Challenges of developing narrow-spectrum and adjunctive therapies

John F. Tomayko, MD
Chief Medical Officer, Spero Therapeutics
jtomayko@sperotherapeutics.com

FDA Unmet Needs Workshop July 19, 2016

Disclosures

- Employed by Spero Therapeutics, Cambridge, MA
- Shareholder GlaxoSmithKline

The opinions expressed in this presentation are my own and are not necessarily shared by Spero Therapeutics or my industry colleagues.

Agenda

Past, Present, and Future

Review of the Case Study

Where we must go

Conclusions

"The Past"

40 Years Since the Last Novel Gram Negative Class Approved

History of Antibiotic Discovery and Approval					
Year Introduced	Class of Drug				
1935	Sulfonamides				
1941	Penicillins				
1944	Aminoglycosides				
1945	Cephalosporins				
1949	Chloramphenicol				
1950	Tetracyclines				
1952	Macrolides/ Lincosamides/ Streptogramins				
1956	Glycopeptides				
1957	Rifamycins				
1959	Nitroimidiazoles				
1962	Quinolones Last Novel Class of Cram Nagatives				
1968	Trimethoprim Gram-Negatives				
2000	Oxazolidinones				
2003	Lipopeptides				

"The Present"

Near-term Pipeline*

Gram-negative infection

- Bla-inhibitor combinations
 - Rempex/MedCo

 Carbavance
 - Merck-- Imipenem/ Relebactam
- Tetracyclines
 - Tetraphase-- Evarvacycline
- Aminoglycosides
 - Achaogen-- Plazomicin
- Siderophore Cephalosporins
 - Shionogi-- S-649266

Gram-positive infection

- Ketolides
 - Cempra— Solithromycin

- Tetracyclines
 - Paratek-- Omadacycline

- Pleuromutilins
 - Nabriva-- Lefamulin

^{*}For a complete list see:

"The not so distant Future"

Novel science advances against "threat" organisms/infections

- Potentiators of an antibiotic
 - Facilitating access through the GNR outer membrane, inhibitors of efflux pumps, novel beta-lactamase inhibitors
- Single pathogen antimicrobials, e.g. Pseudomonas aeruginosa only e.g., Mab, small molecules, peptides, lysins, etc.
- Therapies that modify pathogen virulence
 e.g., transcription regulators, antagonists of type 3 secretion systems,
 anti-biofilm agents, etc.
- Novel delivery systems
 e.g., Liposomes, nanoparticles, aerosols, etc.
- Therapies that modify the host response
 Up regulate to augment pathogen clearance
 Down regulate to minimize inflammation and collateral damage

Antibiotic vs. Antibiotic Adjunctive Therapy

- Antibiotics are really amazing therapeutics
 - Treatment effects are huge (Placebo 30%, Treatment ~70-90%)
 - Is it really rational to expect to demonstrate an additional benefit in a clinical trial?
 - "How much better could you be than cured?"
- A test therapeutic must make a successful clinical equipoise argument
 - Does it appear that the test therapeutic could be as good or better than the SoC antibiotic treatment?
 - A true state of equipoise exists when one has no good basis for a choice between two or more care options
 - Fortunately there are great translational models in antibacterial research
 - Therefore most "candidate antibacterials" can conduct non-inferiority trials
- Test therapeutics that cannot make this argument, e.g. most Mabs, antivirulence therapies, aerosol abx for VABP, etc.
 - Considered adjunctive to antibiotics, though they may bring great advances to modern medicine, e.g. rescue those who may have died
 - Development is particularly challenging, they must demonstrate an added benefit to abx, i.e. superiority (SoC + novel adjunct vs. SoC alone)

Pipeline agents Facing Development Challenges

- Pseudomonas aeruginosa MvfR inhibitor (anti-virulence)
 - Spero Therapeutics/Roche
- Multiple monocloncal antibodies
 - Arsanis (ASN200: Escherichia coli, ASN300: Klebsiella pneumoniae)
 - Astra Zeneca (Medimmune) (MEDI3902 P. aeruginosa)
- Aerosol Therapies for VABP
 - Cardeas (aerosolized amikacin + fosfomycin)
 - Bayer/Nektar (aerosolized amikacin)
- P.aeruginosa macrocycle peptide antibiotic
 - Polyphor

So which way is clinical development heading?

Reliance on human PK data combined with preclinical data **Quantity of Clinical Efficacy Data** Pivotal Trial + small studies Phase Animal Rule S Science and unmet need are driving us to the right

A comprehensive regulatory framework to address the unmet need for new antibacterial treatments

Agenda

Past, Present, and Future

Review of the Case Study

Where we must go

Conclusions

Case Study: Drug X-1

Injectable narrow spectrum agent (P. aeruginosa)

Strength

- Novel mechanism of action
- Potent, cidal activity
- Safety margin ≥ 4-fold
- Well distributed
 - 40% ELF/Plasma
 - Unchanged in urine
- Well tolerated in PH1predictable PK
- + PoC in non-CF bronchiectasis study

Weakness

- Resistant subpopulation identified
 - MIC >4-fold higher
- P.a. infections not common in any particular body site
- Unclear development pathway
 - Rapid diagnostic not widely available

Frequency of *P. aeruginosa* (% of all enrolled)

	Lit.	Recent drug #1	Recent #2	Recent #3	Kollef
NP	20% a, b	13%	10%	23%	26%
cIAI	10% ^c	7%			
cUTI	3% ^d	4.30%	2.00%	2.40%	
ABSSI	Rare		Rare		

The painful math—borrowed from John Rex

Assume some typical general parameters

- An endpoint with about a 20% failure rate
- A non-inferiority margin of 10%, power of 90%
- You need ~672 evaluable cases (336/arm)
- Evaluable = <u>culture-proven</u> → so now we need…
 - If 22% P. aeruginosa, need 3,064 (1,532/arm)
 - If 11% *P. aeruginosa*, need 6,128 (3,064/arm)
 - If 3% P. aeruginosa, need 22,466 (11,233/arm)
- Certainly big enough for the safety database!
 - But, not feasible for actual development
 - Recent HAP-VAP trial took 5 years to enroll ~1,200 pts¹

^{1.} Wunderink RG, Niederman MS, Kollef MH, et al. Linezolid in Methicillin-Resistant Staphylococcus aureus Nosocomial Pneumonia: A Randomized, Controlled Study. Clin Infect Dis 2012;54:621-9.

Practical Issues for Drug X-1

"Tier C" P. aeruginosa Specific Trials

Issues to Consider

- Design:
 - Non-inferiority is possible, but what site of infection, or
 - Pooling across infection sites?
 - VABP has highest incidence of P.a. (but still only 15-20%)
 - Limited choice of comparators/combinations? (Need to fill in spectrum gaps)
 - VABP guidelines recommend double coverage for P.a.
 - Impact of confounding
- Analysis:
 - Patients with P.a. infections typically sicker and have higher comorbidity
 - Endpoints are different across body sites
 - What NI margin could you use? Is discounting possible?
 - Or is inferential testing even possible?
- Enrollability
 - Is the trial feasible to enroll i.e. costs/time?
 - How much could a rapid diagnostic test help with enrollment?
 - Design acceptable to investigators?

Logistics of clinical research (All comers)

Cost

- cUTI, cIAI ~\$50k/patient
- HABP/VABP >\$100K/patient
- Costs are amplified when the # of sites increases

Time

- cUTI/cIAI enroll ~0.25 0.5pts/center/month
- HABP/VABP enroll ~0.08pts/center/month
- Now consider that only a small fraction will have P.a.

Investigator fatigue

- Site staff works hard screening patients to meet eligibility
- Their effort is mostly compensated when they enroll a patient
 - Often have other trials that compete for their time and are easier to enroll

Investor fatigue

- Notoriously impatient
- They have other choices when it comes to investment

Rapid Diagnostic to the Rescue??

- Have we oversold the value of rapid diagnostics?
 - Diagnostics do not create patients infected with target pathogens, they help identify them before culture results
 - Thus used for enrichment, they *may* save costs
- Logistics
 - Diagnostics often require hardware which must be purchased or leased
 - Other costs which must be factored include reagents and hardware maintenance
 - Site staff must be trained, and diagnostic companies are not working to your study timelines
 - If trained staff not present, patient enrollment can be compromised
 - QC must be maintained
 - Microbiologically evaluable population is based on + culture result
 - All of the above challenges are amplified if the diagnostic is investigational
- Conclusion- One must carefully weigh the value of diagnostics vs. other enrichment criteria
- Aside— Though a rapid diagnostic may be valuable in a clinical trial, it will be of great value in a stewardship role.

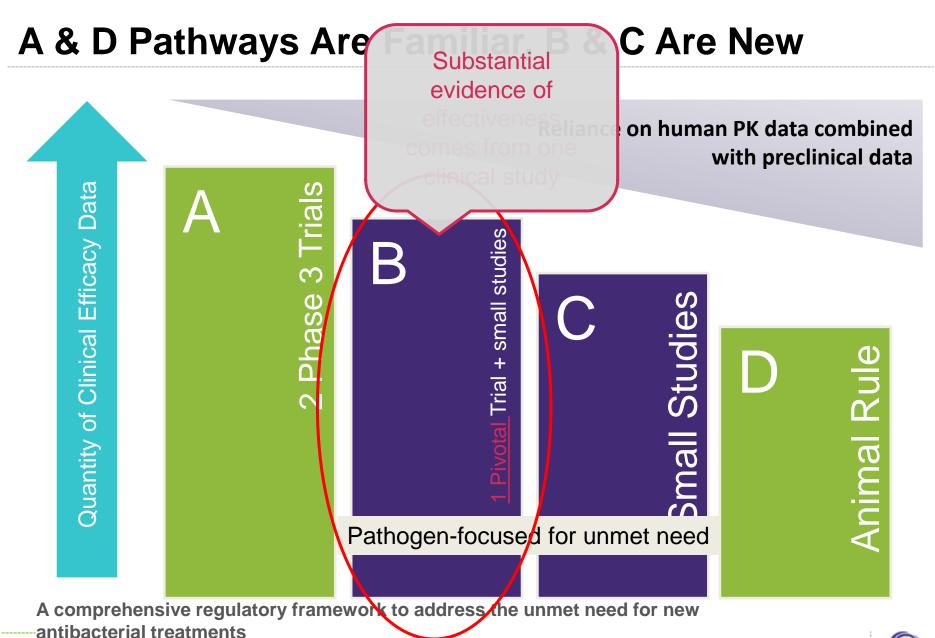
Agenda

Past, Present, and Future

Review of the Case Study

Where we must go

Conclusions


Drug X-1 Clinical Development

- Standalone Tier C programs have not yet been submitted for review
 - Small samples may not contain sufficient numbers of target pathogens to allow inferential testing, even with wide NI margins
 - Small samples from a sick population with many comorbidities could generate highly variable results—increasing the risk of failure

(Tier B works well because it is feasible to enroll clinical studies of acute infection when the agent has a broad enough spectrum)

- What can readily be demonstrated for a narrow-spectrum agent like Drug X-1:
 - MoA, MIC range, potential for resistance—in vitro study
 - Target exposures for efficacy, from:
 - in vivo preclinical animal models of infection
 - in vitro hollow fiber experiments
 - Estimated dose to achieve target exposure in target population
 - Demonstrate PK/PD based on MoA in a small trial population (PoC)
 - Safety in a small population
- With the feasibility challenges highlighted for Drug X-1, can one expect that a clinical trial will meet the requirement for substantial evidence of effectiveness with any predictable certainty?

A & D Pathways Are Familiar, B & C Are New

a combined linical data Quantity of Clinical Efficacy Data Pivotal Trial + small studies Phase Animal Rule S Pathogen-focused for unmet need

A comprehensive regulatory framework to address the unmet need for new antibacterial treatments

A & D Pathways Are Familiar, B & C Are New

Reliance on human PK data combined Quantity of Clinical Efficacy Data Pivotal Trial + small studies Phase Animal Rule S Pathogen-focused for unmet need

A comprehensive regulatory framework to address the unmet need for new antibacterial treatments

Summary

Drug X-1 Clinical Development (Speaker's View)

- Drug X-1 has a novel MOA and the promising potential to address an important unmet medical need
 - Inappropriate therapy for P. aeruginosa is associated with increased mortality^{1,2}
 - Increased mortality associated with MDR *P. aeruginosa*^{1,3}
 - MDR P. aeruginosa more common than KPC and NDM in US
- A strong supportive data package has been generated for Drug X-1
- Given the challenges of recruiting a single-pathogen cohort along with the high degree of heterogeneity in the population, a Tier C approach to meet FDA statutory requirements for effectiveness carries a high degree of unmanageable risk
 - There is no way to argue that results of a Tier C study will favor chance of supporting approval vs. condemning to failure
- We need to consider an alternative approach
 - Could the "Animal Rule" help address this important unmet need ...

Meeting the statutory requirements for a narrowspectrum therapeutic

- When conduct of an adequate and well controlled clinical study is not ethical or **feasible**, than substantial evidence of efficacy can come from validated animal models
 - First we need to agree that a single pathogen P.a. clinical trial cannot meet the statutory requirement
 - If so, is there a validated animal model of P.a. infection?
- It is feasible to conduct small studies in the target patients with P.a. infections
 - Obtain PK to demonstrate that the given dose can generate efficacious target exposures in the population intended for use of the therapeutic
 - Provide descriptive statistics from such clinical trial
 - Collect safety data to support risk benefit analysis
- The Sponsor should present plans to conduct a "Field Study" to further support the benefit risk of the approved therapeutic

Conclusions

- Promising, narrow-spectrum agents are in the pipeline; the development path is currently unclear
- As basic science advances, translational challenges will continue to emerge
 - Establishing effectiveness in a clinical trial for adjunctive therapies may prove especially challenging
- Blending elements proposed under Tier C with the "Animal rule" may allow FDA approval of select narrow-spectrum therapeutics
- Society is approaching a crossroads in addressing antibiotic resistance and we are in danger of slipping backwards, losing a number of the scientific achievements accomplished as part of modern medicine in the 20th century
 - We must continue to advance and replenish the antibiotic pipeline, and find ways to test and approve novel, potentially useful therapeutics
 - We can't rely on or hope for only broadly-active anti-bacterial therapies

