
• Analysis by System
 – GI
 – Renal
 – Hepatic
 – CV/Thromboembolic
• Analysis in ASA users
• Analysis by Age
Prespecified Risk Factor Analyses

• **Demographics:**
 – Age, Gender, Alcohol or Tobacco use

• **Disease:**
 – OA vs. RA, Duration, Severity

• **Concomitant medications:**
 – ASA, Steroids, Anti-coagulants

• **History of:**
 – UGI Bleed, GD Ulcer, CV Disease

• **Positive *H. pylori* serology**
Risk Factors for Symptomatic Ulcers/Ulcer Complications

• Significant:
 – Age \geq 75 yrs
 – History of ulcer disease
 – History of UGI bleeding
 – ASA use (CV disease)

• Significant effect on treatment outcome:
 – ASA
Risk Factors for Symptomatic Ulcers/Ulcer Complications

• Not significant:
 – Gender
 – Alcohol
 – Tobacco use
 – Arthritis type (OA vs RA) or duration
 – Steroid use
Risk Factors - Summary

• Data confirm MUCOSA study risk factor analysis

• ASA use affects analysis of UGI outcomes
CLASS Results

GI Outcomes

• Study population
• GI Outcomes
 – Intent-to-treat
 – Risk Factors
 – Effect of ASA Use
• RA vs OA
• Sources of Bias

General Safety

• Overall Safety
• Analysis by System
 – GI
 – Renal
 – Hepatic
 – CV/Thromboembolic
• Analysis in ASA users
• Analysis by Age
Symptomatic Ulcer/Ulcer Complications

Incidence (Events/100 pt-yrs)

ASA

- Celecoxib: (n=882)
- NSAIDs: (n=867)

p = 0.618

Non-ASA

- Celecoxib: (n=3105)
- NSAIDs: (n=3124)

p = 0.02

p value by log rank test
Symptomatic Ulcer/Ulcer Complications

Incidence (Events/100 pt-yrs)

ASA

Non-ASA

p=0.001

p=0.462

p value by log rank test

Celecoxib

Ibuprofen

(n=882) (n=412) (n=3105) (n=1573)
Incidence of Symptomatic Ulcers/ Ulcer Complications

- **Celecoxib 400 mg BID (n=3105)**
- **Ibuprofen 800 mg TID (n=1573)**

Log Rank p-value
Celecoxib vs. Ibuprofen <0.001
Non-ASA

Ulcer Complications

Incidence
(Events/100 pt-yrs)

p = 0.037

Celecoxib 400 mg BID (n=3105)

Ibuprofen 800 mg TID (n=1573)

p value by log rank test
ASA Use and UGI Outcomes - Summary

• **Non-ASA users:**
 – Lower incidence of symptomatic ulcers/ulcer complications vs. NSAIDs and ibuprofen

• **ASA users:**
 – No difference in symptomatic ulcers/ulcer complications vs. NSAIDs and ibuprofen
CLASS Results

GI Outcomes
- Study population
- GI Outcomes
 - Intent-to-treat
 - Risk Factors
 - Effect of ASA Use
 - RA vs OA
- Sources of Bias

General Safety
- Overall Safety
- Analysis by System
 - GI
 - Renal
 - Hepatic
 - CV/Thromboembolic
- Analysis in ASA users
- Analysis by Age
Incidence of Symptomatic Ulcers/ Ulcer Complications

- Celecoxib 400 mg BID (n=3987)
- NSAIDs (n=3981)

OA: Incidence (Events/100 pt-yrs) = 2
RA: Incidence (Events/100 pt-yrs) = 3

$p = 0.086$ for OA
$p = 0.04$ for RA
Incidence of Symptomatic Ulcers/Ulcer Complications

- Celecoxib 400 mg BID (n=3105)
- NSAIDs (n=3124)

RA

Incidence (Events/100 pt-yrs)

OA

p = 0.088

p = 0.02
Incidence of Symptomatic Ulcers/
Ulcer Complications

<table>
<thead>
<tr>
<th></th>
<th>Celecoxib</th>
<th>Ibuprofen</th>
</tr>
</thead>
<tbody>
<tr>
<td>OA</td>
<td>(n=2989)</td>
<td>(n=1434)</td>
</tr>
<tr>
<td>RA</td>
<td>(n=1089)</td>
<td>(n=581)</td>
</tr>
</tbody>
</table>

Incidence (Events/100 pt-yrs)

- OA: p = 0.112
- RA: p = 0.017

p value by log rank test
Incidence of Symptomatic Ulcers/ Ulcer Complications

Non-ASA

- OA
 - Celecoxib: (n=2172) 1.5 events/100 pt-yrs
 - Ibuprofen: (n=1104) 2.5 events/100 pt-yrs
 - p = 0.017

- RA
 - Celecoxib: (n=933) 2.0 events/100 pt-yrs
 - Ibuprofen: (n=469) 3.0 events/100 pt-yrs
 - p < 0.001

p value by log rank test
Incidence of Symptomatic Ulcers/Ulcer Complications - RA

- **Celecoxib 400 mg BID (n=933)**
- **Ibuprofen 800 mg TID (n=469)**

Log Rank p-value
Celecoxib vs. Ibuprofen <0.001
Analysis of UGI Outcomes in OA/RA - Summary

OA vs. RA:

• Similar incidence of symptomatic ulcers/ulcer complications

• Similar treatment differences between celecoxib and NSAIDs

• Similar treatment differences between celecoxib and ibuprofen
CLASS Results

GI Outcomes

- Study population
- GI Outcomes
 - Intent-to-treat
 - Risk Factors
 - Effect of ASA Use
 - RA vs OA
- Sources of Bias

General Safety

- Overall Safety
- Analysis by System
 - GI
 - Renal
 - Hepatic
 - CV/Thromboembolic
- Analysis in ASA users
- Analysis by Age
Sources of Bias In Ulcer Complications Analysis

• ASA use
• Withdrawal of patients with symptomatic ulcers
Potential Source of Bias

Treatment Initiation → Ulcer Complications
Potential Source of Bias

- Treatment Initiation
- Symptomatic Ulcers
- Ulcer Complications
- Withdrawn

Potential Source of Bias
Incidence of Symptomatic Ulcers

Incidence (Events/100 pt-yrs)

- Celecoxib (n=3987)
- NSAIDs (n=3981)

p=0.045
Sources of Bias - Summary

• **Celecoxib vs. NSAIDs:**
 – Lower incidence of symptomatic ulcers

• **Withdrawals of symptomatic ulcers may bias the analysis of ulcer complications**
CLASS Results

GI Outcomes

• Study population
• GI Outcomes
 – Intent-to-treat
 – Risk Factors
 – Effect of ASA Use
 – RA vs OA
• Sources of Bias

General Safety

• Overall Safety
• Analysis by System
 – GI
 – Renal
 – Hepatic
 – CV/Thromboembolic
• Analysis in ASA users
• Analysis by Age
Deaths and Serious Adverse Events

<table>
<thead>
<tr>
<th></th>
<th>Celecoxib 400 mg BID (2320 pt yrs)</th>
<th>Diclofenac 75 mg BID (1081 pt yrs)</th>
<th>Ibuprofen 800 mg TID (1123 pt yrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Deaths</td>
<td>0.8</td>
<td>0.8</td>
<td>0.7</td>
</tr>
<tr>
<td>Cardiac</td>
<td>0.5</td>
<td>0.5</td>
<td>0.4</td>
</tr>
<tr>
<td>Overall Serious AEs</td>
<td>11.6</td>
<td>10.3</td>
<td>10.6</td>
</tr>
<tr>
<td>Cardiac</td>
<td>2.1</td>
<td>1.6</td>
<td>1.7</td>
</tr>
<tr>
<td>Gastrointestinal*</td>
<td>1.9</td>
<td>2.1</td>
<td>1.7</td>
</tr>
<tr>
<td>Dermatologic</td>
<td>0.0</td>
<td><0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>Renal</td>
<td>0.4</td>
<td><0.1</td>
<td>0.4</td>
</tr>
</tbody>
</table>

*Includes all esophageal, gastric, intestinal, colonic, and pancreatic SAEs.
Common Adverse Events (≥ 5%)

<table>
<thead>
<tr>
<th>Adverse Event</th>
<th>Celecoxib 400 mg BID (n=3987)</th>
<th>Diclofenac 75 mg BID (n=1996)</th>
<th>Ibuprofen 800 mg TID (n=1985)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any Event</td>
<td>81.8</td>
<td>82.9</td>
<td>79.5</td>
</tr>
<tr>
<td>Dyspepsia</td>
<td>16.5</td>
<td>19.5*</td>
<td>16.5</td>
</tr>
<tr>
<td>Headache</td>
<td>13.9</td>
<td>16.6*</td>
<td>13.0</td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>11.7</td>
<td>18.5*</td>
<td>11.3</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>10.9</td>
<td>15.0*</td>
<td>7.5*</td>
</tr>
<tr>
<td>Nausea</td>
<td>8.2</td>
<td>12.1*</td>
<td>9.0</td>
</tr>
<tr>
<td>Flatulence</td>
<td>7.3</td>
<td>11.4*</td>
<td>7.2</td>
</tr>
</tbody>
</table>

*p <0.05 versus celecoxib
<table>
<thead>
<tr>
<th>Adverse Event</th>
<th>Celecoxib 400 mg BID (n=3987)</th>
<th>Diclofenac 75 mg BID (n=1996)</th>
<th>Ibuprofen 800 mg TID (n=1985)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any Event</td>
<td>81.8</td>
<td>82.9</td>
<td>79.5</td>
</tr>
<tr>
<td>Rash</td>
<td>6.2</td>
<td>2.8*</td>
<td>3.8*</td>
</tr>
<tr>
<td>Anemia</td>
<td>4.4</td>
<td>5.3</td>
<td>8.7*</td>
</tr>
<tr>
<td>Bronchitis</td>
<td>4.0</td>
<td>4.1</td>
<td>5.1*</td>
</tr>
<tr>
<td>Edema Peripheral</td>
<td>3.7</td>
<td>3.5</td>
<td>5.2*</td>
</tr>
<tr>
<td>Constipation</td>
<td>2.2</td>
<td>6.8*</td>
<td>6.5*</td>
</tr>
<tr>
<td>ALT increased</td>
<td>1.0</td>
<td>5.1*</td>
<td>1.2</td>
</tr>
</tbody>
</table>

* p <0.05 versus celecoxib
Adverse Events Causing Withdrawal ≥1%

<table>
<thead>
<tr>
<th>Adverse Event</th>
<th>Celecoxib 400 mg BID (n=3987)</th>
<th>Diclofenac 75 mg BID (n=1996)</th>
<th>Ibuprofen 800 mg TID (n=1985)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any Event</td>
<td>22.4</td>
<td>26.5*</td>
<td>23.0</td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>4.3</td>
<td>6.5*</td>
<td>4.9</td>
</tr>
<tr>
<td>Rash</td>
<td>2.1</td>
<td>0.7*</td>
<td>1.3*</td>
</tr>
<tr>
<td>Nausea</td>
<td>1.7</td>
<td>2.8*</td>
<td>1.8</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>1.4</td>
<td>2.7*</td>
<td>0.8*</td>
</tr>
<tr>
<td>Gastric Ulcer</td>
<td>0.3</td>
<td>0.7</td>
<td>1.0*</td>
</tr>
<tr>
<td>AST increased</td>
<td>0.1</td>
<td>2.1*</td>
<td>0.1</td>
</tr>
<tr>
<td>ALT increased</td>
<td><0.1</td>
<td>2.3*</td>
<td>0.1</td>
</tr>
<tr>
<td>Hepatic function abn</td>
<td><0.1</td>
<td>1.1*</td>
<td><0.1</td>
</tr>
</tbody>
</table>

* p <0.05 versus celecoxib
Celecoxib General Safety - Summary

• Celecoxib is well tolerated at 400 mg BID

• No dose- or duration-related increases in adverse events except non-serious rash
CLASS Results

GI Outcomes
- Study population
- GI Outcomes
 - Intent-to-treat
 - Risk Factors
 - Effect of ASA Use
 - RA vs OA
- Sources of Bias

General Safety
- Overall Safety
- Analysis by System
 - GI
 - Renal
 - Hepatic
 - CV/Thromboembolic
- Analysis in ASA users
- Analysis by Age
GI Adverse Events (%)

<table>
<thead>
<tr>
<th>Adverse Event</th>
<th>Celecoxib 400 mg BID (n=3987)</th>
<th>Diclofenac 75 mg BID (n=1996)</th>
<th>Ibuprofen 800 mg TID (n=1985)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any Event</td>
<td>45.6</td>
<td>55.0*</td>
<td>46.2</td>
</tr>
<tr>
<td>Dyspepsia</td>
<td>16.5</td>
<td>19.5*</td>
<td>16.5</td>
</tr>
<tr>
<td>Abdominal Pain</td>
<td>11.7</td>
<td>18.5*</td>
<td>11.3</td>
</tr>
<tr>
<td>Nausea</td>
<td>8.2</td>
<td>12.1*</td>
<td>9.0</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>10.9</td>
<td>15.0*</td>
<td>7.5*</td>
</tr>
<tr>
<td>Constipation</td>
<td>2.2</td>
<td>6.8*</td>
<td>6.5*</td>
</tr>
<tr>
<td>Withdrawals</td>
<td>12.2</td>
<td>16.6*</td>
<td>13.4</td>
</tr>
</tbody>
</table>

* p <0.05 versus celecoxib
Clinically Significant Changes in Hct/Hgb (Decreases in Hct ≥10 % points and/or Hgb >2 g/dL)

* p <0.05 versus celecoxib
Mean Change From Baseline of Iron / Total Iron Binding Capacity

CELECOXIB (n=143) DICLOFENAC (n=81) IBUPROFEN (n=100)

* p <0.05 versus celecoxib
Celecoxib GI Safety - Summary

- Lower incidence of:
 - GI adverse events and withdrawals than diclofenac
 - Clinically significant reductions in Hgb/Hct than ibuprofen and diclofenac
- Decreases in iron stores and Hgb/Hct suggest chronic GI blood loss
CLASS Results

GI Outcomes

• Study population
• GI Outcomes
 – Intent-to-treat
 – Risk Factors
 – Effect of ASA Use
 – RA vs OA
• Sources of Bias

General Safety

• Overall Safety
• Analysis by System
 – GI
 – Renal
 – Hepatic
 – CV/Thromboembolic
• Analysis in ASA users
• Analysis by Age
Renal Adverse Events ≥1%

<table>
<thead>
<tr>
<th></th>
<th>Celecoxib 400 mg BID (n=3987)</th>
<th>Diclofenac 75 mg BID (n=1996)</th>
<th>Ibuprofen 800 mg TID (n=1985)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any Event</td>
<td>8.9</td>
<td>9.0</td>
<td>11.7*</td>
</tr>
<tr>
<td>Hypertension</td>
<td>2.0</td>
<td>2.0</td>
<td>3.1*</td>
</tr>
<tr>
<td>Hypertension aggr.</td>
<td>0.8</td>
<td>0.6</td>
<td>1.2</td>
</tr>
<tr>
<td>Edema generalized</td>
<td>0.5</td>
<td>0.6</td>
<td>1.0*</td>
</tr>
<tr>
<td>Edema peripheral</td>
<td>3.7</td>
<td>3.5</td>
<td>5.2*</td>
</tr>
<tr>
<td>Creatinine increased</td>
<td>1.3</td>
<td>1.9</td>
<td>1.2</td>
</tr>
<tr>
<td>BUN increased</td>
<td>1.1</td>
<td>1.7</td>
<td>0.9</td>
</tr>
<tr>
<td>Withdrawals</td>
<td>1.6</td>
<td>1.3</td>
<td>1.7</td>
</tr>
</tbody>
</table>

* p <0.05 versus celecoxib
Clinically Significant Renal Lab Abnormalities
(BUN ≥ 40 mg% and/or Cr ≥ 1.8 mg%)

Percent of Patients

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dose/Lowering</th>
<th>Percent of Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Celecoxib</td>
<td>400 mg BID</td>
<td>0.5</td>
</tr>
<tr>
<td>Diclofenac</td>
<td>75 mg BID</td>
<td>2.0</td>
</tr>
<tr>
<td>Ibuprofen</td>
<td>800 mg TID</td>
<td>1.3</td>
</tr>
</tbody>
</table>

* $p <0.05$ versus celecoxib
Celecoxib Renal Safety - Summary

• Lower incidence of:
 – Hypertension and edema than ibuprofen
 – Clinically significant increases in creatinine and/or BUN than diclofenac
CLASS Results

GI Outcomes
- Study population
- GI Outcomes
 - Intent-to-treat
 - Risk Factors
 - Effect of ASA Use
 - RA vs OA
- Sources of Bias

General Safety
- Overall Safety
- Analysis by System
 - GI
 - Renal
 - Hepatic
 - CV/Thromboembolic
- Analysis in ASA users
- Analysis by Age
Clinically Significant Elevations in Hepatic Transaminases (3x ULN)

* p <0.05 versus celecoxib

- Celecoxib 400 mg BID (n=3987)
- Diclofenac 75 mg BID (n=1996)
- Ibuprofen 800 mg TID (n=1985)
Celecoxib Hepatic Safety - Summary

• Lower incidence of clinically significant transaminase elevations than diclofenac
CLASS Results

GI Outcomes

• Study population
• GI Outcomes
 – Intent-to-treat
 – Risk Factors
 – Effect of ASA Use
 – RA vs OA
• Sources of Bias

General Safety

• Overall Safety
• Analysis by System
 – GI
 – Renal
 – Hepatic
 – CV/Thromboembolic
• Analysis in ASA users
• Analysis by Age
<table>
<thead>
<tr>
<th>Event</th>
<th>Celecoxib (n=3987)</th>
<th>Diclofenac (n=1996)</th>
<th>Ibuprofen (n=1985)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any Event</td>
<td>2.5</td>
<td>2.1</td>
<td>2.2</td>
</tr>
<tr>
<td>MI</td>
<td>0.5</td>
<td>0.3</td>
<td>0.5</td>
</tr>
<tr>
<td>Angina</td>
<td>0.6</td>
<td>0.5</td>
<td>0.6</td>
</tr>
<tr>
<td>CAD</td>
<td>0.6</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>Unstable Angina</td>
<td>0.3</td>
<td>0.2</td>
<td><0.1</td>
</tr>
<tr>
<td>CVA</td>
<td>0.2</td>
<td>0.5</td>
<td>0.5*</td>
</tr>
<tr>
<td>Withdrawals</td>
<td>0.8</td>
<td>0.7</td>
<td>0.8</td>
</tr>
</tbody>
</table>

1. Includes all arterial and venous thromboembolic events

*p <0.05 versus celecoxib
<table>
<thead>
<tr>
<th>Event</th>
<th>Celecoxib (n=3105)</th>
<th>Diclofenac (n=1551)</th>
<th>Ibuprofen (n=1573)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any Event</td>
<td>1.5</td>
<td>1.1</td>
<td>1.2</td>
</tr>
<tr>
<td>MI</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Angina</td>
<td>0.3</td>
<td>0.1</td>
<td>0.4</td>
</tr>
<tr>
<td>CAD</td>
<td>0.3</td>
<td>0.3</td>
<td><0.1</td>
</tr>
<tr>
<td>Unstable Angina</td>
<td><0.1</td>
<td>0.0</td>
<td><0.1</td>
</tr>
<tr>
<td>CVA</td>
<td><0.1</td>
<td>0.3*</td>
<td>0.3</td>
</tr>
<tr>
<td>Withdrawals</td>
<td>0.6</td>
<td>0.4</td>
<td>0.4</td>
</tr>
</tbody>
</table>

1. Includes all arterial and venous thromboembolic events

* p <0.05 versus celecoxib
Other Cardiac Adverse Events (%)

<table>
<thead>
<tr>
<th></th>
<th>Celecoxib (n=3987)</th>
<th>Diclofenac (n=1996)</th>
<th>Ibuprofen (n=1985)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atrial Arrhythmias</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrial Fibrillation</td>
<td>0.4</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>Atrial Arrhythmia</td>
<td><0.1</td>
<td>0.0</td>
<td><0.1</td>
</tr>
<tr>
<td>Bradycardia</td>
<td><0.1</td>
<td>0.0</td>
<td><0.1</td>
</tr>
<tr>
<td>SVT</td>
<td><0.1</td>
<td>0.0</td>
<td><0.1</td>
</tr>
<tr>
<td>Withdrawals</td>
<td><0.1</td>
<td>0.0</td>
<td>0.2</td>
</tr>
<tr>
<td>CHF</td>
<td>0.3</td>
<td>0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>Withdrawals</td>
<td>0.1</td>
<td><0.1</td>
<td>0.3</td>
</tr>
</tbody>
</table>
Other Cardiac Adverse Events (%)

<table>
<thead>
<tr>
<th>Condition</th>
<th>Celecoxib (n=3105)</th>
<th>Diclofenac (n=1551)</th>
<th>Ibuprofen (n=1573)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atrial Arrhythmias</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrial Fibrillation</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Atrial Arrhythmia</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Bradycardia</td>
<td>0.1</td>
<td>0.0</td>
<td>0.1</td>
</tr>
<tr>
<td>SVT</td>
<td><0.1</td>
<td>0.0</td>
<td><0.1</td>
</tr>
<tr>
<td>Withdrawals</td>
<td><0.1</td>
<td>0.0</td>
<td>0.1</td>
</tr>
<tr>
<td>CHF</td>
<td>0.2</td>
<td>0.1</td>
<td>0.3*</td>
</tr>
<tr>
<td>Withdrawals</td>
<td><0.1</td>
<td>0.0</td>
<td>0.3*</td>
</tr>
</tbody>
</table>

* p <0.05 versus celecoxib
Celecoxib CV Safety - Summary

• Compared to ibuprofen or diclofenac:
 – No difference in thromboembolic events
 – No difference in atrial arrhythmias or CHF
CLASS Results

GI Outcomes

- Study population
- GI Outcomes
 - Intent-to-treat
 - Risk Factors
 - Effect of ASA Use
 - RA vs OA
- Sources of Bias

General Safety

- Overall Safety
- Analysis by System
 - GI
 - Renal
 - Hepatic
 - CV/Thromboembolic
- Analysis in ASA users
- Analysis by Age
ASA Users

GI and Renal Adverse Events (%)

<table>
<thead>
<tr>
<th></th>
<th>Celecoxib 400 mg BID (n=882)</th>
<th>Diclofenac 75 mg BID (n=445)</th>
<th>Ibuprofen 800 mg TID (n=412)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any Event</td>
<td>54.0</td>
<td>59.1</td>
<td>52.7</td>
</tr>
<tr>
<td>Withdrawals</td>
<td>14.9</td>
<td>20.7*</td>
<td>14.1</td>
</tr>
<tr>
<td>Renal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any Event</td>
<td>10.8</td>
<td>11.2</td>
<td>14.8*</td>
</tr>
<tr>
<td>Withdrawals</td>
<td>1.4</td>
<td>1.8</td>
<td>1.7</td>
</tr>
</tbody>
</table>

* * p <0.05 versus celecoxib
Clinically Significant Changes in Hct/Hgb
(Decreases in Hct $\geq 10\%$ points and/or Hgb $>2\, \text{g/dL}$)

* $p < 0.05$ versus celecoxib

* $p < 0.05$ versus celecoxib
Clinically Significant Renal Lab Abnormalities

(BUN ≥40 mg% and/or Cr ≥1.8 mg%)

* p < 0.05 versus celecoxib
Clinically Significant Elevations in Hepatic Transaminases (3x ULN)

Non-ASA Users

ASA Users

* p ≤ 0.05 versus celecoxib
Celecoxib Safety in ASA Users - Summary

• Similar safety profile to patients not on ASA:
 – GI
 – Renal
 – Hepatic
<table>
<thead>
<tr>
<th>GI Outcomes</th>
<th>General Safety</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Study population</td>
<td>• Overall Safety</td>
</tr>
<tr>
<td>• GI Outcomes</td>
<td>• Analysis by System</td>
</tr>
<tr>
<td>– Intent-to-treat</td>
<td>– GI</td>
</tr>
<tr>
<td>– Risk Factors</td>
<td>– Renal</td>
</tr>
<tr>
<td>– Effect of ASA Use</td>
<td>– Hepatic</td>
</tr>
<tr>
<td>– RA vs OA</td>
<td>– CV/Thromboembolic</td>
</tr>
<tr>
<td>• Sources of Bias</td>
<td>• Analysis in ASA users</td>
</tr>
<tr>
<td></td>
<td>• Analysis by Age</td>
</tr>
</tbody>
</table>
Safety by Body System (%)

<table>
<thead>
<tr>
<th></th>
<th>Celecoxib 400 mg BID (n=1599)</th>
<th>Diclofenac 75 mg BID (n=762)</th>
<th>Ibuprofen 800 mg TID (n=724)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GI - Any AE</td>
<td>47.3</td>
<td>58.0*</td>
<td>47.7</td>
</tr>
<tr>
<td>Hct/Hgb Decreases</td>
<td>2.8</td>
<td>5.4*</td>
<td>6.5*</td>
</tr>
<tr>
<td>Renal - Any AE</td>
<td>10.2</td>
<td>9.8</td>
<td>13.8*</td>
</tr>
<tr>
<td>BUN/Cr Increases</td>
<td>2.3</td>
<td>4.0*</td>
<td>3.3</td>
</tr>
<tr>
<td>Hepatic - Any AE</td>
<td>1.3</td>
<td>7.2*</td>
<td>1.1</td>
</tr>
</tbody>
</table>

* p <0.05 versus celecoxib
Celecoxib Safety by Age - Summary

• Similar safety profile in patients in all age groups:
 – Patients ≥ 65 years
CLASS SUMMARY:
GI Safety Advantages of Celecoxib

<table>
<thead>
<tr>
<th>Symptomatic Ulcers/</th>
<th>NSAIDs Combined</th>
<th>Diclofenac 75 mg BID</th>
<th>Ibuprofen 800 mg TID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ulcer complications</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GI Blood Loss*</th>
<th>NSAIDs Combined</th>
<th>Diclofenac 75 mg BID</th>
<th>Ibuprofen 800 mg TID</th>
</tr>
</thead>
<tbody>
<tr>
<td>√</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GI Tolerability*</th>
<th>NSAIDs Combined</th>
<th>Diclofenac 75 mg BID</th>
<th>Ibuprofen 800 mg TID</th>
</tr>
</thead>
<tbody>
<tr>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
</tr>
</tbody>
</table>

* Similar results in ASA users
CLASS SUMMARY:
General Safety Advantages of Celecoxib

<table>
<thead>
<tr>
<th></th>
<th>Diclofenac</th>
<th>Ibuprofen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>75 mg BID</td>
<td>800 mg TID</td>
</tr>
</tbody>
</table>

Renal Safety*

<table>
<thead>
<tr>
<th>Condition</th>
<th>Diclofenac</th>
<th>Ibuprofen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edema/Hypertension</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>Increased Creatinine/BUN</td>
<td>√</td>
<td></td>
</tr>
</tbody>
</table>

Hepatic Safety*

- √

* Similar results in ASA users

Similar safety profile in all age groups

No increased risk of cardiac or thromboembolic events

* Similar results in ASA users
Summary

• Trial Design
• Clinical Results
• Confirmation of Antecedent Trials
• Safety
• Conclusion
Ulcer Complication Rate

Incidence (events/100 pt-yrs)

- **Celecoxib**
- **NSAIDs**

- All Patients
 - (n=3987)
 - (n=3981)
 - $p = 0.45$

- Non-ASA
 - (n=3105)
 - (n=3124)
 - $p = 0.185$
Gastrointestinal Safety Analyses

• Outcomes evaluated:
 – Ulcer complications (primary)
 – Symptomatic ulcers (secondary)
Baseline NSAID Risk Factors

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Incidence (% of Patients)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MUCOSA(^1) 1990</td>
</tr>
<tr>
<td>RA patients</td>
<td>100</td>
</tr>
<tr>
<td>Age >75 years</td>
<td>16.0</td>
</tr>
<tr>
<td>History of GI Bleed</td>
<td>6.5</td>
</tr>
<tr>
<td>History of ulcer</td>
<td>14.5</td>
</tr>
<tr>
<td>History of CVD</td>
<td>54.6</td>
</tr>
</tbody>
</table>

2. Silverstein et al. JAMA 2000; 284:1247-1255
Baseline NSAID Risk Factors

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Incidence (% of Patients)</th>
<th>NDA (14 RCTs)</th>
<th>CLASS 2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA patients</td>
<td></td>
<td>33.3</td>
<td>27.4</td>
</tr>
<tr>
<td>Age >75 years</td>
<td></td>
<td>10.8</td>
<td>11.6</td>
</tr>
<tr>
<td>History of GI Bleed</td>
<td></td>
<td>2.1</td>
<td>1.5</td>
</tr>
<tr>
<td>History of ulcer</td>
<td></td>
<td>11.6</td>
<td>8.2</td>
</tr>
<tr>
<td>History of CVD</td>
<td></td>
<td>51.2</td>
<td>40.2</td>
</tr>
<tr>
<td>Aspirin Use</td>
<td></td>
<td>12.0</td>
<td>22.0</td>
</tr>
</tbody>
</table>

2. Silverstein et al. JAMA 2000; 284:1247-1255
GI Event Surveillance

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients</td>
<td>8843</td>
<td>7968</td>
</tr>
<tr>
<td>Patient Years</td>
<td>--</td>
<td>4523</td>
</tr>
<tr>
<td>Reported</td>
<td>--</td>
<td>1527</td>
</tr>
<tr>
<td>Full GI Work-up</td>
<td>242</td>
<td>384</td>
</tr>
<tr>
<td>Crude Rate*</td>
<td>2.7%</td>
<td>4.8%</td>
</tr>
</tbody>
</table>

* Number with full GI work-up/patients

2. Silverstein et al. JAMA 2000; 284:1247-1255
Ulcer Complication and Symptomatic Ulcer Rate

- **Celecoxib 400 mg BID**
- **NSAIDs (n=3169)**

<table>
<thead>
<tr>
<th>Incidence (events/100 pt-yrs)</th>
<th>All Patients</th>
<th>Non-ASA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n=3987)</td>
<td>(n=3124)</td>
</tr>
<tr>
<td></td>
<td>(n=3981)</td>
<td>(n=3105)</td>
</tr>
<tr>
<td>p = 0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p = 0.02</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary

- Trial Design
- Clinical Results
- Confirmation of Antecedent Trials
- Safety
- Conclusion