

Developing Antibacterial Drugs for Patients with Unmet Need: Experience and Recommendations

Ian Friedland, M.D. Chief Medical Officer, Achaogen

FDA Workshop July 2016

Disclosure: Full time employee of Achaogen

Achaogen's Position

- Infeasible to conduct fully powered trials given low number of enrollable patients
- Studies conducted in patients with unmet need provide critical data for clinicians
- Smaller datasets provide highly descriptive information for prescribers and can support exposure/response analyses
- Imperative that data in the unmet need population, including outcomes, is integrated into the product label

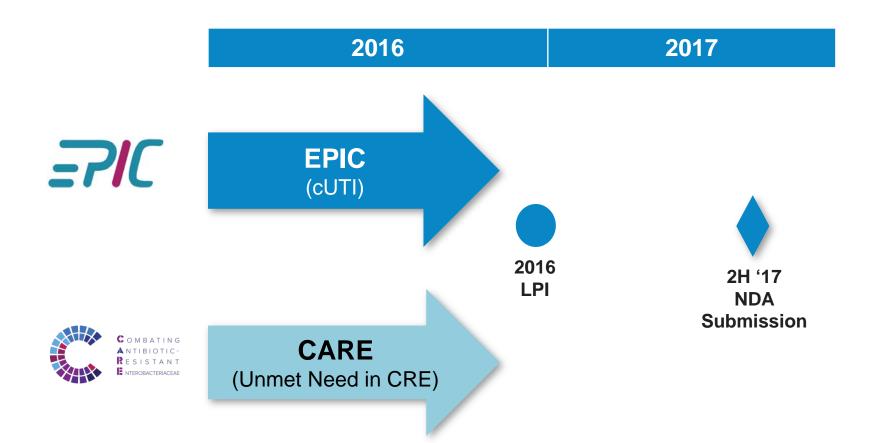
Standard Indications Do Not Address Unmet Need *Differences in Patient Populations are Profound*

		Standard Study cUTI/AP	Unmet Need Study BSI, HABP/VABP due to CRE
	Unmet Need	No	Yes
	Patient Population	Few co-morbidities Low mortality No need for organ support	Significant co-morbidities High mortality Need for organ support
	Duration of Therapy	≤ 7 days	7 to 14 days
	Pathogens	Usual resistance ~20% ESBLs, Few CRE Polymicrobial infections rare	All MDR Some XDR or PDR Polymicrobial infections common
e Jag Time	PK	Similar to healthy volunteers Mildly increased V_{d}	Less predictable More variable Significantly increased V _d
	Combination Rx	Single agent data only	Adequate coverage may require use of combination therapy

Plazomicin is a New Aminoglycoside with Broad Enterobacteriaceae Activity Including CRE

MIC₉₀ MIC₅₀ Compound Ν Class (µg/ml) (µg/ml) **Plazomicin** 2 Aminoglycoside 0.5 **983** Gentamicin Aminoglycoside 978 4 >64 Amikacin 32 Aminoglycoside 983 64 Ciprofloxacin Fluoroquinolone 822 8 8 Ceftazidime Cephalosporin 498 64 64 Penicillin/Beta-Piperacillin/tazobactam 756 >64 >64 lactamase inhibitor 4 Tigecycline Glycylcycline 804 1 Colistin/polymyxin B Polymyxin 8 877 1

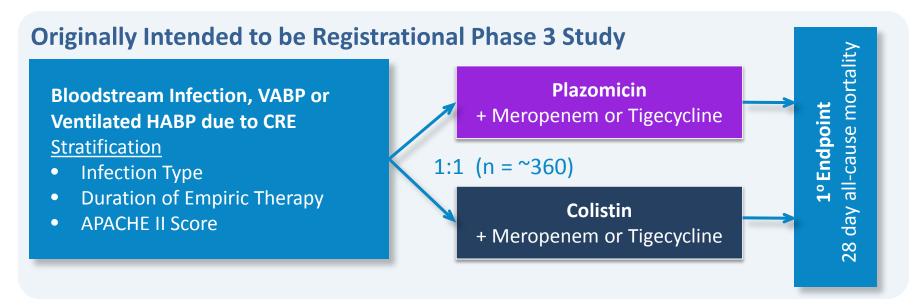
In vitro Activity vs. Clinical Isolates of CRE



Non-Susceptible

Data from 1) J Chemother 2012;24:191-4, 2) J Antimicrob Chemother 2011;66:48-53, 3) J Antimicrob Chemother 2010;65:2123-7, 4), Antimicrob Agents Chemother 2009;53:4504-7, 5) IDSA 2014:E-1168B, 6) I ECCMID 2014:P1682

EPIC (cUTI) Provides Basis for Registration, CARE Provides Critical Data in an Unmet Need Population



Achaogen's plazomicin program is funded in part with Federal funds from the **Biomedical Advanced Research and Development Authority**, Office of the Assistant Secretary for Preparedness and Response, Office of the Secretary, Department of Health and Human Services, under Contract No. HHSO100201000046C.

C O M B A T I N G A N T I B I O T I C -R E S I S T A N T E NTEROBACTERIACEAE

- Superiority in 28d ACM
- Assumed 35% mortality in the Control Arm (Meta-Analysis) with 12% absolute reduction with plazomicin
- 70% Power
- One-sided alpha of 0.05
- □ 286 pts with proven CRE \rightarrow Total N of 360 (evaluability of 80%)

ACHAOGEN

Feasibility Assessment Suggested 3 Years of Enrollment to Reach 360 Patients

Country	No. sites recommended	CRO Projected Enrollment (pts/site/yr)	No. Pts per year
Germany	5	1.2	6.0
Greece	10	1.4	14.4
Israel	5	2.4	12.0
Poland	7	1.3	10.9
Russia	11	1.8	19.8
Spain	7	1.8	12.6
Ukraine	6	0.9	5.8
Brazil	12	2.4	28.8
USA	5	0.9	4.8
TOTAL	68	Avg: 1.32	115

Enrollment Significantly Lower Than Projections

Early Metrics in CARE

659 Prescreened

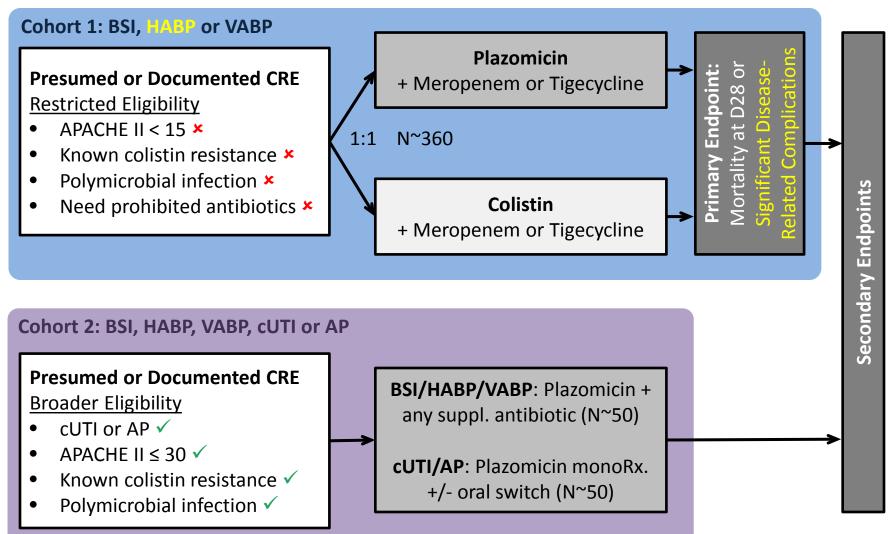
14 Enrolled

Major Reasons for Prescreen Failure (~50%)

- Pathogen is not CRE
- >72 hrs empiric therapy

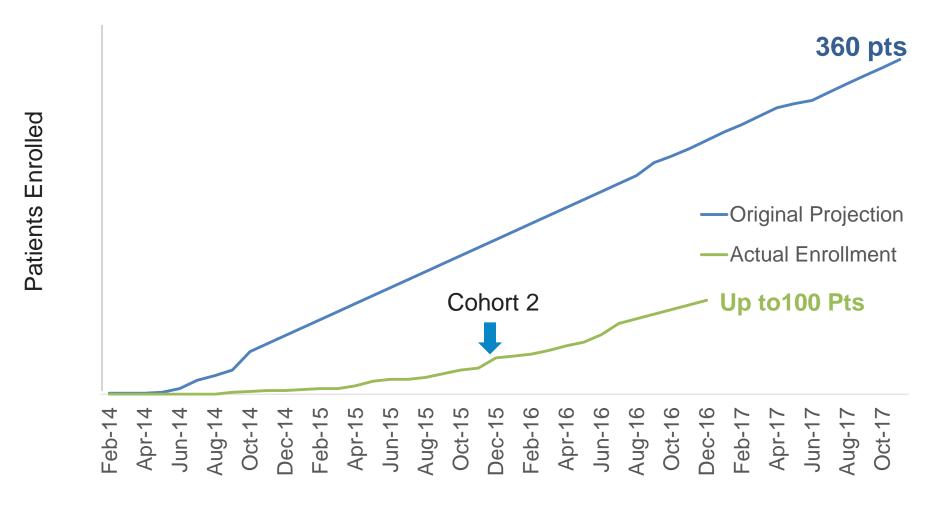
Additional Reasons

- Lack of consent
- Polymicrobial infection
- APACHE II Score <15
- Emerging colistin resistance



Enrollment Challenges Experience from One Hospital in Greece

- 17 patients with CR-*Klebsiella* in 4 month period
- None from ICU
- 2 patients were enrolled
- Reasons for exclusion
 - 7 patients had APACHE II score < 15
 - 4 isolates were resistant to colistin
 - 2 refused consent
 - 1 patient terminal
 - 1 concomitant BSI with A. baumannii


Two Amendments Designed to Boost Enrollment While Maintaining Potential for Superiority

Patients can only enroll in cohort 2 if they are not eligible for cohort 1

ACHAOGEN

Despite Significant Site Engagement and Broadening Eligibility, Enrollment Potential Limited

Lessons Learned from CARE Real World Experience

Site surveys overestimated potential enrollment

Only a small subset of sites enrolled patients

Superiority study only feasible if many countries have CRE incidence similar to Greece

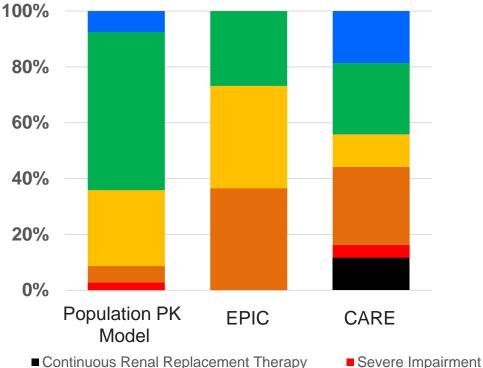
Barriers to enrollment evolve: resistance to comparator, study competition, etc

Intensive site engagement critical to support enrollment

Studies are expensive; BARDA support essential to the program

Critical to Include Data in the Label to Ensure Information is Available to Prescribers

- Efficacy data in unmet need population, including clinical outcomes of highly resistant infections
 - Provided in context of proven efficacy in "usual" population
 - Nature of dataset, including uncertainty, can be highlighted
- PK in different populations
- Unique microbiological data
- Safety information in different populations
- Combination therapy



Critical Data Generated in CARE to Guide **Plazomicin Use in Unmet Need Population**

Mild Impairment

Hyperclearance

Baseline renal function in CARE is distinct from EPIC and Population **PK Model**

- Moderate Impairment
- Normal

ACHAOGEN

Broad Range of Renal **Function**

Difficult to Study in Phase 1 or **cUTI** Population

More Variable Drug Exposure Allows Exposure/Response Analyses

Implications for Dosing, **Including Guidance for Dose** Adjustment

CARE Provides Unique Microbiology to Inform Label and Support Breakpoint Assessment

Organiam	Study	
Organism	CARE	EPIC
Enterobacteriaceae	v	V
Multi-drug resistant Enterobacteriaceae	 ✓ 	 ✓
Aminoglycoside resistant Enterobacteriaceae	v	V
CRE	v	X
Colistin-resistant CRE	v	X
Tigecycline-resistant CRE	 ✓ 	X

- Pathogens from CARE provide data on higher MIC organisms, supporting clinically relevant breakpoint assessment
- Different bacterial species in CARE vs. EPIC

ACHAOGEN

Conclusions

- Infeasible to conduct rigorous inferential trials given low number of enrollable patients
- Studies conducted in patients with unmet need provide critical data for clinicians
- Smaller datasets provide critical information for prescribers
- Imperative that data in the unmet need population, including outcomes, is integrated into the product label
- If the regulatory path is clear, studies in unmet need population are more likely to be undertaken and funded

Recommendations for Viable Study Designs Small, Efficient Studies with Enrollment at Time of Empiric Therapy

Start with what's feasible: 40-80 patient studies

More sensitive endpoints (e.g. clinical response in BSI, HABP/VABP)

Aim for nearly all or all patients to receive study drug

Consider external or shared controls (trial network)

Designs that allow empiric therapy (rapid diagnostics can help)

Combination regimens: polymicrobial infections, empiric therapy

Harmonization between FDA and EMA

