

Swiss Tropical and Public Health Institute Schweizerisches Tropen- und Public Health-Institut Institut Tropical et de Santé Publique Suisse **Ingrid Felger** Molecular Diagnostics Unit Dept. of Medical Parasitology & Infection Biology

Molecular Detection – Quantification – Genotyping

of P. falciparum

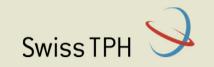
in *in vivo* drug efficacy trials

Relationship of diagnostic sensitivity and parasite sampling methods

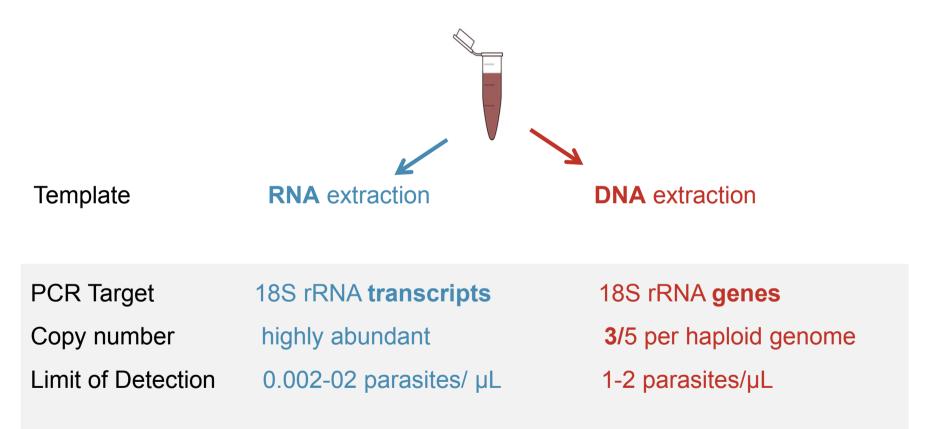
venous ("high volume")	fingerprick	treated filter paper	
1 mL blood	200 μL blood ↓	3 x 3 mm punch ≈ 9 μL blood	
WBC depletion 200 µL pellet Spin column	Spin 200 µL pellet Spin column	Dried blood spot on FTA card	
preparation U U U U U U U U U U U U U U U U U U U	preparation	Vacuum	DNA extraction (Chelex) 100 µL DNA Wash 3 x then added to direct blood kit
concentration		1 1	
10 µL DNA ↓ 2 µL DNA (1/5) of starting material added to pPCR ≈ 200 µL blood	 ↓ DNA (1/10 of starting material added to pPCR ≈ 20 µL blood 	5 μL DNA (1/20 of 9 μL) in pPCR ≈ 0.45 μL blood	

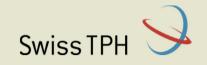
Do sub-microscopic infections matter in a clinical field trial ?

Parasite detection at enrollment and day of recurrence


Microscopy: only reliable detection if densities above 50-100 parasites/UI

Wongsrichanalai, Wernsdorfer 2007 AJTMH RDT PCR, LAMP, **qPCR** (see David Saunders presentation) Large volume/venous bleeds Ultra-sensitive multi-copy markers RNA-based


- Antimalarial drug trials in patients with **uncomplicated** falciparum malaria
- **Gametocytes** not affected by treatment may be responsible for positivity


Decision on method depends on - study population & protocol - facilities at field site

Is there a consensus among experts on use of molecular detection in field trials?

What is the most sensitive assay for parasite detection in a fingerprick blood sample ?

RNA-based versus DNA-based diagnosis twice as high prevalence rates in PNG


P. <u>falciparum</u>	Positive samples	Prevalence %
Pf 18S rRNA DNA	44/311	14.15
Pf 18S rRNA RNA	86*/315	27.30

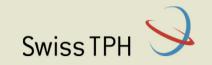
* cut-off at 10 Pf 18SrRNA copies/µl

Ρ.	vivax
	to the second second second second second

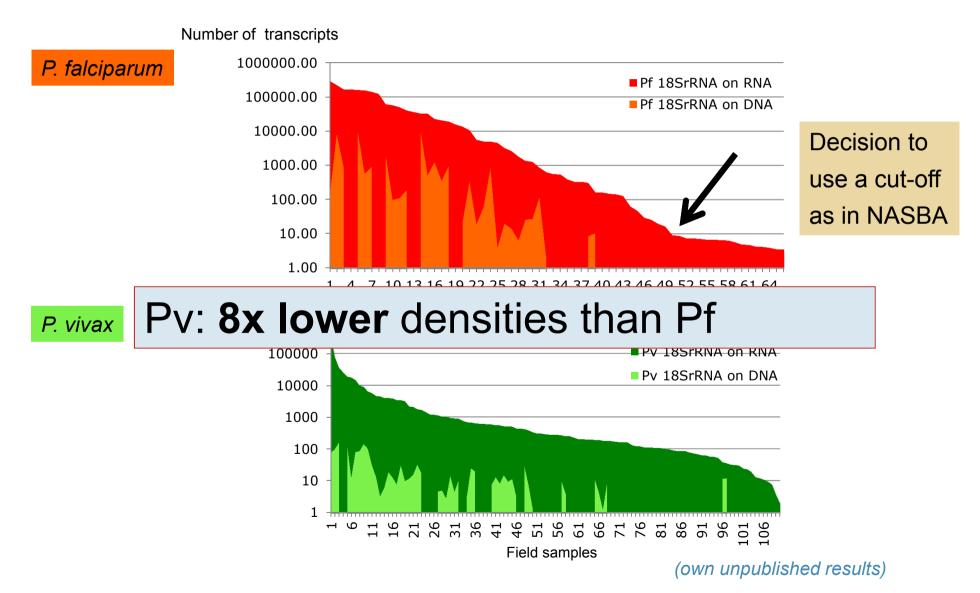
Pv 18S rRNA DNA	64/311	20.58
Pv 18S rRNA RNA	121/315	38.41

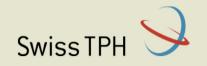
(Wampfler et al. 2013 PLoS ONE)

<u>Gametocytes</u> detectable in qPCR-negatives but qRT-PCR-positives?

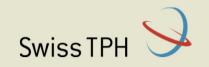

P. <u>falciparum</u>	Positive samples	Prevalence %
Pf 18S rRNA DNA	44/311	14.15
Pf 18S rRNA RNA	86*/315	27.30
* cut-off at 10 <i>Pf</i> 18SrRNA copies/µl		

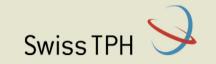
pfs25 qRT-PCR on only RNA-positives: 16% more Pf gametocyte carriers


P. vivax		
Pv 18S rRNA DNA	64/311	20.58
Pv 18S rRNA RNA	121/315	38.41


pvs25 qRT-PCR on only RNA-positives: 23% more Pv gametocyte carriers

(Wampfler et al. 2013 Plos ONE)

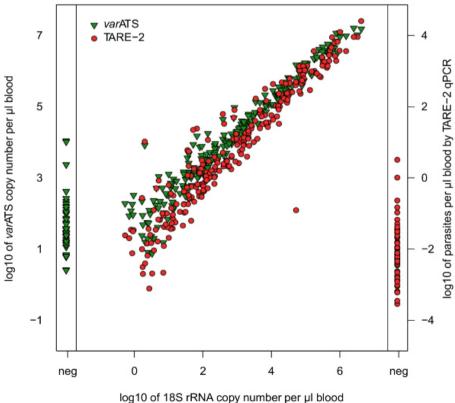

What method to chose for field work? DNA-or RNA-based assays?

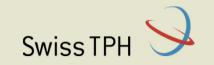

RNA-based vs. DNA-based parasite detection

Marker	RNA-based assay	DNA-based assay
18S rRNA	Abundant transcripts	3 copies / genome
6 -	Extremely high sensitivity	"Standard" sensitivity
4- 2-	Disadvantages: Quantification imprecise No absolute quantification	Advantages: good correlation with LM
$r^2 = 0.50$ DNA copies = $10^{0.392} \cdot transcripts^{0.454}$ 0 2 4 6 8 Log ₁₀ 18S r RNA transcripts/µ l	Cross-contamination (aerosols) during RNA extraction; cut-off necessary	No contamination issues

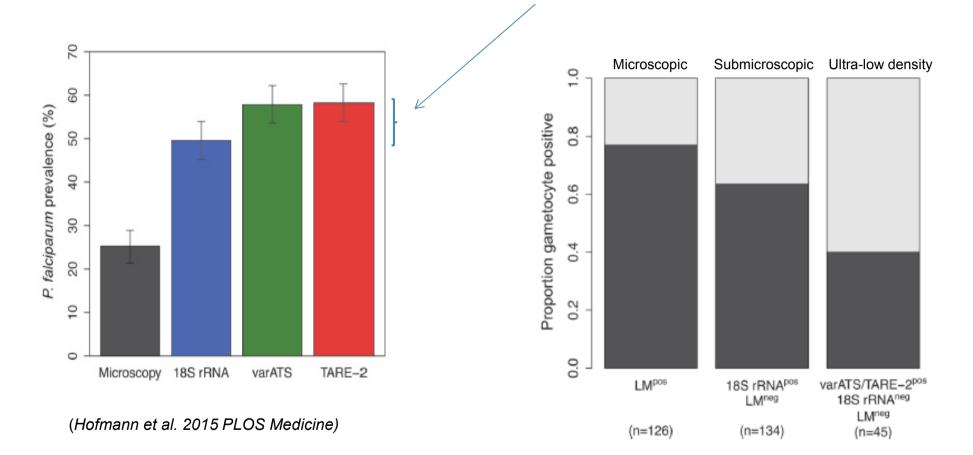
Lessons learned from using <u>rRNA transcripts</u> as diagnostic marker

- > A large proportion of infections not noticed with standard techniques
- > Beware of ribosomal RNA, only use with greatest caution & tight control
- > Unlikely field applicable, unless enclosed in fully contained system
- > Quantification is not very precise (expression levels/RNA degradation)
- Blood volume matters! Detection limit = 1 parasite in even large volume
- > Ultra-low density infections carry gametocytes

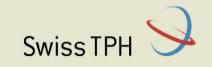

Development of <u>ultra-sensitive DNA-based qPCR</u>


TARE-2: telomere-associated repetitive element 2
 1.6 kb long blocks of 10-12 135-bp repeat units with slightly degenerate sequences
 approx. 250–280 copies /genome

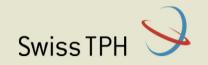
- **var-ATS:** acidic terminal segment
- (semi-conserved)59 var genes in 3D7


Is a multi-copy PCR target suitable for quantification?

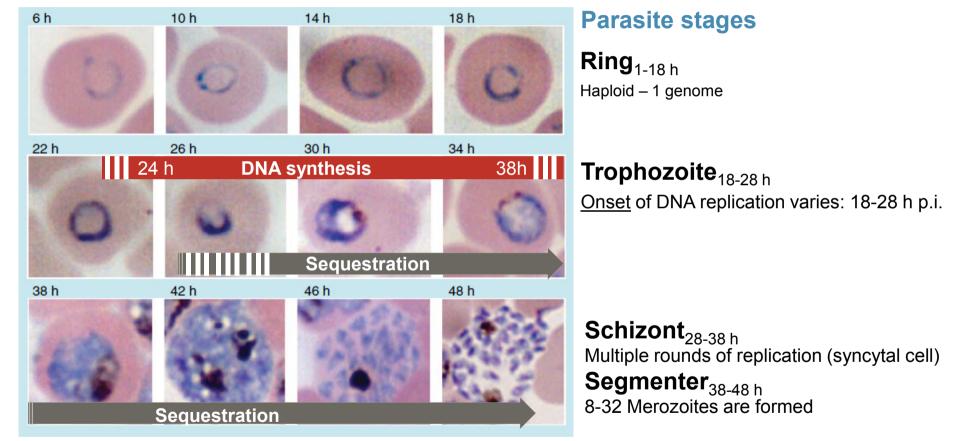
YES, good correlation!



Implication for prevalence rate: plus 16%

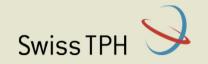

P. falciparum prevalence in498 individuals from Tanzania

Proportion of gametocyte carriers by pfs25 qRT-PCR

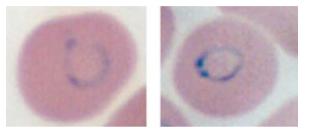


Are highly sensitivity assays required at all in field trials ?

Task	Use yes/no	Other uses
Day 0: Parasite detection at enrollment	No (symtomatic patents)	Validate LM quanti- fication with qPCR
		(EQC)
Day X: Detection of recurrence	No (persisting gametocytes)	Quantification by qPCR
	Yes (earlier detection)	(EQC)
Surveillance/Research	Yes (prevalence; low endemicity)	Pooling of samples (multi-copy marker genes!)
In vitro drug assays	Yes (precise quantification for low parasitemia)	



"Absolute" Molecular Quantification?


Sources: Radfar et al. 2009 Nature Protoc; Doerig et al. 2000 Progr Cell Cycle Res

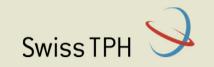
Pf stages in peripheral blood have 1 (or a few have 2) genomes/parasite

Essentials of molecular quantification by qPCR

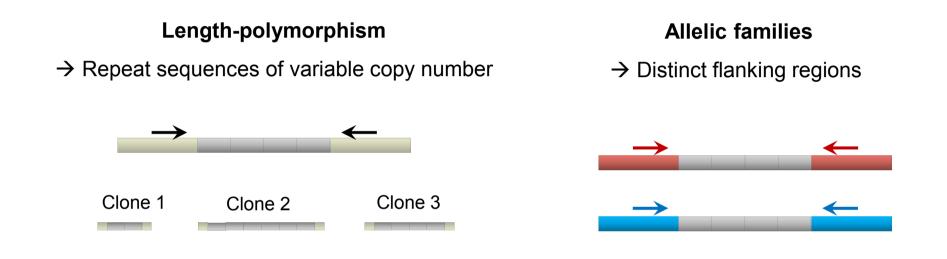
Assay to be validated using a **trend-line** of synchronized **ring stage parasites** from *in vitro* culture (Pf only!) 1 genome = 1 parasite Per genome: 3 or 5 copies of 18S rRNA gene

 Standard curve:
 trend-line of ring stages (1 genome)

 Control plasmid with marker gene inserted

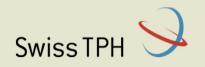

 Supercoil:
 copy number ~8-fold overestimated!!

 Hou et al. 2010 PLOS ONE e9545

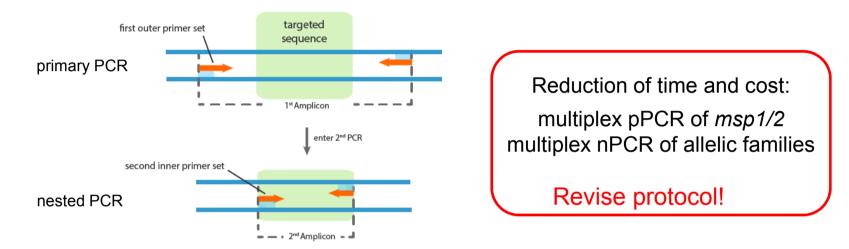

 restriction digested:
 matches well with trendline

 adust for copy number of the marker gene in genome

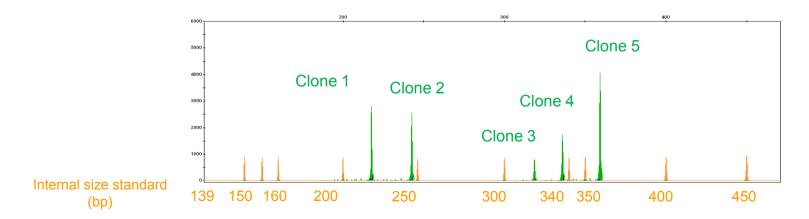
Field samples: Relationship density by **qPCR : microscopy = roughly 1:1** If not: DNA stability compromized/nicked standard curve: not rings but mixed stages standard curve: not digested plasmid



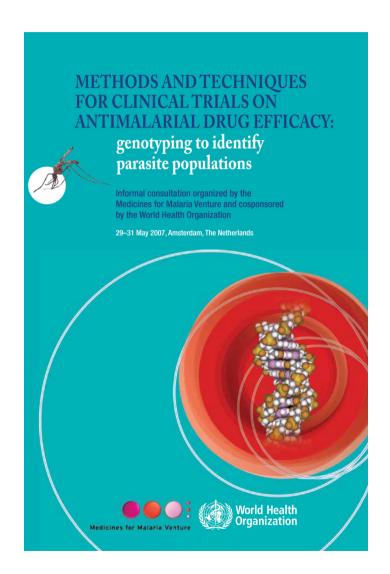
P. falciparum genotyping: length-polymorphic markers



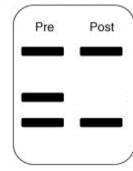
P. falciparum:merozoite surface protein 1 (msp1) \rightarrow 3 allelic families (2 polymorphic)merozoite surface protein 2 (msp2) \rightarrow 2 allelic familiesglutamate-rich protein (glurp) \rightarrow 1 allelic family


PCR method: nested PCR and CE

1) Nested PCR: increased sensitivity and specificity

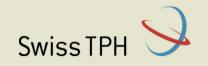


2) Capillary Electrophoresis (CE): high-resolution sizing


«PCR-correction» of clinical trial outcomes


PCR correction:

Comparative genotyping of *Plasmodium* parasites in pre- and post-treatment sample (i.e. day of failure)


Recrudescence:

... at least one allele at each locus is common to both paired samples.

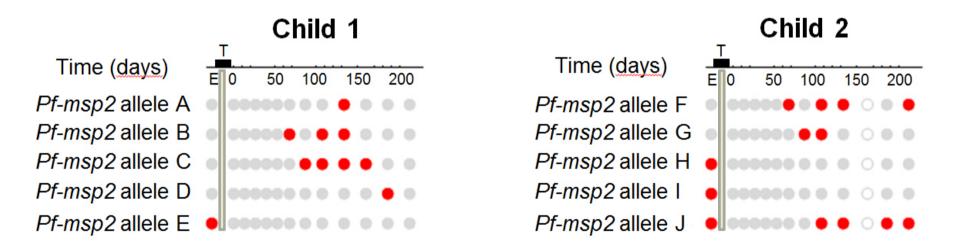
New infection:

... **all** the alleles in [...] the posttreatment sample are different from those in the admission sample, **for one or more loci tested**.

Achievements in genotyping and critical issues

CE: improved resolution and reproducibility of fragment sizing

permits comparison of alleles between separate runs


allele frequencies in a population can be determined to assess probability of reinfection with same allele

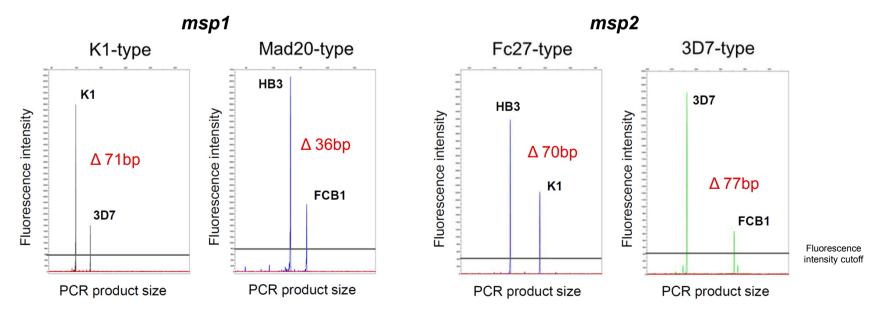
Major critical issues in Genotyping:

- **?** detectability of clones and minority clones (biological & technical causes)
- **?** usefulness in settings with either very low or very high transmission

Detectability of *P. falciparum* clones in natural asymptomatic infections

Dynamics of msp2 alleles in 2 children from PNG in the course of 8 months follow-up

- Clone detected
- Clone not detected
- Missing sample


P. falciparum culture strains:

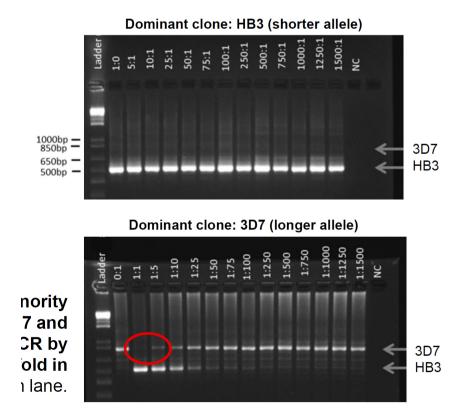
Strain	msp1	msp2
HB3	Mad20-type 158 bp	Fc27-type 337 bp
3D7	K1-type 248 bp	3D7-type 265 bp
К1	K1-type 177 bp	Fc27-type 407 bp
FCB1	Mad20-type 194 bp	3D7-type 342 bp

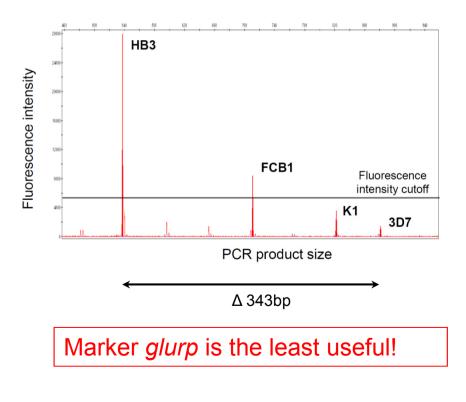
Experimental mixtures

- Reciprocal ratios 1:1 to 1:5000
- In human DNA solution
- Minority clone at >10 parasites/µl

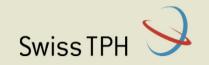
msp1 / msp2 genotyping PCR on 1:1 ratios:

Messerli, Felger et al. submitted

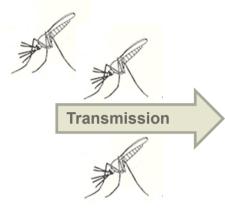

Template competition in glurp PCR

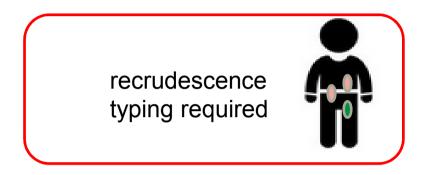

Limitations of marker glurp:

Longest allele sizes→ increased competitionOnly 1 allelic family→ direct competition between all allelesProne to stutter peaks→ requires increased cutoff

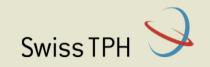

2-strain mixtures

4-strain mixtures



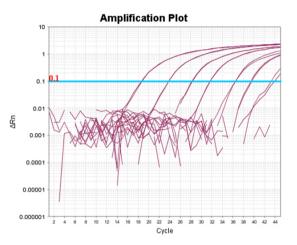

Messerli, Felger et al. submitted

Conclusion 1: genotyping



- $\checkmark\,$ Optimized protocols exist
- ✓ EQC established

Needed:
revised recommendations
re-assess usefulness for
different levels of endemicity
reinforce QA/EQC


Research Needed

- Validation and EQC of deep sequencing for SNP-based genotyping
- Assess the level of improvement in SNP-based detection of minority clones

Conclusion 2: molecular detection and quantification


- ✓ Good quantification protocols
- Consensus on epidemiological relevance

Needed:
 build consensus on potential application in trials
 reinforce EQC for absolute quantification

Research Needed

- Validation and EQC of absolute quantification by digital droplet PCR (ddPCR)
- Contribution of gametocytes (less affected by some drugs) to positivity

Thanks

Swiss TPH

Natalie Hofmann Rahel Wampfler Felistas Mwingira Sarah Javati Tom Smith Hans-Peter Beck

PAPUA NEW GUINEA INSTITUTE OF MEDICAL RESEARCH

Leanne Robinson

Ivo Mueller Cristian Koepfli

Financial support

Swiss National Science Foundation ICEMR (Internati. Centers of Excellence in Malaria Research) Bill and Melinda Gates Foundation

Seif Shekalaghe

