Food and Drug Administration Public Workshop

May 19, 2016

A Matter of Record
(301) 890-4188


```
Modeling and Simulations for Development and
Bioequivalence Evaluation of a
Generic Drug Product
    Jasmina Novakovic, PhD
Mechanistic Oral Absorption Modeling and
Simulation for Formulation Development and
Bioequivalence (BE) Evaluation
    Gordon Amidon, PhD
Mechanistic Modeling and Simulation of
Oral Drug Absorption: Opportunities and
Challenges
    Masoud Jamei, PhD
Incorporating Mechanistic Modeling and
Simulation to Assist with Formulation
Development
    Viera Lukacova, PhD
PK-Sim for Mechanistic Oral Absorption
Modeling and Simulation and More
    Thomas Eissing, PhD
OrBiTo: Innovative Tools for Oral
Biopharmaceutics
    Filippos Kesisoglou, PhD
```

156
169
Page 6
Panel Discussion 188
Questions and Comments from the Audience for
Panel Discussion 254
Closing Remarks
Robert Lionberger, PhD
280
1 Standards, Division of Quantitative Methods and
2 Modeling.
3 DR. KESISOGLOU: Filippos Kesisoglou, Merck
4 Research Laboratories, West Point, Pennsylvania.
5 DR. NOVAKOVIC: Jasmina Novakovic, Apotex,
director of pharmaceutical generic components.
7 DR. AMIDON: Gordon Amidon, the University
of Michigan, working in the biopharmaceutic area
9 for many years.
10 DR. LIONBERGER: Rob Lionberger, director of
OGD's Office of Research and Standards.
DR. CONNOR: Dale Connor, Office of
Bioequivalence in the Office of Generic Drugs, FDA.
DR. JAMEI: Masoud Jamei from Simcyp.
DR. LUKACOVA: Viera Lukacova,
SimulationsPlus.
DR. EISSING: Thomas Eissing from Bayer,
representing PK-Sim.
DR. MEHTA: Mehul Mehta, Office of Clinical
Pharmacology.
DR. SAO: Paul Sao, Division of
Biopharmaceutics, Office of New Drug Products.

2 Pharmacology, Division of Pharmacometrics, FDA.
will turn yellow when there is only five minutes
left for your allotted time.

So for all the panel members, I would respectfully ask you to refrain from using BlackBerry and checking your email. We have two breaks and one lunch period for you to be able to do that. Having said that, for everyone here, we have 20 minutes break, two of them, and one lunch break. So I would like you to check your time and make it to your seat in time.

Now, I would like to welcome Dr. Kathleen Uhl -- we call her Cook -- a very important figure in our field, to the podium to do the opening

Page 10
remarks.
(Applause.)
Opening Remarks - Kathleen Uhl
DR. UHL: Thank you, Liang.
Good morning, everyone, and welcome to this
FDA workshop on mechanistic oral absorption
modeling and simulation for formulation development
and bioequivalence evaluation.
That's a tongue twister for this early in
the morning, l've got to say, and I'm only one cup
of coffee into the day. I think that there will be paybacks into the future to Liang for asking me to do opening comments on this one.

So, Liang, I'm looking for chocolate or something afterwards.

I am very pleased to be here this morning and to offer a few opening comments. This workshop is an example of the collaborative spirit between FDA, academia and industry, and, in this particular circumstance, to collaborate to advance the science that brings generic drugs to market and the science to do this more efficiently.

1 It's impressive for me to see the level of 2 interest and the level of engagement in this topic.
3 I spoke with Liang yesterday, who told me that
4 there were about 400 people who signed up for this
5 conference. We don't have the exact number of
6 people who are attending via WebEx, but as of
7 yesterday, it was anticipated there'd be at least
8200 people. We'll know later in the day, I think,
9 how many. But that tells me that there's
10 remarkable interest in this topic, especially as it
11 relates to the development of oral dosage forms for
12 generic drugs.
13 Before I move on, though, I do want to thank
14 Liang and Susie, especially Susie, for the amount
of time, effort, and energy that went into putting
this workshop together and having this today.
Thank you to you, Susie.
One of the things that l've commented upon in numerous public meetings, public presentations, et cetera, is the low first cycle approval rate for generic drugs. Generic drug applications are called abbreviated new drug applications, or ANDAs,

Page 12
1 here at FDA.
2 Currently, we are experiencing about a 10 to
315 percent first cycle approval rate, and that's a
little concerning to me. The generic drug program
5 needs improved efficiencies and accuracies in
6 generic drug product development, which should then
7 translate to reduced regulatory uncertainty and
8 reduced regulatory burden.
9 Some of these improved efficiencies include
10 just what we're here for today, the application of
modeling and simulation to oral drug products, and
oral drug products are actually the largest number
of submissions that we get to the agency.
The purpose of today's workshop is to obtain input from various stakeholders on when, where, and
how to conduct mechanism-based absorption modeling
and simulations in the context of bioequivalent
product development and the impact of this on
regulatory decision-making specifically related to generic drugs.

Here's what will happen today. FDA will share our current experiences on the application of
this type of modeling and simulation on our
regulatory activities. There will be many external
experts who will also present and share their
experiences with this modeling and simulation, and
I'm sure that there will be a very robust panel
discussion, seeing not just the number of people
here on the panel, but as well the depth and breadth of your experiences.
9 I'm hopeful that this will lead to very
fruitful discussions about the current and future
utility of these modeling and simulation techniques
in the development of bioequivalent oral drug products and in our regulatory reviews.

Lastly, and I kind of harp on this all the time when we have public meetings, is the fact that we need comments on this topic. There's a docket that's open for this meeting. We really need people to submit your thoughts, your thinking, your ideas on this topic so that we can advance the science in this area, hopefully use the input that we get to either create a white paper on the topic or, as a regulatory agency, that we can put out

Page 14
guidance to industry on how best to use these
methodologies in the development of generic drug products. So please, if you have ideas, please
submit them to the docket. It really will help us.
Some of my thoughts about this workshop that I'd like to see come about as a result is, first of all, this whole concept of innovation and implementing innovation in the context of generic
drug development using these tools, simulation, and
modeling. Typically, when people hear the word "innovation," what I'm struck with is they usually think about the new drug side. When they say "innovator drugs," they mean the new drug side, right?

It takes incredible innovation to reverse
engineer a drug and to create a high quality
generic version of that drug and, in this regard,
innovation can actually be the cornerstone or the
foundation upon modern generic drug development in
almost all steps from formulation design and to the
assessment of therapeutic performance.
Mechanistic-based modeling and the

1 application of such to improve our understanding of
2 drug absorption can be the very first step to
3 modernize the development of solid oral dosage
4 forms for generic drugs. It can do this by
5 integrating the latest knowledge of drug substance
6 properties, formulation characteristics, in vitro
7 release profiles, and physiologic variables.
8 In addition, because I know there are
9 industry people here, I'd like to see industry
10 realize the numerous benefits from this type of
11 simulation and modeling. I'm happy to see we have
12 some individuals who work on the review side of new
3 drugs, because this is common methodology applied
14 in new drug development.
15 Some of these benefits include the ability
16 to extrapolate data from healthy volunteers in BE
17 studies to patients, either patients in general or
18 very specific subpopulations of patients; for
19 example, patients that have GI disorders and
20 alterations in their Gl pH and such. It's helpful
21 in informing how and what is chosen for the
22 in vitro release testing methods. It's helpful in

Page 16
1 the ability to evaluate the impact of dissolution
2 deviations and failures. It's helpful in the
3 ability to evaluate potential performance
4 differences for modified release formulations with
5 different release mechanisms from the reference-
6 listed drug; for example, if the generic or the RLD
7 is matrix versus an osmotic pump, for example, with
8 certain extended-release products.
9 It's helpful in defining critical quality
10 attributes and clinically relevant specifications.
11 It's helpful in understanding pharmacokinetic
12 variability, and if you understand pharmacokinetic
13 variability, you can better design BE studies. You
14 can better address the study in advance so that you
15 have success in that study, and it can also be used
16 to reduce the sample size.
17 It's helpful to evaluate certain product
18 risk factors that can then aid in very targeted
19 post-marketing safety surveillance. And finally,
20 and this is really where the rubber meets the road
21 for industry, it can certainly help get their
22 products improved, because valid modeling
components in ANDA submissions can reduce
regulatory uncertainty and potentially relieve the regulatory burden in order to support product approval.

In closing, I'd just like to say we grow
smarter by learning together and, more importantly, by learning from each other. I'm hopeful that
today is not just a learning opportunity for the
attendees, but also the opportunity to advance the
science in this area, so as to advance the science of mechanistic modeling and simulation.

The agency thanks you for your attendance at this workshop. I am hopeful that you have an
enjoyable day. It's going to be a long day. I
know a lot of you will also be attending the
Part 15 public hearing tomorrow, and so I just wish
you a good day. I hope that Liang is able to
report back to me about lots of really positive
input, and we're ready to put pen to paper on some ideas soon after the docket closes.

I thank you for the opportunity to talk, and I wish you good luck today. Thank you.

Page 18
DR. L. ZHAO: Thank you, Cook.
(Applause.)
DR. L. ZHAO: Thank you, Cook, for your very
insightful remarks. That's what we need. I just
want to give you another round of applause for your
support and for your guidance for the industry.
(Applause.)
Presentation - Liang Zhao
DR. L. ZHAO: I will go through some of the slides I prepared for the introduction. Modeling and simulation are one of the priorities in GDUFA regulatory science program. The tools are not only for generic drugs, but also for new drugs, for the drug development and the regulatory decisionmaking.

As Dr. Uhl just mentioned, today we have more than 400 people registered, and I believe there are many people who may participate without registration. The objective for today's meeting is to share current FDA experiences on the application of mechanism-based absorption modeling and simulation in regulatory activities; to discuss

1 current and future utility of mechanism-based
2 absorption modeling and simulation in the
3 development of bioequivalent oral drug products and
4 regulatory reviews; to obtain input from the panel,
5 from the audience, from various stakeholders on
6 when and why and how to conduct mechanism-based
7 absorption modeling and simulations in the context
8 of bioequivalent product development; and, request
9 comments on these topics.
10 Over a year period from April 1st, 2015 to
1 April 1st, 2016, within the Office of Research and
2 Standards, OGD, modeling and simulations have made
3 critical impacts to 20 ANDA reviews, 54 citizen
petitions, controlled correspondence, three ANDA
5 meetings, 33 BE guidances, and 37 regulatory 16 research studies.
17 Some prominent examples include to use PK
18 modeling and simulation for methylphenidate
19 extended-release products and other asthma
20 controllers. Here, I have left out our analysis
21 contribution to 17 ANDA reviews of dabigatran.
22 Modeling and simulations has benefited the

Page 20
1 development of $B E$ criteria for painkillers,
2 assessment of BE standards for Gl locally-acting
3 products, simulation of in vivo alcohol dose
4 dumping studies. Simulations have been used for
5 the development of BE criteria for highly variable
6 drugs and narrow therapeutic index drugs.
$7 \quad$ PK/PD modeling and simulation have been used
8 to determine the appropriate study design and
9 evaluate the BE between generic anti-epilepsy drugs
10 and immunosuppressant drugs in patients.
11 This slide shows a brief summary of the
12 areas where PD/PK modeling has made an impact.
13 First, it has been used to identify very relevant
14 individual testing, including dissolution method.
15 It has been used to identify critical attributes to
16 control product quality. It has been used to
17 evaluate the potential of in vivo alcohol dose
18 dumping after a formulation change.
19 It has been used to evaluate risk associated
20 with mechanism of change, especially for extended-
21 release products, such as from osmotic release
22 control delivery system to controlled release
metric delivery system. It has been used to assess
the extrapolation of BE from healthy volunteers to special populations.

For locally acting drugs, the modeling and simulation has been used to assess the GI local drug concentration and the correlation between local drug supporter and systemic supporter.

The tools have been used for the waiver of in vivo studies, such as waiving lower strengths,
sometimes higher strengths of a product, or increase the space of waiver for BCS III class drugs.

The modeling and simulation are also being used to assess the proton pump inhibitor effect after a formulation change. So we conducted a BE study in healthy volunteers, but without a study with proton pump inhibitor. We want to use modeling and simulation to assess the risk if we have a formulation change.

This chart shows an increasing number of compounds assessed using absorption modeling. Fifteen out of 34 of them are IR products,

Page 22

immediate-release products. Nineteen of them are
modified-release products. The majority of them
fall into the BCS Classes II and IV. Of note, we
have assessed seven products in a period of five
months in the year 2016. Dr. Susie Zhang will give you some details in her presentation.

For new drug development, as contributed by
Dr. Ping Zhao in the last ASCPT meeting, the focus
of PBPK modelings, many are on drug-drug
interactions and to assess PK profile change in specific populations. These are the main areas from the new drug side.

Areas with limited experience, including assessing the factors on PK exposure for pregnancy, ethnicity, geriatrics, obesity, disease states, food effect, formulation change, pH effect, some of these fall into the realm of generics. So you can see from top to bottom, there is a decreasing degree of confidence level and an increasing degree of reliance on systems knowledge, like locally environmental, physically environmental change and product and the GI physiology instruction and so

1 forth.
2 There's also an increasing number of drug 3 labels with dosing recommendations informed by
4 PBPK. The majority of them fall into DDI, only
5 with two exceptions.
6 Another stakeholder within FDA is our
7 pharmaceutics colleagues in the Division of
8 Biopharm, Office of New Drug Products, OPQ. The
9 biopharmaceutics emphasize linking the product
10 quality to the product clinical performance. In
11 this regard, PBPK is a must-have tool.
12 Over a period from 2008 to 2016, the
13 biopharm group has received, reviewed 15
14 biopharmaceutics-related PBPK submissions. These
15 submissions assess the risk of product and studying
16 dissolution method specifications, clinically
17 relevant drug product specifications for critical
18 material attributes and critical process
19 parameters.
20 I don't want to steal thunder from Dr. John
21 Duan, as he will give you more details in his 22 presentation.

1 With a set of presentations for today from
2 the FDA, the new drug industry, generic drug
3 industry, academia, also, software developers, the
4 hardcore modelers, we are going to discuss three
5 questions in the afternoon. The first question:
6 For the available list of areas or subareas, which
7 one do we have the highest confidence in using
8 physiologically-based absorption modeling for oral
9 dosage forms?
10 Second question: Do we have enough
11 experience and confidence in applying the current
12 PBPK absorption models to support the following
13 regulatory applications? I can read out the list:
14 Support particle size distribution specifications
15 for an immediate-release drug product of a drug
16 with a low solubility; support dissolution
17 specifications for a modified-release drug product;
18 support request to widen the BCS III biowaiver
19 criteria; support in vitro-in vivo correlation of
20 an API with less than three formulations with
21 different release rates; support new proposals to
22 demonstrate the bioequivalence for GI locally-
acting drug products.
The panel members can help give more addition to the list, and, also, along with your opinions.

The third question: For the area with
middle to low confidence, what are the gaps and how
to close the gaps through research? That will give
us possible benefit to further improve our
regulatory science research program.
Without further ado, I will introduce
Dr. John Duan. I welcome Dr. John Duan to the
podium to give the first presentation in the
morning.
Presentation - John Duan
DR. DUAN: Thank you, Dr. Zhao.
Today, my presentation title is "The
Application of Mechanistic Oral Absorption Model in
Biopharmaceutics Review." In order to do this
topic, I would like to talk a little bit about the
overview about biopharmaceutics. After setting the
stage, I would like to introduce the current
status, what we are doing, and what we have done.

Page 26
After that, we will figure out what the problem
probably is and what the challenges will be. In
that regard, finally, I will propose some future
steps, future applications.
In all three parts, the theme is
patient-centric quality. In order to do the
patient-centric quality, I would like to give an
overview about biopharmaceutics' role in the drug
development in the patient-centric quality control.
Before doing that, I would like to introduce a concept, CRS. To do the patient-centric quality control, we have to set a clinically relevant specification, so we call it a CRS. The concept comes from the general concept of patient-centric quality control.

That's a paradigm shift for the quality control. In traditional quality control, the control is by testing. After the product is ready, we test, do this test and do that test. But the current concept is we would like to introduce the patient-first concept, to do that from the beginning to design a drug, build the quality in
the design, and go from there. So that's our paradigm shift.
3 The paradigm shift will allow us to give the patient focus. When we design the compound, when
5 we design the formulation, we consider the patient
6 need, and then we go from there and do the risk
7 assessment, do the design of experiment, and,
8 finally, define a design space. In that case,
9 everything we consider is from the patient
10 perspective. And from there, we implement the patient-centric concept.

So the patient-centric quality control is a
framework. In order to implement that framework,
the agency implemented organization reframe. We
reorganized our quality-related office. Since
2015, the Office of Pharmaceutical Quality has been
stood up. The purpose of this office is to
coordinate all the quality aspects and get them
together and get one voice for the quality and one
voice for the drugs, one voice for the industry
and, most importantly, one voice for the patient.
So from there, we've seen the

1 reorganization. The biopharmaceutics division was
2 created. Here, I give a brief history about the
3 FDA biopharmaceutics group.
4 Before 2008, the biopharmaceutics was
5 located in the Office of Clinical Pharmacology.
6 Sometime before, the office's name was called
7 Office of Clinical Pharmacology and
8 Biopharmaceutics. Sometime later, the office's
9 name changed to Office of Clinical Pharmacology, so 10 no biopharmaceutics.
11 Since 2008, biopharmaceutics group was
12 established. At that time, we had about seven,
13 eight people around there. Since then, we have
4 gradually grown, and in 2014, in preparing for the
15 standup of OPQ, we recruited a lot of people in
16 there. In 2015, we keep going with the standup of
7 the Office of Pharmaceutical Quality. And in 2016,
18 we keep growing. From seven people, right now we 9 have 31 people.
20 I didn't see the trending stopping anywhere
21 soon, and the momentum is still there. So that
22 means the agency sees the opportunities, sees the
function of patient-centric quality control and quality framework.
So whenever we do something, we start with
the concept, and then we have the organization, we
have the people. That's currently what we are doing.

We have the patient-centric concept sitting there, and then we have the OPQ standup. The
organization is there. And most importantly, the
Division of Biopharmaceutics standup last year. In
that case, that indicates there's a trend to
emphasize biopharmaceutics in the quality control area.

So to emphasize that -- Liang already presented these slides -- I would like to reemphasize the definition of biopharmaceutics.
Sometime before, I attended a national meeting.
Someone asked me, "Here at the FDA, what do you do?"

I said, "I'm in the Division of
Biopharmaceutics."
"Oh," he said, "Okay. Do you do gene

Page 30
therapy or do recombinant DNA or -- well, what do
you do?"
At that time, I was speechless. I don't
know what to say. He doesn't know. From there, I
feel sorrow. I feel sorry, because probably we
didn't do a good job to let the industry, let the
pharmaceutical science field know biopharmaceutics
is there. So here, I would like to reemphasize the
definition of biopharmaceutics.
Biopharmaceutics is the study of the physical and the chemical properties of a drug and
the proper dosage form. That relates to the onset,
duration, and the intensity of the drug action.
Here, we can see the concentration of
biopharmaceutics not only to the in vivo onset and
the duration and intensity, but it also relates
that back to the physical-chemical properties and
the dosage form properties. That is completely
related to the drug quality.
From there, I would say biopharmaceutics plays an important role in the drug quality control, especially in the current framework about

1 the patient-centric quality control framework. In
2 that sense, biopharmaceutics concentrates and
3 relates the quality to the clinical performance.
4 The concept generally is that the drug company
5 conducts the clinical trial to show that efficacy
6 and safety is there for the drug quality.
7 Our future quality control task is to match
8 the clinical trial formulation. Every batch, each
9 batch should be more or less similar to the
10 clinical trial batch and show similar efficacy and
11 safety. In that regard, the bioequivalence between
12 the future manufacturing batch and the clinical batch is very important.
4 However, we cannot control every drug 5 quality, every aspect, to do a bioequivalence
study. In that sense, translating the in vitro
properties to in vivo performance is very
8 important. That's biopharmaceutics' role playing 9 over there.
20 In that regard, the mechanism of oral
21 modeling and simulation is very important. That
22 consolidates the physical-chemical properties and

Page 32
the physiological properties together, and do a
2 bottom-up, and figure out what the drug performance
3 would be. Then we have some data, and we top-down,
4 bottom-up and top-down, getting together to get the 5 job done.
6 So that's biopharmaceutics' role in the drug development and drug approval, and oral mechanistic modeling and simulation is a very important tool
9 for biopharmaceutics to do the job.
10 From here, we can see the agency's goal is very clear, patient-central quality control. The
trending is obvious from concept to the
organization to a specific biopharmaceutics
division, and the effort has been tremendous.
The opportunity is very exciting, but before
we get too much excited, we'd like to introduce the
current status of the oral mechanistic modeling and
simulation in submissions. In current status, as
Liang showed the slides, I borrowed a page from
Dr. Ping Zhao. He summarized until 2013 all the 84
PBPK-related submissions.
22
Among them, 60 percent, only 60 percent
had -- I multiply the 60 percent to the 84 , that's
about five. So until 2013, only about five
absorption-related submissions to the FDA. That
means very, very little.
Recently, we conducted a survey, and Liang
already showed these slides. We found 15
submissions using PBPK to do the quality-related
justification, such as using the PBPK modeling to
do the dissolution methodology selection, to do the
dissolution specification setting. Others even used the PBPK modeling to do the quality control
for setting specifications for critical
manufacturing parameters, such as CMA and CPP.
That's critical material attributes and critical process parameters.

From there, we can see there's a trending increase. Compared to Ping's summary, there are five until 2013 and until 2016, until now, we have 15. That tripled, but we still have less. We need to do more.

Following, I'm going to give some examples regarding the submissions and some work the FDA

Page 34
reviewers have been doing. The Case Example 1
showed the submission using PBPK to set dissolution
specifications and to select dissolution
methodology. In this example, this is a low
solubility drug. The sponsor says we are going to
select a clinically relevant dissolution
specification, along with a clinically relevant
dissolution methodology.
What they did was they showed the
dissolution methodology in different media. As
shown here, at pH 2 , two formulations, one is the
reference formulation. Another one is another formulation, but of different quality. This showed these two formulations in pH 2 medium, they separate. But in pH 4.5 , not shown here, and pH 6.8, they are not differentiated. As shown here, the pH 6.8 , it's extreme, almost overlap.

When they decide the dissolution methodology selection, the first and most important
consideration is clinical relevance. If we can
show with overlap they are bioequivalent, we have
no problem to select pH 6.8 , because if they are

1 bioequivalent, we don't want to over-discriminate.
2 However, on the other hand, if they are not
3 bioequivalent, we would like to differentiate. We
4 would like to reject the non-bioequivalent batch
5 and accept only the bioequivalent batch. That's
6 the strategy the sponsor is taking.
7 They showed using PBPK modeling the two 8 batches with current quality and the other
9 parameters, that they could not be bioequivalent.
10 Then they decided, they say, pH 2 is an appropriate
11 medium to select. And when they set that
12 dissolution specification, they say if I set the
3 dissolution specification, that's an immediate-
14 release, single-point dissolution specification.
15 If I set it at 30 minutes, Q equal to 80 , the blue
16 one will pass at pH 2 and the red one won't.
7 That's a perfect example to use PBPK to select
18 dissolution methodology and set dissolution 9 specifications.
20 The second example not only to set the
21 dissolution specifications, but to also set some
22 CPPs, critical process parameters, and critical

Page 36
1 manufacturing parameters. They not only set
2 dissolution specifications, but they also set the
3 particle size specifications.
4 It's a very thorough, very detailed PBPK
5 modeling. They did a lot of work and excellent
6 job.
7 Here, I would like to raise the question and 8 raise a discussion point to see the approach. One
9 of the important themes we notice is that when they 10 do the PBPK modeling, when they establish the model
11 and validate the model, they use a unique approach.
12 The unique approach is selected by several options.
13 Option 1 is they are finally selected. Option 2 is
14 they use the dissolution data as an input. When
15 they input the dissolution data, they use the
16 Weibull function of either dissolved or not
17 dissolved. They use a Weibull function.
18 Option 3 is that when they input the
19 dissolution profile into the PBPK modeling, they
20 use Z-factor. Finally, they didn't select the two
21 and three. They select Option 1. So I focus on
22 option 1.
medium composition, also the solubility, because in
vivo, the solubility as different, pH could be
different. So they took that into consideration
through their modeling. That's a unique approach.
I'd like to raise that unique situation for
discussion. They did that, and they used that
model, validated the model, and then using that for

Page 38
dissolution profile comparison; therefore,
dissolution methodology validation and the specification setting.

Also, they used the same approach using
what's called the virtual BE study. They show
virtually the two batches are bioequivalent. The
specification setting is based on the virtual BE
study and the particle size specification. It's
also based on the virtual BE study. That means
where I set particle size lowly-mid and highly-mid
would be bioequivalent to the clinical batch.
That's the situation, the patient-centric
framework we would like to hear, because that shows
some evidence, at least in silico, to show they are
bioequivalent. That's compared to previous
specification settings, why you set this particle
size, because we used that before.
This doesn't necessarily mean it will be
bioequivalent to that. Here, there are some
quantitative indications saying that will be
possibly, very likely to be bioequivalent. That's
22 a much stronger argument to make for setting the

1 specification.
2 The third example is what the reviewer in 3 FDA did. The third example is in the situation for
4 ANDA review. In order to make sure the ANDA
5 quality will be consistent, we put an effort for
6 the ANDA PBPK modeling. The intention is to see
7 are there any quality problems.
8 The situation is that we have ANDA block.
9 That so-called block is we have a whole bunch of
10 sponsors submit for the same API, for the same RLD
11 reference-listed drug. They want to develop a
12 generic drug with that same thing.
13 The concern is do they have the similar
4 quality, although we observe in some of the BE
15 studies, it's lower, almost at the edge of the
6 bioequivalence range; some of them higher, almost
7 at the edge of the bioequivalence range. So are 8 they bioequivalent?
19 That's a quality control issue. What our
20 reviewer did was to put them together to see when
21 they do the PBPK modeling, are there any special
22 factors we should consider. In PBPK modeling,

Page 40
1 usually we have a lot of assumptions. Usually,
2 with uncertainty, we have to make assumptions.
3 Sometimes we don't know the real value. We
4 have to optimize it using the software to optimize.
5 The optimization, the assumption sometimes
6 introduces a lot of uncertainties.
$7 \quad$ What is the focus for the uncertainties to
8 be paid attention to? Some uncertainties may not
9 be important. The analysis is to put six
10 uncertainties together and do a sensitivity
11 analysis. Currently, based on our knowledge, the
12 PBPK software, although it can do sensitivity
3 analysis, only one or two factors. Six factors put
together is what is the reviewer has done here.
They put API particle size and effect of
16 permeability and precipitation time and
7 precipitation radius and plasma protein by the
18 ratio.
19 The reviewer made an analysis. The analysis
20 is using all the six factors, that's 13,000
21 combinations, and put them together and put into
22 the PBPK software to see what the Cmax, AUC

exposure is.

The sensitivity analysis showed it's a very complex figure. The major interest is about the particle size. That's on the X-axis. And the major interest output is about Cmax. With those two major considerations, at the same time, they consider the solubility on top, three groups, and on the right, four groups about the permeability.
They use the symbol to differentiate the
precipitation time, and they use the color to distinguish the different radius of precipitate.

That shows a lot of interpretation can be made. A major one is that, as we can see in the very left block, the solubility, the measured solubility is 0.011 . The relationship between Cmax and the particle size is pretty steep. On the other hand, when the solubility increases on the right panel, the solubility is 0.11 , and at that time, it seems like particle size won't play a role as significant as the left one.

That gives us some interpretation of a regulatory step we are going to take. Based on

Page 42
that analysis, we send an IR, say you need to
provide this one in exact measurement, so in that case.

In summary, the regulatory implication
is -- there are a lot of regulatory implications,
but I want to emphasize that during the 15
submissions, there are some limitations. A major
one is no detailed information provided, and, also,
some models established without validation. If
10 without validation, we cannot trust it.
11 Also, there's no full validation or the
12 detailed file is not provided. When you use a
model to justify the application, it's not
sometimes reasonable.
Finally, I would like to say for the patient-centric, we have a lot of bridge. So PBPK modeling, mechanistic modeling and simulation is one way. We are facing challenges. As we said, what model should we select and what validation should we do and what software we should use and what software we should develop, that's our challenge.

Page 43
order to fully explore the possibility
2 for patient-centric quality control, we need to do
3 something beyond dissolution, beyond particle size.
4 We need to do some real manufacturing process,
5 manufacturing parameters, such as compression
6 force, hardness, granulation, that kind of stuff.
7 How are we going to use this one to control that?
8 That's our challenge.
9 Think about it. Here, we should emphasize when we submit the PBPK modeling, that's our current thinking. We should complete and submit 2 the information in order for us to grow together.
13 One thing I want to emphasize is it seems
4 like currently regulatory -- when we do PBPK
5 modeling, we have a lot of information. But the
6 companies, it seems like the interest at the
7 initial stage, we don't have any information. So
8 we bottom-up and put something together and get
9 some rough idea to develop.
20 Here, I want to say there's a difference
21 between regulatory and initial development. But
22 there's a common place, because when they do the

Page 44
1 initial development bottom-up, the model you should
2 keep at the later stage for the regulatory
3 submission to make justification, very useful. The
4 example I showed, that's one they did we accepted.
5 That's why I call it the product life cycle
6 measurement using PBPK.
7 In summary, the quality in vivo performance
8 is a destination and the ultimate goal and the
9 primary consideration for PBPK modeling in the
biopharmaceutics area. Mechanistic oral absorption
is a powerful tool, and the models support a
decision on product quality specification and risk
assessment. Model performance and validation is key to get it through.

Finally, I would like to acknowledge my
colleagues, Hopi, Fang and Sandra, Meng and Heta,
Paul and our office management. Sorry about over time.

Thank you very much.
(Applause.)
DR. L. ZHAO: Thank you, John.
The next speaker, Dr. Susie Zhang from OGD,

Office of Research and Standards.
Presentation - Xinyuan Zhang
DR. ZHANG: Good morning, everyone. Welcome
to the workshop. It's my great pleasure to be here
today to talk about OGD's experience in research
efforts on oral absorption modeling and simulation.
I'm so excited today, so if you hear a choppy
presentation, it's not because I'm not familiar
with this topic, but because I'm so excited.
(Laughter.)
DR. ZHANG: For today's presentation, I will give you an update on oral absorption modeling and simulation in the Office of Generic Drugs, and then I will share a couple of case examples with you, and, finally, talk about GDUFA-funded research efforts to improve oral absorption modeling and simulation.

In 2011, we published this paper, published a review article, where we put an innovative model for future product development. Basically in this diagram, we have industry, and hopefully industry will use this type of tool to help their product

Page 46

development, conduct pilot BE studies or PK studies
and inform model development, and use this tool to
reduce the cost and time.
Today, we'll have the opportunity to hear about industry, how industry uses this type of tool
to help their product development. In this
diagram, we have regulatory agency who will also
use this type of tool to help guidance development,
to propose innovative bioequivalence approaches for
complex drug products, and the agency and the industry will communicate via different venues, such as face-to-face meetings, conferences or workshops like we do here today.

As you just heard in John's presentation, where he gave an excellent example where industry
or the firm used a physiologically-based absorption
model to propose their particle size distribution, and this is exactly what we proposed here five years ago.

How are we doing today? In 2014, we published a short commentary paper in which we described several case examples of where and what

1 issues we applied this mechanism-based absorption
2 modeling and simulation to address various
3 regulatory activities. The paper actually was
4 written in 2013.
$5 \quad$ We described some of the areas where we
6 used, and the majority of the issues are related to
7 dissolution or product quality, and also
8 innovatively use in the other areas. Whenever I
9 look at this figure, I'm always amazed by the
10 potential utility this tool can provide, as well as being amazed by the creativity our scientists have.

Recently, we have a couple of examples asking the question about bioequivalence in proton pump inhibitor subjects, or the PPI related DDI.
16 You saw this figure that Liang just
17 presented, but what he did not tell you is that we 18 only had a couple of staff members working on this
19 area part-time, hands-on experience. So we have
20 about four to five examples every year before 2014,
21 and we had low productivity in 2014, because we
22 were busy on hiring and also other activities, such

Page 48
1 as issuing new GDUFA research studies.
2 We had new people onboard in 2015 and now 3 we're in 2016, we have more examples here. It's
4 exciting.
5 Now, this is a simplified absorption
6 process. There's by no means that the figure can
7 capture all the events happening in Gl for a drug
8 to be absorbed. But as you can see here, even for
9 a simplified absorption process, it's already very
10 complicated, and for the sake of time, I'm not
11 going to go through the details of this figure.
12 It's been described heavily in the article.
13 When we do a model, this type of modeling,
14 this is our general practice. We usually collect
15 data from different resources, including
16 literature, our internal data, and then we perform
7 physiologically-based modeling for IV formulation
8 first. If IV is not available, we'll do it for IR
9 solutions, suspensions, tablets, capsules, and then
20 we move forward to the modified-release products.
21 We'll do model verification or validation,
22 whatever you call it, extensively, as much as we
can against datasets that we have. And finally, we'll do a simulation.

Now, because I'm in the Office of Generic
Drugs, bioequivalence simulation is really
important for us. However, it's not that easy,
because a lot of times, the intra-subject
variabilities are not available.
In 2015, we published a paper describing how
we do this, this type of modeling. In this case,
we won't run a single bioequivalence trial.
Instead, we will run thousands of bioequivalence
trials and give you a passing rate of BE studies.
It's more like a probability rather than a
definitive answer.
Now, l'll share a couple of case examples
with you, and the first example is about warfarin
sodium tablets, to evaluate the impact of slow
dissolution in a specific pH conditions.
Specifically, it's pH 4.5.
The second example is to evaluate the proton pump inhibitor impact on bioequivalence, and we
have a couple of drug products in that example.

Page 50
1 Warfarin sodium tablets, from a modeling perspective, it's not a complicated product.
Warfarin sodium has been reported as a BCS-I
substance, and this is an immediate-release
formulation. The challenging part to me is how do
we communicate the results to scientists who do not
do modeling and simulation.
Back in 2014, we actually did the modeling
simulation in 2014, among other things. OGD became
a super office in 2014. The Office of Research and
Standards was born in 2014, and among a lot of
other significant events, we did this piece of
modeling and simulation work.
The specific aim of this project is to explore the impact of loss of IPA on in vivo performance for warfarin sodium tablets. The background of this project is that scientists observed that for warfarin sodium tablets, if they
are put in high temperature and high humid conditions, the IPA will be lost, and then what you
observe is slow in vitro dissolution in pH 4.5
condition. Does that impact bioequivalence or

1 bioavailability? That was the question asked.

2
3 this case, we had two scientists perform modeling
4 and simulation in two different platforms, and,
5 basically, they reached the same conclusion.
6 Let's take a look at the warfarin sodium
substance properties. It has a PKa around 5. It
8 has low solubility in low pH conditions and high
9 solubility in high pH conditions. And these are
10 the two solubility versus pH profiles input in the
different software.
This is a commonly observed scenario, where
we observe different numbers reported by different
resources. In this table, the dissolution
profile A is what was measured, and dissolution
profile B, C, D, F are arbitrary dissolution
profiles to test solubility versus pH profiles to test the sensitivity of PK on solubility.

Then warfarin has a long half-life, average 40 hours, range 20 to 60 hours. We did the simulation, and what it told us is that the PK
profile is not that sensitive to solubility, even

Page 52
1 though you gave extremely low solubility in low pH
2 conditions.
3 We did sensitivity analysis on particle
4 size, as well as particle density, and they are not
5 that sensitive. They don't impact PK
6 significantly, either.
$7 \quad$ This is a straightforward figure for a lot
8 of clinical pharmacologists. Because the model is
9 a linear model, there's no nonlinearity component
10 in the model. However, I put it here because it's
11 also a figure related to an important quality
12 attribute, which is the assay or potency.
3 Potentially, this figure can be used to define your
4 assay or potency specification range.
15 Now, in order to link the in vitro
16 dissolution profile to in vivo performance, we used
7 the so-called Z factor model, where Z is an empiric
8 number here. We fit dissolution profiles in
9 different pH and get the Z number and put it in the
0 model.
21 We also conducted on several artificial
22 dissolution profiles, basically. We pushed it to
extreme cases, where you don't have release at all
in the different pH conditions, and now what you
can see is in this extreme case, where you don't
have any dissolution at all in pH 1.2 and pH 4.5
conditions, you keep dissolution pH 6.8 the same.
You see the Cmax ratio is above 0.8. Among other
sensitivity analysis, what we concluded was that pH
6.8 is the most relevant or in vivo relevant
condition.
Now, meanwhile, we also issued a study or awarded a study in 2014 actually, and then we conducted a dissolution study again in 2015. We put warfarin sodium tablets in high humid and high temperature conditions for 24 hours to have a lower, slower dissolution in pH 4.5 conditions. As you can see, these are the dissolutions in pH 4.5 after the tablets were treated.
18 We compare if you conduct an F2 test 19 comparing the untreated tablets and the treated 20 tablets. The F2 value is actually less than 50.
21 We also did a two-state dissolution test for 22 the treated and untreated tablets. As you can see,

Page 54
the initial dissolution for the treated tablets is
slower. However, they catch up at two hours.
Again, we did this type of analysis and, also,
bioequivalence simulation using the newly available
dissolution profile, and what you can see is that
the predicted point estimate for Cmax, as well as
AUC are close to 1.
8 Now, we're in 2016. We got in vivo
9 bioequivalence study results finally, and what the
10 results tell us, basically, is consistent with what
11 the simulation told us. If you compare all the pairs of comparisons, the point estimate of Cmax and AUC, they're pretty close to 1 , as well, and the confidence intervals are pretty narrow, as well, because this is what's expected, as warfarin is a narrow therapeutic index drug.

We went ahead using this sensitivity analysis technique, tried to map a dissolution 9 space where you can have a safe equivalent product.
20 We used within standard deviation 0.1 and point
21 estimate 95.5, and if you want to have an
2280 percent passing grade, you have dissolution in

1 pH 4.5 at 30 minutes above 30 percent and
2 dissolution in pH 6.8 at 30 minutes above 80
3 percent.
4 This is actually a pretty wide range. When
5 we look back at all the dissolution studies that we
6 have conducted, they all pass this condition.
7 The conclusion from this study is that
solubility in low pH , particle size and particle
9 density do not have a significant impact on
10 bioavailability of warfarin sodium, and the dose or
11 the potency impacted PK proportionally.
12 Dissolution rate at pH 6.8 was the most relevant to bioavailability, and we did an in vivo to confirm 4 the prediction.
15 The second example is an example where we used this type of tool to evaluate the bioequivalence in stomach pH elevated subjects, and
8 we did it for prasugrel hydrochloride tablets and fingolimod capsules. If we look at the drug substance properties of these two compounds, they have different indications. They have different pKas. But they all have high solubility in low pH

Page 56
1 and low solubility in high pH .
2 The half-life for prasugrel is about seven hours. However, the half-life for fingolimod is 6
4 to 9 days. It's pretty long.
5 The issue for prasugrel hydrochloride
6 tablets is that it is the concern of salt-to-base
conversion during manufacturing or storage,
different conditions, and because the base has low
9 solubility. Whether the salt-to-base conversion
10 will lead to lower bioavailability, that was the question.

For fingolimod capsules, the question was whether similar dissolution observed in high pH conditions would impact bioequivalence.

Again, we conducted mechanism-based
absorption modeling and simulation, and our
recommendation based on the simulation is that the
salt-to-base conversion for prasugrel hydrochloride
tablets should be controlled, and elevated stomach
pH is less likely to impact PK significantly for
fingolimod capsules.
Prasugrel is a quite complicated drug

```
    substance. It has two metabolites. The parent
    compound is below the quantification limit. We had
    to develop a model with two metabolites. One is
    inactive, and one is active.
    We developed a model, validated a model
    against two moieties, two metabolites. This figure
    shows that if we use the observed solubility
    profile, the model actually under-predicts the Cmax
    at high dose. Why is that? We can exclude other
    possible scenarios and conclude that this could be
    due to the -- this looks like the solubility limit.
        We calibrate the in vivo solubility. We
    actually have had to adjust the in vivo solubility
    to improve the model prediction at high dose. Then
    in order to predict or simulate the case where we
    have half salt and half base, we had to create two
    records to do the simulation, and we had to assume
    that the dissolution of the salt and the
    dissolution of the base don't interfere with each
    other.
    We went ahead and did the simulation. As
    you can see here, if we had that assumption, the
```

 Page 58
 simulation does not do a good job in terms of
 predicting the scenario where we have high
 percentage salt-to-base conversion, and the dots
 are already observed and the line here is the
 simulation. What we did was we just looked into
 this range for further simulation.
 Sensitivity analysis suggested that for
 prasugrel, the active metabolite Cmax is sensitive
 to solubility between pH 3 to 7 . We also did a
 bunch of bioequivalence simulations. As you can
 see here, when the salt-to-base conversion is
 beyond 20 percent, the passing rate dropped
 quickly.
 Now, we switch gears a little bit to look at
 fingolimod. Again, here is what we observed,
 different solubility versus pH profiles from
 different resources. So we went ahead using
 different solubility profiles and to do the
 modeling.
 As you can see here, the PK profiles are
 very close to each other, suggesting that
 solubility is not a sensitive parameter for this
 1 compound. This is what is expected, because it has 2 six to nine days' half-life.
3 We also did multidimensional sensitivity 4 analysis for fingolimod. As you can see here, this
5 figure suggested that the Y -axis is the particle
6 size diameter, and the X -axis is the pH condition.
7 If you have pH around the 4 to 5 , this is where the
8 PPI subjects would have stomach pH . If you have
9 particle diameter above 100, you will fall out of 10 the range of 0.8 or 80 percent BE limits.
11 To conclude, based on these two examples 12 where we have seen that for BCS Class II immediate-
13 release formulations, mechanism-based modeling
14 could be challenging, as in vitro dissolution and
15 in vitro solubility might not be predictive. In
16 that case, we want to have multiple datasets as
7 much as possible for our model calibration.
18 We talk about in vivo predictive
9 dissolution, solubility all the time, and how do we
20 evaluate in vivo predictivity of the dissolution
1 profile? And to me, it is important that this
2 predictive in vitro dissolution methodology can be

Page 60
1 used in this type of model and improve model
2 predictability.
3 Based on what we did, not only these two
4 case examples, but also the other examples that I
5 do not have time to show here today, is that we
6 have high confidence in modeling immediate-release
7 long half-life, relatively high solubility and high
8 permeability drug products.
9 However, we are facing multiple challenges.
10 The first one is dealing with QC dissolution data.
1 Yes, in FDA, we have a lot of dissolution data, but
12 they're all QC method in different pH . We don't
3 have predictive dissolution methods. Firms may do
4 it, but we don't see it.
5 We are dealing with multiple data sources,
16 not only the quality, but also the PK. If you have
1710 ANDAs for the same reference product, you see
18 several folds of differences in PK profiles, and
19 we're dealing with extremely low solubility drug 0 products. That can be challenging.
1 Some of the immediate-release formulations, 22 such as amorphous form dispersion formulations,

those can be considered as complex
 immediate-release formulations. The models need to be improved for colon absorption, because we are doing more and more modified-release drug products, and colon absorption is very important to have a better prediction for those types of products.
 In addition to internal hands-on experience in modeling and simulation, we also have a lot of
 Generic Drug User Fee Amendment or GDUFA-funded
 research efforts to improve oral absorption modeling and simulation. We have several ongoing studies. We have multiple BE studies in the human, including a lot of drug products, that could potentially be used to verify our model.
 We also have a couple of studies ongoing to measure in vitro and, also, in vivo performance of solid dispersion formulations.
 We have an ongoing study with the University of Michigan to measure Gl physiology to get intra-subject variance. Basically, that measures the same subject twice. Hopefully, they can come back for the second experiment, because this is

Page 62
really a tough experiment and the dropout rate is pretty high.
We have innovative sampling methods for a Gl
concentration study ongoing, and we recently
completed a mesalamine study, which measures the
local Gl concentration. The manuscript is under preparation.

We also have excipients-targets,
excipient-transporters interaction studies to
better understand excipients' impact, transporters and further absorption.

This year, we have three requests for applications. The first one is related to supersaturation precipitation of the very low drug substance to improve the absorption modeling in that area. The second one is to improve the optimization algorithm for the very large physiologically-based pharmacokinetic oral absorption models.

The third study is to study the fluid amounts taken with oral drug products. Right now, our recommendation is 250 milliliters. So what

1 happens in the real world? We'll find out from
2 this study.
3 Besides the external studies, we also have
internal research efforts. We are evaluating the
5 modified-release products, the risks associated
6 with the mechanism change from osmotic pump to
7 metrix, how that is going to impact the BE in
8 different populations. We are doing formulation
9 analysis for BCS III compounds. We are developing
10 a physiologically-based pharmacokinetic database to
1 share these types of models across the agency with
2 different offices, such as Office of Clinical
3 Pharmacology and also Division of
Biopharmaceuticals. We're investigating alcohol
dose dumping simulations. These are the long-term
16 studies, we're doing here and there when there's no 7 crisis.
18 To summarize, OGD has routinely applied 19 mechanism-based absorption modeling and simulation
20 to address various issues, risks in regulatory
21 activities. I want to remind you, you still
22 remember the slide that Liang just showed, the

Page 64
1 impact that modeling and simulation has. You see
2 the distributions and the numbers. The least
3 number actually falls into the category of ANDA
4 applications. That means that could potentially be
5 an area to improve.
$6 \quad$ OGD is actively improving the science of
predictions for oral solid dosage forms via
8 external, as well as internal research studies.
9 OGD is willing to collaborate with internal and
10 external stakeholders to advance the application of
11 mechanism-based absorption modeling and simulation
2 in drug product development and regulatory review.
Along the way, there are a lot of people and
14 colleagues who support us here and there from
15 different aspects, and I want to use this
16 opportunity to thank them, as well, and also thank
7 you for your attention.
18 (Applause.)
19 DR. L. ZHAO: Thank you, Dr. Susie Zhang.
20 This will conclude the presentations from
21 the FDA. We will have a break, 20 minutes. You 22 can use the break to stretch and whatever,

```
    socialize. We'll be back before 10:15, followed
    with three excellent speakers.
    (Whereupon, at 9:57 a.m., a recess was
    taken.)
    DR. L. ZHAO: While we are being seated, let
    me introduce the next session. The next session
    will be presented by three outstanding experts in
    the field. The first one is Dr. Filippos
    Kesisoglou. I can confirm with him that I can
    pronounce his name in the correct way.
    (Laughter.)
    DR. L. ZHAO: Following him, there will be
    Dr. Jasmina Novakovic. Following Dr. Novakovic
    will be the top expert from academia, Dr. Gordon
    Amidon.
        The first presenter, Dr. Kesisoglou.
        Presentation - Filippos Kesisoglou
        DR. KESISOGLOU: Thank you for the
    introduction and the opportunity to speak today at
    this forum and provide an industry view on how oral
    absorption modeling and simulation are used for
    formulation development and bioequivalence
```

 Page 66
 evaluation of new drugs.
 My talk will mostly focus on case studies
 that demonstrate the different applications of the
 tools. However, at the end I will also provide
 some thoughts on what I see the field moving
 forward both in terms of the formulation
 development application, as well as for regulatory
 directions.
 Before jumping into the case studies, I
 wanted to set the background under which these case
 studies were developed and are presented. The use
 of these tools is part of a broader
 biopharmaceutics risk assessment effort and a
 quality-by-design effort with the endpoint, as
 mentioned earlier today, the patient benefit, as
 that is defined by the quality target product
 profile.
 In the simplest terms, what we are trying to
 achieve with these tools can be broken down into
 two parts. First, we are trying to understand what
 is the optimal in vivo release or dissolution of
 the dosage form that provides the intended
 1 therapeutic dose response to the patient. And
2 second, we are trying to link that in vivo response
3 to an in vitro assay, commonly dissolution, that
4 can be used in the future to ensure the future
5 product consistently delivers a therapeutic benefit
6 to the patient.
7 In addition, it's important to keep in mind
8 that these models are not applied in isolation from
9 other efforts, but are part of a broad lateral
10 confirm effort where data from in vitro, in silico,
11 and in vivo, either pre-clinically or clinically,
12 are integrated both to inform the models and inform
3 forward-looking projections, but also to refine the
4 assays that inform the model.
5 I know there's a lot of discussion on how we
16 validate the models, and I think it's important to
7 keep in mind that we need to adopt the model to the
18 question at hand, not necessarily looking for broad
19 validation against questions that might not be
20 relevant to the specific project, as well as when
21 models fail, in my experience, it's usually not
22 because the model itself is incorrect, but because

Page 68
1 somewhere in this continuum, we have a disconnect
2 in our understanding of where the in vitro or the
3 in vivo data feed into the model.
4 With that background, I will argue that for
5 new drug development, use of absorption modeling is
6 a commonplace activity that's routinely applied,
7 especially for BCS Class II and IV compounds.
8 Models that guide first-in-human doses or
9 formulation selections or subsequent formulation
10 modifications, such as API particle size or release
11 rates for modified-release formulations, are
12 routinely applied in early development.
13 Projections of bioequivalence are also relatively
14 common. They are mostly applied for what we call
15 internal biowaivers, so internal decision-making on
16 conducting or not clinical studies, and can be
7 applied for more regulatory applications for more
18 well-behaved compounds, as we heard earlier today.
In the last few years, models around
20 clinical biopharm questions are getting attention.
21 Food effect projections or projections of DDIs with
22 pH altering agents are also showing up in several
papers in the literature. Again, they are mostly
conducted for internal decision-making or to inform formulation decisions.

Typically, the studies are conducted as far
as clinical practice goes, but one can see the
potential in the future to serve as a surrogate for some of these clinical studies.

Finally, and I will come back to that at the end of my talk, I think the area that's gaining increased attention is linking the dissolution to PK to drive IVIVCs, in vitro-in vivo correlations, and drive what we heard this morning, clinically relevant specifications. And I think that's the area that we could potentially make a significant impact on patient benefit, because it directly ensures product quality.

Jumping into the case studies, the first case study is an early formulation decision example. In early development, the models are primarily used to define the general platform of the formulation we're going to use to ensure adequate exposures in our first-in-human studies.

Page 70
This compound is a weak base compound, and in early
development, we often do this parameter sensitivity
analysis to identify the main factors that can
influence a formulation decision.
In this case, the draft shows a parameter
sensitivity analysis for this weak base, the
fraction absorbed as a function of the stomach pH ,
and the dose of what we were trying to cover in our
first-in-human study. The simulation shows that as
long as the stomach pH is in the normal
physiological range, which is roughly 1 to 3 , we're
going to get reasonably good exposures, 80 percent
or 90 percent, while if the stomach pH increases
significantly, then we will see a reduced exposure.
With this information, we can move to the
first-in-human study and defer mitigating with a
dose interaction later, as we want to get some assurance on the PK of the compound. In the first in-human study, we did observe good exposures, linear PK through the dose range tested.

Then let's go on to mitigating the pH interaction. On the left-hand side is a single

1 dose simulation that's taken out of the parameter
2 sensitivity analysis that I showed before showing
3 the exposure under normal and accelerated
conditions simulated by PBPK.
5 We need to verify our model somehow. As I
mentioned, models should not be standing on their
7 own, without any data verification. In that case,
8 we conducted a preclinical study, where we tested
9 animals with pentaglycine that simulates stomach pH
10 and famotidine that suppresses it, and we see a
11 quantitative agreement between the simulations and
2 the preclinical data. So we have some confidence
that our model can be used to inform formulation development.

The next step is to project new
formulations. So we have to plug in some new
information. In this case, we plug in dissolution
data generated in media intending to simulate the
PPI stomach.
With this data, we can project the PK for the different formulations. Our target exposure 22 level is the dashed line. So we identify a few

1 formulations that look promising, and we also
2 compared our modeling and simulation projections
3 against preclinical validation to make sure, again,
4 that the model is behaving as it's supposed to be
5 behaving. Eventually, formulation 4 is identified
6 as a high possibility of success to move forward,
7 and that was verified subsequently in a clinical
8 study.
9 In this example, I just mentioned
10 incorporation of dissolution data, and
11 incorporating dissolution data is probably the most
12 important aspect of oral absorption modeling. This
13 case study, I really like it. It's from colleagues
14 at Eli Lilly, where they looked at both mechanistic
15 modeling over dissolution linked to a mechanistic
16 model, a PBPK model.
17 They're dealing with a BCS I compound. One,
18 we think it's easy, but they're using an enteric-
19 coated pill to protect the drug from stomach
20 instability. What the authors did was they
21 modified the standard dissolution operation that's
22 part of every PBPK software to describe the
dissolution of their enteric-coated system. They
got pretty good agreements between the dissolution
simulation and the experimental data for two
formulations that differ from their drug loading.
The question is, is this difference in
dissolution relevant for exposure? On the left-hand side is a simulation of a human clinical
study. You can see that the simulation suggests
that despite the dissolution differences, the
profiles are super-imposable. On the right-hand side is the actual observed clinical data from the clinical study that verified the simulations.

What the authors also did was they conducted a parameter sensitivity analysis to identify the boundaries in which dissolution will fail the bioequivalence, and what they can find is that even
with an 80 percent dissolution in two hours, they will still get sufficient exposure, with no impact on AUC and minimal impact on Cmax. This information and exploring these boundaries can really help in the future if there was a clinically relevant specification.

Page 74
Moving from a single stage dissolution to a multimedia dissolution question, that often comes
up when we're talking about bioequivalence
questions. In this case, etoricoxib is a weak
base. It's a BCS Class II compound, with very high
solubility in the stomach, but relatively low
solubility of the intestine. It's not the worst
solubility you'll find, but it's enough to make it
a BCS Class II compound.
So we were dealing with a site transfer, where we're manufacturing supplies at two different
sites, and according to the regulations for the
markets we're filing, we had to do a multimedia
dissolution comparison for this change. On the top
graph, at pH 1.2, we saw no differences between
supplies from the new and the old site. But at pH
4.5 , at pH 6.8 , they're very similar, we see
significant differences with new site supplies
being faster, where we're clearly failing the F2
similarity criteria.
We were asked, does this translate to a
bioequivalence issue. We first developed a model.

1 We verified the model against several protocols,
2 what we had clinical data on.
3 The interesting graph on this slide is not 4 the verification of the model. Everyone shows the
5 graphs that go through the lines. That's pretty
6 common. The graph on the right shows what the PBPK
7 software suggests, that the behavior of the drug is 8 in vivo.
9 The drug goes into dissolution to about 80 10 percent or so in the stomach, where it has high
11 solubility, and then because the solubility of the
12 intestine is actually not that bad, there's
13 relatively little precipitation until it reabsorbs
14 almost completely. While the drug is classified as
15 a BCS Class II compound, in reality, in vivo, it
16 behaves more like a permeability-limited compound.
17 With that information, one could expect the 18 stomach solubility will be more important.
19 Regardless, we did conduct the simulation assuming
20 any of the dissolution profiles are relevant to the
21 in vivo performance. So we conducted simulations
22 in a virtual trial based on the $\mathrm{pH} 1.2,4.5$ and 6.8

Page 76
1 profiles.
2 I'm not showing the 1.2 outcomes, because
3 it's obviously going to show the same effect since
4 they're super-imposable. But basically, the
5 dissolution at 4.5 and 6.8 , we were projecting up
6 to 10 or 14 percent differences in AUC and Cmax.
7 They're not large differences.
8 You can possibly call them still
9 bioequivalent, but we conducted the clinical study.
10 And basically, the result is that everything is
11 identical. The dissolution difference does not
12 translate to the in vivo differences, as suggested
13 by the pH 1.2 dissolution. So in this case, the
14 clinically relevant dissolution is the pH 1.2 , and
15 we can use it in the future to understand future
16 product changes.
17 One more CMC question that often comes up is
18 around API form and changes in API form in the
19 formulation, for example, due to a stomach
20 excipient interaction or instability. This
21 compound is dosed as HCl salt. It's a weak base,
22 BCS Class II, again, high solubility in the

```
stomach, low solubility in the intestine.
    The question is, what is the effect or risk
    of bio performance if the drug disproportion adds
    to the free base. Instead of doing another
    simulation, what I showed in the previous slides,
    I'm going to quickly discuss some virtual
    population simulations.
        We simulated }250\mathrm{ subjects for a formulation.
    We said we'll assume a 20 percent free base content
    as a potential limit. Let's see what the effect is
    on performance.
    On the top graph, I'm plotting the fraction
    absorbed. You can plot AUC. For simplicity, I
    plotted fraction absorbed as a function of pH. And
    you do not see a very strong correlation. That's
    because other factors, such as permeability,
    solubility, and bioavailability in vivo, also
    result into a change in fraction absorbed.
    However, if we look at this on the same
    individual patient, if we were to normalize the
    Y-axis to the expected exposure of }100\mathrm{ percent
    hydrochloride self-regulation, then we see a pretty
```

 Page 78
 clear plant, with a significant R-squared of the
 relative bioavailability as a fraction of pH .
 This still, if you look at the
 bioavailability reactions, they're \(0.9,0.95\), so
 the effect is not big. You can argue that 20
 percent free base doesn't affect things for this
 compound. If we go to 50 percent free base, shown
 on the right-hand side, you see a larger portion of
 the population starting to show reduced exposures.
 The mean is 0.85 . On the mean value, it
 actually doesn't look that bad. The actual
 clinical impact appears to be decided based on the
 known PK/PD of the compound and whether there is a
 steep exposure response. But since I'm doing a
 population simulation, we asked the patient -- this
 was in the healthy volunteer populations we
 typically run on bioequivalence studies -- what if
 we run a simulation in a population with a larger
 portion of hype or achlorhydric [indiscernible].
 So it ends up on this population that was
 built in the software, where they have a higher
 incidence of pHs above 5 . We can again see a
 1 higher percentage of the population failing this
2 relative bioavailability question. At the end, one
3 needs to decide, based on the compound
4 characteristics, whether this is important or not
5 and set the limits. It will appear around 20
6 percent appears reasonable, for the most part, but
7 again, it has to be decided on a compound basis.
8 Moving outside formulation questions, the
9 fifth case study is around food effect questions.
10 Food effect is another bioequivalence question relating to how you take your drug. The example comes from colleagues at Novartis. They're looking at the weak base BCS I compound, highly soluble, highly permeable, and small first pass effect. So nothing complicated, no known EMI of this to worry about.

First, describing the fasted-state data is shown on the slides, pretty good description of the fasted-state data. That's not surprising for a BCS I compound. The question is, how is food effect projected.

On the left-hand side, we have a parameter

1 sensitivity analysis. It shows the projected AUC
2 ratio as a function of dose, and it's a pretty flat
3 line on one. So the model suggests, regardless of
4 dose, the compound will not lose any exposure or
5 gain exposures as a function of dosing with food.
$6 \quad$ On the right-hand side is a simulation of
7 the dose that the authors had, clinical data, and
8 it's interesting that not only the average strength
9 is projected pretty well, but the variability
10 around the observed food effect administration is
11 also described pretty well by the model.
12 So we do believe that for well-behaved BCS I
13 compounds, if one has fasted data to validate the
14 models, they can actually do reasonable predictions
15 and accurate predictions of the fed state and
16 potentially, in the future, use such type of
17 simulations to replace clinical studies.
18 The final example I'm going to cover briefly
19 is an IVIVC example. This is a BCS Class III
20 compound. The dose is a modified-release
21 formulation. What's interesting, and we're doing
22 the absorption modeling PBPK for this, is that it
exhibits regional dependent absorption. So it's
reduced by variability as the drug is dosed further down the GI tract.

We used data from six formulations, three matrices and three multi-particulates. There were
doses in the clinic against the immediate-release dosage form.
The PBPK model allows us to incorporate the
regional absorption into the model. These
absorption scale factors, which for simplicity you
can think of them as a correction factor on the
intestinal permeabilities for each of the regions,
you can see, were fitted for the data for the modified release. They are decreasing as we go down the Gl tract.

They mimic what we know experimentally for the compound, and we get pretty good agreements
18 with the observed simulated data for all six
19 formulations. That allows us to build a PBPK model for the IVIVC question. The performance of this model was very similar to a more classical deconvolution/convolution model we also developed.

Page 82
These case studies cover where I think we are today. As I said, I think we're in a pretty
good place, and these models are routinely applied.
What do I expect to see moving forward?
First, I do expect to see an increased application
of these models to understand fundamental biopharm
questions and inform clinical study designs the same way DDI models have done over the years. I
think our clinical pharmacology colleagues, at
least in the industry, are now becoming more familiar with these oral absorption models. They can trust them more for clinical study designs.

I do expect to see an increased utilization of the models in CMC filing sections mostly as supportive arguments for formulation development and partly by design argument. I have to qualify this, and I think it was mentioned in the morning. A lot of the times, some of the models will not make it into the filing because the decisions are made earlier. So the model might not be relevant to the formulation we're trying to commercialize. If the models are relevant to the final

1 formulation, I do expect to see an increased
2 appearance of these models.
3 Finally, the area I think where we'll see
4 more and more application is the use of the
5 absorption modeling for IVIVC and informing
6 clinically relevant specifications. I will admit
7 we are still not there. All of the tools are in
8 place to actually do this.
9 We typically talk about biorelevant dissolution and quality control of released method dissolution data separately, as two separate
entities. However, we have the modeling tools in
place that one can start using both of them
together to drive a clinically relevant
specification.
Specifically, one can use models to essentially deconvolute the in vitro data and get the inherent formulation behavior, which will be dissolution method independent and then use that information in the PBPK modeling or your IVIVC modeling to project clinical performance.

As I showed you in some of the examples, use

Page 84
1 the PBPK modeling to test the boundaries of
2 performance to understand why you're going to see
3 failure of your formulation and then translate that
4 back to a dissolution specification for your final
5 product, much as how it's currently done for
6 traditional IVIVCs for modified-release products.
7 Finally, I think regulatory guidances can
8 also serve as another catalyst to push use of these
9 models. For example, guidances around modeling
10 acceptance, the qualification criteria for IVIVC,
11 and bioequivalence questions, there is a
12 traditional IVIVC guidance which we'll be following
13 that one.
14 A regulatory framework around clinically
15 relevant specifications, especially for
16 immediate-release products, I think
7 modified release is a little bit more clear what we
18 should be doing, but immediate-release is a little
19 bit more difficult. Global harmonization might be
20 a concern there.
21 Finally, as I mentioned, guidances on using
22 some of these models as surrogates of clinical

```
    studies, as currently done for DDIs.
    With that, I would like to acknowledge the
    PQRI Biopharmaceutical Technical Committee and the
    AAPS Quality by Design and Drug Product Performance
    Focus Group for some of the concepts that I'm
    presenting today and colleagues at Merck for help
    with the slides.
        I'm looking forward to the remainder of the
    workshop. Thank you.
        (Applause.)
        DR. L. ZHAO: Next speaker, Dr. Novakovic.
        Presentation - Jasmina Novakovic
        DR. NOVAKOVIC: Good morning, everybody. I
    am here today on behalf of Generic Pharmaceutical
    Association, and the title of my presentation is
    "Modeling and Simulations for Development and
    Bioequivalence Evaluation of a Generic Drug
    Product."
    So what is Generic Pharmaceutical
    Association? This is an association that
    represents the manufacturers and distributors in
    the area of generic pharmaceutical products,
```

 including suppliers and manufacturers of active
 materials.
 At the beginning, I would like to start with
 major phases of generic drug product development.
 It starts with characterization of a referenced
 drug product followed by design of the generic
 product and process, and these two stages are
 so-called early development. Once generic drug
 product and process are defined, the manufacturing
 pivotal biobatch, that biobatch is subjected to
 bioequivalence studies against reference product.
 And if the outcome is positive, it means if the
 product shows bioequivalence, then we are moving
 into commercial manufacturing and product enters
 its life cycle. These are post-approval stages.
 In today's presentation, I would like to
 talk about roles of physiologically-based
 pharmacokinetic modeling and simulations at early
 development stage, as well as throughout life
 cycle, and quality risk management of a generic
 drug product.
 Where are the opportunities for PBPK
 1 modeling and simulations? First, we have to start
2 with characterization of a reference-listed drug.
3 Definitely, PBPK modeling and simulations has its
4 role. Then when we are developing product and
5 process, we are also using PBPK as a tool to
6 facilitate product development. Eventually,
7 biobatch or bio lot is manufactured and subjected
8 to biostudy.
9 How do we select bio lot? Among multiple 10 trials, we can select bio lot by using PBPK as a
11 tool. Also, once biobatch is manufactured,
12 stability is starting. At that time, we should
13 already have a specification. Ideally, the
14 specification should reflect bioequivalence or
15 should be clinically relevant. Therefore, PBPK
16 modeling and simulation is also important for us.
17 Once the product is shown to be
18 bioequivalent and commercial manufacturing is
19 starting, the product is subjected to changes, and
20 life is change, and, therefore, we cannot avoid
21 changes to the product sometimes. And these are
22 minor changes to the composition or changes in the

Page 88
1 process.
2 In order to assess impact of these changes
on drug behavior in vivo, we can use PBPK modeling
and simulations. These are the opportunities, but
5 what is the real situation? Based on a survey that
6 has been conducted recently on a very limited
number of participants, PBPK modeling and
8 simulation is underused in the generic
9 pharmaceutical industry.
About 75 percent of respondents said that
they are using it for characterization of
reference-listed drug and development of the
process. The same percentage approximately is
using it to assess product ability to meet
bioequivalence versus innovative product, and about
1650 percent said that it is used to develop
7 manufacturing process.
18 On all other areas, it seems to be unused,
19 but as I said, the sample size for the survey was
20 very small. So it is difficult to say that it is a
21 true representation of the situation.
22 In this presentation, I would like to share
with you our experience at Apotex at this time
about application of physiologically-based modeling
and simulation at early development stage, as well
as throughout the product life cycle.
Let's start with early development. At
early development stage, we would like to
characterize the reference-listed drug in terms of
the attributes critical for in vivo performance and
9 to define target product profile. Also, we would
0 like to use that information to facilitate
formulation design and define development strategy
to achieve bioequivalence with reference-listed drug.

So this is an example from our practice. We started with reference-listed drug
characterization, and these are the tools and input in that we needed. We used GastroPlus v. 8. We had physiccochemical and PK properties of the active pharmaceutical ingredient. Dosage form and dosage strength were known to us. Route of administration, pH solubility profile of the active ingredient. Plasma concentration versus time data

Page 90
or PK profile and in vitro early-release profile, that is optional, but it can be always generated in-house.

More specifically, the drug was a BCS class
steroid. It was an immediate-release tablet, 250
milligram dosage strength, molecular formula and
molecular weight unknown. Log D, pKa, Caco-2
permeability are known. pH solubility profile for
9 the active ingredient has been developed or
10 generated in-house, and the PK parameters,
11 including the plasma protein binding, were known.
12 Plasma concentration versus time profile was
13 available in the literature. In vitro dissolution
14 profile was generated in-house, but it was used for
15 information purposes only.
16 So this is pH solubility profile of the
17 active ingredient measured in-house. It is obvious
18 that the compound has very low solubility,
19 especially at pH above 2 . We incorporated all the
20 information that I mentioned before into the model,
21 and we got a simulated profile represented by the
22 full line much, much lower than the observed

1 profile represented by the active squares.
2 So we asked ourselves what was the reason,
3 and when trying to find the answer, we approached
4 it taking into account the so-called parsimony
5 principle, which means the simplest possible
6 hypothesis among multiple hypotheses is most likely
7 to be the correct one.
$8 \quad$ What we did, we modeled solubility. The
9 blue line in the plot is the modeled solubility
10 profile, and the red line is the experimental
11 solubility. We incorporated the model solubility
12 into the model, GastroPlus model. As the result,
13 we got simulated PK profile represented by a full
14 line, which practically overlaps the experimental
15 or the PK profile reported in the literature.
16 What was the conclusion that we made based
on this? We realized that solubility enhancement
based on the modeling results is necessary to
19 achieve bioequivalence. So we focused our
20 development strategy around solubility enhancement,
21 and we were fortunate to achieve bioequivalence.
22 Actually, our product achieved bioequivalence

Page 92
1 against the referenced product.
2 Now, I would like to move to commercial
3 product manufacture and life cycle management and
4 modeling and simulations to ensure quality risk
5 management. In this case, our product was a BCS I
6 drug formulated as extended-release matrix-based
7 formulation in multiple strengths, exhibiting
8 linear pharmacokinetics. Bioequivalence versus
9 reference product was proven for the lowest and 10 highest strengths.
11 Formulations subjected to biostudies
12 exhibited different release rates in one of the
13 first medium. The question was, is this relevant
14 to the product in vivo performance. We were pretty
15 much sure that it wasn't relevant, because both
16 strengths exhibited bioequivalence, but classical
17 biowaiver justification for the intermediate
18 strengths or different strengths was challenged due
19 to such discrepancy of the solution profiles in one
20 of the test medium.
1 Our question was, is the science-based
22 approach that employs modeling and simulation
applicable. What we did, first, we tried to
identify bio indicative solution test conditions
and to establish clinically relevant specification
limits to ensure bioequivalence. Then we designed
a biostudy waiver for the intermediate strengths
that can be used eventually for SUPAC changes, and
it was IVIVC Level A correlation. We used that
correlation to establish boundaries for critical
material attributes of a rate-controlling polymer
to ensure in vitro release within clinically
relevant specification limits.
Let's start with bio indicative, the
solution test condition, and specification limits
that we established to ensure bioequivalence. So
the first thing that we did was to reveal regional
gastrointestinal absorption profile of our drug.
Why it is helpful, it is helpful because it tells
us what should be our starting point in terms of
19 designing these solution test conditions. At least
20 we knew the pH of the region our drug -- by knowing
21 the region our drug is absorbed, we know the pH of
22 the media, and that is most likely to be reflective

Page 94
of drug in vivo behavior.
What we had, we had three bio lots and
corresponding release profiles for the three
bio lots. The PK profiles of the three bio lots
are presented without dose normalization. So the
lowest strength is presented in red squares, and it
was bioequivalent to the corresponding strength of
the reference-listed product. And the highest
strength, in teal, is also bioequivalent with the
10 corresponding strength of the reference-listed product, and the highest strength, presented in
green, was bioequivalent, but with borderline confidence.

You can see in the dissolution plot that dissolution or release rates correspond to biostudy results. There is rank order between results of the bioequivalence studies and dissolution or release rates. We used that information to establish in vitro-in vivo correlation, and Level A in vitro-in vivo correlation has been established
21 with a regression coefficient which is above 0.9 , 22 which is very good for such situations.

1 Now, we know that our dissolution test
2 method is bio indicative or biorelevant or
3 bio discriminatory. Our next task was to establish
4 specification criteria for the bio indicative
5 dissolution test method.
6 How we did it, we created number of hypothetical batches with different release rates,
and we incorporated those release rates into
modeling and simulation. Based on the output, we
could specify what are upper and lower
specification limits for our product that would result in bioequivalence.

So this is the plot representing dissolution
profiles and upper and lower specification limits.
The limits are presented in red dotted lines. The
biobatch, which was so-called borderline biobatch,
bioequivalent, but with borderline confidence interval, is presented in blue. That borderline batch is outside the lower specification limits.

We also introduce something that we call gray area, and that gray area is a reflection of prediction error. By having that product which

1 meets specification criteria, we assure that that
2 drug product would be bioequivalent to the
3 corresponding reference-listed drug.
4 At this point, I would like to mention
5 differences between biorelevant and QC dissolution.
6 These two methods may be different methods, and in
7 most of the situations, they are different methods.
8 QC method is used routinely, but it could be overly
9 discriminating or bio irrelevant. Bio irrelevant
10 methods may be complicated and impractical for
11 routine applications, but these two types of
12 methods complement each other well, because impact
13 of change, such as SUPAC changes or impact of out-
14 of-spec results during stability, for example,
15 which, when product is tested by QC method, may be
16 assessed by bio indicative test method.
17 So most of QC methods nowadays have the 18 OGD-recommended test method, because somehow the 19 agency is in favor of those test methods, but for 20 generic manufacturers, those test methods may not 21 be suitable. So my question is, does one size fit 22 all. No, definitely not.
2 represented by a red line, and innovative product,
represented by a blue line, tested as per
OGD-recommended test method. The generic product
has been proven to be bioequivalent versus
corresponding reference-listed drug, but as you
see, the dissolution profiles are very, very
different, with generic drugs showing practically
no dissolution.

Another similar situation to bioequivalent products, different release rate, but when tested by FDA OGD dissolution test method.

Now, I would like to talk about biostudy waiver for intermediate strengths. That biostudy waiver has been justified using Level A IVIVC that we developed, as I explained previously.

In vitro release profiles for the intermediate strengths were incorporated into the
simulation, and we obtained simulated PK profiles for each intermediate strength. We were able to calculate test reference ratio and predict
bioequivalence against our product and against

Page 98
reference-listed drug.
Finally, how did we use physiologically-
based modeling and simulation to establish
boundaries for critical material attributes of
release controlling polymer? It is known that a
polymer material or attributes of a polymer
material may have impact on the release of the
active ingredient and, consequently, on
bioavailability.
What are the boundaries? Boundaries should
be defined to ensure bioequivalence. We are
talking about clinically relevant specifications.
How would we know what are the boundaries?
Our ultimate goal is bioequivalence or bioavailability of our product, which is formulated
as extended-release formulation with release-
controlling polymer. We are applying PBPK modeling
and simulation to assess which dissolution test
method is bio indicative of in vitro release
method.
When we have this, we have to know what our boundaries or what our specification limits for

1 that bio indicative in vitro test method are. So
2 we are using physiologically-based pharmacokinetic
3 modeling, as I explained previously, to establish a
4 clinically relevant specification. That clinically
5 relevant specification is a power tool to us during
6 the qualitative management to ensure impact of the
7 changes on bioequivalence, bioavailability, and to
8 define boundaries for critical manufacturing
9 attributes of controlled-release polymer.
10 Boundaries of the polymer are defined by the product's ability to meet clinically relevant
specification when tested using bio indicative in vitro release method.

In summary, I would like to say at early product development stage, PBPK modeling is a
proven tool to characterize reference-listed drug,
facilitate product development, to define
formulation strategy, and achieve bioequivalence.
During lifetime cycle management, quality
risk management is ensured by implementing adequate
control strategies. Adequate control strategies
are both test method that is bio indicative and

Page 100
specification limits.
Control strategy established to ensure
bioequivalence is developed based on PBPK modeling.
PBPK modeling and simulation is powerful, but
underused, according to our knowledge, a tool to
facilitate development and ensure quality risk
management for generic drug products.
These are the references that I used in
preparation of this presentation and during my
work, and thank you very much for your attention.
(Applause.)
DR. L. ZHAO: Thank you.
Next speaker, Dr. Gordon Amidon from Michigan.

Presentation - Gordon Amidon
DR. AMIDON: Thank you. It's a pleasure to
be here and to see the increasing interest in mechanistic oral absorption, mass transport
absorption, all of the physical chemistry and
chemistry underlying oral drug absorption.
I'm going to make a couple of points, and I
know I'm standing between you and lunch, so I'm
going to try to finish on time. One is that we
need to start spending more attention on what's
been called bio indicative, biorelevant, I'm
calling in vivo predictive dissolution, because
that's the input to simulations. And without good
input, you don't get good output.
That's going to be kind of the bottom line of my talk here, but l'll give you some history.
I've been in this field so long that I will have to show some history.
(Laughter.)
DR. AMIDON: The starting point, and this is
true for all routes of administration, it's just
more complicated than oral, oral is complicated
enough, is this, l'd say, is written in a rather
simplistic manner, but it's a function of
permeability and concentration at the absorbing
site. If we have the same absorption -- we have to
maybe define that word a little
better -- everything else would be the same.
One of the complexities in our field is that
new drug development and product development are

Page 102
sometimes connected, intimately connected, and
we're trying to separate. I view this
biopharmaceutics as about the product performance
in vivo, and it's the patient, the patient gets a
product, not a drug. They get a product.
It's permeability and solubility at the
absorption site. Those are complicated factors.
When I'm talking about oral products, and this is a
conference about oral product simulation and it's,
as I said, a real pleasure to see the increasing focus on mechanistic oral absorption.

First, I want to point out this conflation of term goes back more than 100 years. We often use the term "drug" when we're really talking about
drug product, and they're different. This meeting is about product.

This confusion goes back all the way to 1906, but for us in the field, when we talk about drug, when we use the term drug, we know from context what you're talking about, but the average public probably doesn't.

The product and the drug are different.

1 They get a drug product. We're talking about 2 product science.
3 One thing I want to point out is fasted and
fed state in the gastrointestinal tract are quite
5 different in terms of their motility patterns,
6 transit pattern, luminal environment patterns. So
7 we have to pay attention to that. I'm talking
8 mostly about fasted state, because that's usually
9 the initial BE, bioequivalence, requirement, but 10 they're very different motility patterns. We are 11 in the process of studying those right now at the
12 University of Michigan as part of the research 3 project funded by the FDA.
14 I have to show some history here going back 15 to some of the ' 80 s, 1980 s and ' 90 s work that we did in some of the pharmacometrics, gastric emptying, influence of gastric emptying on plasma levels, just gastric emptying, and l'll show some of that in the presentation here.

Of course, the early 1980s models were kind of thought of in a pharmacokinetic sense, with boxes and arrows and first order rate constants,

1 but, of course, we now know it's much more
2 complicated than that. But that's what we did, but
3 we could look at motility and variation in the
4 '80s -- this is 30 years ago now -- and show that
5 the plasma levels varied significantly with just
6 gastric emptying, nothing else, just gastric
7 emptying variation in the fasted state. We're
8 pursuing, and I'll show another slide on that
9 later, the bioequivalence implications.
10 Showing your typical gastric emptying curve
11 is often not first order. Anywhere between 10 and
1230 percent of the gastric emptying curves are not
13 first order. So we have to begin to account for
4 that in the probability distribution, if you will,
15 in some type of a statistical evaluation of gastric
16 emptying and how we actually, I'm going to say,
7 model that, but using modeled in a mechanistic
8 sense, in a real factual way, where we know the
rates, the complexity, the probability
distributions. We're in the process of trying to figure that out.

Some of the early transport models that we
started in the mid '90s, working particularly with
Lawrence Yu and developed that based on some
compartmental analysis that's commonly used today,
as you know, we're continuing to extend that, and
we looked at a variety of tube models, chemical
engineering type, chemical reactor modeling.
7 Then we used this residence time
distribution from work done by S.S. Davis, Bob
Davis and Nottingham for the small intestinal
transit time, and we could fit that to a multi-
compartment model. Then that's the CAT models and
subsequent models that have been further developed
by the simulation companies that we'll be talking
later.
We continue to play around with that, too,
because I think I'm a closet mathematician, not a
very good one, but I like to play around with it, with continuous models.

I want to point out that the stomach is more
complicated than we think and we'd like to think.
There's at least four different compartments in the stomach, and our own studies confirm that. The

Page 106
stomach is still complicated, and so it's going to
take more work to sort out what's going on in the
stomach physiologically in terms of gastric
emptying, fasted/fed state.
Fed state might be simpler, depending on the
product, than the fasted state, but I want to show
an example of what we did in the early
'90s -- actually, middle '80s, published in 1990,
on gastric emptying variation, just purely gastric
10 emptying variation with a marker compound, non-
absorbed compound. We measured the gastric
emptying, and the curves here on the left show some
of the different curves that we saw for gastric
emptying and the gastric emptying rates. We quantitated that.

We've carried that through to today. We fast-forward to 2016, where we just published the paper where we included gastric emptying variation and the plasma level implications of that gastric emptying variation for a well-absorbed drug, BCS Class I and III compounds, actually. The work was done by a former graduate student, Arjang Talattof,

1 who is here actually working the lights, I guess,
2 now at the FDA, and a programming consultant
3 colleague of mine, Judy Price. We published this a
4 year ago.
$5 \quad$ I want to show we fit the gastric emptying
6 curves to a 4 H series. I'm not going to get into
7 any of the details. It's in the paper. But then
8 when we computed the bioequivalence
9 implications -- and you don't have to look at the
10 details here, but we computed the expected
1 variation, expected when we simulated a
2 bioequivalence trial.
13 What we did here is we simulated 5,000 or
10,000 -- I don't remember the
5 number -- simulations to get the so-called
6 population average, and then we simulated samples
7 of 26 . From that population, we took samples of
826 , and what you can see here is the number of
9 potential failures that would occur just due to
0 gastric emptying rate, nothing to do with plasma or
1 absorption, just gastric emptying.
22 There's significant variation in our in vivo

Page 108
1 bioequivalence studies just because of the
2 variability in the gastrointestinal process. We'll
3 continue to study that and determine how we can
4 come up with better bioequivalent standards, better
5 and, in some cases, simpler which is kind of a
6 regulatory nirvana, cheaper and better.
7 We know that's true for BCS Class I drugs if
8 they dissolve rapid enough. Now, can we extend
9 that? That's what we're saying. How far can we 10 push that science of in vitro bioequivalence?
11 What about Gl inputs? This is going to be 12 the point, and maybe I'll be interested in how the 13 simulation presentations talk about this. But the
14 key is going to be the input function. What is the
15 concentration profile of drug along the
16 gastrointestinal tract delivered from the product?
17 Because that absorption profile is what
18 determines absorption, absorption rate and then
19 subsequently, if the absorption rate of two
20 products -- remember, we're talking about products
21 with the same drug. We often forget that. We're
22 not talking about bioavailability. We're talking
about bioequivalence, and I think we're
establishing a new bioequivalence science.
The difference is because we're talking
about relative bioavailability, two products, same
drug. The pharmacokinetics are the same, with some
exceptions, but they're the same. So we're talking
about a product effect, not a bioavailability
effect. So we've got to talk about the input and
look at that more carefully.
I'm going to give one example here that my brother Greg has done as we're working on this contract, and this is the USP dissolution test, on the left of the RLD, the reference-listed drug product. It dissolves at 10 minutes 100 percent.
That's the USP method, but when we use a
more -- I'm going to say more because this is not
fully bio irrelevant, but when we use a bicarbonate
buffer, 15 millimolar, we now know the buffer
strength is much less. It takes 60 minutes to dissolve in a more biorelevant media.

Now, I'm not saying this is bio predictive
yet, but it just shows you the huge difference of

Page 110
dissolution rate. I think we also have to develop
a better semantics talking about dissolution. We
often talk about dissolution, but there's so many
variables that affect that. So we need to get more
specific when we're talking about dissolution and
particularly when we want it to be in vivo
predictive of what's happening in vivo. We're
making progress on that. I think that's a major step.

On the left, we have a USP dissolution apparatus. On the right, we have what we're calling an in vivo predictive dissolution
apparatus, which was developed by a generic
company, by one of my former students, because they
did a BE study and failed. They wanted to know
why. I mean, they should determine that before they do the study, right? So that's what we're trying to do.

Now, this is in no way going to be a quality control device, but it can help you set your quality control specifications. It can be used for product development and for understanding how your

1 product and the critical product and manufacturing
2 variables.
3 So think this what I'm calling IPD in vivo 4 predicted dissolution method, which we're extending
5 basically from the ASD that has been developed and
6 published in the literature and we basically added
7 another beaker to their device and call it GIS,
8 gastrointestinal simulator. That's one of the
9 projects we're working on, because we want to
10 develop -- you need an experimental input function
11 for your simulation. We need something that we
12 think is relevant in vivo. We need the evidence to
13 show that, and that's what we're doing now.
14 Some ways where we can extend biowaivers
15 based on IPD and subsequent quality control
16 specification, can we slow dissolution for BCS
17 Class I, even Class III? I saw that question
18 earlier today. Likewise, the quantitative versus
19 qualitative differences that we can allow for BCS
20 Class III and, of course, BCS Class II and IV and
21 I'll talk about them more in a minute, but I'm
22 going to propose subclasses, acid, base, neutral,

Page 112
1 because we know that makes all the difference in
2 the world to product performance, the in vivo
3 product performance.
4 I'm proposing that we at least start talking
5 now not only about BCS class, but BCS subclass.
6 Principally, I propose for II and IV, but it could
7 also be relevant for I and III, particularly III
8 where permeability and solubility, particularly
9 permeability, can vary along the intestine because
10 the pKa if it's in the physiologic range. We need
11 a subclassification at least as the next step in
12 talking about in setting dissolution standards,
13 even IPD, but also quality control standards.
14 I'm proposing that we use acid, base,
15 neutral, because if you're a development scientist,
16 you not only want to know that, you want to know
17 everything else related to your product, but that's
18 one of the things you want to know.
19 This is just a very preliminary step.
20 Actually, when we first tried to publish this
21 paper, which was published about a year ago, it was
22 rejected, and I'm the editor of the journal. But
it's because dissolution specifications are so darn
hard. Dissolution specifications, you've got to think, it's almost product dependent. Certainly, it's subclass dependent, but we're making progress
at some general recommendations about dissolution
methodology that would be predictive for
subclasses. We're still working on that, and I'm
working closely with Greg Amidon to do that and
develop that as part of this FDA research grant effort.

I'm going to conclude with my key point.
The key to predicting in vivo is predicting the
input concentration profile of the drug at the
absorbing site in the Gl tract. It's also true in
other routes, too, but it's more complicated
because of local effects there. But at least for
the gastrointestinal tract, we want to develop a methodology that we think will reflect the in vivo dissolution conditions and the variable conditions of the gastrointestinal tract.

That's where I think we're going to go
today. That's what we're trying to develop today,

Page 114
and I think this conference -- and I think one of
the things that the mechanistic simulation
approaches that we're talking about here are really
bringing those fundamental mechanistic questions to
the forefront. We're beginning to ask what those
questions are and determine methods for determining
what are the key crucial variable controlling product performance for clinical performance to the patients.

Finally, I just want to say, of course, this
is a picture from my colleague, Gus Rasagna, on my real BCS, you're either in heaven or purgatory, depending on what you have for BCS class and, I
would say, now subclass. But I think that what
this initiative which was actually started in the
early '90s, 20 years ago, by FDA-funded research at
Michigan and at the University of Uppsala to
develop the permeability database that subsequently
became used for the biowaiver BCS guidance, which has evolved today.

I think there's a draft guidance, now nearly in final form, revising the guidance, which is very

1 satisfying to me to see the scientific -- seeing
2 the uptake of the scientific approach by the FDA,
3 and then, of course, there's many considerations
4 around that, especially at the FDA where you've got
5 public policy, as well as science considerations
6 that impact how the agency has to operate.
7 It's been a real pleasure. I think I
8 actually finished ahead of time, because I think I
9 talked faster than I usually do.
10 (Laughter.)
11 DR. AMIDON: I want to thank you again for 12 the opportunity to present here. Thank you.
13 (Applause.)
14 DR. L. ZHAO: Thank you, Dr. Amidon.
15 With this, I want to thank again all the
speakers in the morning. Thank you to download
your thoughts, your guiding principles in the PBPK
field, and to make the meeting exciting and valuable.

So we are looking forward for this
afternoon, and we have another three presentations, followed by a panel discussion.

Page 116
1 Thank you, Dr. Amidon, for giving us extra 2 time.
3 I think everybody, in BE terms, are in the
4 fasting condition. So we'll have a one-hour break,
5 and please be mindful about the time, to be coming
6 back in time. We will reconvene at 12:30. Thank
7 you. See you soon.
8 (Whereupon, at 11:22 a.m., a luncheon recess 9 was taken.)
10
11
12
13
14
15

AFTERNOONSESSION

 (12:30 p.m.)DR. L. ZHAO: Hello, everyone. I think the
majority of people probably -- the key people are
here. More people may come in once the meeting is
in session.
I will introduce the next speaker,
Dr. Masoud Jamei, a vice president from R\&D,
Simcyp, the first presenter from software
developers.
Presentation - Masoud Jamei
DR. JAMEI: Thank you very much for the introduction and, of course, for the opportunity to be here.

I have considered three main topics for our discussions in terms of the opportunity and the challenges. The first one is the IVIVE-linked PBPK absorption modeling. The second one is physiologically-based or mechanistic IVIVC, and then bioequivalence and PBPK modeling.

I'm trying to do some parallels between the success that we have in the PBPK in other areas and

Page 118
see what we can do to speed up the success or the development of PBPK in the absorption side.

From Simcyp, in 2012, we put this paper in
NCPT in why PBPK has been successful and so rapidly
had developed over the last 10 or 15 years. And we
believe that the main reason is the connection
between in vitro and in vivo extrapolation. That
has been the missing link that PBPK modeling over
the last 70 years hasn't been picked up. But when
the link between in vitro and in vivo is
established, then the development becomes much faster.

We believe that without IVIVE, the PBPK, the ability to be able to predict or extrapolate will become very limited. I'll show you why. What is the reasoning behind that one? One element of PBPK is that always the data in the model, they have been combined, and if you put PBPK in this system
in a pharmacology context and we separate the parameters, we get lots of benefits out of it.

You will see, we have done it this one, for other areas, and we would like to do the same for

1 the absorption side. So we divide the data in
2 three different categories: what we call the
3 system data or the species that you're -- the drug
4 or drug product. There are some physiological,
5 anatomical, or biological information, but they are
6 nothing to do with the drug. They are specific to
7 individuals, or even if you are giving that to rat
8 or monkey or dog, they are specific to that
9 species.
10 Some other parameters are intrinsic to the 1 drug. Intrinsic solubility, it has nothing to do
12 with the varieties. Intrinsic solubility is the 3 same, or intrinsic permeability, if we can get that 4 number, or some of these problems, they are 15 specific to the drug itself. Then we have a 16 clinical trial, how many people you are putting in, 17 what is the age and all the rest of the thing.

If we can combine these using IVIVE and
PBPK, then we can look at the variability. You can look at the prediction and lots of other things. What is the advantage is the advantages we will be able to develop a generic model that then you can

1 change only the system parameter and then you can
2 extrapolate from healthy volunteers to different
3 population. A cirrhotic patient, if you know what
4 is changing in terms of physiology, that is
5 relevant to absorption, then we will be able to
6 predict in cirrhotic patient; so beginning one drug
7 and then we saw the changes from one population to
8 another population.
$9 \quad$ We can give rosuvastatin to obese people or
10 we can give it to Chinese or Japanese or elderly
11 people. So you can see you are changing one part
12 of the system so the other part will stay the same.
13 And the same with the pediatric. Hopefully, you
14 will be able to do the same with drug product, as
15 well. We have done it so far for drug. Now, we
16 want to do it and be able to do it for drug
17 products.
18 It is a big challenge, and you need to 19 mechanistically understand many different things.
20 So one of the models that can be used is the other
21 model that we have, and there are various processes
22 that happen, and we have to account for those. If
you look at the color, the purple color is the
density changing, and in this case, it shows the
distribution of three or four in the GI tract. We
have to have this type of information to be able to provide in the model.
One thing that is very important when we are
building individual, because we are dealing with
virtual individuals, we can do one-color sampling,
which is very common. If you open any paper, they
say, "Oh, we'll be using one-color sampling."
If you want to create a subject using one-
color sampling, this may happen. You are putting
different size of individual, so the individual
will not be a proper individual. But you have to do correlated sampling.

If you do correlated, then you keep the correlation between the different physiological or anatomical or even biological aspects. It is the same if you change the subject and then you can do that, but moving from the left to the right is a huge amount of work.

I think in the morning we got a good mention

Page 122
that gastric emptying by its own can affect the
plasma concentration. When we were developing this
seven years ago, we had that question. If the pH
in the stomach in some subject is 2 , is the
duodenum pH going to be affected or not? If
somebody's stomach pH is 5 , is it going to affect
the duodenum pH or not? I understand for motility.
At the time and still, we haven't found the
evidence, which is fine, so we can independently
generate this, but if there is any evidence that they are correlated, then we have to incorporate those.

So we have to do this. Another question when we're developing the pediatric absorption model was that is gastric emptying related to the age. Is it changing by age? So we had the post doc. She collected six months or nine months of -- to collect all the data, and the data didn't show any relationship between gastric emptying and age. But there was a good correlation between the type of food and gastric emptying.
This type of information is very important

1 if you want to generate realistic mechanistic
2 modeling, but they are taking time. Another thing
3 which is very important is the amount and the way
4 that the fluid dynamic is changing in the Gl tract,
5 because everything, as we know, is going to be
6 affected as part of that one.
7 If you look at the MRI data, these data are 8 coming from Werner Weitschies in Germany using MRI.
9 He generated the data, and if you look after one
10 hour, they gave the individual 150 milliliters of
11 water, after one hour, on median, you have 85
12 milliliters of water, which is very low, very low 3 compared to what sometimes we are using.
4 We were a bit skeptical, and then you see the data that is coming out of, again, Gordon
Amidon's group and Marciani's collaboration, you
see that the variability is very high. So we will see that the variability is there.

Another thing is that after one hour, the mean value is almost the same. This is the reality that we have, and you don't have the static fluid; 22 it is changing by time. So it goes up and comes

1 down, and if we ignore this, you will not know how
2 many of the parameters can be affected.
3 We know, in reality, there is a fluid
4 dynamic that happens, and considering that one
5 allows us to consider many other factors, like
6 variability, how much of the water they have taken,
7 the dynamic of the dilution and viscosity, because
8 we want to know what is the viscosity and how it is
9 changing to be able to look at the effect of
10 formulation, if you are adding any specific
11 excipient, how are you going to be affected.
12 Precipitation and supersaturation, they are going
13 to be affected by the level of fluid. These are
14 very important for us to know.
15 These two slides are from Professor
16 Yamashita from Japan. He presented these last
17 year. They are very interesting. He did a survey
18 of 500 people and how much water they are drinking
19 with a tablet. If you see, the mean value is 80 ,
20 and we are doing most of the control study by 250
21 milliliters. This is the reality, and you see
22 there can be some disconnect between what we do in
clinic and what people are doing at home.
There are direct effects. Again, he checked for three different drugs, and he saw the impact.
The Cmax is different, the AUC is different, as
well as the Tmax, they are changing.
It is not only dissolution. Permeability
has almost the same story. These are the data that
I think Gordon mentioned the lucky gut at
experiments. You see that there are good level of
variability from 10-fold, 11-fold, fivefold and fourfold, that they are happening for permeability of different drugs.

There are models that we can get some idea from as to some of the drug. If you look at the metoprolol, we are able to come up with some idea of the prediction mechanistically to be able to get some idea of the variability of dose.

Another aspect, as I said, is that IVIVE side. One thing that we are doing at the moment, not everybody, but the most common practice is that we do some experiment in a different shape, so different pH , different RPM, and then we get those

Page 126

data and we directly plug them into a PBPK model.
This is good, but it's not good enough. We
see what we are missing from that one. If, rather
than doing that one, we put many of these data
together and we model them, mechanistically we
model them, then we can separate whatever is
related to the in vitro and what is related to the
API or even formulation.
The next step would be formulation. We are
separating the system data from drug data, and then
we can put them back. If we don't have to put them
back, then they allow us to extrapolate. You don't
need to do so many different experiments to be able
to get to the point that you want. If you extract
the in vitro intrinsic parameter, you will be able to do it.

We have been doing this one for metabolism, for transfer, for induction, for inhibition. We
know how to do those, and now our idea is to bring
it and do it for the absorption side. Is it
working or not? As part of the OrBiTo that
Filippos is going to explain, we have been working

1 with different groups. So there are some data. We
2 are running different experiments, and then we
3 combine all those data and together, we fit them
4 and then we input them into the PBPK model.
5 Then when you combine these, there are some
6 data that Christos Reppas from Athens University,
7 they have measured the duodenal concentration, and
8 then when you put it in the model, you see that it
9 is possible -- at least in this case, we were lucky
10 for ketoconazole to get a close prediction or
11 simulation of what is happening. It is a close
2 relationship between what is observed and what is 3 predicted.
14 Moving to the IVIVE side, again, what we are doing, usually, we go from plasma concentration.
We directly go from the deconvoluted, but we can
deconvolute only the absorption profile or most of
8 the time absorption profile. If you have the
first-pass effect or you have got a different
location for the permeability, when you want to
link in vitro and in vivo, then you will come up
22 with some complex IVIVC, because we are linking the

Page 128
1 dissolution with absorption or absorption with
2 absorption. That is complex.
3 If you use the PBPK model that we have, then
4 we can separate each of these processes, because we
5 have information for those. We can separate
6 first-pass effect. Metabolism, we can remove it.
7 We can remove the permeability side, and we get
8 only the dissolution part and then make the
9 connection.
10 In many cases, it comes up with the simpler
11 IVIVC that allows us to extrapolate and change the
12 formulation, which is an advantage. This is one
13 case that we have been working on this one. In
14 this case, we are using metoprolol data, and this
15 specific graph, we use the PBPK. You see that for
16 three different formulations, we managed to get a
7 solid line for IVIVC, but any other method that we 8 try to get, it was always biased. It was always 9 biased.
20 The method that was published in 2002, in
21 1998, and, again, we repeated, the bias is there,
22 which is obvious, because the absorption is not
necessarily the same as dissolution. But if you
use PBPK, it allows us to go back and get the dissolution profile.

This is very good work that Marilyn and
Bipin did to do PBPK IVIVC and look at various
scenarios, what happens. So it's a huge amount of
work even to this one, and it should come out very
soon. They use a PBPK model for IVIVC, the same
metoprolol data, but we had individual data. That
was the good thing. The individual data was available.

Then they tried various scenarios to look at
the consequence of choosing different options on
the outcome. Like if you use a waiver function,
how you choose the alpha and beta and which you
fit, it has some consequences for you. If you are
using different fitting module or if they are using
different rating algorithm, then it's going to have
a different impact. If you are looking considering
fitting gastric emptying or if you are not
considering that, again, it can have some impact as
with the importance of the population variability

Page 130
and how you incorporate the dose.
At the end, the good thing is when you are using PBPK IVIVC, then you can extrapolate. So in
this case, we are looking at metoprolol, and most
of the individuals in the study, they were
extensive metabolizers of 2D6. Then you can change
it to a poor metabolizer and see if the formulation
is changed, how it's going to affect other
population that they haven't been in your study.
Moving to the bioequivalence work, some have a similar approach. They're first starting to
develop a good model for the drug without going to
any complexities, and using the clinical
observations to assess the performance. So whatever, again, we learn from the PBPK in other areas, that's when we develop a model, we have to
qualify it. We have to see if it can predict the cases that it hasn't been used to fit the model or to improve the model.

When you do, then you can start to develop a physiologically-based IVIVC module. The next step 22 is that we have to have some idea about inter-

1 location variability, and this is one of the
2 challenges that we don't have much of a grip on
3 this type of information.
4 Assuming we have those, then we can conduct
5 the bioequivalent, and we can determine the
6 solution limited specification or safest space
7 design. All of these can come out of this
8 approach.
9 This is what my colleague, Shriram, did for 0 tramadol. He went through systematic work, and then what you see on the left, he did lots of different simulations based on the Weibull function that he fitted for in vivo dissolution. Then he came up with a range that's in vitro dissolution is acceptable, and it's keeping the IVIVC valid.

One thing that we have to always remember is that there are -- we have to be realistic. There are things that we don't know what is happening.
9 There are some data that we don't know them, so we
20 have to fit some parts, but when we are doing a bottoms-up approach, if it's not working and if you
22 are using the clinical studies, then we have to be

Page 132
1 careful when we go for the next step forward
2 extrapolation.
$3 \quad$ When we are fitting or we are assuming
parameter, those assumptions and those fitted
5 parameters we are using, we have to declare them,
6 because sometimes we may make four or five or six
7 different assumptions, but we forget to declare
8 them. It can cause confusion.
9 Sometimes we are going beyond the range that 10 the model can predict, and you get disappointing 11 results. And then you blame the model. However, 12 the model, I think Filippos in the morning said, 3 modeling is not wrong. The assumptions that they 4 use and then afterward we try to extrapolate, they 5 may not be correct.
16 Of course, sensitivity analysis, so in the 17 morning, I think John showed the value of
18 sensitivity analysis. As I said, we agree that
19 there are parameters that they are not certain. So
20 we can do sensitivity analysis.
21 Sensitivity analysis is a very good tool to
22 assess the impact of these uncertainties or the
fitted parameters or unknown even type of
phenomenon to see what is the range, what is the
scope of under-prediction or over-prediction.
Sensitivity analysis is a very important factor.
This is the work, the joint work with
Nikunjkumar and Jennifer Dressman from University
of Goethe and Cristofoletti from a Brazilian agency
that they are in the process of submitting this
one. They tried posaconazole and ketoconazle, and they wanted to see bioequivalence assessment. They
want to see what situation is the most striking or differentiated between the two cases.

So they run various simulations. If you
look at the top, you have ketoconazle with the
fasted considering only bulk pH for the dissolution
or the next to that one, they're using more common
multi-climate pH that improved the predictions.
Then you go for fasted and fed for the posaconazole
or if you come down, for ketoconazole, if you have
PPI, what happens? If you have fed for ketoconazle
or PPI on posaconazole, what happens?
They investigated various scenarios all in

Page 134
the population and considering the variabilities.
This is, I think, a good outcome out of that study there.

Now, you want to see when you are doing this
virtual bioequivalence which conditions are going
to be the most reflective of each scenario or which
one is the worst case scenario that you want to do.
So at the top, you have ketoconazle, you have fed,
fasted-plus soft drinks and you have fasted-plus
water or achlorhydria.
We have those information, so we can model them. You see that in the fasted state for
ketoconazle plus water, it was almost borderline, but for achlorhydria, it was very different. You see for posaconazole, in the case of achlorhydria, again, it was different. So these two cases for both drugs are very different, but for posaconazole, the fed state was the worst part.

You expect them, because they are very similar, to be the same, but even small changes in the properties can have an impact on which bioequivalence is going to be most differentiated,

1 why the -- I think for the test, as well as the
2 reference data, there were two different particle
3 sizes.
4 This is another study from the same group.
5 This one is putting the question of bioequivalence
6 a bit higher, because most of the time, we are
7 looking at the PK side. In this case, they said,
8 "Okay, let me get the PD side, what happens,"
9 because the ultimate aim is that you want to get an 10 effect.
11 For the case of ibuprofen immediate release,
12 at the top, it is for pediatric, and at the bottom,
13 the graph is for adults. If you look at the left
14 side, you see almost linearity for the two cases,
15 but if you look at the left, for one endpoint,
16 which is the pain relief, you get almost, again,
17 bioequivalence, if you want to call it that. But
18 if you go to the temperature reduction, you see 9 that there is a significant difference.
20 While in PK we may get bioequivalence, in 21 PD, we may not or we may. Dependent on what you
22 are looking at, there can be a difference between

Page 136
1 those.
2 Looking at the extrapolation, because at the 3 very beginning, I said that if we go for the system
4 separations of the data and drug, we will be able
5 to extrapolate. These are some cases. Again, the
6 first one coming from Cristofoletti, they looked at
7 many from the simulation side at what are the
8 impacts going to be in the children.
9 In the second one, coming from Roche
10 colleague, that they investigated the PBPK and the
11 impact on pediatric. And the bottom one is,
12 Trevor [ph], my colleague with AstraZeneca, they
3 did. They developed an IVIVC model in adults, and
14 they use it for extended-release module for 5 pediatric.
6 When we say pediatric, they are adolescents.
17 They're not really 4 years old or 3 or 2 years old.
8 So they are from 10 or 11 years up to 15 years, but
9 it works.
20 The same for the food effect, so food
21 effect, this morning it was mentioned. They are
22 cases that we have been able to predict. Even if
you look at the middle one that, again, Nikunj did
for nifedipine, even formulation, when we manage
bottom-up to predict the food effect, which was
very encouraging. Maybe it was lucky that in
nifedipine it worked for that case or dose
formulation, it was a good prediction.
Overall, there are lots of opportunities to use PBPK and for mechanistic absorption, but at the
same time, there are lots of challenges and maybe
we should be aware of the challenges.
Extrapolation to population, we are using it for other cases, it will be great if we can do it in the absorption side. Better understanding of formulation performance in vivo. Determining the product clinical qualities. Prediction of food effect, of course, is very desirable. PBPK IVIVC that potentially can expand the application of the IVIVC and virtual bioequivalence, as well.

There are lots of gaps in our knowledge about digestive systems, different parameters, and, hopefully, the work that Gordon is doing and FDA support will allow to fill in some of the gaps.

1 It is very important that we spend time on the education side. This is a new area, so
everybody will have to learn how to deal with those, and, of course, colonic absorption.

I would like to thank all the people who
contributed to the work from Simcyp's side, as well
as many of the regulatory, as well as the academic
colleagues that provided those data. I would like
to thank them and, of course, the OrBiTo that is
providing a forum for advancing the absorption.
Thank you.
(Applause.)
DR. L. ZHAO: Thank you, Dr. Jamei.
The next speaker to have us fight against a food coma probably is Dr. Viera Lukacova from SimulationsPlus.

Presentation - Viera Lukacova
DR. LUKACOVA: Thank you, Liang.
As you might have noticed, my slide deck had quite a few slides in there, but fortunately, all the speakers ahead of me already described half of those slides, so we'll be moving through quite

1 quickly.
2 I won't be spending too much time on this
3 initial slide. Jasmina did a very nice job
4 describing the opportunities for including the
5 modeling and simulation in the generic drug
6 development starting from identifying your
7 products, identifying the initial formulation all
8 the way up to use of modeling and simulation during
9 the scale-up process.
10 What I will be focusing a little bit on is
11 some outlines of where modeling and simulation
12 again can help in the formulation design, describe
13 a little bit more details on the mechanistic
14 simulation models and some of the case examples on
15 IVIVC's equivalence trials, food effects, and also
16 describe an example of a biowaiver study that we
17 were involved in.
18 Again, I think it was the first presentation
19 by John Duan, who already highlighted some of these
20 utilities of simulation in the formulation
21 development, starting from helping with the
22 development of the dissolution method to help you

Page 140
1 get a method, which is more biorelevant, which is
2 better discriminative, which gives you better
3 information about the possible in vivo performance
4 of your formulation through the design of the
5 formulation; evaluating what are the possibilities
6 or what you need to have, what kind of release
7 profile you need to achieve bioequivalence, as well
8 as establish the dissolution specifications,
9 evaluate what deviations from the brand product you
10 can afford to still have a bioequivalent product.
11 This article I'm pointing out was coming out
12 from the OGD group back in 2011, where they nicely
13 highlighted the process of the mechanistic
14 absorption model development to be used in the
15 formulation design, starting from collecting the
16 information about your compound, collecting
information about the drug and formulation through
finding information about the PK of the compound to
build the mechanistic absorption and
pharmacokinetic model.
This model needs to be validated, of course, before you use it for your formulation development.

1 So we would be using additional datasets to
validate the model and make sure that it's
capturing the assumptions that are relevant for
your formulation. And finally, the validated model
can be used to do the sensitivity analysis, to do
deconvolution, to figure out your target profile
for your formulation, to simulate different dosing
regimens, to finally conducting the virtual
bioequivalence studies to evaluate the probability
of success when you go with your formulation into the clinic.

GastroPlus helps you to follow that type of paradigm, where, just like with the other mechanistic absorption and PBPK models, you are linking the physicochemical properties and formulation properties of your product and your drug with the physiology itself. Starting with the information about your compound-specific physical properties and information about the formulation about the drug product, you can start predicting your regional absorption, where the drug actually may be getting absorbed in the different regions of

Page 142
the intestine.
Filling in additional information on the
pharmacokinetic description, which is very
important since your evaluation is based on plasma
concentration, so having correct PK description is
important in having an accurate evaluation of your
formulation performance. So once you get your PK
filled in, you can start using this model to create
deconvolution to come up with your desired in vivo
dissolution profile in order to match the
formulation performance.
This would help you to get your first
formulation, and once you get the first
formulation, the initial pilot study, you can use
the data from the initial pilot study to possibly
create an IVIVC, maybe come up with a better
in vitro dissolution test, which gives you better
correlation, and, finally, evaluate the
bioequivalence trials or possibility of
bioequivalence for your final formulations.
Within GastroPlus, we are using the ACAT model, which is the next generation of the CAT,

1 compartmental absorption transit, model. It's
2 split into nine different compartments. The
3 intestine is split into nine different
4 compartments, each of them defined by its own
5 properties, by its own pH , volume of fluid, transit
6 times and so on, which allow us to describe the
7 ever-changing environment in the intestine going
8 from stomach, through the stomach, intestine, all
9 the way down to colon.
10 The drug and all of these arrows that you
11 are seeing through the figure are representing
12 different processes that are happening in the 13 intestine, and l'll be describing those arrows in 14 the next slide. But once the drug makes it through 15 the enterocytes and gets collected by the portal 16 vein, the portal vein carries it through the liver 7 into systemic circulation. Here, you have options 18 to describe the disposition via the simpler 19 compartmental model or a full PBPK model. 20 To look a little bit more closely on what 21 all of these individual little arrows mean, the 22 processes that we are accounting for are, of

1 course, transit through the intestine. This could
2 be transit of the drug from the previous regions of
3 the intestine or the dose if we are talking about
4 the stomach. As the drug is moving into a specific
5 region of the intestine with its own local pH ,
6 specific concentration of the bile salts, the
7 actual amount of fluid that's available for
8 dissolution at a given place and time, the drug can
9 undergo dissolution.
10 In many cases, especially as we are talking
11 about basic compounds, you might see a significant
12 precipitation. You might have chemical
3 degradation. We all know about compounds, which
are not stable except in pHs ; again, something that needs to be accounted for.
16 The dissolved drug can get absorbed, and
7 again, here, you might need to account for
8 different processes for the absorption, passive
9 diffusion, transporter effects, uptakes, efflux
20 transporters and so on.
21 In the enterocytes, you may have metabolism,
22 and, finally, the drug may be getting into portal
vein through, again, passive or carrier-mediated
processes. The rest of the compound is moving to
the next region of the intestine, and the success
of how much drug actually makes it into systemic
circulation is really just a matter of different
rates of these processes and how these processes
are competing for the drug and which of these
processes is most favorable.
9 Even if you are dealing with the generic
product development, you make assumptions that the
rates of the processes affecting your API will stay
constant, but, of course, the rate for your
dissolution will have to compete with these rates.
You still need to make sure that you are properly
accounting for what is happening with the API so
that any small differences in that input function,
in how quickly your drug is dissolving, can be properly accommodated and predicted by the model.

One of the topics that actually wasn't
covered much yet were the saturable processes
happening in the enterocytes, and this is, again,
something that may be very important, especially if
Page 146
you are trying to describe or look at the
bioequivalence across different doses or in case of
transporters if you are dealing with a narrow
absorption window and so on.
These are just some of examples showing nonlinearity in these processes. This is the classic example of midazolam, which undergoes saturable intestinal metabolism. And as you are
going from doses from 7.5 up to 30 milligrams, the
10 model is able to account for the saturation of the metabolism and increased bioavailability due to increased fraction escaping the intestinal metabolism.

Similarly, for the transporters, you may need to account for these effects. These examples showing experimental data published for valacyclovir for different dose levels showing nonlinearity in the overall absorption and, again, the mechanistic model utilizing the in vitro Km values for the interaction with the transporters 1 was able to account for the nonlinearity in the 22 absorption.

1 When it comes to mechanistic absorption and
2 mechanistic models, it's a possibility to expand
3 these to other administration routes, as long as we
4 can describe the other route of administration by
5 similar models as we were working with the
6 intestine. It really comes down to knowing the
7 physiology.
8 Right now, the models are probably more in
9 the stages of helping us figure out what we don't
10 know about these routes yet, but as we go,
11 hopefully, they'll make it to the process with a
12 similar predictability with the oral absorption 13 routes.
14 One of the applications for the mechanistic 15 absorption models, of course, is doing the
16 in vitro-in vivo correlations, where, again, with
17 the mechanistic models, what we are trying to do is
18 to deconvolute the in vivo dissolution. Masoud
19 already did a very nice job describing this, so
20 this is just a different version of the point that
21 he was trying to get across, that as the drug is
22 being dissolved, there are other processes that

1 govern the absorption of the compound.
$2 \quad$ In the passive diffusion transporter
3 effects, you can have metabolism in the intestine,
4 the rest of the drug hitting portal vein. The
5 portal vein will carry it through the liver, where
6 you can have additional metabolism, and, finally,
7 getting the drug into systemic circulation.
8 The advantage of the mechanistic absorption
9 models in this deconvolution is that it's really
10 trying to deconvolute the dissolution in the
11 intestine. All of the other processes are handled
12 by the model parameters themselves. It's just for
13 a very quick comparison of what you are
14 deconvoluting with the more traditional methods,
15 where everything is lumped into one rate of
16 appearing in systemic circulation.
17 This is one example of publication from 2012
18 where the authors were evaluating the more
19 traditional method with the mechanistic IVIVC, with
20 the mechanistic deconvolution, and their
21 conclusions were with the internal validation, the
22 models did perform in a similar way. But when it
comes to external validation, the GastroPlus model
had a greater prediction accuracy and will be wider applicability domain.

Another article published for Class II
compounds, again, utilizing GastroPlus model,
where, again, for risperidone, they were able to
build a nice mechanistic IVIVC properly predicting
the Cmax, as well as AUC for the test formulation.
9 For virtual bioequivalence trials, again,
0 it's very nice to show your mean simulation, how
they are matching between the test and the
referenced product, but eventually, it comes down to running a trial in the clinic.

The virtual bioequivalence trials are a nice tool to help you evaluate or predict the probability of success, help you predict how close you might be when you account not only for differences between formulations, but account also for variability in the subjects, inter-subject variability, as well as possible variability in the formulation itself, how close you might be with the bioequivalence there.

Page 150
1 Again, it is also a good tool to help you
2 with your dissolution specifications so you can
evaluate your range of dissolution profiles within
the bioequivalence trial accounting for the
population, as well.
6 It's, again, just an example of looking not only at mean profiles and comparing the average CP
time profiles, but accounting for the variability
in the predicted CP time profiles.
10 Food effect is one of the very big aspects
11 for mechanistic simulations and, to a degree, you
12 can actually anticipate an expected food effect
13 just based on the BCS classification. But running
14 the full simulations for mechanistic absorption
15 models could help you take this predictability a
16 little bit further.
17 With the domain changes that you are looking
18 at, the standard ones, of course, come down to the
19 stomach volume, stomach pH between fasted/fed
20 state, concentrations of the bile salt in the
21 intestine as the gallbladder empties in response to
22 the meal and so on.
$1 \quad$ There are also differences that you may need
2 to account for not only between fasted and fed
3 state, but also for different types of meals. The
4 high calorie meals versus low fat meals versus high
5 fat meal versus standard meal may also have
6 different parameters. Some of those expected ones
7 would be gastric emptying, stomach volumes.
8 Possibly with high fat meals, you may need to
9 account for additional aid in the dissolution of
10 your compound, in addition to the bile salt
11 concentrations.
12 This is, again, one of the examples from the literature where the authors used, again, GastroPlus to do the food effect, where they actually tried to use the simulation to design out a food effect, but they built a model that was able to account for the food effect for their formulations. They started using this model once it was validated to explore whether there is a range of formulation parameters that would help them to overcome the observed food effect.

They've done a sensitivity analysis on the

Page 152
1 dose and particle radius. It was immediate-release
2 formulation, so particle size was the driving force
3 for the dissolution rate, and came out with a
4 conclusion that a particle size reduction might
5 help them to mitigate the food effect, even though
6 as you look at food particle size, they would have
7 to have -- I think they came down to about 50
8 nanometers maximum, so probably not a very
9 practical solution. But it did show a possible
10 sort of a blueprint for utilizing the simulations
11 for these kinds of purposes.
12 There are a variety of other publications
13 looking at other applications of mechanistic
14 simulations of GastroPlus model within the
15 pharmaceutical development either from industry or
16 even from the FDA scientists.
17 Finally, one case study for the successful
18 biowaiver case study where the virtual
19 bioequivalence was done. This was actually a case
20 where the sponsor -- and actually, since this was
21 done, it was actually presented by J\&J also at the
22 AAPS last year, where they went through a

```
    manufacturing change which resulted in different
    particle size distributions for the new lot.
    They wanted to look at the mechanistic
    simulation to see if they can avoid having to do a
    bridging study by assessing the effects of particle
    size on the in vivo and show that the difference
    was not significant enough to actually cause any
    difference in the exposure.
    Of course, the modeling went through the
    standard phases of creating the absorption and PBPK
    model that would be accounting for the clinical
    data available already and was validated and then
    used the sensitivity analysis and virtual trial
    simulations to evaluate the sensitivity to particle
    size and predict the bioequivalence probability.
    This is showing the particle sizes for the
    original formulations in the table on the left
    versus the new formulations in the new table on the
    right. As you will see, the d50 values were
    actually very similar. The main change was in
    narrower and better controlled formulation with the
    new engineered particles.
```

 Page 154
 1 So the first part was, of course, the model
 development and model validation, and here it's
 showing how the model was able to nicely account
 for different doses spanning the entire range of
 their clinical doses from 50 to 300 milligrams.
 These were all done with actually different lots of
 the initial non-engineered particles, and when the
 simulation used the particle size for the specific
 lot that was used in each of these doses, it was
 nicely accounting for pharmacokinetics.
 The sensitivity analysis showed that the
 particle size starts affecting the fraction
 absorbed once the diameter changes or increases
 above, I think, about 30 or 50 microns. The Cmax,
 as well, would start getting affected, as well as
 the Tmax.
 Finally, the virtual bioequivalence
 simulations were performed with several different
 lots of the original non-engineered particles and
 compared to the new lot of the particles with the
 new particle size distribution. Again, the mean
 radius was well in line with many of the previous
 1 ones. It shows the distribution was a bit 2 narrower.
3 The bioequivalence trial shows that for -- this is a summary for 250 virtual subjects,
5 and it is showing a big higher Cmax when the new
6 formulation was compared to one of the original
7 lots, but it was well bioequivalent with all of the
8 other original lots of the formulation of the API.
9 In summary, this simulation was not standing 0 on its own. It was part of the full submission 1 package. There was other supporting material, as
2 well, but it did help to make the point that the
3 new formulation or the new manufacturing process
4 did not create enough difference to affect the PK.
15 The sponsor's biowaiver application was approved.
16 To sum this up, the modeling and simulation
17 can help you gain insights into absorption of your
18 compound or of the drug that you are trying to
9 model; can help you guide formulation, design; can
20 help you to evaluate probability of success once
21 you go into the clinic by running the virtual
22 bioequivalence trials, hopefully speeding up the

Page 156
1 drug development process so you have fewer failed
2 trials before you find the one that's actually
3 working on. I think that's all.
4 (Applause.)
5 DR. L. ZHAO: Thank you, Dr. Lukacova, for
6 your excellent talk.
7 Next speaker, Dr. Thomas Eissing from Bayer 8 Technology.
$9 \quad$ Presentation - Thomas Eissing
10 DR. EISSING: Thanks a lot. First of all, I
1 would like to thank the organizers for inviting me
2 to this interesting workshop. It's a pleasure to,
last but not least, talk as a PBPK software provider.

I will keep the introduction on PBPK
modeling short. I think Masoud and Viera already
introduced the general concepts also on oral
absorption and dissolution modeling. I will then
provide examples and, hopefully, at the end, also
provide a glimpse of how that looks like.
One point, in PK-Sim, similar to GastroPlus
and Simcyp, we also have a large database of
relevant physiological information in order to
parameterize physiologically-based models that
describe the distribution, metabolization and
elimination, and, of course, also the absorption,
which we'll focus on later.
At one point, I again would like to pick
up -- I think Masoud already focused on
that -- that in PBPK, you have a clear distinction
between properties which characterize the organism
and properties that characterize the drug, and I
think, therefore, PBPK provides the ideal framework
in order to bring these things together and deconvolute information.

Of course, this framework also allows you to learn from one drug about, for example, physiology
16 or pathophysiology how certain enzyme expressions
17 or other parameters are changed and translate that
18 use of knowledge you gained for one drug for
19 another drug, which is the basis, for example, to
20 extrapolate to specific populations or, of course,
21 also in a similar conceptual framework, to novel formulations.

Page 158
1 PK-Sim is embedded into a platform. It's
2 fully compatible with our second software, MoBi,
which allows you to really add and change the
models we provide as like a standup model. It
provides a very flexible environment, and we also
have interfaces to both MATLAB and R so you can do
a customized coding around there.
Yes, all this should add to points we
consider for our daily work are very important, and
that is flexibility and reproducibility,
transparency. I hope I will be able to focus on
that during my talk in the following.
13 Pur PBPK modeling can, of course, be used to
14 address many questions during preclinical and
15 clinical development. From my perspective, the
16 most important is probably to really challenge and
17 test our understanding of a drug or drug product
18 and also to evaluate the consistency of the
19 different data that is out there. Of course, if
20 you have an incomplete understanding, it's not
21 always a problem, per se, but at least it's always
22 good to be at least aware of that.

1 Regarding oral absorption and dissolution
2 modeling, we have a compartmental approach to this.
So this is kind of very closely related to the ACAT
4 model which Viera just introduced. The GI tract is
5 basically divided into different subcompartments
6 both in the lumen and on the mucosal side, and
7 there you describe how the drug is released or
8 dissolved and from there, systemic circulation.
9 General features, there is a separation between liberation, transit and absorption. You can account for food effects, including caloric
content, and enterohepatic cycling you can consider. Through the mucosal blood flow, you have
a physiological way of absorbing your drug into the systemic circulation. Of course, you can include transporters and GI metabolism, as well as hepatic first-pass.

Regarding dissolution, we offer a predefined
thing so as to find out are there viable first
order. Also, just a table reading or particle dissolution, so all, again, very similar to what was already presented.

Page 160
1 In our software, it's also rather easy to
2 implement your own equations or at least you are
3 very flexible in doing that to any kind of
4 complexity.
5 Regarding passive absorption, we validated
6 our absorption model or we developed it based on a
7 collection of a 111 passively absorbed drugs, and
8 we could get a nice correlation between the
9 intestinal permeability based on molecular weight
10 and a measure of lipophilicity, an affinity in our
11 lower case.
12 Coming to examples, if we integrate
13 dissolution data, basically, here, we show eight
14 different examples, where, on the left hand, we
15 have the dissolution data where we used the Weibull
16 function to fit that and then predicted in vivo PK.
17 That worked overall pretty well.
18 Two exceptions can be understood from taking
19 a closer look. One was diclofenac, and here, we do
20 an individual fit and really consider the
21 variability in the gastric emptying time, so 0.1
22 already that is highly variable. If you really
take a look using such a model, you can understand
that inter-individual differences can provide
different Tmax, which then, on the population
level, also lead to a decreased Cmax, where you
basically get a broader shoulder. Also, a nice
example for how in a PBPK setting, you can
understand observations which might otherwise be
more difficult to understand.
Similar for furosemide, we used just one
Weibull function, and I didn't consider for pH
differences in the stomach and the intestine in the
first chart. If we basically take that into
account, we can also get a good description or reasonable prediction of the data.

What we also looked at was cilostazol
kinetics. This was done in dogs. Here, there was
basically a published case where people published
18 in vitro dissolution data and also
19 in vivo-absorption data. And they concluded, yes,
20 there's relation between particle size, but we
21 can't really quantitatively relate that based on
22 the data alone.

Page 162

1 If we fit the particle size distribution,
which they published in the data, just with simple
distribution functions and input that into our
software and anchor that for one particle size
distribution, we basically can describe all three
in a very reasonable way.
So, yes, the rate and extent of absorption
based on particle size is well predicted here and
can be nicely described and understood. This is
really where mechanistic modeling helps you to get an IVIVC, which can also increase your understanding of what's going on.

Another drug, just as a quick example what you can all do, here we looked at different doses,
and our model can nicely describe that with
increasing doses, our fraction absorbed decreases.
We have a solubility limitation here. We looked at
food effects, fasted/fed conditions. Different
doses can be nicely described with one consistent
model. I guess that's an important point about PBPK,
that you want to get to a consistent description and,
from one setting to another, just want to change

1 those parameters which are also changed in the
2 experimental setting.
3 For this substance, that results in an
4 absorption site study done with [indiscernible]. So
5 really the drug is in the Gl tract released at the
6 different sites, which can trigger externally. Also,
7 there, you can see that regional absorption can be
8 nicely described and understood in a PBPK setting.
9 For this drug, we also looked at the GITS 10 formulation, so where you basically have this tablet
11 with a defined pore, which releases substance, in
12 this case, particles at a basically zero rate for a
3 longer time. We could combine the zero order rate
14 release from the GITS formulation with the particle
15 dissolution function and, again, nicely describe
16 here, show population simulations where we had inter-
7 individual variability contained in our database.
Again, you can nicely describe that, and if
19 you have done all this for one drug, you, of course,
20 have quite high confidence that you have really
21 understood how you can model that drug in the
22 physiological, in the in vivo setting. That, of

Page 164
1 course, allows you to explore the design space if you
2 go for extended-release formulations, if you go for
3 different particle size. All kinds of questions can
4 be addressed from there on.
5 Another example is looking at food, at drug
6 interactions. Here, my colleague, Christian Wagner
7 from the University of Frankfurt, back then looked
8 at nifedipine dissolution and, also, the influence
9 of grapefruit juice, which always prolongs gastric
10 emptying, as well as reduces GI CYP3A4 activity.
11 That could also be nicely described by the model,
12 as you can see on the right-hand side, where the
13 comparison with and without grapefruit juice
4 inclusion is shown.
15 This study looked at different in vitro
16 tests, and there, again, a very important point is
17 that at least we in our model always assumed that
18 the dissolution function we get represents kind of
19 the in vivo setting. For that, of course, at least
20 biorelevant media should be used, and if you have
21 that, of course, you can also use such a setting to
22 really explore the design space.

1 Another example which our colleagues in Florida did from Stephan Schmidt's group, they looked at the oral absorption in pre-term neonates.
We had a pre-term neonate model for the
distribution of drugs, and because the
physiological changes going on in pre-terms are
very complex and not enough data out there, it's
difficult to inform that really mechanistically.
They chose a simplified approach to just develop equations, which describe that, and then of course, in principle, you are free to combine this kind of equation, which was with a mechanistic PBPK type distribution model. This is just an example meant to show you what is technically possible. Of course, here, this example, because of the
challenging data situation, there's still a fair
bit of uncertainty left. Still, I think it's
interesting to explore with this technology what is possible.

Another example where we really stretch what is possible is population PBPK modeling is where we really try to merge the concepts of PBPK modeling

Page 166
with traditional pop PBPK approaches. So we are
working on hierarchical Bayesian statistical models
to be combined with our PBPK model, which really
allows us then to, for example, assemble from the
knowledge databases you have included in the PBPK
software and then use, for example, Markov Chain
Monte Carlo methods to really both fit individuals,
as well as population data at the same time and
thereby really derive and further develop your
knowledge.
You go from a prior distribution based on additional PK data. You get additional information out of that. You really deconvolute your data in a clear and clean setting. This is definitely still challenging. Also, on the conceptual side, still needs to be somewhat done, and also on the implementation side, of course, PBPK models are numerically more demanding than if you have a twoor three-compartmental model. But yes, this looks 20 really promising, and our first example here is 21 where we applied this method to a crossover study 22 so where both IV and PO data were available and

1 where then you can really deconvolute parameters
2 based on the PK data, so absorption parameters
3 based on the PK data.
4 This concept, again, because we have
5 separation between the properties of the organism
6 and the drug and formulation, we can really learn
7 in a systematic and more or less unbiased way
8 mathematically and further develop our knowledge
9 base.
10 I mentioned our focus is on flexibility.
11 Most of the examples I showed were, when we did
2 them, not yet easily possible in PK-Sim. Of
3 course, as we do new things, we also try to provide
4 them in a user friendly, but the first things we
15 usually do in the first versions, we also develop
16 in MoBi ourselves. Yes, this really is a very
7 flexible way of proceeding.
18 This is a screenshot from PK-Sim. You can 19 see you have full access to all the parameters.
20 You see the different building blocks, how it's 1 separated. We have a history. Every modeling step 22 you do, every parameter change is really locked.

Page 168
1 You can roll back, but, of course, it also helps
2 you to really go back, what did I do, to be
3 transparent. You can compare different things. We
4 have a working journal integrated so you can do
5 additional documentation, comments on your own.
6 You can then send models you built in PK-Sim
over to MoBi and then customize them. There's a
8 button there. You can just press it, and then you
9 get -- although the software is the same look and 10 feel, you still have a different view.
11 In MoBi, you take more the modeling view.
12 You really see how the different things are
13 interlinked and work together. You have access
14 to -- so here, you basically have an overview on
15 the whole body scale, how the different organs are
16 connected. You can zoom into the substructure of
7 the organs, and if you look, for example, into the
8 duodenal mucosa in the intercellular space -- in
19 this case in this example, we have a metabolization
20 process entered, and you see the formula, how this is done.

You can not only change the values, but also
the formula at additional reactions, whatever you
want. In fact, we also use this environment to
really bottom-up, build up, for example, our
systems pharmacology, mechanistic PD models which
you can link or not to PBPK models.
6
different formulations and the oral absorption in
our software environment in order to better
understand the PK. Yes, in conclusion, I believe
that our software environment has a focus on both
flexibility and transparency, especially together
with MoBi , and leaves a lot of room to explore new ideas one may have. That's it. Thanks.
(Applause.)
DR. L. ZHAO: Thank you, Dr. Eissing.
The last presenter is supposed to be an
OrBiTo representative, Dr. Xavier Pepin. He cannot
be available, so Dr. Filippos Kesisoglou will
present instead.
Presentation - Filippos Kesisoglou
DR. KESISOGLOU: Thank you.
It's my pleasure to present on behalf of the

Page 170
OrBiTo team. Unfortunately, Xavier couldn't make
it. I cannot take credit for all of the slides.
He made a lot of them.
Throughout the day, we discussed the models
and their application, as well as we heard the need
for fundamental research to improve some of the input. OrBiTo has intended to do exactly that.

OrBiTo stands for oral biopharmaceutics
tools. I will spend most of my talk giving you
some background of the project, how it's organized
and what is the research that is taking place and
how that feeds into some of the topics we're
discussing today. At the end, I will cover a
little bit more specifically the integration of
dissolution in PBPK models, which is directly
related to what we discussed this morning and
earlier this afternoon.
The OrBiTo vision statement is a single
sentence shown on the slide: To transform our
ability to accurately predict the in vivo
performance of oral drug products across all stages
of drug development. That's a pretty lofty goal,

1 and throughout the day, based on the discussions, I
2 think it's becoming apparent that's a
3 multidisciplinary question. It's not easy for a
4 single person or a single scientific principle to
5 provide an answer to this.
6 So given the multidisciplinary nature, the partnership, collaboration and data sharing is the
8 first part that's highlighted in the OrBiTo mission
9 statement. Through this data sharing that involves
10 both from academia and industry, OrBiTo intends to
develop both fundamental knowledge, which is
important in our developing these models, but also
deliver on the practical aspects, deliver
innovative tools that can be used to accurately predict product performance. That includes both
the in vitro, as well as the in silico approaches
that can be integrated with the endpoint, improving how we do drug development.

One step further, meeting of the objectives, a lot of that is reflective of the mission statement. First, the idea is to define the 22 critical physicochemical formulations and

1 physiological factors that determine drug product
2 performance, then develop the experimental and
3 theoretical models that we can use to predict in
4 vivo performance, and then, finally, again,
5 bridging the multidisciplinary and collaborative
6 effort, to leverage industrial knowledge and
7 academic knowledge to bring our experience together
8 to validate these models and be in a better
9 position to inform future drug development.
10 How is exactly the program structured? The
11 program started in 2012, in October of 2012. It's
12 a five-year program, so we're about a year and a
3 half from completion. It's funded by the European
4 Innovative Medicine Initiative.
15 The consortium comprises 13 pharmaceutical
16 companies, listed on the slides, and 14 academic
7 centers, universities throughout Europe or subject
18 matter expert companies, such as some of the
19 software companies that are represented here today.
20 How is the whole program structured? I will
21 go from the bottom to the top of the slide. There
22 are four work packages that are looking at these
major categories of tools and fundamental knowledge
being developed: physicochemical tools, in vitro tools, in vivo tools, and in silico models.

For each work package, there's a co-lead from the industry and a co-lead from the academia.
These work packages do the scientific work, the data generation for the project.

There are a couple of governance committees.
9 The executive committee comprises the work package
leads, as well as key contributors from academic institutions or industry. It's responsible for the project leadership on an operational level, and the
steering committee where all the consortium participants have a member there is responsible for the annual reviews and also facilitating resource management.

You can see throughout these different levels of governance, collaboration between academia and the industry is a key component to driving success of this project.

In addition, all of the fundamental goals of OrBiTo is the science of doing drug development.

Page 174
It's not disconnected from the regulatory environment.
There is a regulatory stakeholder board
where there are representatives from all the major
regulatory agencies, from several representatives
from the EMA, from the U.S. FDA and from the NIHS
in Japan that we will occasionally, periodically,
provide an update to them to make sure that what we
do in OrBiTo remains connected to the regulatory
environment, because at the end, we need the drug
approved. In order to influence drug approvals, we
need to see how what we developed during the
project can be leveraged also in the regulatory space.

I will move now into describing the
different work packages. Again, I want to
emphasize although there are four work packages and
they are called in vitro, in silico, in vivo, and
physicochemical tools, in reality, there is
significant crosstalk between these work packages,
and there is data information flowing from one to
the other to really enable an integrated

1 development of these tools.
2 Work Package 1, physicochemical tools,
3 in vitro tools, in vivo tools, and in silico
4 models, there is a flow of information both into
5 informing the in silico models, as well as
6 informing the tools to eventually allow us to
7 develop what we call predictive models and
8 predictive experimental methods.
$9 \quad$ Starting with Work Package 1, Work Package 1
10 is the first building block in understanding the
11 drug product. It deals with understanding the
12 active pharmaceutical ingredient. The objective of
13 the Work Package 1 is to provide a range of
4 in vitro physicochemical tools or in silico models
15 that can be used to assess the key API properties
16 and how those may impact in vivo performance. That
7 may include excipient interactions.
18 In early drug development, especially before
19 we get into the humans, a lot of times, the API
20 supply is limited. We need to deal with all the
21 drug product, and we need to deal with small-scale
22 experiments. What Work Package 1 is trying to

1 deliver is tools that at those early stages can be
2 used to develop early drug development decision
3 trees, expanding on the drug classification or the
4 drug developability classification system to
5 facilitate those early decisions before we start
6 going into more classical drug product development.
7 Then again, obviously, API is important for
8 the models. It informs both in vitro tools. We
9 need to understand the API first before we start
10 adding dissolution of the drug product, as well as
11 key physicochemical parameters for the PBPK
12 modeling that were mentioned throughout the talks
13 today.
14 The second work package deals with in vitro 15 tools, mostly dissolution systems. There are a lot 16 of dissolution systems. Everyone probably in each
17 company has their favorite tool to use for drug
18 product performance, but we heard from Dr. Amidon
19 that in vitro, the predictive dissolution system,
20 there are transfer systems, systems with an
21 absorptive compartment like this cell monolayer,
22 biphasic systems or even much more public systems.

This is the TNO system that's intended to mimic the entire gastrointestinal tract.

How do we go about using them in drug development? Which one is the best to use for its purpose? The intent is not to declare the best system, but basically to declare -- to understand what information we get out of each one of them. Again, eventually everything feeds to building predictive models.

The goal of Work Package 2 is to optimize these tools to have maximum predictability for oral absorption. Ideally, develop a decision tree to select the most appropriate in vitro tools and provide the data for the PBPK modeling. I'll come back to the dissolution incorporation in a few slides.

Each work package has published in the last one to two years a review of the current status of the science in the field. I just happened to highlight here the one from the Work Package 2 that summarizes the current state of the art on in vitro tools for prediction of in vivo performance, but if

Page 178
you go to the European Journal of Pharmaceutical
Sciences, you'll find similar review articles for
all the other work packages.
Work Package 3 deals with the in vivo tools.
You can think of Work Package 3 as the one that
generates most of the fundamental knowledge on the
7 system that we're trying to model. The idea is by
8 understanding the in vivo system and the
9 physiology, we can then start improving our tools.
10 We can start better understanding the in vivo to in
11 vivo animal to human translation or in vitroin vivo correlations.

Going into a little bit more detail, the gastrointestinal system, we already heard today
15 from Dr. Amidon about motility and fluid volumes.
16 That's also studied under the OrBiTo. Intestinal
fluids and composition, how can those translate to
dissolution media? Clearly, there is a lot of
variability in each one subject of the intestinal
composition, and OrBiTo is intending to
characterize the variability and help us develop
better predictive dissolution media.

1 Finally, a lot of the stuff we discussed
2 today and most of the examples we showed were
3 around predicting PK out of a dissolution input or
4 a particle size input. However, what we are really
5 trying to predict as far as the dosage form goes is
6 how does that behave in the gastrointestinal tract.
7 However, it's not an easy measurement to
8 measure what actually happens to a tablet or a
9 capsule upon ingestion. We rely on PK because it
10 is something we can measure, but in reality, direct
11 behavior of a dosage form is what you see in the
2 gastrointestinal lumen.
13 In OrBiTo, there are specific studies being
14 conducted where upon dosing of different dosage
forms, there is some link of the gastrointestinal
fluids to better understand how in vivo dissolution
is actually taking place. Hopefully, by having this data, we can then drive even better predictive models on the in vivo dissolution part.

Finally, Work Package 4 is the in silico tools, is the integration of all the knowledge and all the data to drive a predictive mathematical

1 model. Several efforts have been started earlier
2 on with a database creation. As I mentioned, an
3 important part of this exercise was data sharing
4 and knowledge sharing across the partners of the
5 consortium. It did take a significant amount of
6 work out of the Work Package 4 team to put all this
7 data together in a database to be able to be used
8 for those projections.
9 I know it's hard even within a single
10 company to get information together to drive
decisions. You can imagine how difficult it is to
12 do this against 13 pharmaceutical companies and 14
13 universities to gather all the information.
Based on these databases, the next step was
15 an initial gap analysis. You can think about this
16 as a blinded bottom-up PK projection analysis.
17 What can we basically see if people are giving
8 given datasets, how can they actually drive PK
models.
This effort has been completed, and now the
21 team is in the steps of evaluating the needs for
22 improvements into the models and identifying the
gaps in our knowledge of the model that we should be implementing moving forward.
3 Some brief highlights of progress to date, I
mentioned the reviews already. I will encourage
everyone who's interested, these are summaries of
the state-of-the-art in each of these topics.
The database, so you can see this is top of the database, 90 compounds, almost 600
formulations, 500 studies, 25,000 data points.
It's a lot of information that we can tap in to understand better how we're doing drug development and how we're developing these models.

For the in vivo studies, again, these are not trivial to develop, but standardized protocols have been developed for sampling of gastrointestinal fluids. Many of the studies have been completed, and some of them are already published. Compositions of human intestinal fluids was also recently published, and some of the studies on the in vivo characterization, such as non-absorbable markers to define the transit time, novel MRI methods to measure the water content,

Page 182
have been completed and also recently published.
I will move to my last part of the
presentation, which is the integration of
dissolution profiles in the PBPK models. The
challenge is that this beaker appears a little bit
simpler than the gastrointestinal tract. We need
to be able to translate dissolution data that we generate in vitro to the in vivo situation.

As I mentioned, in vivo dissolution is very challenging to determine. We infer what it looks like based on some mathematical models, but we
actually almost never measure the in vivo dissolution.

Why are we doing that? First of all, for the majority of the formulated projects, when we
are not dosing API partner solution, which we
typically don't do other than some early clinical studies, the dissolution modeling based on the API
properties doesn't agree with the observed
dissolution data. We need to figure one way to incorporate formulation information into the model.

Second, as I mentioned, there are a lot of

1 different dissolution methods, a lot of different
2 media. We need to be able to use the data
3 regardless of the source to drive a model. Can we
4 use modeling to eliminate some of these system
5 parameters for the dissolution interest? Finally,
6 I think we discussed it already quite well, the
7 facilitation of development of bio predictive
8 dissolution methods.
9 Again, multiple dissolution systems, this is 10 not even half of what's being probably used in 11 practice. How does each one of these data points 12 go into informing a model?
13 I think I stole this slide from Masoud.
14 Here, you saw it already. The idea here is, again,
5 we typically talk about deconvolution when we do
6 IVIVCs, and we're trying to deconvolute the oral profile against the IV profile. In this case, we're talking about the deconvolution of the in vitro data where we separate the system data, meaning the dissolution apparatus, the media, the rotational speeds from the API and the formulation.

Once we have that, we convolute that back

1 into the in vivo system for a PBPK projection. So
2 why that might be important, let me go through a
3 case study, and through this case study, we'll also
4 highlight some of the questions that I asked
5 earlier in the morning model selection and how do
6 we validate models.
7 This is a compound. It's neutral, for the 8 most part, of the physiological pH range. So the
9 media is -- it's a simple system where with the
10 factor here that's being used. There are different
11 API lots with different particle sizes from this 12 API.
13 Using the standard Noyes-Whitney equation
14 that's, again, available in all of the commercially
15 available software, we can simulate the dissolution
16 profiles based on the API particle size
17 distribution. We can compare, at least for some of
18 them -- I'm not showing all of them here -- the
19 dissolution simulation, which is on the left-hand
20 side, against the experimental data, on the right-
21 hand side, and we see that that model works which
22 is expected. These models were published, I think,
more than 100 years ago, and for the most part,
they work as intended for API powder. So this looks pretty good.
4 If you look at most of the papers in the
literature in the PBPK modeling, they use the
particle size distribution-based model to do a
projection. This was done here for the case of
this exercise. We take the different particle size
dissolution as projected from the model. You plug
them in your favorite PBPK software, and you get a
projection of the different sizes.
Although all the projections are clearly so small an impact on what the dissolution shows, which is not unusual, but you start seeing some differences. As you move to the animal API, Cmax is delayed for a few hours. It's down by 20,
30 percent. One could say that maybe these are milled material, and I might have an issue with PK.

If someone didn't do anything else and they used the API PSD model, they might conclude, well, I need to mill my compound to I get PK exposure.

Let's look now at how the dissolution of the

Page 186
compound looks once it's formulated in the final product. So what we see when you finally formulate
the compound is that smaller particles actually
dissolve relatively fast as formulated product.
It's slightly slower than what the API particle
size model suggests, but because you make granule,
it does take a little bit longer for it to dissolve
compared to the net API of a couple of microns.
What we also see is that the larger
particles actually, once you put in the formulation, either break down due to the compression or if you are doing a well regulated product, part of it might dissolve, in which case you would get faster dissolution profile from the product than what your API model suggests.

If someone was to do a projection based on
this -- and I'm not showing this since everything is on top of each other -- they would see no PK impact, and then from a practical standpoint, this
means one can actually have more relaxed API
requirements as far as the particle size control
goes.

1 I think that also talks to about
2 understanding what model we should use for one
3 question. If someone were to use the API particle
4 size model without generating the dissolution data
5 and they ran a PK study, they might conclude that
6 the model was wrong, because you would have
7 projected differences while there is no difference
8 in vivo. But in reality, you need to generate all
9 these data points and the dissolution to really
10 understand what the true impact of particle size on
11 the PK response.
12 I showed this slide, so I'm not going to go through this in detail again. What I'm really
14 thinking is that incorporation of dissolution into
PBPK models can really drive what I term
bio predictive methods that will really ensure future product quality.

With that, I will acknowledge Xavier, Mark
and Masoud for their help with the slides and the
many, many OrBiTo contributors that have generated
a lot of data. I think in the next year and a
half, you're going to see even more of the data

Page 188

1 coming out in publications that will really help
2 with driving this field moving forward.
3 Thank you for your attention.
4 (Applause.)
5 DR. L. ZHAO: Thank you again to all the
6 speakers, and I congratulate everyone that we still
7 have full stroke after lunch.
8 After another break for 20 minutes, we will
9 start at 2:30 sharp. We will start another
10 exciting session. Especially for the panel
members, we like challenging, controversial
questions, so we are looking forward to the
discussion.
(Whereupon, at 2:06 p.m., a recess was taken.)

Panel Discussion

DR. L. ZHAO: We're going to shoot up the first question, and once you're being seated, you
can start to think about it, especially for the panel members.

At 4:00, we have a half-hour session opening to the floor to all the audience. If you have

```
comments or questions, feel free to participate in
that session. Given the time is very short, we
probably can only accommodate three, four
questions.
    Then for the panel members, first of all, I
    want to thank again all the speakers to deliver
    such an outstanding talk, in my opinion. We've
    already received several comments from the audience
    and they're highly positive. They like the talk,
    the content, the technical side of the
    presentations.
    It's also a very rare and valuable event for
    FDA OGD to have all the top experts in the field to
    get together to brainstorm, to share ideas.
    Dr. Robert Lionberger also mentioned earlier
    that, hey, we'd like to see the panel discussion to
    be controversial, challenging. So we are not here
    just trying to be friends, even though we are in
    the same field being colleagues, but for the
    impact, we need to be critical.
    We'll go with the first question. For the
    available list of areas, sub-areas, which ones do
```

 Page 190
 we have the highest confidence in using
 physiologically-based absorption modeling for oral
 dosage forms?
 We do not have a list. It's kind of a super
 long list, but I trust your knowledge, your
 expertise, and your brain. You probably have an
 even longer list.
 With that, I will open the floor to the
 panel members. Since the talk of the meeting is
 transcribed, so I would like to ask you to identify
 yourself one more time when you start having your
 input. Thank you.
 DR. LIONBERGER: I'll start. This is Rob
 Lionberger. One thing I saw from the
 presentations, just to encourage people to start
 talking about this, is that there are a bunch of
 examples that looked at particle size and
 dissolution specifications for basically immediate-
 release dosage forms. That seemed to me an area
 where there were actual case examples, and,
 hopefully, someone will agree with me.
 DR. AMIDON: The only comment I would make
 1 there, Rob, is that the particle size you put it,
2 or is it the particle size that comes out and is
3 wetted in the intestine?
4 DR. LIONBERGER: I would suspect and I would
5 appreciate, industry colleagues, that probably
6 you're putting in your drug substance particle size
into these models in most cases; is that correct?
8 DR. KESISOGLOU: I think it depends on the
9 dosage form. This is Filippos Kesisoglou from 10 Merck.

11 If we have dissolution data that suggests 12 that the dosage form behaves like particle size,
then I think we can put it directly in the model.
If our dissolution data suggests that we need
additional processes, I think it's important for us
to also model that.
Overall, I would agree that the models for particle size are appropriate for use.

I guess just back to the original question,
in my view, I would classify some areas that we
have more or less confidence as a blanket
22 statement. In my experience, it comes down to the

Page 192
1 specific compound and formulation. If you
2 understand how the drug product is behaving, can
3 you build a reasonable model with reasonable
4 assumptions and reasonable input to describe the
5 behavior?
6 In my view, if you can achieve that, I would
consider that model having confidence in doing a
8 projection. So that would be my view to the
9 original question.
10 DR. ZHANG: This is Xinyuan Zhang from DQMM.
11 I think we use particle size all the time, because
12 it's an available input parameter in the model, and
13 oftentimes when we see the prediction is off, we
4 would rather adjust solubility than particle size,
5 because we consider particle sizes that are
16 reported are relatively reliable. We have more
7 rationale to adjust solubility especially for low
8 solubility drug products where we thought the
19 in vitro measurement might not be in vivo relevant.
20 That was my experience.
DR. LIONBERGER: One thing I noticed, and I
22 think we've seen this and Susie's mentioned we've

seen this, is that sometimes there's ambiguity
 about the solubility as an input parameter into
 these models, where sometimes we see experimental
 reported data that varies and sometimes we are
 uncertain about what the real in vivo solubility
 is. 8 software companies here, what do you people think
 in terms of the solubility inputs, since that
 especially for some of these, say, immediate-
 release particle size applications, the solubility
 input that you assume might be a driver of some of the results that you would see.
 DR. EISSING: Yes. I would agree that it's often difficult to one-to-one, it takes a solubility. We at least rarely do total ab initio predictions. So usually, we start modeling when we have some in vivo data available in order to anchor that, and, of course, obviously, if you start, for example, with the water solubility, that may be really way off and you can't describe your PK data with that. If you go to more biorelevant media, in

7

Page 194
my situation, that gets better, but still I would
always allow to fine tune that parameter based on
PK data.
Once you have anchored that for a substance,
of course, you would expect that it's then a
measure of solubility is the same as if you change particle size, for example, if the other
ingredients are the same.
DR. LUKACOVA: Viera Lukacova. Solubility
is a simple word, but a very complex environment in
the intestine, right? So it comes down to either
having in vitro data or a model that can translate
across dose environments. You need to have well
characterized both the effect of pH on your
solubility, as well as the effect of bile salt on
the solubility so the models can properly translate
into how the changing bile salt concentrations, as
well as how the changing pH would be affecting or
would be changing the solubility in different
regions of the intestine.
DR. DUAN: Based on our limited experience, as I showed in the presentation, the in vivo

1 exposures do have -- it's affected by the particle
2 size, but the solubility plays a role over there.
3 As I showed in the slides, the reviewer did
4 a sensitivity analysis. The sensitivity analysis
5 showed at the lower solubility the relationship
6 between the particle size and the Cmax is very
7 sensitive. When the particle size becomes larger,
8 the Cmax becomes smaller, but when the solubility
9 becomes high, the sensitivity is not critical.
10 That's the interpretation of that data that
11 shows that's correlated, particle size and the
12 solubility effect is correlated. I didn't explain
13 that figure in detail. If you look at the figure,
14 very bottom right, the particle size of the radius
15 of precipitate, that's differentiated by the shape
16 of the symbol and do affect the relationship
between the particle size and the Cmax in the condition of high solubility and the lower
permeability, at that corner. That's the relationship.
21 That probably tells us the relationship is 22 interplay. Something gets together might be
different from one by one, just examining that way.
2 Thank you.
3 DR. LIONBERGER: I want to raise the point
4 that in a lot of the biopharmaceutic modeling that
5 we're doing related to product development, we
6 often have some human data available. Earlier in
7 drug discovery, you may be trying to predict what's
8 going to happen in a first-in-human study, but by
9 the time you get to biopharmaceutic questions, even
10 the one that John answers for new drugs or
11 certainly for generic drugs, like generic drugs,
12 there's always human data available for us to get
3 our model into the right ballpark.
As we're talking about biopharmaceutics, I
would want people to be thinking that that's the
assumption, that you're working on a case where you
have some human data on some formulation. You may
be looking at asking a question about a different
formulation or a different patient population, but
0 you have some human data that you can check your
21 assumptions about your model against at the time.
22 In that context, I think one of the -- and I
would like some comment on this in terms of the
particle size question. When you do a parameter
sensitivity analysis and you find out particle size
isn't important, that can be potentially very
helpful to our regulatory review to say, no, your
particle size specification is acceptable. This is not so that I have to predict what the boundary of success or failure is, but that I found that the space is flat.

I would like some comment on thinking about that and how that's something that you would say, "Well, I have high confidence." So I propose that as a case where I have very high confidence, that if I've seen the simulation model generally predict some human data and then a parameter sensitivity analysis showing me that particle size is not sensitive around that space, that that would be an area where I would say I have high confidence that
I would even -- that it would be input into some
sort of a regulatory decision about a particle size specification.

DR. CONNOR: One of the things that

Page 198
impresses me about virtually everything that we're
talking about, but particle size is a good example,
is that even the questions that first came up when
Rob brought this up is we say particle size. Those
who aren't true experts in the area just think it's
very simple. You measure it, you measure it at the right time, but it can change throughout the life of the product and even within the patient, which is a point that was brought up before.

Even the things that we think are very, very simple and can be simply plugged into an appropriate model actually have unexpected complexities. The question that I think is true with all modeling is how far do you have to drill down into the details to make your model work effectively, because I think modeling in general is -- or one impression of modeling is to make things complicated and then weed them out when they don't have sensitivity or when it isn't necessary to know that, well, occasionally, this forms an agglomerate, but maybe agglomerates don't matter, or it changes in the patient, but still that maybe

1 doesn't matter very much either for this particular
2 drug.
3 Everything on this list and that we can
4 think of is much more complicated than it seems at
5 first glance, but how complex do we need to make it
6 for modeling purposes and for predictability? And
7 it changes. John's example of, well, we have
8 particle size and we have solubility and they have
9 this relationship, they're not independent, and
10 perhaps if the solubility went up, maybe your
11 cutoff for particle size where it really matters
12 also changes in relationship.
13 It's not like just one A to B relationship.
14 It's in flux and correlated. Bringing those, is it
5 necessary to bring that into your model or not?
16 One of the things that is one of the questions for
17 modeling is general is how deep do we need to go
18 into the details to really make the thing work.
19 DR. AMIDON: I want to comment on Dale. I
20 think one thing you forget also is what I call a
21 dose number, because we have a common dose, and as
22 we change particle size, we're changing particle

Page 200
1 size density, which can affect wetting and
2 agglomeration and even the solid properties. I do
3 think you're right. You have to be careful, and it
4 has to be consistent with other measurements and
5 particularly, your dissolution, I think good
6 dissolution.
7 I agree, and we are looking at that. I
8 think that's an unappreciated dose number and
9 particle density needs some investigation. But I
10 think if we have a good in vitro predictive
11 dissolution methodology, predicting in vivo, that
12 would answer the question, right? But we're still 3 getting there.
14 DR. L. ZHAO: I just want to follow up the 15 in vitro biorelevance prediction method. I think
16 it's kind of a -- for most of the products still
7 kind of a dream. So we need the panel or the
18 scientists in the field to further contribute, 19 aside from particle size distribution.
20 Based on my understanding, also, I kind of
21 consulted with several experts in the field. The
22 areas we are comfortable using PBPK, include
drug-drug interaction, drug as enzyme substrate,
drug as enzyme protease inhibitor, transporter-
based absorption.
Then the confidence level may decrease a
little bit with you predict PK for specific
populations, then followed by effective factors
like pregnancy. I think that's the tough one.
Then obesity, also a tough one. Disease states is
a tough one, but it's very relevant to the field.
Then food effect, I don't know if this is really beneficial, if the panel members can make your comment, when would you trust the predictions for food effect, under what scenarios you would trust the predictions for food effect.

The other is pH effect, local, like we've irreverently changed theological parameters such as
pH , that would lead change to solubility. It sounds like solubility is the key parameter to consider. Those are the comments, I think, given the limit of time, so if the experts here can make some input to us, really, please.

DR. AMIDON: I'll comment on one. The first

Page 202
is pH . It's not just pH . It's actually buffer
capacity. Buffer capacity in vivo was very low.
Our intestine is mostly CO 2 , and the bicarbonate
buffer capacity is measured in Leuven about average
to millimole per liter per pH unit.
We measured actually lower than that, but we don't have enough data. It's very low USP, is 50 millimole and nothing to do with in vivo. They call it simulated intestinal fluid. Why do we let them get away with that? But anyway. So, yes, that's just one factor, I would say. One factor is something like buffer capacity, as well as pH .

DR. NOVAKOVIC: Hi. Jasmina speaking. I am from generic pharmaceutical company, and talking about pH , I was thinking about pH from a different angle. I was thinking about changes of the stomach environmental pH , and I find predictions pretty reliable in terms of being to identify biostudies outliers based on the changes in the stomach pH , as well as drug-drug interactions, because those changes might be due to drug-drug interactions.

In my experience, it is reliable in the case

1 that the drug is low soluble in acidic environment,
2 and, therefore, due to lack of the solubility,
3 because of the changes of the pH due to, for
4 example, administration of some PPI inhibitor of
5 any other drug that might modify environmental pH .
6 Bioequivalence for that particular patient or
7 volunteer is questioned, and bimodally, we were
8 able to provide that it was due to the change of 9 the pH in the gastric environment.
10 DR. SAO: I just have a quick comment, too,
11 and I know Rob and Liang, you guys want some
12 controversy. So I'm going to give you a
3 noncontroversial response.
14 I guess what we have -- I don't want to say 15 we have the highest confidence in a particular 16 approach when it comes to the modeling aspect, but 7 what I can say at least from the biopharm 18 discipline, what we've seen so far is out of the 15 19 and a subset of those are the ones that we found 20 successful, so to speak, a good portion of them, 21 the ask starts out with particle size, right?
22 So naturally, I think -- and the way the

1 conversations are going here, again, I don't know.
2 I don't want to call the highest confidence, but I
3 think our experience is growing when it comes to
4 particle size and PBPK modeling. I just wanted to
5 put that out there to digest on.
6 DR. P. ZHAO: This is Ping Zhao from
7 pharmacometrics, Office of Clinical Pharmacology,
8 FDA. Responding to the question on the screen and,
9 also, I will try to allude to the points raised by
10 Liang regarding the food effect prediction, as well
11 as pH modulating prediction.
12 I'm looking at the agenda. I would say when
13 we talk about confidence, we have to further define
14 it into one I call a prediction confidence, meaning
15 that whether we are able to predict in the absence 16 of a study.
17 In another sense, whether this can lead into 18 high impact decision, for example, biowaiver. The 19 other one, which has, I'm told, a confidence, 20 rather, the entire day that all these applicable 21 sub-bullets, I would say, in terms of exploration, 22 explaining the mechanisms, PBPK modeling definitely
has its role and is an indispensable role other
approaches cannot replace just because of the
ability to integrate all kinds of information.
Going back to the other aspect of the
confidence, which we, at clinical pharmacology,
define as predictive performance, as Liang
mentioned in his introduction slide, where we have
highest confidence with DDI, lower confidence with
special population, and even lower with other
application, I think the angle we're looking at is
using mechanistic model, at what stage you can say
this study definitely, I can just do a prediction.
I don't need to do an in vivo clinical pharmacology
study or maybe a BE study to confirm the knowledge
and give us some regulatory decision-making power.
I think looking through all the bullet
points, especially focusing on this food effect
prediction, at least throughout the discussion
today, I am not fully convinced that we're there.
I think there is still quite some mileage in the coming years with the help of all the stakeholders to move the field forward.

Page 206
Being negative, but I think to give it
another level of negativity is a challenge toward a
conclusion from two talks, one from the Merck
colleague and one from Susie with respect to our
confidence in predicting oral drug absorption for BCSI.
7 Playing the devil's advocate, for the Merck example, are we able to just use BCS to just make
the decision for that food effect example? Because
you have a very good solubility, you're going to have a -- the model just isn't sensitive to respond to any critical changes.

But having said all that, I really enjoyed the whole session and I learned a lot, and special applause to Susie and John for the nice update on FDA examples.

DR. SAO: I guess I had an add-on comment to that, as well. It's a good point that Ping made
that at least from a regulatory perspective, we
talk a lot about clinical relevance and clinical
relevant specs, but in a lot of cases, an approach
such as PBPK modeling, it's very intensive and

1 resource oriented. It may not be necessary for
2 every product, right? Only high-risk products
3 we're talking about.
4 In the sense if it's a BCS Class I,
5 Class III, arguably, this approach may not be
6 necessary, right? BCS in itself is clinically
7 relevant, so to speak. I just wanted to add on to
8 that. I think it's a very valid point.
9 DR. AMIDON: Can I comment again?
10 DR. L. ZHAO: Please.
11 DR. AMIDON: I would say that the particle
12 size importance will depend on BCS subclass whether
13 it's an acid, a base, depending on the pKa, as
4 well, and whether it's non-ionizable in the
15 physiologic arena. So the data has to be a
16 package.
17 DR. KESISOGLOU: I guess to the original
18 question, some of the areas you mentioned, if you
19 look at literature, there are published examples of
20 successful applications for both food effect, PPIs,
21 or specific compound. So we cannot discount.
22 These examples are out there and are at least past

Page 208
1 the peer review process. People were convinced
2 that the models were valid.
3 I will agree that at the end, it comes down
4 to the totality of your data, does your in vitro
5 data, your modeling and your clinical data support
6 what question you're trying to answer. Even from a
7 simple question as a particle size, the model will
8 always tell you the smaller the particle size, the
9 better for dissolution, but l've worked on products
10 where actually the smaller the particle size, the
11 slower the dissolution, because it gradually became
12 more dense. You have to have your in vitro and
13 your model together to drive a decision.
14 I also agree we shouldn't be doing the
15 modeling for the sake of doing modeling. BCSI, I
16 agree fully that the modeling is insensitive to
7 solubility. I guess all the model is testing is
8 gastric emptying time, for the most part. That is
19 definitely the PK profile. If it was a BCS
20 Class II compound, I think the question becomes a
1 little bit more complicated.
22 Sometimes the model just helps with
communication of data. Even if it's an obvious
answer, just having the model to explain to the
formulation group, explain to my clinical
colleagues some of these concepts, I think it helps
with just that sometimes, and I think we just need
to keep in mind that utility of the model, too.
DR. P. ZHAO: Just to add on to that, don't
get me wrong, that's proposing something that I
have been defending for the past eight years at
FDA. I'm a big fan of PBPK. I'm just saying like
for this particular question relevant to oral
absorption, if you ask me whether I would be
convinced that we are ready to predict food effect
based on at least my reading of the literature and
our limited experience of clin-pharm review of
maybe two or three submissions in NDA, just because
of the number of parameters that may impact the
final prediction, I just feel for other BCS class
compounds right now, there is still some ways to go.

DR. EISSING: I would believe an example like food effect for most examples, I would believe

Page 210
for PBPK model is able to predict it if you account
for the changes in the relevant parameters, but
there might be additional effects which none of the
PBPK models, I guess, consider so far.
For example, if, in rare cases, a drug would
bind to the food or something like that, I don't
see an easy way how you can predict that
beforehand. I guess at least for the time being, I
kind of also see that you at least need to confirm
10 what you predict to a certain extent. Overall, I
11 think, food effect based on the examples I know of,
12 usually you predict it well, but how can you
13 exclude that it's not doing something additional
14 which you don't consider in your model and which is
15 rare which you can't really predict? I guess
16 that's the challenge.
17 DR. AMIDON: Can I comment again? I think
18 we should be careful about whether we're talking
19 about bioavailability or bioequivalence. I think
20 they're separate questions. Bioavailability is
21 more complicated because it's got metabolism
22 consideration. It's elimination, the BDDCS

1 considerations.
2 Bioequivalence, we're talking about the same
drug, different product, and so I think the
4 importance of particle size is potentially
5 important depending on whether it's physical
6 properties, but for both. But I do think the
7 questions are somewhat different, and we need to
8 define the bioequivalence science questions more
9 carefully to not confuse them with the
10 bioavailability questions, which are systemic
11 availability, which is our goal.
12 No one doubts that that's our goal, but it's a little bit different between bioequivalence and bioavailability.

DR. L. ZHAO: Given the time, we are not
leaving question number 1 yet, but if we proceed to
question number 2 , it's kind of intertwined.
Number 2, I'll read out.
Do we have enough experience to confidently
apply the current PBPK absorption models to support
the following regulatory applications?
So we don't have to really go through the

Page 212
list, but in your opinion. I think this is a very
2 relevant question to industry, to FDA. It's kind
3 of a key component of this workshop. From this
4 regard, we really want to listen to the experts'
5 view, which area is kind of mature enough for
6 either generic drugs or new drugs, we can apply
7 PBPK absorption model to sometimes waive the study
8 or sometimes to shorten the product development
9 timeline, sometimes to just increase FDA reviewers'
10 confidence to trust in the result.
11 DR. MEHTA: Just to add to everybody else's
12 questions, on the list here, one thing I didn't see
being addressed by any of the presenters and I'm
very much interested in knowing more about it is
this proposition that widening the BCS III bio
criteria, proposing longer dissolution times and/or
different excipients. If we have good data to shed
light on that, I'd be very much interested in knowing.

DR. AMIDON: I didn't quite understand the question.

DR. MEHTA: One of the bullet points is that

PBPK can be used to support a request to widen BCS
Class III biowaiver criteria, meaning recommending
longer dissolution time than what we are asking for
right now, very rapid dissolution instead of that
longer dissolution, and, even more important,
excipient aspects, different excipients.
DR. AMIDON: Well, I'll comment. I think it depends on -- you probably have to look at A, B, C,
acid, base or neutral. I don't think you
could -- I think we need to define the BCS classes
into subclasses and look at the effect of an acid
or a base, because I think of the pH dependence,
the low permeability, the permeation variability
along the intestine, the pH variability. I don't
think we can really answer that today.
I don't think we have enough case honestly to say we can relax the dissolution specification, but I think we should investigate it. Maybe we do
for a II-C compound or something, but we need to -- you, of course, the FDA, has presumably bioequivalence data.

I think, theoretically, it could be relaxed,

Page 214
but I'm not sure we have a good basis for saying it could be relaxed today.
DR. MEHTA: I just wanted to hear that, and
that question being posed that I thought there was
information to that effect, and if there was, then
that's what I wanted to know. So I appreciate your clarification.

DR. ZHANG: I want to respond to that
question. Internally, we have a couple of research
studies ongoing. We want to evaluate all the formulation factors for all the BCS III drug products and see how different they are.

Externally, we have a couple of ongoing studies to study excipients' impact on transporters and to what level, and we also internally conducted simulation studies to study hypothetically if we vary the transporters' activity, but the abundance, those type of parameters, how that is going to impact drug absorption for specific BCS III compound.

So I think all these components should come together. We combine all the knowledge from

1 different aspects and combine them together. So
2 maybe at the end, we can make a list of the
excipients that we don't have to worry about, a
4 list of drug products that have high risks.
5 I agree that we are not there yet, but there
6 is some room that we can improve.
7 DR. MEHTA. Sure we can.
8 DR. LIONBERGER: Like all the BCS guidance,
9 especially when you get to Class III, it can cover
10 a drug that's 84 percent absorbed or a drug that's
111 percent absorbed. I probably think that there's
12 completely different risk profiles in those two
3 different situations for some of the factors.
4 If you're going to set general criteria that
5 applies to all of them, you have to be very
16 conservative, but as you get into specific cases,
then I think there may be some aspects where
modeling and simulation can help understand what
the risks are, map out what the risks are at least
for a developer to say I want to pursue this or just to understand the studies that you've done.

DR. MEHTA: I agree with you on that, sure.

Page 216
1 DR. AMIDON: I want to comment, Rob.
2 Absolutely, when we drafted the first BCS guidance
3 in the mid '90s, 20 years ago, it was purposefully
4 discussed and debated to be very conservative, to
5 be safe. Yes, I think the BCS Class III, I agree
6 with you completely, between 1 percent absorbed and
790 -- it's 85 or 80 percent, 84 , there's a huge
8 difference, yes, huge range.
9 One thing I wanted to comment about, to
Susie's comment, is that I think the question for
bioavailability versus the question for
bioequivalence is a little bit different with
regard to what's happening in the transporters' pH ,
whatever the conditions in the Gl tract, because if
5 it's a bioequivalence question, then if the
dissolution in vivo is the same, it will be the same.

Bioavailability is a little more complicated because of metabolism, the transporter effects, distribution, but even there, if the dissolution in vivo is the same, they'll be the same.

DR. LIONBERGER: Generic products, solid
oral products, often have different excipients.
DR. AMIDON: Yes.
DR. LIONBERGER: Right, and so we think that
modeling and simulation can predict excipient
effects, excipient differences that may come from
different formulations? Maybe some comments from
industry in terms of excipient selection.
8 Do you think it's a problem? Do you never worry about it? If you never worry about what
excipients are in your products because you don't
think they interact with transporters or the drug
substance, I think that's useful to know or it is
something you consider. Is it something that we should be able to predict?

DR. AMIDON: I would say, Rob, it might
depend on the excipient. So there may be a class
of those where we know they have -- I'm not sure we do, but very little effect and there's others where
19 we have to be more careful. I think we need to be
20 a little more careful and maybe classify our
21 excipients a little more carefully.
22 DR. L. ZHAO: I agree with -- I'm not an

Page 218
agreement person, but I agree with what Dr. Amidon
has said. For each category, we need a subclass.
I think today we really appreciate if you can give
us some input based on your experience under what
special occasions you will trust the model to say
waive a study for basically based on your
experience, you will say my model will predict the
human PK kinetics. Under what scenario?
In that case, industry can waive a study or
can give FDA some relief. It's kind of a common interest between FDA and industry. We want to make
the review to be science-based, less regulations.
We have a common goal to have more quicker
development timeline and have less burden to the drug developers.

DR. P. ZHAO: This is Ping again. Go ahead, Masoud.

I think this question has a very similar structure as the first one. Again, I would push it to break them into a predicted ability confidence versus a confidence to use that and give us enough room to make either a drug development decision or

1 regulatory decision, but not necessarily to the
2 point of a waiver of a study or additional studies.
3 I like the way the question is
4 structured -- I mean, the bullet points are
5 structured. It says, "Support particle size
6 distribution," so on and so on. Again, similar to
7 what I responded to the first one is that right now
8 the model is very sophisticated. You can literally
9 do anything, anything that you can think of, any 10 mechanism. You can build into it.
11 Now, when it gets down to another level of 12 confidence, which is around predictability, again, 13 I think you have a long way to go, especially for 14 this particular application, which is actually 15 quite a broad application for generic drug oral 16 absorption.
17 As many of the speakers alluded to today, 18 the biggest challenge right now is the interaction 19 between what's called the formulation component.
20 Throughout the years, we have been within clinpharm, we've defined PBPK being a component of -- being the combination of system component and

Page 220
1 the drug component, as Dr. Amidon clearly proposed
2 in the morning.
3 We need to pay attention to the difference
4 between drug and drug product, and it seems like we
5 know very little about a very different
6 formulation, how that will impact the drug behavior
7 in the Gl tract, even though we have the same
8 dissolution in a given dissolution media.
9 Am I correct? I'd be happy to hear other's 10 comments.
11 DR. AMIDON: I agree. I think the -- yes, I 12 agree.
13 DR. DUAN: Just to follow up Ping's
14 comments, right now, that's a very good point,
15 because the formulation effect is very complicated
16 and we know a little about it. That's a problem.
17 But on the other hand, right now, the industry
18 seems like towards that direction.
19 In the QbD paradigm, they did something to
20 investigate that. One, they said what is optimum
21 process parameter? The designed called the DOE
22 study design of experiment. Different process

```
    parameter at different level and to detect it.
    Formulation, they did the same thing. We
    saw a lot of that. From that regard, I want to
    emphasize a point I made previously. At the
    regulatory decision-making, we have much more data
    to borrow to be taken into consideration.
    Right now, to answer question 2, I think the
    confidence comes from the validation. Whenever we
    do something, we look at the model building using
    what kind of data and using what kind of
    technology, using what kind of methodology.
    Finally, we look at the validation, because
    as I said, at the regulatory decision-making stage,
    we have a lot of our in vivo data available,
    phase 1, phase 2, phase 3. So phase 1, they did a
    lot of formulation development. At that stage,
    different formulation, different excipients,
    different process parameters, different
    manufacturing technology were used.
    At phase 2, phase 3, a lot of in vivo
    efficacy and side effect, safety information were
    incorporated. In that case, when we make the model
```


Page 222

 evaluation, we concentrate on the model validation.
 For example, we give in the presentation an
 example over there. They did the model using one
 clinical study, but they used three clinical
 studies to validate it. You see this clinical
 study showed that formulation is BE to that, and
 the model predicts its BE. The second study showed
 that the clinical studies showed our formulation is
 not \(B E\) to the clinical formulation, and the model
 predicted it's just not BE. That gave us some
 confidence.
 To answer that question, I think that's
 case-by-case basis. We need some validation to
 build up the confidence. In order for us to be
 confident to make the regulatory decision, we need
 more validation studies using previous conducted
 clinical studies, phase 1, phase 2, phase 3. In
 that case, gradually, the confidence can be built.
 Thank you.
 DR. JAMEI: I just wanted to follow up what
 John said. I fully agree. None of these
 questions, nobody can say 100 percent we can
 1 support it or 100 percent we can just reject all of
2 them, the method of confidence building.
3 Going back to what Filippos at the very 4 beginning said, we have to then know what type of 5 information and have that the work has been done.
6 We are not looking at a single parameter. We have
7 to look at the whole package, and we have seen,
8 even the publication, people they are publishing
9 something that they don't know what they have done.
10 If it has happened in the submission, it won't be
11 any difference.
12 Knowing even the capacity of the models, there are different models available. They have very high level of complexity, and if they use it if they don't know the limitations, this is another danger, that they are going beyond the capacity of the software. Being aware of the limitation of the software, what are the assumptions and writing them down -- you have to ask them to write down all the assumptions that they have made, what parameters they have fitted and why they have fitted. If they can justify what they have done, then you will
develop the confidence in what has happened.
One more thing is I think I mentioned, and
also other people they mentioned, the sensitivity
analysis. We have to be a bit careful with the
5 sensitivity analysis, because if you are fitting
6 one or two parameters, already we have to if we
7 are doing sensitivity analysis on one or two
8 parameters, we have to be careful we are looking at
9 the local sensitivity.
10 If solubility has changed, then the whole
11 impact of the particle size can be different. This 12 is one point.
13 Another point is that I think one of the
14 points that maybe Susie mentioned, that there are
15 limitations in the number of parameters that you
16 can fit simultaneously. Perhaps this is a good
7 thing because some of these parameters are inter8 correlated.
19 I think David mentioned when the example for
20 the multiple sensitivity analysis was shown that at
21 the same time the particle size as well as the
22 precipitation rate as well as the other parameters,
they have changed independently. They are not
independent. Sometimes there is a dependency between those.

A very simple example is that I have seen
the publication, they did the sensitivity analysis
on $\log \mathrm{P}$, as the partition coefficient in the
tissue. These two are not independent. If the
Log P is changing, the KP is changing as well. We
can't independently do sensitivity analysis on
those two parameters.
DR. L. ZHAO: To be honest, I'm a little bit distressed to see the experts in the field all telling, okay, we need validation, we cannot 100 percent support, even in certain applications, a specific area in regulatory review.

I kind of have some reservations. If we're talking about validations for new drug, yes, we do not need to come up much, but for generics, they already accumulated experience with the compound.
There's some compounds do have very thorough studies.

Then for generic drug application, the only

Page 226
change most likely is just the formulation. So in
that scenario, I think there are already some
clinical validations done in the NDA stage. My
opinion is we cannot totally rule out the bigger
utility of models in the realm of generics.
DR. EISSING: I guess it's also a little bit
a question of how you interpret the question. It's
like I believe PBPK models. Can I support all of
the questions in that sense that it supports
understanding? And you said you want to do science-based decisions, and it's like only if you can explain what you observe in a model, you have really understood it. In that term, it can help, but if you can based on the modeling alone really wait for complete clinical study, I think that really needs good case-by-case argumentation, and justification.

DR. L. ZHAO: For new drug applications, there are some packages with good received packages. In those cases, if there is a generic drug application, if there is change in formulation, I think the validation already has

1 been nicely done in the new drug application stage
2 in that.
3 Dr. Lukacova, you're looking to have
something to tell in this.
5 DR. LUKACOVA: Well, just to follow up on that, yes, if we are both talking about generic
application, you are really worried only about the
8 input about the dissolution, right? If the
9 dissolution is the same, your exposure will be the 10 same.
11 The issue is how you're validating that in 12 vivo dissolution is the same, right? You are comparing it to the in vivo exposure. Your in vivo exposure is your target, and I'm not trying to say that the PBPK model should not be used. I'm fully
16 confident that they can help with generic
development. But the model still needs to be developed and needs to account for all of the processes in order for you to have a confidence that in vivo dissolution was the same for the generic drug as for the brand product.
22 Unless Dr. Amidon can say that we solved the

Page 228
1 problems with an in vitro dissolution assay that
2 can predict the in vivo dissolution and we'll all
3 be happy and we can start using them. But I'm not
4 sure we are there yet.
5 I'm definitely believing the PBPK models can
6 help with the generic drug development, but still
7 needs to be validated to make sure the drug
8 properly accounting for your compound, because CP
9 time profile is what is your target where you are 10 measuring.
11 DR. CONNOR: I'm not sure that dissolution
12 is the only thing. I go back to Rob's comment.
13 It's not just disintegration plus the drug
14 dissolving. There are excipients in there which
15 are assumed to be inactive. But they aren't
16 necessarily all inactive.
17 The way we have of evaluating their
18 so-called inactivity is probably old by now and
19 could be improved, because we assume or a company
20 assumes, oh, well, l've used this excipient 10
21 times in my last 10 products, no problems at all.
22 But there is a theoretical problem.
$1 \quad$ I use it in number 11. It gives me a lot less or even a lot greater bioavailability than my target, assuming I'm a generic sponsor, than my target product, very surprisingly, because I
assumed it was simple and this was inactive. That
doesn't even address the fact that, in theory,
although I don't know any cases of this, in theory
that two seemingly inactive ingredients combined
together in the same product could actually interact and create a surprising result as well.

Just simply getting the drug to dissolve in the body isn't necessarily the whole story. Most of the time it is, but not always.

DR. P. ZHAO: Just responding to Liang's sort of unsatisfied comment, I had to say upfront that my comments around all of these are definitely taking a lot of consideration about new drug development. What you said is valid. There might be situations where this model will be sufficient for you to make a decision in generic drug development, but that has to be, as you strongly believe, a verification or validation of a

Page 230
particular application is needed.
This can be easily done, and we have done that with DDI. As you set the conditions, let's take the first bullet, for example, poor particle size distribution specification for IR drug product with a low solubility. Then you say, okay, what does it take for me, you go from bottom to top. What does it take for me to make a biowaiver based on what I know from the NDA experience, right?

You have a generic coming in. What kind of study do I need in the middle in order to say, okay, now I have enough confidence with what I know about this particular API and in this new generic formulation and then in the innovator's different formulations? I know the PK there.

How much does it take for me to feel confident instead of doing a BE study, I can just stop here with an in vitro dissolution with my knowledge about the drug and my knowledge about a PBPK software platform in terms of the capability of handling the interaction between excipients and the physiology condition? It's robust enough.

1 You can already imagine this middle level of 2 this workflow, you need some data to support that.
3 Maybe you need to try five different APIs. You
4 have to observe the data. You do a blind
5 prediction. You tell the world that, look, any
6 software can do this or a couple of software. We
7 have experience in-house or in the scientific field
8 that we can do this.
9 I think that could apply to all of your
10 bullet points, so set the condition.
11 DR. AMIDON: A different direction, looking
12 at the five sub-points there, the two that I have
13 the most concern about would be supportive
4 dissolution for a modified-release product, because
15 dissolution does not account for gastrointestinal
16 motility and variability effects along the
17 intestine from stomach all the way to the colon.
18 That's where I would have the least confidence in a
19 dissolution spec, at least as we think of USP.
20 That's a whole other thing.
21 Then the last one with locally acting drugs,
22 one of the questions there is where, what part of

Page 232
1 the intestine. I think both of those are more
2 complicated than maybe the other ones. They're all
3 complicated.
4 DR. LIONBERGER: I have a related question
5 on here. I think we saw some examples in the
6 presentations today of mechanistic IVIVC which I
7 would contrast with an empirical IVIVC essentially.
8 The mechanistic one, you sort of deconvolute
9 against the physiologically-based model to try to
10 get more factors out of it.
11 There seems to be evidence in the literature
12 that this is better. I'd like the panel members to
13 comment on that. Do you agree that mechanistic
14 IVIVCs are preferred over empirical IVIVCs, and
15 should then our expectation that is the state of
16 the science that we should really think that if
7 someone presents an empirical IVIVC, they should be
8 doing something more complicated?
19 Have we reached that state yet where we want
20 to put those on really different -- is there enough
21 scientific evidence to say that those two
22 approaches really are on different levels that we
want to really endorse strongly the mechanistic
IVIVC as the preferred approach to --
DR. AMIDON: Absolutely, Rob. Absolutely, but I'm an academic, so what do I know?

DR. DUAN: I would say depends, because
IVIVC, if used in the traditional way, three
formulations, slow, fast and medium. That's validated. It's very difficult.
$9 \quad$ We made a survey. We have a publication probably just for that. It's very difficult. From that perspective, we have to go this way, for the mechanistic-based IVIVC. That might be an alternative.

DR. AMIDON: We should do both, right?
DR. DUAN: Right, yes. If it's the
traditional way, it's doing that IVIVC, that
probably is pretty solid. When we do the mechanistic-based, that probably will get the same
results, but for the traditional way, it's very
difficult for the provability. As far as I
remember, it's very low. It's about 30, 40
something.

1 I couldn't remember exactly the number, but with that, we take another alternative way to get some same interpretation. That will be a good alternative.

DR. JAMEI: I think just to answer your
question, yes, the confidence is there. In terms
of the performance, they are better than the
classical one, but it doesn't mean that the
classical ones are useless now. There are many
cases, as people have viewed them, that classical are enough. We don't need to force people to different. Now, you have to go and do PBPK.

I think two years ago, we had that
discussion with Filippos, when we had that
discussion. If you start pushing this one
tomorrow, FDA is asking, we have to do everything PBPK IVIVC, it's not necessary for all the cases.
There are some cases that they are improving the performance, but those cases are necessary to do it, but not absolutely for everything.

DR. KESISOGLOU: I would say I see them as complementary approaches. I don't think I would

1 declare one is always better than the other for
2 each compound. I have compounds that I develop
3 both of them, and they had similar qualification
4 performance. There's clearly, in the past, several
5 classical IVIVCs that have been proven useful,
6 right? So we cannot discount the old methodology.
7 I do think if we have -- absorption modeling
8 IVIVCs give you another tool to use to develop
9 these correlations, but I wouldn't necessarily
10 throw everything we've done in the past out because
it's the old way and we're doing things. I would
just use them as complementary, and at the end, you
have to use whatever makes sense and gives you the
best product, right?
DR. JAMEI: I fully agree.
DR. L. ZHAO: With time, we probably need to proceed to question number 3. Based on the current
discussion, I think we need to slightly change
question number 3. Initially, it was for the areas
with middle to low confidence, what are the gaps
and how to close the gaps through research.
I don't think we are differentiating low to

Page 236
1 middle confidence. We are just asking the question
2 what are the gaps and how to close the gaps through
3 research.
4 I think what I got is that we need some 5 validation for if we are applying PBPK approaches
6 and we need to understand the system's parameters.
7 A mechanistic model is not always better than the
8 empirical model based on our limitation in
9 understanding the details of the theoretical
10 parameters' properties and DDS between property and
11 theoretical environment. That's my take on it so 12 far.
13 Any corrections? If there's no corrections, 14 please comment on how to close the gap. I think
15 here we are all doing PBPK research. With the
16 experts, hopefully, we can define a direction to
7 go.
18
DR. LIONBERGER: There are two types of 19 gaps, I think. One is there's a confidence gap in
20 what people believe and what our assessment of the 1 model is, and then there's, two, sort of things 22 about scientific understanding.

1 Leave the second one aside, but I think the confidence gap, I really am impressed with what the
OrBiTo group really tried to do with, say, let's
put out a challenge and say here's some datasets,
go have different groups take different tools and
say how well you do. I think there's risk in doing
that, but that's, I think, one way to really assess
how well you're doing.
9 I think I would say the challenge I would
put out would be an easier one that would be a
little bit more relevant to generic drug
development where you have human data. I think the
challenge that the OrBiTo presented was sort of a
14 little bit more first-in-human type study, which I
15 think is even harder, but I would like to see us
16 having some type of other areas, like protein
17 folding and things like that, do yearly
18 competitions on here's a dataset, all of the
19 modelers who are in that area can then put in their
20 prediction and assess both their ability against
21 their peers, but also of the state of the field.
22 I think that's something that I think would

Page 238
help advance the first part of the gap and give a
sort of benchmark for where we are. You could
formulate the problem in different ways as an
IVIVC-type problem or a bioequivalence prediction
or biopharmaceutics type. But having a
biopharmaceutics-related type challenge with an
appropriate here's the blinded dataset and having
something that then can be revealed, I think would
be very helpful.
DR. DUAN: I think the OrBiTo approach is a good approach. The key point here is validation.
So using this methodology, using that software to validate the results from the other things. That's
what came from our experience regarding the ANDA
block review.
When we set the particle size or other specifications, we put all the ANDAs together and try to get a consistent model. We can imagine if we can build a universal model for this block of 15,17 , whatever number that the ANDA block is, and then the model can apply to each ANDA and predict the BE study. That's where it'll be a beautiful,

1 beautiful work, but we have not got there yet.
2 I think that OrBiTo approach, that's really 3 a good approach. That can give us some confidence 4 for the future study.
5 DR. SAO: For me, one of the gaps I think
6 that currently exists is the excipient effects. I
7 think they have to be characterized in the model.
8 I know there have been a lot of studies about
9 excipient effects just in permeability and things
10 like that, but specific to a model. Out of the
11 many models that we've seen so far, I think I might
12 be wrong, but very close to 100 percent of the
13 cases, one of the assumptions have been no
14 excipient effect. It's probably something that we 15 want to look into.
16 DR. KESISOGLOU: I agree with everything
17 said so far. I guess I see this more as a
18 validation of our biopharm knowledge than a
19 validation of the model. I don't think it's the
20 model necessarily itself, the structure of the
21 model. It would be if the model worked for a BCS-I
22 compound, it means the underlying structure of the

Page 240
1 model is reasonable.
2 Is the input in our biopharm knowledge? If
3 we're failing the model, we're probably failing
4 something in our understanding of the system.
5 Either we are not accounting for something
6 correctly or we're not putting the right
7 parameters.
8 I think that's what OrBiTo is trying to
9 accomplish, too. It's not just the in silico
10 models themselves. It's generating all the
11 fundamental knowledge, like in vitro-in vivo, that
2 can help us with our understanding.
13 I think at the end, it's an overall biopharm
14 view everyone's asking, not a model question.
15 DR. AMIDON: I want to come back. I think
16 dissolution can solve everything. I think we need
17 to separate quality control dissolution from what
18 would be useful in product development. When we
19 try to use quality control methodology which is set
20 up for commercial product and along with other
1 quality control measures, but we need a better
22 dissolution methodology that does reflect in vivo,
that would become a better validator, if you will.
Looking at question 3, what are the gaps, I
think I would say product development dissolution
methodology, which is a big gap in our field. Of
course, there are many reasons for that, but that's
what I would say about number 3.
DR. ZHANG: We hear a lot of validation,
verification of the model so to improve our
confidence, but I do have a question for the members. This is just a question that is coming up.

To what extent, to what kind of validation we think that will be enough for us to generate the next level of simulation that we are confident with? For example, if we validated the model with two ANDAs, can we extrapolate to the third ANDA the same API, different formulations?

The question is to what extent validation is enough to give us enough confidence since we are talking about validation and verification and we are all quantitative scientists. Let's have some quantitative discussion, as well.

Page 242

1 DR. L. ZHAO: I think dissolution seems to
be one of the anchors for PBPK model, but I feel
there's no SOP to establish dissolution method yet.
If you have any input on that, that will be great.
DR. AMIDON: Yes, that's correct. I think
industry has dropped the ball here. I'm sorry.
I'm being an academic, but no, I agree.
I don't think a dissolution methodology for
product development, in answering the type of
questions that we're asking here, I don't think the
USP methodology is good enough. We know it's not
good enough. We need to evolve that. It's good
enough for quality control maybe, at least we like
to think it is. But I think we need to separate
out a methodology or a method, an SOP. But when I
look at the dissolution apparatus that we're
developing at Michigan, the SOP would be a
nightmare. It's not going to be useful for that,
but it's going to be -- we need something, I agree.
We need something
DR. NOVAKOVIC: I would like to add I
absolutely agree with the statement that
dissolution is the most critical or one of the most
critical points in a physiologically-based
pharmacokinetic modeling, but on the other hand, we
4 can do modeling.
5 Depending what is the purpose of the
6 modeling, we can do modeling without dissolution,
7 and the modeling should be up to come to
8 dissolution profile that has bio indicative or
9 biorelevant potential and then how we are going to
10 achieve in vitro dissolution that would match that
1 profile that we saw by doing modeling and
2 simulation.
13 That is the major obstacle, because we have 14 so many techniques. We have different pHs. We are
15 using different rotation speeds. We are using pH
16 gradient. We are simulating fasted and fed
7 conditions, but still we have difficulties to
obtain dissolution profile in vitro that would be reflection of in vivo dissolution.

But as I said, physiologically-based
pharmacokinetic modeling is a tool to come to that
22 solution. It is mutual process. They are

1 interacting, and it is interplay between the
2 modeling and the solution.
3 DR. KESISOGLOU: I guess I have a -- to
4 Dr. Amidon. I'm so sorry. I didn't see you. Go
5 ahead.
$6 \quad$ I guess to Dr. Amidon's point about the
dissolution USP being not useful --
8 DR. AMIDON: I didn't say that.
9 DR. KESISOGLOU: -- for development
10 purposes. I don't think the problem is the
11 dissolution apparatus necessarily. I think it's
12 how we've used dissolution data in the past. There
13 are people looking at two curves and trying to make
14 sense of what two curves mean.
15 I think we have now the tools -- Masoud 16 mentioned, for example, the mechanistic modeling of
17 the dissolution. I think if we go to the next step
18 of getting a closer look at the dissolution data
19 and understanding what they're really telling us, I
20 think there is value even to the simpler systems.
1 I just think we haven't done that as consistently 22 in the past.

1 DR. JAMEI: I agree. I think it would be
able -- I think, Gordon, you mentioned that the
buffer issue, that we cannot. We think it is
possible by modeling to be able to account for that one.
6 If we thought to incorporate the surface pH rather than the bulk pH for the dissolution and
then we get some idea and there are some data on
what is the buffer capacity in different part of
the GI tract and explore those, then by separating
the information that we have from in vitro and
knowing what were the buffer capacity and translate
it to in vivo buffer capacity, there are hopes to be able to predict.
15 DR. AMIDON: Yes, in some cases, but it does depend on the drug, the PK, its solubility.

DR. JAMEI: Yes, absolutely.
DR. AMIDON: Every drug has to be looked at.
18
19 When we look at matching bicarbonate with
20 phosphate, it varies with the drug's solubility and
21 pKa, but yes, we can calculate that out. Then we 2 go and do the experiments to see if it worked,

Page 246
because there's always assumptions in your
transport analysis. But I think, theoretically,
yes, but it does vary from drug PK and solubility,
yes.
DR. JAMEI: Absolutely true. I think the
same approach that we are doing with PBPK, we have
to do more of in vitro modeling to get more
experience and in which cases, then we don't need
to do any extra in vitro experiment. We can model
10 it. There are some cases definitely that we have
to do the experiment so we carry on doing that.
One more point is that we are emphasizing too much on the dissolution, but permeability is another problem that we haven't sorted out. So permeability and predicting permeability, regional permeability, colonic permeability, they are another aspect we have to look at as well. This is another gap that we have.

DR. AMIDON: That's a gap. That's true. But I would say that's why we restricted BCS Class
I to very high permeability, because once it dissolves in the stomach, it's all gastrointestinal

1 variabilities that are affecting it, not the
2 product. For BCS Class I, you're testing gastric
3 emptying doing $B E$, not product differences. But
4 when you slow down the dissolution rate, it gets
5 more complicated, yes.
6 DR. P. ZHAO: I fully agree. During the 7 presentations, Dr. Amidon and Masoud both mentioned
8 the quality of input parameter drives good
9 prediction. There's no doubt about it. I think we
also have a previous experience in terms of predicting clearance based on in vitro system like
human liver microsome hepatocytes, transporter systems.

Back to Liang's question around the confidence that one should have for in vitro
solubility, it just seems like you can handle
better with solubility than a human liver microsome, to my opinion.

But that said, there is still another
direction of complexity that we probably haven't
got the chance to talk about is the dissolution in
22 what, a little bit maybe in Filippos' presentation,

1 biorelevant solubility. Which one would be my true
2 input parameter?
3 I think I'm pretty sure the experience we
4 will get accumulated some years down the road, we
5 will be able to say better in terms of looking at
6 the drug characteristic and the accumulated
7 experience for drug or drug product, what should go
8 into the model.
9 Back to Susie's question, the qualification
10 of validation, I think this is really getting a
11 very general PBPK debatable area. We're developing
12 the guidance right now for clin-pharm submissions.
13 We try to shy away from this, because personally, I
4 really don't think right now there is a good way
5 that we can make some cutoff values up there and if
16 people fail, they have a lousy model, just don't
7 even submit to us. We don't look at that.
18 I think just based on the DDI prediction,
19 our experience was that, again, you focus on and
20 imagine the workflow. You focus on the end
product, which is a biowaiver. For us, there's
22 whether there's a need to do another DDI study, and
then you trace your flow up and then decide, okay,
if I have 10 drugs tested in PBPK and I blind
myself from the observed study and this is the
outcome, I have maybe one or two that is beyond
1.25. Do I tolerate that?

That's something, also related to what
Filippos presented at the end, that might imply
some kind of a paradigm change, which I have no
authority to comment on that. I'm just proposing
my personal opinion or personal sort of thinking
around, reflecting what he said.
Think about clinically relevant BE. Then the other advantages for generic drug development, again, you have a lot of the new drug information
15 to power the model. Not like us, we probably will
16 be limited with maybe Phase 1 SAD data, multiple
ascending dose data, that's it. We may have
nonlinearity and get excited, oh, now I know
there's something I can deal with a model.
Then you go beyond that. You still need a ketoconazole study to verify the model, and then you say, okay, I can waive the study. There's

Page 250
nothing that we just do bottom-up.
Even for DDI, we say we have high confidence
there's a condition. That's why I think for all
these applications, we need to set a condition.
You identify your end question that you want to
address and then try to build yourself up. I think
that's when we do narrow the gap.
DR. AMIDON: I'm going to make one comment
about it. You have all of that NDA information.
The generic company doesn't have that. I think
that part of the problem is --
DR. P. ZHAO: Good point. I think I'm assuming the purpose of this meeting is, also,
whether from the agency we can do something to
facilitate the broader use of the mechanistic
modeling. If the generic companies decide to just
go ahead and do the BE, I guess end of the question.

But still you're going to run into a
scenario where a BE study is conducted and you get
puzzled by the outcome and then all this inter-
individual inter-variability, the patient versus a

1 healthy volunteer, a single dose versus multiple
2 dose, those questions. That's why we're here.
3 That's my impression.
4 DR. AMIDON: I think that's a good question,
5 but it's getting into the public policy realm, I
6 think. If you can develop some internal
7 understanding from all of the NDA's information
8 and, of course, you can use that internally for
9 your decision-making, but I don't know how
10 that -- I don't know what more could be --
11 DR. P. ZHAO: That's a fair point.
12 DR. AMIDON: I think it's more of a public
policy issue or there's public policy issues
embedded in that.
DR. P. ZHAO: That's why I said personal opinion.

DR. L. ZHAO: I think we almost got the whole stakeholders in the field here. Actually, regarding the information sharing, we are
20 sponsoring building internal PBPK database probably
21 for primary. I'm not sure whether the CRO industry
22 or the software developers have interest. I know

Page 252
there are already some working groups existing.
What is the most effective way for knowledge
sharing in this regard to keep continuing the
communication to build the PBPK future mechanism-
5 based modeling? Maybe in the future, it's not
6 called PBPK anymore once the knowledge is mature
7 enough.
8 DR. JAMEI: I just thought right now, we had
9 something around maybe 70, 80 compounds that are in
10 the simulator, but many from the metabolism side,
11 they don't have the absorption or the sophisticated
12 models. They need a database. People are
13 publishing, and maybe we have prepared a part of
14 our website that people they can upload there to
15 share between with the people who are using Simcyp.
16 It is very good to generate it, but I
17 understand from innovative company side, that they
18 expend huge amount of effort to create those ones.
19 Even if they don't want to share it, I won't be
20 able to force them. This is another thing that
unless they want to share it -- because
understandably, they have spent lots of effort,
data, individual man months. They are going through these.

We are publishing and we are publishing
ourselves. One of the needs the consortium has
asked us over the last two, three years, that we
curate all so they will be available.
Now, we have started to put all the data, validation, they're all for the consortium members,
they are available.
DR. P. ZHAO: I think just to speak to that, within clin-pharm, we're trying to set up a
repository for the submissions right now, because the task will be so daunting. We haven't got to the stage to put in the specific software, specific model into this database, although we can trace where they are.

In the public domain, I know several journals nowadays are requesting the authors to supply software-specific model files. Hopefully, that will be another mechanism for us to tap into the resource down the road for a specific API where the model has been published.

Page 254

Questions and Comments

DR. L. ZHAO: Okay. We are almost two minutes to 4:00 o'clock. We do want to give the audience a chance, if you hear something which is obviously wrong or you have a driving desire to voice your opinion, here is your moment.

Unfortunately, for the people online, we haven't set up the connection. We are not going to
address questions from online. It's more like benefit to the people here in this room. Now is the time if you have any comments. It's good to stand up and approach the microphone. We appreciate any kind of inputs.

DR. SUN: Duxin Sun from University of Michigan, [inaudible - off mic]. As George Box said, "All models are wrong, but some are useful." I do agree the PBPK model is very, very useful to do the prediction, especially I do agree use PPBK
model to set the boundary condition. I don't think
it's real you can actually predict the spectrum to
see if it makes accurate prediction, but the
boundary condition is very useful to do the BE

1 study. That's one comment.
2 I think I can address the number 3, where is 3 the low confidence. Because in the model we use a
4 lot of in vitro data, then we have a plasma
5 profile. The big gap in between is the black box,
6 what is happening in vivo Gl tract. But we have to
7 use the in vitro data to somewhat predict in vivo
8 what is happening, then use that data to predict 9 plasma profile.
10 When we talk about validation, what we validate is use in vitro number versus PK profile, plasma. We don't have data to validate what is really happening in Gl tract. Based on the data we already have worked with the FDA -- we work with, of course, Dr. Amidon, together work with the GI
drug concentration. We measure local concentration
of mesalamine. We measure the ibuprofen local
dissolution.

The data that comes out is very surprising,
very, very different than we thought. To give you
one quick example, in the stomach, the
22 concentration of both drugs, they stay in the
stomach over seven hours, for very long, for very
2 high concentration. We would never predict that.
3 We never assumed that.
4 What does that mean? The in vivo real data,
very different from our assumption, very different
from our prediction. Yet, we still can't use the
7 model to predict from in vitro to in vivo PK. What
8 does that mean? Does that mean in vivo does not
9 matter or does that mean is the model perhaps wrong
10 in some way?
11 Really, I feel number 3 will be we really
12 need the in vivo data to validate. Once you get
13 that data -- right now we have a local-acting drug.
14 We complete that study. We're doing
15 immediate-release
drug. We're going to finish
16 within this year or next year. I think we need
17 another modified-release formulation for GI.
18 So once we get the GI dissolution data, then
19 we can really use that to validate the in vitro
20 dissolution condition, also validate the model. So
21 I feel that's fundamental. Without that data, we
22 can do all different validations, but it's very

```
hard to know whether it's true or not.
    DR. MARROUM: I think that we have --
    DR. L. ZHAO: Can you please identify
yourself?
DR. MARROUM: My name is Patrick Marroum. I
work for AbbVie Pharmaceuticals.
    I think that we're discussing a lot in PBPK
modeling, but I don't think we have an agreement on
how we define a good model. At least with the
classical IVIVC when the guidance was developed,
there was a lot of discussion and a lot of work to
come up with an acceptance criteria. I've seen
many, many PBPK models that are developed and are
so-called good models that have very different
prediction errors that deviate quite a bit from the
observed in vivo data. And yet they call them good
models.
    As long as we do not agree on what's a good
model, I don't think how are we going to be able to
use it from an application point of view? We have
to first agree on what is a good PBPK model, and I
    don't think in this discussion anybody addressed
```

Page 258
that issue really.
DR. JAMEI: Can we answer or we wait?
DR. L. ZHAO: Please go ahead.
DR. JAMEI: I think, Patrick, that the
question is maybe you're comparing two different
things. When you say for IVIVC we know what is the
criteria for success, I think you are considering
that look if IVIVC are in the 85 percent to 125
percent, then it's acceptable. If it is not, then
it's not acceptable. But this is not telling you
about the performance of the model. You are
accepting or rejecting is IVIVC -- you're not
saying anything about the model itself.
Exactly the same thing if you are using
physiologically-based IVIVC, exactly the same
criteria is applicable there. There are no
changes. If you get 85 percent, that's done. If
not, then it's not acceptable.
DR. MARROUM: Most of the models don't
achieve that level of criteria. Unless I'm
mistaken, the vast majority of PBPK models that
I've seen so far in that area for DDIs, for

1 example, they say, oh, if you're within twofold,
2 you're okay.
3 But if you want to use it for bioequivalence
4 or waiving studies, either we change our definition
5 of bioequivalence or we define our models to meet
6 the relative definition of bioequivalence and be
7 able to waive it.
8 DR. JAMEI: I see this one, two different
9 things. You can say, okay, when a prediction is
10 from PBPK model, it is acceptable. This is one
11 question, which is valid and lots of discussion has
12 gone everywhere and there is some commentary on
3 that one, as well.
14 But comparing that against IVIVC acceptance 15 or rejection is not correct, from my view, because
16 they are two different things. We are not saying
7 the performance of the model is acceptable. We say
18 the formulation and everything, that way that it's
19 working is these two are bioequivalent or not. We
20 are not saying anything with the model.
21 In the PBPK, you're right. There are
22 different people that are coming with different

Page 260
1 things, and this is a good thing. I don't see this
2 one as a bad thing. The data commentary on pH in
3 clinical pharmacology and therapeutics or
4 pharmacometrics and system pharmacology, that one
5 is comparing the PK top approach against PBPK oral
6 quantititative systems pharmacology approach.
7 The purpose for them is not to match the 8 observed data. The observed data, the source of
9 the observed data we have, A, a clinical study with
10 six people or 10 people, and we say these are the
11 observed data. If you run the same study again
12 with the same people, you are not going to get the
13 same answer. Why do we expect PBPK to always match
1410 people? So this expectation may be not right.
15 DR. MARROUM: But that's the definition of
16 bioequivalence. You're implying that we need to
17 change our definition of bioequivalence? We're
18 stuck with it. There's nothing we can do. We have
19 certain predefined criteria that we need to be able
20 to pass, and our model should be good enough to
21 give us enough certainty to determine whether we
22 pass that criteria or not.

1
2 years ago when we developed the critical IVIVC guidance. This is no different whatsoever.

DR. JAMEI: I fully agree, and I don't see
any reason to change that criteria. If you are
using numerical method or any other method you are
using or if you are using a PBPK model, the
criteria is exactly the same. There is no need to
change it. The same acceptance or rejection can be
applicable to PBPK. Because this is another model,
they try to match two different in vitro and in
vivo dissolution. The same criteria is applicable to both of them.
14 DR. MARROUM: Yes. And one more comment 5 that I wanted to make is I would have a very great difficulty in accepting the concept that if you develop a classical IVIVC that met the stringent criteria of predictability that you need to force the sponsor to go back and do a mechanistic PBPK model.
21 You don't need to really understand
22 sometimes what's going on. Probably sometimes you

Page 262
can never understand what's going on, but at least
if you have enough certainty and confidence in your
model to make a decision and relieve the burden on
the company, that's good enough.
A lot of, for example, the exposure response
relationship, we don't understand the initial
relationship, but we still use it to select the
dose or do something. So it is somewhat very
difficult to say, oh, you always have to do PBPK
model and it has to be mechanistic. If you have an
empirical model or a statistical model that is predictive and robust, it's good enough.

DR. L. ZHAO: Thank you for that comment.
If there's no clear benefit to do a mechanistic
IVIVC or PBPK model, I don't think we would be forcing that.

DR. MARROUM: I heard someone commenting that we should go that way, I think.

DR. MEHTA: I thought I heard they were complementary. That's what I heard.

DR. MARROUM: Okay.
DR. GOOD: Good afternoon. David Good from

1 Bristol-Myers Squibb. Thank you for the very nice
2 panel discussion.
3 I think that we've talked a little bit about
4 the confidence levels, so just have one question to
5 supplement that. That's related to, I guess, what
6 we've been talking about and what was shown about
7 the wider adoption, the only 6 percent adoption for
8 absorption of PBPK versus things like DDI where
9 there's maybe more penetration currently. I think
10 the comments that were made about confidence
11 in vitro microsomal or hepatocyte data are very
12 poignant.
13 I think that one of the things that we have
14 in absorption that gives us this confidence and has
15 been pointed throughout multiple presentations is
16 the combination of these models with the in vitro
17 data but also the in vivo data. And it's not just
18 the validation against multiple formulations that
19 contain different excipients throughout all of the
20 clinical studies that were conducted, but it's the
21 ability to have confidence in future predictions,
22 too, by being able to leverage across species.

Page 264
1 That's something where the fundamentals of
2 absorption that we're talking about dissolution
3 rate, solubility, permeability would still apply,
4 and our PBPK models are often constructed such that
5 we can bridge across species and also be able to
6 probe new formulations and leverage that in a way
7 that for things like DDIs we can't, because the
8 mechanisms of clearance can be quite different
9 across species.
10 I guess my question is in the absorption
11 space for PBPK modeling. Does the panel feel like
12 we have additional tools to validate and to
13 demonstrate our confidence in predictability for
14 new formulations?
15 DR. AMIDON: I think it depends on BCS class
16 and subclass, so some yes, some no today.
17 DR. KESISOGLOU: I guess in the development
18 space, we often use animal data to validate whether
19 the model is directionally at least or
20 qualitatively giving us the right answer. Whether
21 it would be quantitative or not in the animal
22 model, it's a little bit more difficult question,
because we typically don't measure animal-specific
parameters. We have the human solubility estimate,
but we don't have a dog solubility estimate
necessarily.
I think that you can use the data
supplementary in the development space. I do not
have an experience in regulatory application to
validate something against an animal model myself.
I cannot comment on that, but I think in the
development space, the totality of the data serving
supplementary to inform the models.
DR. P. ZHAO: Just responding to your last question, based on experience, I'd feel cautious in terms of answering absolute yes even though I'm pretty optimistic. The reason I'm cautious is
because for the lower confidence applications that
Liang presented in the introduction on behalf of clin pharm, we are still struggling. For example, we have data around the multiple compounds with regard to their PK in hepatic impairment, and this is a high impact regulatory issue that we try to get a good hold around it.

Page 266

1
bigger problem around some physiological impact on
drug ADME that are not well characterized. Are we
at that end? I don't think so because I think
maybe we can further subset the question. Maybe in
hepatic impairment of what kind of compound, and
when you have what information, maybe you can use PBPK.

We're moving towards that end, but a global validation of a particular application I'd like to
see maybe five years down the road whether we can
say in confidence that, yes, we can do that.
Mathematically, I'm optimistic that it's just a matter of getting the information.

You also alluded very correctly around the utilization of in vivo data. I think on the one hand, we need to be very critical about the input in order to drive a better prediction, but also once the in vivo data becomes available, this PBPK, the whole point we do that is it follows this predict-learn-confirm cycle. You really keep

1 learning the system and improve the modeling.
2 Just one example, 2014, the ontogeny of 3 CYP3A4 in pediatrics had been updated. That
4 doesn't mean that the model was completely wrong in
52006 by different groups, but it's at least saying
6 that with updated knowledge, we know better. The
7 predictions should be narrowing us down within a
8 narrower space to give a better prediction.
9 DR. L. ZHAO: I want to add something to 10 Ping's comment. I think one thing, the technology 11 is the responsibility of both sides, both from 2 FDA's scientists and from industry. I think most 3 of the innovation should be from industry. You're 14 more than welcome to thrust new ideas or new data 5 to support the validity of model, always submit to 16 FDA or discuss with us at other venues, platforms. 7 It's kind of we together need to advance the field.

As we have heard from today, there are many 19 challenges, barriers. The field is still young, 20 still in infancy, so we need lots of investment. 21 DR. CHIEN: Hello. My name is Caly Chien 22 from Janssen R\&D or Johnson \& Johnson. I heard a

1 comment from Ping about the prediction of food
2 effect using PBPK may be at this moment, the level
3 of confidence seems to be insufficient to give us
4 the comfort level.
5 Can you also comment on your comfort level
6 about the prediction of drug-drug interactions with
7 acid-modifying agents, like PPI or X2 antagonists?
8 I think throughout today we have listened to the
9 presenters that there are successful cases, but
10 there are also some cases that are not so
11 predictive. I would like to hear your opinion on 12 that.
13 DR. P. ZHAO: I'll try to make it quick
14 because this is a generic drug workshop.
15 (Laughter.)
16 DR. P. ZHAO: Quick answer, again, as I
17 mentioned while responding to the first question,
18 in terms of predictability, all of the bullet
19 points, we will need some more work in order to say
20 in the absence of an in vivo study, we're good.
1 Basically, I'm not convinced that if you just do a
22 software prediction in the absence of the pH
modulating agent prediction, a DDI study, that you can get away with it.

Again, conditional, there are certain
compounds, these behave very well in the Phase 1
study. We have one oncology drug that we sort of
gave a waiver, but it was very cautiously mentioned in the label, which is panobinostat. The sponsor submitted one prediction using one software. We sort of retested with another software.

Again, that's a case where probably just based on the pH and the solubility, it was sort of mediocre, but it was not too bad and also has very good permeability. We agreed that there's no need to do a pH-dependent DDI study, but other conditions, probably we wouldn't feel comfortable just by accepting the model prediction.

DR. CHIEN: Thanks.
If I can, I would like to ask a second question. I would like to continue to expand on Susie's questions about the model validation questions. I think a practical concern that I have when doing this hands-on is about the prediction

Page 270
error of the model, comparing the predictive versus
the observed data, because if I'm trying to -- if
the application is to assess bioequivalence,
perhaps we would like the model to be as accurate
as possible.
At what point do I have to stop and say that the model is good enough, that it can be used for simulation? Can I say that a percent error, 20
percent is good enough, or do I have to go continue
until I have 10 percent? Because to go from 20 to 10 percent, maybe I have to spend another month to build a model or maybe do a lot more experiments to get to that level.

I would like to ask the panel members to share your experience. That would be great.

DR. NOVAKOVIC: I can answer this question because I have that experience with my case. It was in the percent prediction error criteria for percent prediction error exactly the same as for classical IVIVC Level A which means mean prediction error less than 10 percent for each parameter, AUC and Cmax and individual percent prediction error

1 may be up to 15 percent. This is exactly the same
2 as for classical IVIVC Level A.
3 DR. LIONBERGER: I think it depends what 4 you're trying to predict. If you're trying to do 5 I'm going to predict the --
6 DR. NOVAKOVIC: Biowaiver.
7 DR. LIONBERGER: Yes, but for example, if
8 I'm going to try to predict what the result of
9 giving this drug product to a particular human
10 being is, right, you're never going to get the
11 right answer from a model given the variability of
12 what the inter-subject and inter-occasion
13 variability of that person is. You're going to get
14 some statistical answer.
15 You have to be careful about what your
16 expectation is about trying to predict. Maybe in a
17 bioequivalence context is you want to have
18 confidence in your test to reference ratio that
you're trying to predict. If you define it that
20 way, some of the common errors may drop out, and it
may be much easier to achieve a 10 percent
22 prediction error on a test to reference ratio. But

Page 272

1 you're not going to be able to see a 10 percent on
2 predicting the raw, what the distribution of all of
3 the test values in your subjects are across the
4 whole population.
5 It also depends in what sense you're
6 averaging the data. Do you average it down to just
7 the mean data or the whole study, or are you making
8 a prediction about including some variation in the
9 population? I don't know that a plus or minus 10
10 percent prediction error is always right. I think
11 it's reasonable for IVIVC, but in a traditional
12 IVIVC, you have some type of sort of also model
13 normalization and correction between them at least
14 going on implicitly so it looks sort of like this
15 test to reference ratio thing that some of your
16 errors that you're fitting can cut off.
17 If you're looking for the difference between 18 the fast, slow, and the medium in your fitting
19 process, the sort of overall shifts of your errors
20 can get canceled out, too. I think you have to be
21 careful of how you define the error that you expect
22 in that way and what specifically you're trying to

```
    predict, whether it's individual subject or mean
    data, as well.
    DR. L. ZHAO: Yes, I think I fully agree
    with Rob. I think there's no difference between
    the validation of PBPK model if we are only talking
    about data or population PK or exploratory response
    model from pharmacometrics. I think the guiding
    principle is the feed for purpose, depending on the
    purpose.
        Then if you want to do a trial simulation
    later on, then you probably need to check all the
    quantiles, the predicted quantiles, develop the
    quantiles. You need not only describe the median,
    the mean, but also the uncertainty. That's what
    I'm thinking. I don't see any big difference
    between PBPK model or other models.
    DR. FANG: Lucy Fang from Division of
    Quantitative Methods and Modeling. I want to make
    a comment on the data available to FDA. People
    always tell me FDA has the largest database, but
    what people don't know is from generic perspective,
    all the data we have actually is drug products, are
```

 Page 274
 so-called ideal drug products. That means they all
 pass the bioequivalence studies.
 This means the drug are full on one side, on
 both sides. When we use those data to build the
 model, then this could limit our ability to explain
 the conclusion on those models.
 As a modeler, I would like to see that more
 data submission for the drugs on both sides. I
 want the GPHA to take that into consideration.
 DR. L. ZHAO: Lucy's from the FDA, so we are
 not addressing that comment unless the panel wants
 to comment.
 DR. SUAREZ: This is Sandra Suarez from the
 FDA. Just coming back to the question previously
 raised about criteria for validation, we have had
 already two or three questions about that, and I
 was just going to somehow echo on to what Rob said.
 That's based on my experience on my involvement of
 several PBPK models submitted to new drugs.
 For those limited experiences that we have
 had, the applicants have used a criteria very
 similar to what IVIVC guidance reflects, right?
 1 But I want to tell you, again, I don't know if it's
2 clear. I said that the applicants have used the
3 same criteria used for IVIVC, meaning 10 percent or
415 percent, depending on its internal
5 predictability or external predictability.
6 It's pretty similar to what the IVIVC
7 guidance specifies, but my opinion is that -- of
8 course, I agree with that, because it's a
9 conservative approach. But my opinion is that we
10 need to gather experience in terms of the use of
11 the models to really determine if 10 percent or 15
2 percent predictability is right not, and it will
3 depend on the quality of the data that's going to
4 be submitted into the NDA.
15 Again, the bottom line for me to determine
16 the right criteria for model predictability is
7 going to be based on experience and is based on
18 what kind of data the FDA gets. Just like John was
19 saying, we have data showing -- for extended
20 predictability, let's say they use bioequivalence
21 studies that fail and pass, and the model is able
22 to predict that or not. Then we will build

Page 276
1 experience to really say 10 percent is sufficient
2 or 15 percent is sufficient or not or to expand
3 those goal posts for predictability, and that's
4 what I wanted to convey to the audience here.
5 DR. WANG: Hello, everyone. I'm Meng Wang.
6 I'm from the Division of Biopharmaceutics, and John
7 Duan in the center is my mentor.
$8 \quad$ I want to express some of my rough ideas
9 about IVIVC. Just so we are comparing a
10 traditional IVIVC and empirical IVIVC, I just
11 thought in the last whole year, I think the
12 applications, there are only 12 . The number is
13 actually very, very few.
14 I just always think about why this number is
15 very, very few. I guess maybe very, very small. I
16 guess maybe it's because there are some people from
7 company -- this is just my guess. I guess it's
8 because the success rate is very small, and another
9 reason is because I think the time is maybe more
0 precious than the money.
21 So I just wonder maybe if the IVIVC success
22 rate is very small, maybe we can use the PBPK model
to do risk assessment, say, if it is feasible to do IVIVC. This PBPK model may be not very, very good,
but maybe we can use it for the risk assessment, so
maybe we can shorten the time. We can increase the
success rate and also shorten the time to make this decision. That's all.

Thank you.
DR. CHOW: Hi, I'm Edwin Chow from Division of Quantitative Methods and Modeling. I want to make a comment about the PBPK modeling. I think it's useful in a way that it really does address mechanistically how the drug is absorbed. Even though for BCS Class I drug you're looking for a modified-release drug, even though the generic company might match Cmax and AUC, the Tmax might shift. And how does that really reflect therapeutically what happens?

NTF, an epileptic drug where the PD response is really seizure risk, you can really use partial AUC to identify that. If you have a generic submission showing bioequivalence in terms of Cmax and AUC, but you definitely see a shift in the Tmax

Page 278

or any shape of the response, how would that affect
the PD during multiple dosing? It will be in
question.
I think it's really good to use a PBPK model
to explain those kinds of situation. Thank you.
DR. PATEL: Nikunj from Simcyp. I think when the panelists were getting started, I had about eight points to discuss, but most of them are already done.
10 So just following up on the [indiscernible],
11 it probably it looks to me that the highest
12 confidence application area looks like it will be
13 physiologically-based IVIVC, and there was some
14 discussion on what should be the qualification
15 criteria, whether it should be the same as
16 conventional. As Sandra mentioned, that it is the
same and also Masoud pointed out, I think we use the same criteria.

There was a good point from Rob about how to assess the prediction performance, and he actually brought up a nice idea of having a challenge, a competition, a blind competition. If that is the

1 case, I think the physiologically-based IVIVC
2 database as a prediction challenge would be
3 probably a first good set to put, that you give
4 that IV data, oral solution data and control all
5 this data and see how well different people can
6 predict using different platforms, numerical,
7 physiologically-based, whatever. Then you can
8 assess.
9 That would give you confidence that it is 10 totally blind as well as it would give you an
11 unbiased comparison of numerical versus
12 physiologically based or whatever different 13 approach people used.
14 DR. L. ZHAO: Thank you, everyone. Thank 5 you for all these comments.
16 Again, I really want to show my thanks to 17 all the speakers, the panel members, also for 8 people who traveled. I see your luggage there, 19 have been sitting here listening. I hope you 20 enjoyed it.
21 At the end, I would like to turn it over to
22 Dr. Robert Lionberger, office director of research

Page 280
1 and standards, OGD, to give the closing remarks.

2 Closing Remarks

3 DR. LIONBERGER: Thank you, Liang.
4 Again, l'd like to thank the organizers of
5 this, especially you and Susie, for the work in
6 setting up this very interesting meeting and really
7 getting a diverse panel of lots of different
8 perspectives here to talk about this and advance
9 the field of modeling and simulation of
10 biopharmaceutics going forward.
11 To me, this is an essential core technology
12 area and knowledge gap for the Office of Generic
13 Drugs. Still, almost all of our products are solid
14 oral dosage forms, and the more we know about what
15 they do, the more the companies that develop them
16 can predict them, the better off the American
7 public will be.
18 Certainly, this also affects new drug
19 development, development of new formulations,
20 post-approval changes to those, as well. There's
21 broad CDER and FDA interest in advancing this type
22 of tool set. I think it's really important to keep

1 this in mind, that we need to be continually
advancing these tools.
3 When we think about where we should be,
where we should be in the future is less
5 uncertainty, more predictability about what happens
6 to drug product factors. That should be the
7 specific focus of, I think, this audience here.
8 There are other people in FDA who have a lot more
9 interest in first-in-human questions about drug
10 absorption that are important, as well, but the 11 focus here and the challenge is to really advance,
12 as Gordon says, the product science aspects of
13 this, because as we see here, there's a lot of
14 uncertainty about that in the dissolution, the
15 interaction of the physiological environment. But
16 there's a huge upside to having a much better
17 understanding of it for both FDA's regulators and
18 for industry as product developers.
19 I think with that in mind of where we want
20 to get, you should be thinking about as we go
21 forward to the next workshops, what we'd like to
22 see in this future state. I think people from

Page 282
industry can speak more to this, there's things you
do that you don't submit in the applications to
FDA, just to help you develop it. If a tool is
useful, you're going to use it. You're not going
to leave things that save you effort off the table.
The next step beyond that is when and how do
these things begin to show up in your interactions with FDA, and that is something that as we go
forward, we can begin to figure out and say, well,
10 if you describe a model, here's how we'd like you to describe it.

We often for these model cases and I think our experience for IVIVCs over the past is, yes, we want to replicate. We want to say, well, do we get
the same answer when we run the model. We can do a
sensitivity analysis of our own to say does this
model look robust.
That can be an important part of that, but
we want to think about and have discussion about
what pieces that we want to see if you say, well, I
used a model to support my argument, it doesn't
have to be a waiver of a study. It could just be

1 supporting some aspect of your application, a
2 specification, some type of argument. But you
3 include a model to support that. What types of
4 information should you include about that model is
5 an important part of the future state of
6 discussion, to have more clarity on that.
7 That will help FDA focus. We look at this
8 model. You've basically met the sort of basic
9 standards for what we expect to see in a model, and
10 that gives us the -- and then we can sort of
11 evaluate it in a more consistent manner.
12 I think that's where we want to be, and as we close the workshop, I want to think about what some of the next steps should be. I think the key ones to me are as we go forward with this, really getting the agreement on the science in the public literature. What can these tools do through these public competitions, tests of the models?

Getting agreement on where they work in cases that are publicly made available through the literature that people can really see, criticize, 22 analyze, that sort of scientific foundation is

1 essential for moving acceptance of modeling and
2 simulation forward.
3 I think another thing to think about as we
4 go into the next steps is to communicate the impact
5 beyond the modeling and simulation community. The
6 importance of modeling and simulation, to try to
7 say it helps make decisions. If modeling and
8 simulation is useful, it helps people make
9 decisions, that you, as industry, developing
10 products, you have to decide what formulations
11 should I choose, what bioequivalence studies should
12 I do. Those are all decisions.
13 For us, as regulators, we also have to make
14 decisions. Is this specification acceptable or
15 not? Is this bioequivalence study acceptable or
16 not? Is this new bioequivalence approach going to
7 be valid or not? All of these are decisions.
18 Then we want to use the best tools available
19 to make those decisions. As we think about
20 modeling and simulation, we have to recognize that
21 the audience that we're trying to reach is the
22 people who are in the end making those decisions
and we want to think about how we present the
models to those people in terms of their accuracy, reliability, what they've been able to do in the past, and, also, how they're just based on fundamental understanding of physiology and physics and mass transport and things like that.

No one's going to argue or people shouldn't argue with things like the second and first laws of thermodynamics. There's a fundamental basis for the models in physics and chemistry that should be solid. There's also understanding of the physiology, as well, that need to be integrated.

We need to be thinking about how we explain what the models are including as we go forward.
And to echo sort of the last question here, what are the gaps that we need to close, so tomorrow we're having a Part 15 hearing for our GDUFA regulatory science program. This is an opportunity where you can specifically tell us what you want FDA to do.

To me, the thing that we really need to focus on as we look at gaps, where are the

Page 286
new -- where are the publicly available in vivo
datasets that we need to move the area forward? I
think there's significant efforts in that in Europe
in the OrBiTo consortium and FDA through things
that we can fund through the generic drug
regulatory science program to generate new in vivo
datasets that answer and help advance the modeling
and simulation tools.
Then I think Duxin and some of the comments
gave about measuring the direct Gl concentrations, that's something that's not often available. The more data you have there really helps build this bridge up between the in vitro dissolution and the in vivo product performance.

Please come tomorrow or make comments to the docket about those in vivo pieces of data that would be really helpful to have in the public domain to advance the entire field.

I just want to again close by thanking everyone for their time here, especially the panel for your expertise and thoughtfulness about this, and I hope that we will be continuing this type of

I

discussion in many different forms going forward
2 and seeing much broader use of modeling and
3 simulation in the sort of development of generic
4 products and also the review and evaluation of 5 those application.
6 Again, thanks very much to everyone.
7 (Applause.)
8 (Whereupon, at 4:37 p.m., the meeting was 9 adjourned.)

Food and Drug Administration
Public Workshop

		2011 (2)	4:37(2)$1: 11 ; 287: 8$	85 (4)
[$12(1)$	45:18;140:12		123:11;216:7;258:8,
		2012 (4)		17
[inaudible (1)	$\begin{array}{r} 276: 12 \\ \mathbf{1 2 : 3 0 (2)} \end{array}$	118:3;148:17;172:11,	$\begin{aligned} & 51: 20 ; 233: 21 \\ & \mathbf{4 0 0}(\mathbf{2}) \end{aligned}$	
				9
[indiscernible] (3) 78:19•163:4:278:10	$\begin{aligned} & 116: 6 ; 117: 2 \\ & \mathbf{1 2 5 (1)} \end{aligned}$	$\begin{aligned} & 2013 \text { (4) } \\ & 32: 20 ; 33: 2,18: 47: 4 \end{aligned}$	11:4;18:17	9 (1)
$[\mathrm{ph}](\mathbf{1})$	$\begin{aligned} & 125(1) \\ & 258: 8 \\ & 13(2) \end{aligned}$	2014 (10)	4H(1)7:6	56:4
136:12		28:14;46:20;47:20,21;		9:57 (1)
0	$\begin{array}{\|c} \mathbf{1 3 , 0 0 0}(\mathbf{1}) \\ 40: 20 \end{array}$	$\begin{array}{r} 267: 2 \\ \mathbf{2 0 1 5}(\mathbf{6}) \end{array}$	5 (4)	90 (3)
				70:13;181:8;216:7
0.011 (1)	$\begin{aligned} & 14 \text { (3) } \\ & 76: 6 ; 172: 16 ; 180: 12 \\ & 15(16) \end{aligned}$	$\begin{aligned} & 19: 10 ; 27: 16 ; 28: 16 \\ & 48: 2 ; 49: 8 ; 53: 12 \end{aligned}$	51:7;59:7;78:22;122:6	90s (5)
41:15			5,000 (1)	103:15;105:1;106:8;
0.1 (2)		2016 (9)	107:13	$\begin{aligned} & 114: 16 ; 216: 3 \\ & \mathbf{9 5 . 5}(\mathbf{1}) \end{aligned}$
54:20;160:21	15 (16)	1:10;19:11;22:5;	50 (7)	
0.11 (1)	$\begin{aligned} & 33: 6,19 ; 42: 6 ; 109: 18 \\ & 118: 5 ; 136: 18 ; 203: 18 \end{aligned}$	$\begin{aligned} & \text { 23:12;28:17;33:18;48:3; } \\ & 54: 8 ; 106: 17 \end{aligned}$	$\begin{aligned} & 53: 20 ; 78: 7 ; 88: 16 ; \\ & 152: 7 ; 154: 5,14 ; 202: 7 \end{aligned}$	54:21
41:18			$500(2)$	A
$0.8(2)$	$\begin{aligned} & \text { 238:20;271:1;275:4,11; } \\ & 276: 2 ; 285: 17 \end{aligned}$	$24(1)$		
0.85 (1)	150 (1)	25,000 (1)	54 (1)	$\begin{array}{\|l} \text { AAPS (2) } \\ 85: 4 ; 152: 22 \end{array}$
$\begin{aligned} & \text { 78:10 } \\ & \mathbf{0 . 9 (2)} \end{aligned}$	123:10	250 (5)	19:13	
	17 (2)			ab (1)
$\begin{aligned} & \text { 78:4;94:21 } \\ & \mathbf{0 . 9 5 (\mathbf { 1 })} \end{aligned}$	19 (1)	$\begin{aligned} & \text { 62:22;77:8;90:5 } \\ & 124: 20 ; 155: 4 \end{aligned}$	6	193:16
		$26(2)$		abbreviated (1)
78:4	$\begin{gathered} 1: 10 \\ \mathbf{1 9 0 6}(\mathbf{1}) \end{gathered}$		$6\left(\begin{array}{c} (2) \\ 56: 3 ; 263: 7 \end{array}\right.$	AbbVie (1)
1	102:18	2D6 (1)	6.8 (10)	257:6
	1980s (2)	130:6	34:16,17,22;53:5,8;	ability (12)
1 (21)	$\begin{aligned} & 103: 15,20 \\ & 1990 \text { (1) } \end{aligned}$	3	$\begin{aligned} & 55: 2,12 ; 74: 17 ; 75: 22 \\ & 76: 5 \end{aligned}$	$\begin{aligned} & 15: 15 ; 16: 1,3 ; 88: 14 ; \\ & 99: 11 ; 118: 14 ; 170: 20 \end{aligned}$
$37: 1 ; 54: 7,13 ; 70: 11 ;$	106:8		76:5 (5)	205:3;218:20;237:20;
175:2,9,9,13,22;211:16;	1998 (1)	3 (15)	60 (5) 32:22,22;33:1;51:20;	263:21;274:5
215:11;216:6;221:15,	128:21	36:18;58:9;70:11;	109:19	able (43)
15;222:17;249:16;269:4	1st (2)	136:17;178:4,5;221:15,	600 (1)	9:15;17:17;97:20;
1.2 (6)	19:10,11	$\begin{aligned} & 20 ; 222: 17 ; 235: 17,19 \\ & 241: 2,6 ; 255: 2 ; 256: 11 \end{aligned}$	181:8	$\begin{aligned} & 118: 14 ; 119: 22 ; 120: 5,14, \\ & 16 ; 121: 4 ; 124: 9 ; 125: 15, \\ & 16 ; 126: 13,15 ; 136: 4,22 \end{aligned}$
$\begin{aligned} & 53: 4 ; 74: 15 ; 75: 22 ; \\ & 76: 2,13,14 \end{aligned}$	2	$\begin{aligned} & \text { 241:2,6;255:2;256:11 } \\ & \mathbf{3 0 (1 0)} \end{aligned}$	7	
$1.25(1)$ $249: 5$	2 (16)	30 35:15;55:1,1,2;104:4,		$146: 10,21 ; 149: 6$
10 (21)	34:11,14;35:10,16;	185:17;233:21	58:9	180:7;182:7;183:2;
12:2;60:17;76:6;	36:13;90:19;122:4;	300 (1)	7.5 (1)	$\begin{aligned} & \text { 203:8;204:15;206:8; } \\ & \text { 210:1;217:14;245:2,4, } \end{aligned}$
104:11;109:14;118:5;	136:17;177:10,20;	154:5	146:9	
136:18;228:20,21;	211:17,18;221:7,15,20;	31 (2)	70 (2)	14;248:5;252:20;
249:2;260:10,14;270:10,	2:06 (1)	1:17;28:19	118:9;252:9	$\begin{aligned} & \text { 257:19;259:7;260:19; } \\ & \text { 263:22;264:5;272:1; } \end{aligned}$
11,21;271:21;272:1,9;		33 (1)	75 (1)	
275:3,11;276:1	188:14	34 (1)	88:10	275:21;285:3
10,000 (1)	2:30 (1)			above (8)
107:14	188:9	37 (1)	8	$\begin{aligned} & 53: 6 ; 55: 1,2 ; 59: 9 ; \\ & 78: 22 ; 90: 19 ; 94: 21 ; \\ & 154: 14 \end{aligned}$
10:15 (1)	$20(15)$			
65:1	9:17;19:13;51:20; 58:12:64:21:77:9•78:5;	19:15	8 (1) ${ }_{89}$	
100 (9)	$\begin{aligned} & 58: 12 ; 64: 21 ; 77: 9 ; 78: 5 \\ & 79: 5 ; 114: 16 ; 185: 16 \end{aligned}$	4	8:31 (2)	absence (3)
$\begin{aligned} & 59: 9 ; 77: 21 ; 102: 13 \\ & 109: 14 ; 185: 1 ; 222: 22 ; \end{aligned}$				$204: 15 ; 268: 20,22$
223:1;225:14;239:12,	270:8,10	4 (5)	80 (10)	265:14
10-fold (1)	200 (1)	$\begin{aligned} & 59: 7 ; 72: 5 ; 136: 17 ; \\ & 179: 20 ; 180: 6 \end{aligned}$	$\begin{aligned} & 35: 15 ; 54: 22 ; 55: 2 \\ & 59: 10 ; 70: 12 ; 73: 17 ; 75: 9 \end{aligned}$	Absolutely (7)
125:10	$\begin{gathered} 11: 8 \\ 2002(\mathbf{1}) \end{gathered}$			$\begin{aligned} & \text { 216:2;233:3,3;234:20; } \\ & \text { 242:22;245:17;246:5 } \\ & \text { absorbed (16) } \end{aligned}$
11 (2)		$\begin{aligned} & \text { 179:20;180:6 } \\ & \mathbf{4 . 5 (1 0)} \end{aligned}$	$124: 19 ; 216: 7 ; 252: 9$	
136:18;229:1	128:20	$\begin{aligned} & 34: 15 ; 49: 19 ; 50: 21 ; \\ & 53: 4,15,16 ; 55: 1 ; 74: 17 ; \\ & 75: 22 ; 76: 5 \end{aligned}$	80s (3)	
11:22(1)$116: 8$	2006 (1)		103:15;104:4;106:8	$18 ; 93: 21 ; 106: 11$
	$267: 5$2008 (3)		84 (4)	
111 (1)		$\begin{aligned} & \text { 75:22;76:5 } \\ & \mathbf{4 : 0 0 (2)} \end{aligned}$	32:20;33:1;215:10;	141:22;144:16;154:13;
160:7	23:12;28:4,11	188:21;254:3	$216: 7$	160:7;162:16;215:10,

$11 ; 216: 6 ; 277$	189:3	64:6	147:3,4;203:4	18;164:16;167:4;172:4;
absorbing (3)	ac		admit (1)	
101:17;113:14;159:14		. 2		
ABSORPTION (110)	accomplish	63:21	do (184:14;187:13;188:5;
1:5;10:6;12:16;15:2;	240:	tivi	25:	189:6;204:1;207:9
18:21;19:2,7;21:21;	according	68:6;164:10;214:	adolescents	210:17;218:16,19;219:6,
24:8,12;25:17;44:10	74:12;1	actual (4)	136:16	2;248:19;249:14;
45:6,12,16;46:16;47:	accou	1;78	adopt (1)	60:11;268:16;269:3,
48:5,9;56:16;61:3,5,10	91:4;104:13;	190:20	67:17	10;275:1,15;279:16;
62:11,15,19;63:19	,17,146:10,15,21	actu	option	280:4;286:19;287:6
64:11;65:21;68:5;72:12;	149:17,18;151:2,9,17;	12:12;14:1	263:7,7	against (21)
80:22;81:1,9,10;82:11;	154:3;159:11;161:13;	50:8;53:11,20;55	adults (2)	49:1;57:6;67:19;72:3;
83:5;93:16;100:18,19,	10:1;227:18;231:15	57:8,13;64:3;75:12	135:13;	75:1;81:6;86:11;92:1;
20;101:18;102:7,11;	245:4	78:11;80:14;83:8;91:22;	advance (12)	97:22,22;138:14;
107:21;108:17,18,18,19	accounted	104:16;106:8,21;107:1;	10:20;13:19	180:12;183:17;184:20;
117:18;118:2;119:1;	144:15	112:20;114:15;115:8;	17:9,10;64:10;238:1	196:21;232:9;237:20;
120:5;122:14;126:20	ac	141:21;145:4,19;	67:17;280:8;281:11;	259:14;260:5;263:18;
127:17,18;128:1,1,2,22	143:22;145:15;150:4,	150:12;151:15;152:19,	86:7,	265:8
137:8,13;138:4,10;	8;153:11;154:10;228:8;	20,21;153:7,20;154:6;	advancing (3)	age (4)
140:14,19;141:14,21	2	156:2;179:8,17;180:18;	138:10;280:2	119:17;122:16,16,20
143:1;144:18;146:4,18	acc	182:12;186:3,10,20;	d	agencies (1)
22;147:1,12,15;148:1,8;	225	198:12;202:1,6;208:10;	119:21;128:12;148:8	174:5
150:14;153:10;155:17;	accu	219.14,229.9,25	d	agency (12)
156:18;157:4;159:1,10;	12:5	254:20;273:22;276:13;	119:21;249:13	12:13;13:22;17:12;
160:5,6;162:7;163:4,	acc	278:20	advocate	7:14;28:22;46:7,10;
165:3;167:2;169:7;	149:2;285	ad	6	63:11;96:19;115:6
177:12;190:2;201:3	accur	8:3,	affect (9)	133:7;250:14
206:5;209:12;211:20;	80:15	212:11;242:21;267	78:6;110:4;122:1,6;	agency's (1)
212:7;214:19;219:16;	270:4	ded (1)	130:8;155:14;195:16;	32:10
235:7;252:11;263:8,14	accu		200:	agenda (1)
264:2,10;281:10	170:20;171		affect	204:12
bsorption-related (1)	achieve (10)	124:10;17	122:5;123:6;124:2,11,	agent (1)
33.3	66:19;89:12;91:19,21	addition	15;195	269:1
sorptiv	99:18;140:7;192:6;	15:8;25:3;61:7	ting (4)	agents (2)
6:21	243:10;258:20;271:	151:10;173:21	5:11;154:12	68:22;268
bundance	achieved (1)	additiona	,	agglomerate (1)
214:17	91.22	141.1.142.2.		198:21
cademia	achl	1:9;166:12,12;168:5;	280:18	agglomerate
10:19;24:3;	134:10,14,15	69:1;191:15;210:3,13;	affili	198:21
171:10;173:5,19	ch	219:2;264:12	7:18	gglomeratio
cademic (6)		da	inity (1)	200:2
138:7;172:7	aci	06:17	160:10	go (10)
173:10;233:4;242:	7:13:21	address	afford (1)	46:19;
CAT (2)	207:13;213:	16:14;47	140:10	12:21;114:16;122:3;
2:21	acid	4;229:6;250:	after	85:1;216:3;234:13;
celerated		254:9;255:2;277:12	;115:21	261:2
,	ac		2	ree (32)
cept		2:13	132:14	32.18
35:5	acknow	addressing (1)	132:14	90:21;191:17;193:14;
cept	44:15;		er	00:7;208:3,14,16
131:15;197:6;258:9,	across (10)	adds (1)	10:15	215:5,22;216:5;21
10,18;259:10,17;284:14,	63:11;146:2;147	77:3	again	218:1;220:11,12;
15	170:21;180:4;194:13	adequate	53:12;54:3;56:15;	22:21;232:13;235:15
ccepta	263:22;264:5,9;272:3	:22;99:20,	58:15;69:1;72	239:16;242:7,19,22;
4:10;257:12;259	ac	adjourned (1)	78:22;79:7;115:11,15;	245:1;247:6;254:17,18;
261:9;284:1	25	287:9	123:15:125.2.127.14	57:18,21;261:4;273
ccepted (1)	action	ad	128:21;129:21;130:15;	275:8
44:4	30:	57:13;192	134:16;135:16;136:5	agreed (1)
ccepting (3)	active (10)	ADME (1)	137:1;139:12,18;144:14,	269:13
258:12;261:16;26	57:4;58:8;86:1;89:19,	266:4	17;145:1,21;146:18	agreement
(2)	21;90:9,17;91:1;98:8;	ADMINISTRATION (12)	147:16;149:5,6,9;150:1,	71:11;218:1;257:8;
167:19;16	175:12	1:1;2:6,18;3:5,8,11;	6;151:12,13;154:21;	283:16,19
ccommodate (1)	actively (1)	80:10;89:21;101:13;	157:6;159:21;163:15,	agreements (2)

73:2;81:17
ahead (9)
54:17;57:21;58:17; 115:8;138:21;218:16; 244:5;250:17;258:3
aid (2) 16:18;151:9
aim (2) 50:14;135:9
alcohol (3) 20:3,17;63:14
algorithm (2) 62:17;129:18
allotted (1) 9:11
allow (7) 27:3;111:19;126:12; 137:22;143:6;175:6; 194:2
allows (9) 81:8,19;124:5;128:11; 129:2;157:14;158:3; 164:1;166:4
allude (1) 204:9
alluded (3) 219:17;266:2,16
almost (16) 14:20;34:17;39:15,16; 75:14;113:3;123:20; 125:7;134:13;135:14, 16;181:8;182:12; 251:17;254:2;280:13
alone (2) 161:22;226:14
along (8) 25:3;34:7;64:13; 108:15;112:9;213:14; 231:16;240:20
alpha (1) 129:15
alterations (1) 15:20
altering (1) 68:22
alternative (3) 233:13;234:2,4
although (7) 39:14;40:12;168:9; 174:17;185:12;229:7; 253:15
always (23) 47:9;90:2;118:17; 128:18,18;131:16; 158:21,21;164:9,17; 194:2;196:12;208:8; 229:13;235:1;236:7; 246:1;260:13;262:9; 267:15;272:10;273:20; 276:14
amazed (2) 47:9,11
ambiguity (1)

193:1
Amendment (1)
61:9
American (1)
280:16
Amidon (45)
2:2;8:7,7;65:15;
100:13,15,16;101:12; 113:8;115:11,14;116:1;
176:18;178:15;190:22;
199:19;201:22;207:9,
11;210:17;212:20;
213:7;216:1;217:2,15;
218:1;220:1,11;227:22;
231:11;233:3,14;
240:15;242:5;244:4,8; 245:15,18;246:19;
247:7;250:8;251:4,12; 255:15;264:15
Amidon's (2)
123:16;244:6
Among (6)
32:22;50:9,11;53:6; 87:9;91:6
amorphous (1) 60:22
amount (7) 11:14;121:21;123:3; 129:6;144:7;180:5; 252:18
amounts (1) 62:21
analysis (44) 19:20;40:9,11,13,19, 19;41:2;42:1;52:3;53:7; 54:3,18;58:7;59:4;63:9; 70:3,6;71:2;73:14;80:1; 105:3;132:16,18,20,21; 133:4;141:5;151:22; 153:13;154:11;180:15, 16;195:4,4;197:3,16; 224:4,5,7,20;225:5,9; 246:2;282:16
analyze (1) 283:22
anatomical (2) 119:5;121:18
anchor (2) 162:4;193:18
anchored (1)
194:4
anchors (1)
242:2
and/or (1)
212:16
ANDA (13)
17:1;19:13,14,21; 39:4,4,6,8;64:3;238:14, 20,21;241:16
ANDAs (4)
11:22;60:17;238:17; 241:16
angle (2)

202:16;205:10
animal (5) 178:11;185:15; 264:18,21;265:8
animals (1) 71:9
animal-specific (1) 265:1
annual (1) 173:15
antagonists (1) 268:7
anticipate (1) 150:12
anticipated (1) 11:7
anti-epilepsy (1) 20:9
anymore (2) 37:15;252:6
API (31)
24:20;39:10;40:15; 68:10;76:18,18;126:8; 145:11,15;155:8;175:15, 19;176:7,9;182:16,18; 183:21;184:11,12,16; 185:2,15,20;186:5,8,15, 20;187:3;230:13; 241:17;253:21
APIs (1) 231:3
Apotex (3) 3:2;8:5;89:1
apparatus (5) 110:11,13;183:20; 242:16;244:11
apparent (1) 171:2
appear (1) 79:5
appearance (1) 83:2
appearing (1) 148:16
appears (3) 78:12;79:6;182:5
Applause (15)
10:2;18:2,5,7;44:20; 64:18;85:10;100:11; 115:13;138:12;156:4; 169:14;188:4;206:15; 287:7
applicability (1) 149:3
applicable (5)
93:1;204:20;258:16;
261:10,12
applicants (2)
274:21;275:2
application (29)
12:10,22;15:1;18:20; 25:17;42:13;64:10;66:7; 82:5;83:4;89:2;137:17;

155:15;170:5;205:10; 219:14,15;225:22;
226:21;227:1,7;230:1; 257:20;265:7;266:11; 270:3;278:12;283:1; 287:5
applications (20)
11:21,22;24:13;26:4; 62:13;64:4;66:3;68:17; 96:11;147:14;152:13; 193:11;207:20;211:21; 225:14;226:18;250:4; 265:16;276:12;282:2
applied (10)
15:13;47:1;63:18;
67:8;68:6,12,14,17;82:3; 166:21
applies (1) 215:15
apply (5) 211:20;212:6;231:9; 238:21;264:3
applying (3) 24:11;98:17;236:5
appreciate (5)
191:5;193:7;214:6; 218:3;254:13
approach (28) 36:8,11,12;37:1,19; 38:4;92:22;115:2;
130:11;131:8,21;159:2; 165:9;203:16;206:21; 207:5;233:2;238:10,11; 239:2,3;246:6;254:12; 260:5,6;275:9;279:13; 284:16
approached (1) 91:3
approaches (8)
46:9;114:3;166:1;
171:16;205:2;232:22; 234:22;236:5
appropriate (6)
20:8;35:10;177:13;
191:18;198:12;238:7
approval (4)
11:20;12:3;17:4;32:7
approvals (1) 174:11
approved (2) 155:15;174:11
approximately (1) 88:13
April (2)
19:10,11
arbitrary (1) 51:16
area (27)
8:8;13:20;17:10;25:5; 29:13;44:10;47:19; 62:16;64:5;69:9,14; 83:3;85:22;95:21,21; 138:2;190:19;197:18;

198:5;212:5;225:15;
237:19;248:11;258:22;
278:12;280:12;286:2
areas (16)
20:12;22:11,13;24:6;
47:5,8;88:18;117:22;
118:22;130:16;189:22;
191:20;200:22;207:18;
235:19;237:16
arena (1)
207:15
arguably (1) 207:5
argue (4)
68:4;78:5;285:7,8
argument (4)
38:22;82:16;282:21;
283:2
argumentation (1) 226:16
arguments (1)
82:15
Arjang (1) 106:22
around (28)
7:16;28:13;51:7;59:7; 68:19;76:18;79:5,9;
80:10;84:9,14;91:20;
105:15,17;115:4;158:7; 179:3;197:17;219:12; 229:16;247:14;249:11; 252:9;265:19,22;266:2, 3,16
arrows (4)
103:22;143:10,13,21
art (1) 177:21
article (4) 45:19;48:12;140:11; 149:4
articles (1) 178:2
artificial (1) 52:21
ascending (1) 249:17
ASCPT (1) 22:8
ASD (1)
111:5
aside (2)
200:19;237:1
aspect (7)
31:15;72:12;125:18; 203:16;205:4;246:17; 283:1
aspects (9)
27:18;64:15;121:18; 150:10;171:13;213:6; 215:1,17;281:12
assay (4) 52:12,14;67:3;228:1
assays (1)

67:14	52:12	ball (1)	247:2;264:15;277:13	16:13,14;61:6;62:10
assemble (1)	attributes (9)	242:6	BCSI (2)	101:20;108:4,4,6;110:2;
166:4	16:10;20:15;23:18;	ballpark (1)	206:6;208:1	137:13;140:2,2;142:16,
assess	33:14;89:8;93:9;98:4,6;	196:13	BCS-I (2)	17;153:21;169:8;172:8;
21:1,5,14,18;22:10;	99:9	barriers (1)	50:3;239:2	178:10,22;179:16,18;
23:15;88:2,14;98:18;	AUC (13)	267:19	BDDCS (1)	181:11;194:1;208:9;
130:14;132:22;175:15;	40:22;54:7,13;73:19	base (18)	210:22	232:12;234:7;235:1;
237:7,20;270:3;278:20;	76:6;77:13;80:1;125:4;	56:8;57:16,19;70:1,6;	beaker (2)	236:7;240:21;241:1;
279:8	149:8;270:21;277:15,20,	74:5;76:21;77:4,9;78:6,	111:7;182	247:17;248:5;266:19
assessed	22	7;79:13;111:22;112:14;	beautiful (2)	267:6,8;280:16;281:16
21:21;22:4;96:16	audience	167:9;207:13;213:9,12	238:22;239	beyond (9)
assessing (2)	7:11;19:5;188:22	based (58)	became (3)	43:3,3;58:12;132:9;
22:14;153:5	189:8;254:4;276:4	38:7,9;40:11;41:22	50:9;114:19;208:1	223:16;249:4,20;282:6;
assessment (9)	281:7;284:21	56:17;59:11;60:3;75:22;	become (2)	284:5
14:21;20:2;27:7	authority (1)	78:12;79:3;88:5;91:16,	118:15;241	bias (1)
44:13;66:13;133:10	249:9	18;95:9;98:3;100:3;	becomes (6)	128:21
236:20;277:1,3	authors (6)	105:2;111:15;131:12;	118:11;195:7,8,	biased (2)
associated (2)	72:20;73:13;80	142:4;150:13;160:6,9;	208:20;266:20	128:18,19
20:19;63:5	148:18;151:13;253	161:21;162:8;166:11;	becoming (2)	bicarbonate (3)
Association (3)	availability (1)	167:2,3;171:1;180:14;	82:10;171:2	109:17;202:3;245:19
85:15,20,20	211:11	182:11,18;184:16;	beforehand (1)	big (8)
assume (4)	available (27)	186:16;194:2,21;	210:8	78:5;120:18;150:10;
57:17;77:9;193:12;	24:6;48:18;49:7;	200:20;201:3;202:19;	begin (3)	155:5;209:10;241:4;
228:19	90:13;129:11;144:7	209:14;210:11;218:4,6;	104:13;2	255:5;273:15
assumed (4)	153:12;166:22;169:18;	226:14;230:8;235:17;	beginning (6)	bigger (2)
164:17;228:15;229:5	184:14,15;189:22;	236:8;247:11;248:18;	26:22;86:3;114:5	226:4;266:3
256:3	192:12;193:18;196:6,	252:5;255:13;265:13;	120:6;136:3;223:	biggest (1)
assumes (1)	12;221:14;223:13;	269:11;274:18;275:17,	behalf (3)	219:18
228:20	253:6,9;266:20;273:19;	17;279:12;285:4	85:14;169:22;265:17	bile (5)
assuming (5)	283:20;284:18;286:1,11	basic (2)	behave (2)	144:6;150:20;151:10;
75:19;131:4;132:3	average (7)	144:11;283	179:6;269:	194:15,17
229:3;250:13	51:19;80:8;102:20	Basically (24)	behaves (2)	bimodally (1)
assumption (4)	107:16;150:7;202:4;	45:20;51:5;52	75:16;191:12	203:7
40:5;57:22;196:16;	272:6	54:10;61:20;76:4,10;	behaving (3)	bind (1)
256:5	averaging	111:5,6;159:5;160:13;	72:4,5;192:2	210:6
assumptions (13)	272:6	161:5,12,17;162:5;	behavior (7)	binding (1)
40:1,2;132:4,7,13;	avoid (2)	163:10,12;168:14;	75:7;83:18;88:3;94:1;	90:11
141:3;145:10;192:4;	87:20;15	177:6;180:17;190:18;	179:11;192:5;220:6	bio (26)
196:21;223:18,20;	awarded	218:6;268:21;283:	behind (1)	77:3;87:7,9,10;93:2,
239:13;246:1	53:11	basis (5)	118:16	12;94:2,4,4;95:2,3,4;
assurance (1)	aware	79:7;157:19;21	believing	96:9,9,16;98:19;99:1,12,
70:18	137:10;158:22;223:17	222:13;285:9	228:5	22;101:3;109:17,21;
assure (1)	away (3)	batch (9)	below (1)	183:7;187:16;212:15;
96:1	202:10;248:13;269:2	$31: 8,9,10,12,13 ; 35$	57:2	243:8
asthma (1)		5;38:11;95:19	benchmark (1)	bioavailability (22)
19:19	B	batches (3)	238:2	$51: 1 ; 55: 10,13 ; 56: 10$
AstraZeneca (1)		35:8;38:6;	beneficial (1)	$77: 17 ; 78: 2,4 ; 79: 2 ; 98: 9,$
136:12	back	Bayer (3)	201:11	15;99:7;108:22;109:4,7,
Athens (1)	17:18;30:17;50:8;	2:9;8:17;156	benefit (6)	146:11;210:19,20;
127:6	55:5;61:22;65:1;69:8;	Bayesian (1)	25:8;66:	211:10,14;216:11,18;
attendance (1)	84:4;102:13,17;103:14;	166:2	69:15;254:10;262:14	229:2
17:12	116:6;126:11,12;129:2;	BCS (46)	benefited (1)	biobatch (6)
attended (1)	140:12;164:7;168:1,2;	21:11;22:3;24:18;	19:22	86:10,10;87:7,1
29:17	177:15;183:22;191:19;	59:12;63:9;68:7;72:17	benefits (3)	95:16,16
attendees (1)	205:4;223:3;228:12;	74:5,9;75:15;76:22;	15:10,15;118:20	BIOEQUIVALENCE (102)
17:9	240:15;247:14;248:9;	79:13,19;80:12,19;90:4;	Besides (1)	$1: 7 ; 8: 13 ; 10: 8 ; 24: 22$
attending (2)	261:19;274:14	92:5;106:20;108:7;	63:3	31:11,15;39:16,17;46:9;
11:6;17:15	background (4)	111:16,19,20;112:5,5;	best (5)	47:13;49:4,10,11,21;
attention (9)	50:17;66:10;68:4	114:12,13,19;150:13;	14:1;177:4,5;235:14;	50:22;54:4,9;55:17;
40:8;64:17;68:20;	170:10	206:8;207:4,6,12;	284:18	56:14;58:10;65:22;
69:10;100:10;101:2	bad (4)	208:19;209:18;212:15	beta (1)	68:13;73:16;74:3,22;
103:7;188:3;220:3	75:12;78:11;260:2;	213:1,10;214:11,19;	$129: 15$ better (37)	78:17;79:10;84:11;
attribute (1)	$269: 12$	215:8;216:2,5;246:20;	better (37)	85:17;86:11,13;87:14;

88:15;89:12;91:19,21, 22;92:8,16;93:4,14; 94:17;95:12;97:22;
98:11,14;99:7,18;100:3; 103:9;104:9;107:8,12; 108:1,10;109:1,2; 117:20;130:10;133:10; 134:5,22;135:5,17,20; 137:18;140:7;141:9; 142:19,20;146:2;149:9, 14,22;150:4;152:19; 153:15;154:17:155:3, 22;203:6;210:19;211:2, 8,13;213:21;216:12,15; 238:4;259:3,5,6;260:16, 17;270:3;271:17;274:2; 275:20;277:21;284:11, 15,16
bioequivalent (29)
12:17;13:12;19:3,8;
34:21;35:1,3,5,9;38:6,
11,15,19,21;39:18;76:9;
87:18;94:7,9,12;95:17;
96:2;97:5,10;108:4; 131:5;140:10;155:7; 259:19
biological (2) 119:5;121:18
Biopharm (8) 23:8,13;68:20;82:6; 203:17;239:18;240:2,13
biopharmaceutic (3) 8:8;196:4,9
Biopharmaceutical (1) 85:3
Biopharmaceuticals (1) 63:14
biopharmaceutics (31) 7:19;8:22;23:9;25:18, 20;28:1,3,4,8,10,11; 29:10,12,16,21;30:7,9, 10,15,20;31:2;32:9,13; 44:10;66:13;102:3; 170:8;196:14;238:5; 276:6;280:10
biopharmaceutics' (3) 26:8;31:18;32:6
biopharmaceutics-related (2) 23:14;238:6
biorelevance (1) 200:15
biorelevant (10) 83:9;95:2;96:5;101:3; 109:20;140:1;164:20; 193:22;243:9;248:1
biostudies (2) 92:11;202:18
biostudy (5) 87:8;93:5;94:15; 97:13,14
biowaiver (11) 24:18;92:17;114:19; 139:16;152:18;155:15;

204:18;213:2;230:8; 248:21;271:6
biowaivers (2)
68:15;111:14
biphasic (1)
176:22
Bipin (1)
129:5
bit (29) 25:19;58:14;84:17,19; 123:14;135:6;139:10, 13;143:20;150:16; 155:1;165:17;170:14; 178:13;182:5;186:7; 201:5;208:21;211:13; 216:12;224:4;225:11; 226:6;237:11,14; 247:22;257:15;263:3; 264:22
black (1) 255:5
BlackBerry (1) 9:14
blame (1) 132:11
blanket (1) 191:21
blind (4)
231:4;249:2;278:22; 279:10
blinded (2) 180:16;238:7
block (7) 39:8,9;41:14;175:10; 238:15,19,20
blocks (1) 167:20
blood (1) 159:13
blue (4) 35:15;91:9;95:18;97:3
blueprint (1) 152:10
board (1) 174:3
Bob (1) 105:8
body (2) 168:15;229:12
borderline (5) 94:12;95:16,17,18; 134:13
born (1) 50:11
borrow (1) 221:6
borrowed (1) 32:19
both (33) 66:6;67:12;72:14; 83:13;92:15;99:22; 134:17;158:6;159:6; 166:7,22;169:10;171:10,

$\begin{aligned} & 11,15 ; 175: 4 ; 176: 8 ; \\ & \text { 194:14;207:20;211:6; } \\ & \text { 227:6;232:1;233:14; } \\ & 235: 3 ; 237: 20 ; 247: 7 \\ & 255: 22 ; 261: 13 ; 267: 11, \\ & 11 ; 274: 4,8 ; 281: 17 \end{aligned}$
$\begin{aligned} & 22: 18 ; 101: 7 ; 135: 12 \\ & \text { 136:11;172:21;195:14; } \\ & 230: 7 ; 275: 15 \end{aligned}$
$\begin{array}{\|c\|} \text { bottoms-up (1) } \\ 131: 21 \end{array}$
bottom-up (8)
$\begin{aligned} & 32: 2,4 ; 43: 18 ; 44: 1 ; \\ & 137: 3 ; 169: 3 ; 180: 16 \text {; } \\ & 250: 1 \end{aligned}$
boundaries (11)
73:15,20;84:1;93:8;
98:4,10,10,13,22;99:8, 10
boundary (3)
197:7;254:19,22

66:12;161:5;250:15; 287:2
broken (1)
66:19
brother (1) 109:11
brought (3)
198:4,9;278:21
buffer (10)
109:18,18;202:1,2,4, 12;245:3,9,12,13
build (15)
26:22;81:19;140:19; 149:7;169:3;192:3; 219:10;222:14;238:19; 250:6;252:4;270:12; 274:4;275:22;286:12
Building (8)
1:17;121:7;167:20; 175:10;177:8;221:9; 223:2;251:20
built (4)
78:21;151:16;168:6; 222:18
bulk (2) 133:15;245:7
bullet (6) 205:16;212:22;219:4; 230:4;231:10;268:18
bunch (3) 39:9;58:10;190:16
burden (4)
12:8;17:3;218:14; 262:3
busy (1) 47:22
button (1) 168:8 9:17,18;64:21,22; 116:4;186:11;188:8; 218:20
breaks (1) 9:15
bridge (3)
42:16;264:5;286:13
bridging (2)
153:5;172:5
brief (3)
20:11;28:2;181:3
briefly (1) 80:18
bring (4)
126:19;157:12;172:7; 199:15
bringing (2) 114:4;199:14
brings (1) 10:21
Bristol-Myers (1) 263:1
broad (4) 67:9,18;219:15; 280:21
broader (4)
calorie (1)
151:4
Caly (1)
267:21
came (5)
131:14;152:3,7;198:3; 238:14
Campus (2)
1:15;7:12
can (324) 13:19,22;14:18;15:2, 4;16:13,14,15,18,21; 17:1;22:17;24:13;25:2; 30:14;32:10;33:16; 34:20;40:12;41:12,13; 47:10;48:6,8;49:1;
52:13;53:3,16,22;54:5, 19;57:9,22;58:10,20; 59:4,22;60:20;61:1,21; 64:22;65:9,9;66:19; 67:4;68:16;69:5;70:3, 15;71:13,20;73:8,16,20; 76:8,15;77:13;78:5,22; 80:14;81:11,13;82:12; 83:13,16;84:7;87:10; 88:3;90:2;93:6;94:14; 107:18;108:3,8,9; 110:20,21;111:14,16,19; 112:9;118:1;119:13,18, 19,19,22;120:1,9,10,11, 20;121:8,19;122:1,9; 124:2,22;125:13;126:6, 11;127:16;128:4,5,6,7; 129:21;130:3,6,17,20; 131:4,5,7;132:8,10,20; 134:11,21;135:22; 137:12,17;139:12; 140:10;141:5,20;142:8, 14;144:8,16;145:17; 147:4;148:3,6;150:2,12; 153:4;155:17,19,19; 158:6,13;159:11,12,15; 160:18;161:1,2,6,13; 162:5,9,11,14,15,19; 163:6,7,7,18,21;164:3, 12,21;167:1,6,18;168:1, 3,4,6,8,16,22;169:5; 171:14,17;172:3;
173:17;174:13;175:15; 176:1;178:5,9,10,17; 179:10,18;180:11,15,17, 18;181:7,10;183:3; 184:15,17;186:20; 187:15;188:19;189:3; 191:13;192:2,6;194:12, 16;196:20;197:4;198:7, 11;199:3;200:1;201:11, 20;203:17;204:17; 205:11,12;207:9;210:7, 12,17;212:6;213:1,15, 17;215:2,6,7,9,18;217:4; 218:3,9,10;219:8,9,10; 222:18,22,22;223:1,22;

224:11,16;226:8,12,13,	184:3,3;185:7;186:13;	92:18	chemistry (3)	150:13;176:3,4
14;227:16,22;228:2,3,5;	190:20;196:16;197:13;	challenges (8)	100:19,20;285:10	classified (1)
230:2,17;231:1,6,8;	202:22;213:16;218:9;	26:2;42:18;60:9;	Chien (3)	75:14
236:16;237:19;238:8,18,	221:22;222:18;269:10;	117:17;131:2;137:9,10;	267:21,21;269:17	classify (2)
19,21;239:3;240:12,16;	270:17;279:1	267:19	children (1)	191:20;217:20
241:16;243:4,6;245:21;	case-by-case (2)	challenging (8)	136:8	clean (1)
246:9;247:16;248:15;	222:13;226:16	50:5;59:14;60:20;	Chinese (1)	166:14
249:19,22;250:14;251:6,	cases (29)	165:16;166:15;182:10;	120:10	clear (7)
8;252:14;253:15;	53:1;108:5;128:10;	188:11;189:17	chirp (1)	32:11;78:1;84:17;
254:20;255:2;256:19,	130:18;133:12;134:16;	chance (2)	9:7	157:8;166:14;262:14
22;257:3;258:2;259:9;	135:14;136:5,22;	247:21;254:	chocolate	275:2
260:18;261:9;262:1;	137:12;144:10;191:7;	change (35)	10:14	clearance (2)
264:5,8;265:5;266:6,8,	206:21;210:5;215:16;	20:18,20;21:15,19;	choose (2)	247:11;264:8
12,13;268:5;269:2,18;	226:20;229:7;234:10,17,	22:10,16,21;63:6;74:14;	129:15;284:11	clearly (5)
270:7,8,16;272:16,20;	18,19;239:13;245:15;	77:18;87:20;96:13;	choosing (1)	74:19;178:18;185:12;
276:22;277:3,4,4,19;	246:8,10;268:9,10;	120:1;121:19;128:11;	129:13	220:1;235:4
279:5,7;280:16;282:1,9,	282:12;283:20	130:6;153:1,20;158:3;	choppy (1)	clin (1)
15,18;283:10,17,21;	CAT (2)	162:22;167:22;168:22;	45:7	265:18
285:19;286:5	105:11;142:22	194:6;198:7;199:22;	chose (1)	clin- (1)
canceled (1)	catalyst (1)	201:17;203:8;226:1,21;	165:9	219:20
272:20	84:8	235:18;249:8;259:4;	chosen (1)	clinic (5)
capability (1)	catch (1)	260:17;261:5,9	15:21	81:6;125:1;141:11;
230:20	54:2	changed (7)	Chow (2)	149:13;155:21
capacity (9)	categories (2)	28:9;130:8;157:17;	277:8,8	Clinical (60)
202:2,2,4,12;223:12,	119:2;173:1	163:1;201:16;224:10;	Christian (1)	8:19;9:1;23:10;28:5,7,
16;245:9,12,13	category (2)	225:1	164:6	9;31:3,5,8,10,12;34:20;
capsule (1)	64:3;218:2	changes (26)	Christos (1)	38:11;52:8;63:12;68:16,
179:9	cause (2)	76:16,18;87:19,21,22,	127:6	20;69:5,7;72:7;73:7,11,
capsules (4)	132:8;153:7	22;88:2;93:6;96:13;	cilostazol (1)	12;75:2;76:9;78:12;
48:19;55:19;56:12,21	cautious (2)	99:7;120:7;134:20;	161:15	80:7,17;82:7,9,12;83:21;
capture (1)	265:13,15	150:17;154:13;165:6;	circulation (6)	84:22;114:8;119:16;
48:7	cautiously (1)	198:22;199:7,12;202:16,	143:17;145:5;148:7,	130:13;131:22;137:15;
capturing (1)	269:6	19,21;203:3;206:12;	16;159:8,15	153:11;154:5;158:15;
141:3	CDER (1)	210:2;258:17;280:20	circumstance (1)	182:17;204:7;205:5,13;
careful (9)	280:21	changing (14)	10:20	206:20,20;208:5;209:3;
132:1;200:3;210:18;	cell (1)	120:4,11;121:2;	cirrhotic (2)	222:4,4,5,8,9,17;226:3,
217:19,20;224:4,8;	176:21	122:16;123:4,22;124:9;	120:3,6	15;260:3,9;263:20
271:15;272:21	Center (2)	125:5;194:17,18,19;	citizen (1)	clinically (21)
carefully (3)	1:16;276:7	199:22;225:8,8	19:13	16:10;23:16;26:12;
109:9;211:9;217:21	centers (1)	characteristic (1)	clarification (1)	34:6,7;67:11;69:12;
Carlo (1)	172:17	248:6	214:7	73:21;76:14;83:6,14;
166:7	certain (8)	characteristics (3)	clarity (1)	84:14;87:15;93:3,10;
carried (1)	$16: 8,17 ; 132: 19$	15:6;79:4;266:2	283:6	98:12;99:4,4,11;207:6;
106:16	157:16;210:10;225:14;	characterization (5)	class (30)	249:12
carrier-mediated (1)	260:19;269:3	86:5;87:2;88:11;	21:11;59:12;68:7	clin-pharm (3)
145:1	certainly (4)	89:16;181:20	$74: 5,9 ; 75: 15 ; 76: 22$	209:15;248:12;253:11
carries (1)	16:21;113:3;196:11;	characterize (5)	80:19;90:4;106:21;	close (15)
143:16	280:18	89:7;99:16;157:9,10;	108:7;111:17,17,20,20;	25:7;54:7,13;58:21;
carry (2)	certainty (2)	178:21	112:5;114:13;149:4;	127:10,11;149:16,21;
148:5;246:11	260:21;262:2	characterized (3)	207:4,5;208:20;209:18;	235:21;236:2,14;
case (62)	cetera (1)	194:14;239:7;266:4	213:2;215:9;216:5;	239:12;283:13;285:16;
27:8;29:11;34:1;42:3;	11:20	chart (2)	217:16;246:20;247:2;	286:19
45:14;46:22;49:9,15;	Chain (1)	21:20;161:12	264:15;277:13	closely (3)
51:3;53:3;57:15;59:16;	166:6	cheaper (1)	Classes (2)	113:8;143:20;159:3
60:4;66:2,9,10;69:17,18;	chair (1)	108:6	22:3;213:10	closer (2)
70:5;71:7,17;72:13;	7:8	check (4)	classic (1)	160:19;244:18
74:4;76:13;79:9;82:1;	challenge (15)	9:9,18;196:20;273:11	146:7	closes (1)
92:5;121:2;127:9;	42:22;43:8;120:18;	checked (1)	classical (11)	17:20
128:13,14;130:4;134:7,	158:16;182:5;206:2;	125:2	81:21;92:16;176:6	closet (1)
15;135:7,11;137:5;	210:16;219:18;237:4,9,	checking (1)	234:8,9,10;235:5;	105:16
139:14;146:2;152:17,18,	13;238:6;278:21;279:2;	$9: 14$	257:10;261:17;270:20;	closing (3)
19;160:11;161:17;	281:11	chemical (4)	271:2	17:5;280:1,2
163:12;168:19;183:17;	challenged (1)	30:11;105:5,6;144:12	classification (3)	CMA (1)

33:13
Cmax (22)
40:22;41:5,15;53:6;
54:6,12;57:8;58:8;
73:19;76:6;125:4;149:8;
154:14;155:5;161:4;
185:15;195:6,8,17;
270:22;277:15,21
CMC (2)
76:17;82:14
CO2 (1)
202:3
coated (1) 72:19
coding (1) 158:7
coefficient (2) 94:21;225:6
coffee (1) 10:11
co-lead (2) 173:4,5
collaborate (2) 10:20;64:9
collaboration (3) 123:16;171:7;173:18
collaborative (2) 10:18;172:5
colleague (7) 107:3;114:11;131:9; 136:10,12;164:6;206:4
colleagues (12) 23:7;44:16;64:14; 72:13;79:12;82:9;85:6; 138:8;165:1;189:19; 191:5;209:4
collect (2) 48:14;122:18
collected (2) 122:17;143:15
collecting (2) 140:15,16
collection (1) 160:7
colon (4) 61:3,5;143:9;231:17
colonic (2) 138:4;246:16
color (4) 41:10;121:1,1,12
coma (1) 138:15
combination (2) 219:22;263:16
combinations (1) 40:21
combine (7) 119:18;127:3,5; 163:13;165:11;214:22; 215:1
combined (3) 118:18;166:3;229:8
comfort (2)

268:4,5
comfortable (2)
200:22;269:15
coming (13)
116:5;123:8,15;136:6, 9;140:11;160:12;188:1; 205:21;230:10;241:10; 259:22;274:14
comment (31)
190:22;197:1,10;
199:19;201:12,22;
203:10;206:17;207:9; 210:17;213:7;216:1,9, 10;228:12;229:15; 232:13;236:14;249:9; 250:8;255:1;261:14; 262:13;265:9;267:10; 268:1,5;273:19;274:11, 12;277:10
commentary (3)
46:21;259:12;260:2
commented (1)
11:18
commenting (1)
262:17
comments (19)
10:13,17;13:16;19:9; 168:5;189:1,8;193:7; 201:19;217:6;220:10, 14;229:16;254:1,11; 263:10;279:15;286:9,15
commercial (4)
86:14;87:18;92:2; 240:20
commercialize (1) 82:21
commercially (1) 184:14
Committee (3) 85:3;173:9,13
committees (1) 173:8
common (11)
15:13;43:22;68:14; 75:6;121:9;125:20; 133:16;199:21;218:10, 13;271:20
commonly (3)
51:12;67:3;105:3
commonplace (1) 68:6
communicate (3) 46:11;50:6;284:4
communication (2) 209:1;252:4
community (1) 284:5
companies (9) 43:16;105:13;172:16, 18,19;180:12;193:8; 250:16;280:15
company (11)
31:4;110:14;176:17;

180:10;202:14;228:19; 250:10;252:17;262:4; 276:17;277:15
compare (4)
53:18;54:11;168:3;
184:17
Compared (7)
33:17;38:15;72:2;
123:13;154:20;155:6; 186:8
comparing (8)
53:19;150:7;227:13; 258:5;259:14;260:5; 270:1;276:9
comparison (5)
38:1;74:14;148:13; 164:13;279:11
comparisons (1)
54:12
compartment (2)
105:11;176:21
compartmental (4)
105:3;143:1,19;159:2
compartments (3)
105:21;143:2,4
compatible (1) 158:2
compete (1) 145:13
competing (1) 145:7
competition (2) 278:22,22
competitions (2)
237:18;283:18
complement (1) 96:12
complementary (3)
234:22;235:12;262:20
complete (3)
43:11;226:15;256:14
completed (4)
62:5;180:20;181:17; 182:1
completely (5)
30:18;75:14;215:12; 216:6;267:4
completion (1) 172:13
complex (8)
41:3;46:10;61:1;
127:22;128:2;165:7; 194:10;199:5
complexities (3)
101:21;130:13;198:13
complexity (4)
104:19;160:4;223:14;
247:20
complicated (22) 48:10;50:2;56:22; 79:15;96:10;101:14,14; 102:7;104:2;105:20;
106:1;113:15;198:18;

199:4;208:21;210:21; 216:18;220:15;232:2,3, 18;247:5
component (7) 52:9;173:19;212:3; 219:19,21,22;220:1
components (3)
8:6;17:1;214:21
composition (5)
37:5,16;87:22;178:17, 20
Compositions (1) 181:18
compound (44)
27:4;57:2;59:1;70:1,1, 18;72:17;74:5,9;75:15, 16;76:21;78:7,13;79:3,7, 13,20;80:4,20;81:17;
90:18;106:10,11;140:16,
18;145:2;148:1;151:10;
155:18;184:7;185:21;
186:1,3;192:1;207:21; 208:20;213:19;214:20; 225:19;228:8;235:2; 239:22;266:7
compounds (17)
21:21;55:20;63:9;
68:7,18;80:13;106:21;
144:11,13;149:5;181:8;
209:19;225:20;235:2;
252:9;265:19;269:4
compound-specific (1) 141:18
compression (2) 43:5;186:12
comprises (2)
172:15;173:9
computed (2) 107:8,10
concentrate (1) 222:1
concentrates (1) 31:2
concentration (18)
21:6;30:14;62:4,6; 89:22;90:12;101:17; 108:15;113:13;122:2; 127:7,15;142:5;144:6; 255:16,16,22;256:2
concentrations (4) 150:20;151:11; 194:17;286:10
concept (13)

$$
14: 7 ; 26: 11,13,14,20
$$

21;27:11;29:4,7;31:4; 32:12;167:4;261:16
concepts (4) 85:5;156:17;165:22; 209:4
conceptual (2) 157:21;166:15
concern (5)
39:13;56:6;84:20;

231:13;269:21
concerning (1) 12:4
conclude (6)
57:10;59:11;64:20;
113:11;185:20;187:5
concluded (2)
53:7;161:19
conclusion (7) 51:5;55:7;91:16; 152:4;169:9;206:3; 274:6
conclusions (1) 148:21
condition (14)
50:22;53:9;55:6;59:6; 93:13;116:4;195:18; 230:22;231:10;250:3,4; 254:19,22;256:20
conditional (1) 269:3
conditions (22) 49:18;50:20;51:8,9; 52:2;53:2,5,14,15;56:8, 14;71:4;93:2,19;113:19, 19;134:5;162:18; 216:14;230:3;243:17; 269:15
conduct (6) 12:16;19:6;46:1; 53:18;75:19;131:4
conducted (18) 21:15;33:5;52:21; 53:12;55:6;56:15;69:2, 4;71:8;73:13;75:21; 76:9;88:6;179:14; 214:15;222:16;250:20; 263:20
conducting (2) 68:16;141:8
conducts (1) 31:5
Conference (4) 1:16;11:5;102:9;114:1
conferences (1) 46:12
confidence (62) 22:19;24:7,11;25:6; 54:14;60:6;71:12;94:13; 95:17;163:20;190:1; 191:21;192:7;197:12,13, 18;201:4;203:15;204:2, 13,14,19;205:5,8,8; 206:5;212:10;218:20, 21;219:12;221:8; 222:11,14,18;223:2; 224:1;227:19;230:12; 231:18;234:6;235:20; 236:1,19;237:2;239:3; 241:9,19;247:15;250:2; 255:3;262:2;263:4,10, 14,21;264:13;265:16; 266:13;268:3;271:18;

278:12;279:9	constants (1)	controversy (1)	163:19;164:1,19,21;	curate (1)
confident (4)	103:22	203:12	165:11,15;166:17;	253:6
222:15;227:16;	constructed (1)	conventional (1)	167:13;168:1;193:19;	current (16)
230:17;241:14	264:4	278:16	194:5;213:20;241:5;	12:22;13:10;18:20;
confidently (1)	consultant (1)	conversations (1)	251:8;255:15;275:8	19:1;24:11;25:21;26:20;
211:19	107:2	204:1	cover (6)	30:22;32:17,18;35:8;
confirm (6)	consulted (1)	conversion (5)	9:4;70:8;80:18;82:1;	43:11;177:18,21;
55:13;65:9;67:10;	200:21	56:7,9,18;58:3,11	170:13;215:9	211:20;235:17
105:22;205:14;210:9	contain (1)	convey (1)	covered (1)	Currently (8)
conflation (1)	263:19	276:4	145:20	12:2;29:5;40:11;
102:12	contained (1)	convinced (4)	CP (3)	43:14;84:5;85:1;239:6;
confuse (1)	163:17	205:19;208:1;209:13;	150:7,9;228:8	263:9
211:9	content (4)	268:21	CPP (1)	curve (1)
confusion (2)	77:9;159:12;181:22;	convolute (1)	33:13	104:10
102:17;132:8	189:10	183:22	CPPs (1)	curves (6)
congratulate (1)	context (7)	Cook (3)	35:22	104:12;106:12,13;
188:6	12:17;14:8;19:7;	9:21;18:1,3	create (9)	107:6;244:13,14
connected (4)	102:20;118:19;196:22;	coordinate (1)	13:21;14:16;57:16;	customize (1)
102:1,1;168:16;174:9	271:17	27:18	121:11;142:8,16;	168:7
connection (3)	continually (1)	core (1)	155:14;229:10;252:18	customized (1)
118:6;128:9;254:8	281:1	280:11	created (2)	158:7
CONNOR (4)	continue (4)	corner (1)	28:2;95:6	cut (1)
8:12,12;197:22;	105:15;108:3;269:19;	195:19	creating (1)	272:16
228:11	270:9	cornerstone (1)	153:10	cutoff (2)
consequence (1)	continuing (3)	14:18	creation (1)	199:11;248:15
129:13	105:4;252:3;286:22	correction (2)	180:2	cycle (9)
consequences (1)	continuous (1)	81:11;272:13	creativity (1)	11:20;12:3;44:5;
129:16	105:18	corrections (2)	47:11	86:15,20;89:4;92:3;
consequently (1)	continuum (1)	236:13,13	credit (1)	99:19;266:22
98:8	68:1	correctly (2)	170:2	cycling (1)
conservative (3)	contract (1)	240:6;266:16	crisis (1)	159:12
215:16;216:4;275:9	109:12	correlated (7)	63:17	CYP3A4 (2)
consider (15)	contrast (1)	121:15,16;122:11;	Cristofoletti (2)	164:10;267:3
27:5,9;39:22;41:7;	232:7	195:11,12;199:14;	133:7;136:6	
124:5;158:9;159:13;	contribute (1)	224:18	criteria (27)	D
160:20;161:10;192:7,	200:18	correlation (11)	20:1,5;24:19;74:20;	
15;201:19;210:4,14;	contributed (2)	21:6;24:19;77:15;	84:10;95:4;96:1;212:16;	d50 (1)
217:13	22:7;138:6	93:7,8;94:19,20;121:17;	213:2;215:14;257:12;	153:19
consideration (7)	contribution (1)	122:20;142:18;160:8	258:7,16,20;260:19,22;	dabigatran (1)
34:20;37:18;44:9;	19:21	correlations (4)	261:5,8,12,18;270:18;	19:21
210:22;221:6;229:17;	contributors (2)	69:11;147:16;178:12;	274:15,21;275:3,16;	daily (1)
274:9	173:10;187:20	235:9	278:15,18	158:9
considerations (4)	control (35)	correspond (1)	critical (23)	Dale (2)
41:6;115:3,5;211:1	$20: 16,22 ; 26: 9,12,15$	$94: 15$	$16: 9 ; 19: 13 ; 20: 15$	8:12;199:19
considered (2)	17,17,18;27:12;29:1,12;	correspondence (1)	23:17,18;33:12,14,14;	danger (1)
61:1;117:15	30:22;31:1,7,14;32:11;	19:14	35:22,22;89:8;93:8;	223:16
considering (6)	33:11;39:19;43:2,7;	corresponding (5)	98:4;99:8;111:1;171:22;	darn (1)
124:4;129:19,21;	83:10;99:21,21;100:2;	94:3,7,10;96:3;97:6	189:20;195:9;206:12;	113:1
133:15;134:1;258:7	110:20,21;111:15;	cost (1)	243:1,2;261:2;266:18	dashed (1)
consistency (1)	112:13;124:20;186:21;	46:3	criticize (1)	71:22
158:18	240:17,19,21;242:13;	couple (13)	283:21	data (173)
consistent (7)	279:4	9:5;45:14;47:12,18;	CRO (1)	15:16;32:3;36:14,15;
39:5;54:10;162:19,21;	controlled (4)	49:15,22;61:15;100:21;	251:21	48:15,16;60:10,11,15;
200:4;238:18;283:11	19:14;20:22;56:19;	173:8;186:8;214:9,13;	crossover (1)	67:10;68:3;71:7,12,18,
consistently (2)	153:21	231:6	166:21	20;72:10,11;73:3,11;
67:5;244:21	controlled-release (1)	course (39)	crosstalk (1)	75:2;79:17,19;80:7,13;
consolidates (1)	99:9	103:20;104:1;111:20;	174:20	81:4,13,18;83:11,17;
31:22	controllers (1)	114:10;115:3;117:13;	CRS (2)	89:22;118:17;119:1,3;
consortium (6)	19:20	132:16;137:16;138:4,9;	26:11,13	122:18,18;123:7,7,9,15;
172:15;173:13;180:5;	controlling (3)	140:21;144:1;145:12;	crucial (1)	125:7;126:1,4,10,10;
253:4,8;286:4	98:5,17;114:7	147:15;150:18;153:9;	114:7	127:1,3,6;128:14;129:9,
constant (1)	controversial (2)	154:1;157:4,14,20;	cup (1)	9,10;131:19;135:2;
145:12	188:11;189:17	158:13,19;159:15;	10:10	136:4;138:8;142:15;

146:16;153:12;158:19;	249:19	27:8;52:13;69:20;	13	
160:13,15;161:14,18,19,	dealing (8)	,11;99:8,17;101:19;	derive (1)	57:3;88:16;110
22;162:2;165:7,16;	60:10,15,19;72:17;	1:21;181:21;204:13;	16	111:10;113:9,17,2
166:8,12,13,22;167:2,3;	74:10;121:7;145:9;	205:6;211:8;213:10;	describe (19)	114:18;119:22;130:12,
171:7,9;173:7;174:21;	146:3	236:16;257:9;259:5	72:22;139:12,16;	16,20;165:10;
177:14;179:18,22;180:3,	deals	271:19;272:21	43:6,18;146:1;147:4;	167:8,15;171:11;172:2;
7;181:9;182:7,20;183:2,	175:11;1	defined (7)	157:3;159:7;162:5,15;	175:7;176:2;177:12;
11,19,19;184:20;187:4,	debatable	66:16;86:9;98:	163:15,18;165:10	178:21;181:14;224:1
9,21,22;191:11,14;	248:11	99:10;143:4;163:1	192:4;193:21;273:13;	235:2,8;251:6;261:17;
193:4,18,21;194:3,12;	debated (1)	219:21	282:10,11	273:12;280:15;282:3
195:10;196:6,12,17,20;	216:4	defining (1)	described (9)	developability (1)
197:15;202:7;207:15;	decide (5)	16:9	46:22;47:5;48:12	176:4
208:4,5,5;209:1;212:17;	34:18;79:3;249:	Definitely	8:11;138:21;162:9,19;	developed (21)
213:21;221:5,10,14;	250:16;284:10	87:3;96:22;166:1	163:8;164:11	57:5;66:11;74:22
231:2,4;237:12;244:12,	decide	4:22;205:12;208:19;	describing (6)	1:22;90:9;97:16;100:3;
18;245:8;249:16,17;	35:10;78:12;79:	228:5;229:16;246:10;	49:8;79:17;139:	105:2,12;110:13;111:5;
253:1,7;255:4,7,8,12,13,	decision (15)	277:22	143:13;147:19;174:15	118:5;136:13;160:6;
19;256:4,12,13,18,21;	44:12;69:18	definition	description (5)	173:2;174:12;181:15
257:16;260:2,8,8,9,11;	176:2;177:12;197:20;	29:16;30:9;259:4,6	79:18;142:3,5;161:13;	227:18;257:10,13;261:2
263:11,17,17;264:18;	204:18;206:9;208:13;	260:15,17	162:21	developer (1)
265:5,10,19;266:17,20;	218:22;219:1;222:15;	definitive (1)	design (22)	215:20
267:14;270:2;272:6,7;	229:20;262:3;277:6	49:14	14:20;16:13;20:8	developers (5)
273:2,6,19,22;274:4,8;	decision- (1)	degradati	6:22;27:1,4,5,7,8;	24:3;117:10;218:15;
275:13,18,19;279:4,4,5;	18:14	44:13	82:16;85:4;86:6;89:11;	251:22;281:18
286:12,16	decision-making (7)	degree (3)	131:7;139:12;140:4,15;	developing (9)
database (13)	12:19;68:15;69:2	22:19,19;150:	151:15;155:19;164:1,	63:9;87:4;122
63:10;114:18;156:22;	205:15;221:5,13;251:9	delayed (1)	22;220:22	171:12;181:12;242:17;
163:17;180:2,7;181:7,8;	decisions (12)		designed (2)	248:11;
251:20;252:12;253:15;	69:3;82:19;176:5	deliver (4)	93:4;220:21	DEVELOPMENT (97)
273:20;279:2	180:11;226:11;284:7,9,	71:13,13;176:	designing (1)	1:6;10:7;11:11;12:6,
databases (2)	12,14,17,19,22	9:6	93:19	18;13:12;14:2,9,19;15:3,
166:5;180:14	deck (1)	delivered	designs (2)	14;18:14;19:3,8;20:1,5;
dataset (2)	8:	8:16	82:7,12	22:7;26:9;32:7;43:21;
237:18;238:7	declare (5)	delivers (1)	desirable (1)	44:1;45:20;46:1,2,6,8;
datasets (7)	132:5,7;177:5,6;235:	7:5	137:16	64:12;65:22;66:7;68:5,
49:1;59:16;141:1;	deconvolute (9)	delivery (2)	desire (1)	12;69:19;70:2;71:14;
180:18;237:4;286:2,7	83:17;127:17;147:18	20:22;21:1	254:5	82:15;85:16;86:4,8,19;
date (1)	148:10;157:13;166:13;	demanding (desired (1)	87:6;88:12;89:3,5,6,11;
181:3	167:1;183:16;232:8	166:18	142:9	91:20;99:15,17;100:6;
daunting	deconvoluted (1)	demonstra	despite	101:22,22;110:22
253:13	127:16	24:22;66:3;264:13	73:9	112:15;118:2,11;139:6,
David (2)	deconvolu	dense (1)	destinati	21,22;140:14,22;145:10;
224:19;262:22	148:14	08:12	44:8	152:15;154:2;156:1;
Davis (2)	deconvolution (6)	density (5)	detail (3)	158:15;170:22;171:18;
105:8,9	141:6;142:9;148:9,20;	52:4;55:9;121:2	178:13;187:13;195:13	172:9;173:22;175:1,18;
day (8)	183:15,18	$200: 1,9$	detailed (3)	176:2,6;177:4;181:11;
10:11;11:8;17:14,14,	deconvolution/convolution (1)	depend (4)	36:4;42:8,1	183:7,196:5;212:8;
17;170:4;171:1;204:20	81	7-12.2	details (9)	218:14,22;221:16;
days (1) $56 \cdot 4$	decrease	245:16;275:13	22:6;23:21;48:1	$227: 17 ; 228: 6 ; 229: 18$, $21: 237: 12: 240: 18$
56	2	de	99	1;237:12;240:18
$59: 2$	decreas $161: 2$	213:12 dependency (1)	198:15;199:18;236 detect (1)	41:3;242:9;244:9; $49 \cdot 13 \cdot 264 \cdot 17 \cdot 265 \cdot 6$
DDI (11)	decreases (1)	25	221	10;280:19,19;287:3
23:4;47:15;82:8;	162:16	dependent (4)	determine (10)	deviate (1)
205:8;230:3;248:18,22;	decreasing (2)	81:1;113:3,4	20:8;108:3;110:1	257:15
250:2;263:8;269:1,14	22:18;81:14	depending (7)	114:6;131:5;172:1;	deviation (1)
DDIs (4)	deep (1)	106:5;114:13;207:13;	182:10;260:21;275:11,	54:20
68:21;85:1;258:22;	199:17	211:5;243:5;273:8;	15	deviations (2)
264:7	defending (1)	275:4	determines (1)	16:2;140:9
DDS (1)	209:9	depends (6)	108:	device (3)
236:10	defer (1)	191:8;213:	determining (2)	9:7;110:20
deal (4)	$70: 16$	$264: 15 ; 271: 3 ; 272: 5$	$114: 6 ; 137: 14$	devil's (1)
$138: 3 ; 175: 20,21$	define (19)	depth (1)	develop (34)	$206: 7$
Min-U-Script®		A Matter of Record (301) 890-4188		(9) database - devil's

```
diagram (2)
    45:21;46:7
diameter (3)
    59:6,9;154:13
diclofenac (1)
    160:19
differ (1)
    73:4
difference (18)
```

 43:20;73:5;76:11;
 109:3,22;112:1;135:19,
 22;153:6,8;155:14;
 187:7;216:8;220:3;
 223:11;272:17;273:4,15
 differences (19)
16:4;60:18;73:9;
74:15,18;76:6,7,12;96:5;
111:19;145:16;149:18;
151:1;161:2,11;185:15;
187:7;217:5;247:3
different (168)
16:5;24:21;34:10,13;
37:17,18;41:11;46:11;
48:15;51:4,11,13,13;
52:19;53:2;55:21,21;
56:8;58:16,17,18;60:12;
63:8,12;64:15;66:3;
71:21;74:11;92:12,18;
95:7;96:6,7;97:8,11;
102:15,22;103:5,10;
105:21;106:13;119:2;
120:2,19;121:13,17;
125:3,4,4,12,21,22,22;
126:13;127:1,2,19;
128:16;129:13,17,18,19;
131:12;132:7;134:14,16,
17;135:2;137:20;141:7,
22;143:2,3,12;144:18;
145:5;146:2,17;147:20;
151:3,6;153:1;154:4,6,
18;158:19;159:5;
160:14;161:3;162:14,
18;163:6;164:3,15;
167:20;168:3,10,12,15;
169:7;173:17;174:16;
179:14;183:1,1;184:10,
11;185:8,11;194:19;
196:1,18,19;202:15;
211:3,7,13;212:17;
213:6;214:12;215:1,12,
13;216:12;217:1,6;
220:5,22;221:1,17,17,
18,18;223:13;224:11;
230:14;231:3,11;232:20,
22;234:12;237:5,5;
238:3;241:17;243:14,
15;245:9;255:20;256:5,
5,22;257:14;258:5;
259:8,16,22,22;261:3,
11;263:19;264:8;267:5;
279:5,6,12;280:7;287:1
differentiate (2)
35:3;41:9
differentiated (4)
34:16;133:12;134:22; 195:15
differentiating (1) 235:22
difficult (11) 84:19;88:20;161:8; 165:8;180:11;193:15; 233:8,10,20;262:9; 264:22
difficulties (1) 243:17
difficulty (1) 261:16
diffusion (2) 144:19;148:2
digest (1) 204:5
digestive (1) 137:20
dilution (1)
124:7
direct (3)
125:2;179:10;286:10
direction (4)
220:18;231:11;
236:16;247:20
directionally (1) 264:19
directions (1) 66:8
directly (5) 69:15;126:1;127:16; 170:15;191:13
director (4) 7:6;8:6,10;279:22
disappointing (1) 132:10
discipline (1) 203:18
disconnect (2)
68:1;124:22
disconnected (1) 174:1
discount (2) 207:21;235:6 discovery (1) 196:7
discrepancy (1) 92:19
discriminating (1) 96:9
discriminative (1) 140:2
discriminatory (1) 95:3
discuss (5) 18:22;24:4;77:6; 267:16;278:8
discussed (5)
170:4,16;179:1;183:6; 216:4
discussing (2)

170:13;257:7
discussion (21)
13:6;36:8;37:21;
67:15;115:22;188:13,
16;189:16;205:18;
234:14,15;235:18;
241:22;257:11,22;
259:11;263:2;278:14;
282:19;283:6;287:1
discussions (3)
13:10;117:16;171:1
disease (2)
22:15;201:8
disintegration (1) 228:13
disorders (1)
15:19
dispersion (2)
60:22;61:17
disposition (1) 143:18
disproportion (1)
77:3
dissolution (231)
16:1;20:14;23:16;
24:16;33:9,10;34:2,3,6,
8,10,18;35:12,13,14,18,
18,21;36:2,14,15,19;
37:3;38:1,2;43:3;47:7;
49:18;50:21;51:14,15,
16;52:16,18,22;53:4,5, 12,15,21;54:1,5,18,22; 55:2,5,12;56:13;57:18, 19;59:14,19,20,22;
60:10,11,13;66:21;67:3; 69:10;71:17;72:10,11, 15,21;73:1,2,6,9,15,17; 74:1,2,14;75:9,20;76:5, 11,13,14;83:10,11,19; 84:4;90:13;94:14,15,17; 95:1,5,13;96:5;97:7,9, 12;98:18;101:4;109:12; 110:1,2,3,5,10,12;111:4, 16;112:12;113:1,2,5,19; 125:6;128:1,8;129:1,3; 131:13,14;133:15; 139:22;140:8;142:10, 17;144:8,9;145:13;
147:18;148:10;150:2,3; 151:9;152:3;156:18; 159:1,18,21;160:13,15; 161:18;163:15;164:8, 18;170:15;176:10,15,16, 19;177:15;178:18,22; 179:3,16,19;182:4,7,9, 13,18,20;183:1,5,8,9,20; 184:15,19;185:9,13,22; 186:14;187:4,9,14; 190:18;191:11,14;200:5, 6,11;208:9,11;212:16; 213:3,4,5,17;216:16,20; 220:8,8;227:8,9,12,20; 228:1,2,11;230:18;

231:14,15,19;240:16,17, 22;241:3;242:1,3,8,16; 243:1,6,8,10,18,19; 244:7,11,12,17,18; 245:7;246:13;247:4,21; 255:18;256:18,20;
261:12;264:2;281:14; 286:13
dissolutions (1) 53:16
dissolve (6)
108:8;109:20;186:4,7, 13;229:11
dissolved (5) 36:16,17;144:16; 147:22;159:8
dissolves (2) 109:14;246:22
dissolving (2) 145:17;228:14
distinction (1) 157:8
distinguish (1) 41:11
distressed (1) 225:12
distribution (20) 24:14;46:17;104:14; 105:8;121:3;154:21; 155:1;157:3;162:1,3,5; 165:5,13;166:11; 184:17;200:19;216:20; 219:6;230:5;272:2
distribution-based (1) 185:6
distributions (3) 64:2;104:20;153:2
distributors (1) 85:21
diverse (1) 280:7
divide (1) 119:1
divided (1) 159:5
division (15) 7:5,6,20;8:1,21;9:2; 23:7;28:1;29:10,20; 32:14;63:13;273:17; 276:6;277:8
DNA (1)
30:1
doc (1) 122:17
docket (4) 13:16;14:4;17:20; 286:16
documentation (1) 168:5
DOE (1) 220:21
$\operatorname{dog}(2)$
119:8;265:3
dogs (1) 161:16
domain (4)
149:3;150:17;253:17; 286:18
done (33)
25:22;32:5;40:14;
82:8;84:5;85:1;105:8;
106:22;109:11;118:21;
120:15;151:22;152:19,
21;154:6;161:16;163:4, 19;166:16;168:21;
185:7;215:21;223:5,9,
22;226:3;227:1;230:2,2; 235:10;244:21;258:17; 278:9
dosage (19)
11:11;15:3;24:9;
30:12,18;64:7;66:22;
81:7;89:19,20;90:6;
179:5,11,14;190:3,19;
191:9,12;280:14
dose (31)
20:3,17;37:4;55:10;
57:9,14;63:15;67:1;
70:8,17,20;71:1;80:2,4,
7,20;94:5;125:17;130:1;
137:5;144:3;146:17;
152:1;194:13;199:21,
21;200:8;249:17;251:1, 2;262:8
dosed (2) 76:21;81:2
doses (10)
68:8;81:6;146:2,9;
154:4,5,9;162:14,16,19
dosing (6)
23:3;80:5;141:7;
179:14;182:16;278:2
dots (1)
58:3
dotted (1) 95:15
doubt (1) 247:9
doubts (1) 211:12
down (25) 66:19;81:3,15;124:1; 133:19;143:9;147:6; 149:12;150:18;152:7; 185:16;186:11;191:22; 194:11;198:15;208:3; 219:11;223:19,19; 247:4;248:4;253:21; 266:12;267:7;272:6
download (1) 115:16
DQMM (1) 192:10
DR (213) 7:4,17,19,21;8:3,5,7, 10,12,14,15,17,19,21;

9:1,3,20;10:4;18:1,3,9,	193:12	277:12,13,14,18;280:18;	49:5;72	152:15;186:11;194:11;
16;22:5,8;23:20;25:11,	drives (1)	281:6,9;286:5	171:3;179:7;210	199:1;212:6;218:22;
11,15,15;32:20;44:21,	247:8	drug-drug (5)	echo (2)	240:5;259:4
22;45:3,11;64:19,19;	driving (4)	22:9;201:1;202:20,21;	274:17;285:	elderly (1)
65:5,8,12,13,13,14,16,	152:2;173:20;188:2	268:6	edge (2)	120:10
18;85:11,11,13;100:12,	254:5	Drugs (39)	39:15,17	electronic (1)
13,16;101:12;115:11,14,	drop (1)	7:22;8:13;10:21;	editor (1)	9:6
14;116:1;117:3,8,12;	271:20	11:12,21;12:20;14:13;	112:22	element (1)
138:13,13,15,18;156:5,	dropout	15:4,13;18:13,13;20:6,6,	educatio	118:16
5,7,10;169:15,15,17,18,	62:1	9,10;21:4,12;27:20;	138:2	elevated (2)
21;176:18;178:15;	dropped	45:13;49:4;66:1;97:8;	Edwin (1)	55:17;56:19
188:5,17;189:15;190:13,	58:12;242:	108:7;125:3,12;134:17;	277:8	Eli (1)
22;191:4,8;192:10,21;	DRUG (249)	160:7;165:5;196:10,11,	effect (52)	72:14
193:14;194:9,21;196:3;	1:1;2:6,18;3:5,8,11	11;212:6,6;231:21;	21:14;22:16,16;40:15;	eliminate (1)
197:22;199:19;200:14;	8:22;11:21,22;12:4,6,11,	249:2;255:22;274:8,19;	68:21;76:3;77:2,10;	183:4
201:22;202:13;203:10;	12;13:12;14:2,9,12,13,	280:13	78:5;79:9,10,14,20;	elimination (2)
204:6;206:17;207:9,10,	16,17,19;15:2,5,14;16:6;	drug's (1)	80:10;109:7,8;124:9;	157:4;210:22
11,17;209:7,21;210:17;	18:14;19:3;21:6,7;22:7,	245:20	127:19;128:6;135:10;	else (5)
211:15;212:11,20,22;	12;23:2,8,17;24:2,2,15,	Duan (16)	136:20,21;137:3,16;	37:7;101:20;104
213:7;214:3,8;215:7,8,	15,17;25:1;26:8,22;	2:5;7:17,19,19;23:21;	150:10,12;151:14,16,17,	112:17;185:19
22;216:1,22;217:2,3,15,	30:11,13,19,21;31:4,6,	25:11,11,14,15;139:19;	21;152:5;194:14,15;	else's (1)
22;218:1,16;220:1,11,	14;32:2,6,7;34:5;39:11,	194:21;220:13;233:5,	195:12;201:10,13,14,15;	212:11
13;222:20;225:11;	12;46:10;48:7;49:22;	15;238:10;276:7	204:10;205:17;206:9;	EMA (1)
226:6,18;227:3,5,22;	54:16;55:19;56:22;60:8,	due (10)	207:20;209:13,22;	174:6
228:11;229:14;231:11;	19;61:4,9,13;62:14,21;	57:11;76:19;92:18	210:11;213:11;214:5;	email (1)
232:4;233:3,5,14,15;	64:12;68:5;72:19;73:4;	107:19;146:11;186:11;	217:18;220:15;221:21;	9:14
234:5,21;235:15,16;	75:7,9,14;77:3;79:11;	202:21;203:2,3,8	239:14;268:2	embedded (2)
236:18;238:10;239:5,	81:2;85:4,17;86:4,6,8,	dumping (3)	effective (2)	158:1;251:14
16;240:15;241:7;242:1,	21;87:2;88:3,12;89:7,13,	20:4,18;63:15	201:6;252:	EMI (1)
5,21;244:3,4,6,8,9;	15;90:4;92:6;93:16,20,	duodenal (2)	effectively (1)	79:15
245:1,15,17,18;246:5,	21;94:1;96:2,3;97:6;	127:7;168:18	198:16	emphasize (8)
19;247:6,7;250:8,12;	98:1;99:16;100:7,20;	duodenum	effects (15)	23:9;29:12,14;42:
251:4,11,12,15,17;	101:22;102:5,14,15,19,	122:5,7	113:16;125:2;139:15;	43:9,13;174:17;221:4
252:8;253:10;254:2,14;	19,22;103:1;106:20;	duration (2)	144:19;146:15;148:3;	emphasizing (1)
255:15;257:2,3,5;258:2,	108:15,21;109:5,13;	30:13,16	153:5;159:11;162:18;	246:12
3,4,19;259:8;260:15;	113:13,119:3,4,6,11,15;	during (12)	210:3;216:19;217:5;	empiric (1)
261:4,14;262:13,17,19,	120:6,14,15,16;125:14;	42:6;56:7;96:14;99:5,	231:16;239:6,9	52:17
21,22;264:15,17;265:12;	126:10;130:12;136:4;	19;100:9;139:8;158:12,	efficacy (3)	empirical (6)
267:9,21;268:13,16;	139:5;140:17;141:17,20,	14;174:12;247:6;278:2	31:5,10;221:21	232:7,14,17;236:
269:17;270:16;271:3,6,	21;143:10,14;144:2,4,8,	Duxin (2)	efficiencies (2)	262:11;276:10
7;273:3,17;274:10,13;	16,22;145:4,7,17;	254:14;286	12:5,9	employs (1)
276:5;277:8;278:6;	147:21;148:4,7;155:18;	dynamic (3)	efficientl	92:22
279:14,22;280:3	156:1;157:10,15,18,19;	123:4;124:4,7	10:22	empties (1)
draft (2)	158:17,17;159:7,14;		efflux (1)	150:21
70:5;114:21	162:13;163:5,9,19,21;	E	144:19	emptying (29)
drafted (1)	164:5;167:6;170:21,22;		effort (13)	103:17,17,18;104:6,7,
216:2	171:18;172:1,9;173:22;	earlier (9)	7:12;11:15;32	10,12,16;106:4,9,10,12,
dream (1)	174:10,11;175:11,18,21;	66:15;68:18;82:20;	39:5;66:13,14;67:10;	14,14,18,20;107:5,20,
200:17	176:2,3,4,6,10,17;177:3;	111:18;170:17;180:1;	113:10;172:6;180:20;	21;122:1,15,19,21;
Dressman	181:11;191:6;192:2,18;	184:5;189:15;196:6	252:18,22;282:5	129:20;151:7;160:21;
133:6	196:7;199:2;201:1,2;	early (20)	efforts (7)	164:10;208:18;247:3
drill (1)	203:1,5;206:5;210:5;	10:9;68:12;69:18,19;	45:6,16;61:10;63:4;	enable (1)
198:14	211:3;214:11,19;215:4,	70:1;86:8,18;89:3,5,6;	67:9;180:1;286:3	174:22
drinking (1)	10,10;217:11;218:15,22;	99:14;103:20;104:22;	eight (4)	encourage (2)
124:18	219:15;220:1,4,4,6;	106:7;114:16;175:18;	28:13;160:13;209:9;	181:4;190:15
drinks (1)	225:17,22;226:18,21;	176:1,2,5;182:17	278:8	encouraging (1)
134:9	227:1,21;228:6,7,13;	early-release (1)	Eissing (10)	137:4
drive (11)	229:11,17,20;230:5,19;	90:1	2:8;8:17,17;156:7,9,	end (19)
69:11,12;83:14	237:11;245:16,18;	easier (2)	10;169:15;193:14;	66:4;69:9;79:2;130:2;
179:18,22;180:10,18;	246:3;248:6,7,7;249:13,	237:10;271:21	209:21;226:6	156:19;170:13;174:10;
183:3;187:15;208:13;	14;255:16;256:13;	easily (2)	either (14)	208:3;215:2;235:12;
$266: 19$ driver (1)	266:4;268:14;269:5;	167:12;230:2	13:21;15:17;36:16;	240:13;248:20;249:7;
driver (1)	271:9;273:22;274:1,3;	easy (6)	$52: 6 ; 67: 11 ; 114: 12$	250:5,17;266:5,10;

$284: 22$	environm		196:1	
endorse (1)	,			,
		:18;214:10;	10:18;15:19;16:6,7;	. 7
endpoint (3)	environm	283:11	:1,4;35:17,20;39:2,3;	exhibits (1)
66:14;135:15	94.		44:4;46:15;49:16,20,22;	81:1
ds (1)	enzyme	3:4;140:5;148	55:15,15;69:19;72:9;	existing (1)
78:20	157:16;	80:21;228:17	76:19;79:11;80:18,19;	252:1
energy		EVALUATION (9)	4:9;89:14;96:14;106:7;	exists (1)
11:	277:18	1:7;10:8;66:1;85:17	109:10;139:16;146:7;	239:6
enga	equal	4:15;142:4,6;222:	148:17;150:6;157:15,	expand
11:2	35:15	287:4	19;161:6;162:13;164:5;	137:17;147:2;269:19;
in	equatio	even (49)	165:1,13,15,20;166:4,6,	276:2
14	165:1	:10;48	20;168:17,19;169:3;	expandin
in	equati	73:16;111:17;112	193:20;194:7;198:2	176:3
153:2		119:7;121:18;126:8	199:7;203:4;204:18;	xpect (10)
gineer	equivalen	129:7;133:1;134:20	206:8,9;209:21;210:5;	75:17;82:4,5,13;83:1;
105:6	139:15	136:22;137:2;145:	222:2,3;224:19;225:4;	134:19;194:5;260:13;
han		152:5,16;176:22;	230:4;241:15;244:16;	272:21;283:9
91:17,	54:19	179:18;180:9;183	255:21;259:1;262:5;	expectation (3)
joy	er	187:22;189:18;190:7;	265:18;267:2;271:7	232:15;260:14;271:16
17:14	95:22;270:1,8,18,19,	77:19;198:3,8,	-x	expected (8)
enjoy	21,22;271:22;272:10,21	10;200:2;205:9;208:6;	19:17;33:21	54:15;59:1;77:2
20	erro	209:1;213:5;216:20;	48:	1;15
nough (31)	257	20:7;223:8,12;225:14;	49:15;59:11;60:4,4	151:6;184:22
24:10;	272	29:2,6;237:15;244:20;	83:22;139:14;146:5,15;	expend (1)
108:8;12	escap	248:17;250:2;252:19;	151:12;156:19;160:12,	252:18
15	146	265:14;277:13,14	4;167:11;169:6;179:2;	perience (35)
211:19;212:5;213:1	espec	event	0;206:16	2:13;24:11;45:
218:21;230:12,22;	11:10,14;20:20;30:22;	89:	207:19,22;209:22	:19;61:7;67:21;89:1;
232:20;234:11;241:13	68:7;84:15;90:19;115:4;	events	210:11;232:5	72:7;191:22;192:20;
19,19;242:11,12,13;	144:10;145:22;169:11;	8:7	excellent (5)	94:21;202:22;204:3;
252:7;260:20,21;262:2,	175:18;188:10,19	E	9:4;36:5;46:15;65	209:15;211:19;218:4,7;
4,12;270	192:17;193:10;205:17;	:5;87:6;93:6	156:6	25:19;230:9;231:7;
nsure (11)	215:9;219:13;254:18;	149:12;175:6;177:8	except	238:14;246:8;247:10;
67:4;69:2	280:5;286:20	ever-changing (1)	144:1	48:3,7,19;265:7,13;
4;98:11;99:6;100:2,	essent	143	exceptions (3)	70:15,17;274:18
7:16			5;109:6;16	275:10,17;276:1;282:13
ensured	essenti	16:3,	ex	experiences (5)
$99 \cdot 20$	83:17;232:7	138:3;212:11	6:20;124:11;175:17;	2:22;13:4,8;18
nsures (1)	esta	ever	,7,1	274:2
69:16	36.10	9	228:20;239:6,9,14	experiencin
te	95:3;98:3;99:3;140:8	10:5;45:3;75:4;117:3	excipients (10)	12:2
168:20	242:3	176:16;181:5;188:6	212:17;213:6;215:	experiment (7)
nteric-	establish	276:5;279:14;286:20;	217:1,10,21;221:17;	7:7;61:22;62:1;
72	$28: 12 ; 42: 9 ; 93$	287:	228:14;230:21;263:19	125:21;220:22;246:9
teric-c	$94: 20 ; 100: 2 ; 118: 1$	everyo	excipient	experimental (10)
73:1			10;214:1	3:3;91:10,14;111:10;
terocy		everywhe	excipients-targe	46:16;163:2;172:2
143:15	es	259:	62:8	75:8;184:20;193:3
terohep	54:6,12,21;265		excipient-transporters (1)	experimentally (1)
159:12		;111	62:9	81:16
		11		experiments (6)
	ethnic	evolve		15:9;126:13;
tir	22:15	242	xciting (4)	175:22;245:22;270:12
154:4;1	etor	ev	32.15-48	expert (2)
286:18	7	114:20	188:10	65:14;172:1
tities	Eur		de	expertise (2)
83:	17.			190:6;286:2
nironment (13)	European (2)	exactly (10)	executive (1)	experts (8)
103:6;143:7;158	172:13;178	46:18:170	173:9	13.3.65.7
169:2,8,10;174:2,10	evaluate (20)	58:14,15;261:	exercise (2)	25:
194:10;203:1,9;236:11	16:1,3,17;20:9,17,19	8;270:19;271:1	180:3;185:8	225:12;236:16
281:15	49:17,20;55:16;59:20;	examining (1)	exhibited (2)	experts' (1)

212:4	241:16	69:4;108:9;120:15	feeds (2)	114
explain (8)	extrapolation (5)	179:5;186:21;198:14;	170:12;177:	144:22;148:6;152:17
126:22;195:12;209:2,	21:2;118:7;132:2;	203:18;210:4;233:20;	feel (12)	154:17;172:4;179:1,20;
3;226:12;274:5;278:5;	136:2;137:11	236:12;239:11,17;	30:5,5;168:10;189:1;	183:5;186:2;221:12
285:13	extreme (3)	258:22	209:18;230:16;242:2;	find (9)
explained (2)	34:17;53:1,3	fast (3)	256:11,21;264:11;	63:1;73:16;74:8;91:3;
97:16;99:3	extremely (2)	186:4;233:7;272:1	265:13;269:15	156:2;159:19;178:2;
explaining (1)	52:1;60:19	fasted (10)	few (8)	197:3;202:17
204:22		80:13;103:3,8;104:7	10:17;68:19;71:22;	finding (1)
exploration (1)	F	106:6;133:15,18;	138:20;177:15;185:16;	140:18
204:21		134:12;151:2;243:1	276:13,15	fine (2)
explorator	F2 (3)	fasted/fed (3)	fewer (1)	122:9;194:2
273:6	53:18,20	106:4;150:19;162:18	156:1	fingolimod (6)
explore (8)	face-to-face (1)	fasted-plus (2)	field (25)	55:19;56:3,12,21;
43:1;50:15;151:19	46:12	134:9,9	9:22;30:7;65:8;66	58:15;59:4
164:1,22;165:18;	facilitate (6)	fasted-state (2)	101:9,21;102:18;	finish (1)
169:12;245:10	87:6;89:10;99:17	79:17,19	115:18;177:19;188:2;	101:1
exploring (1)	100:6;176:5;250:15	faster (4)	189:13,19;200:18,21;	finished (1)
73:20	facilitating (1)	74:19;115:9;118:12	201:9;205:22;225:12;	115:8
exposure (16)	173:15	186:14	231:7;237:21;241:4;	firm (1)
22:14;41:1;70:14;	facilitation	fast-forward (1)	251:18;267:17,19;	46:16
71:3,21;73:6,18;77:2	183:7	06:17	280:9;286:18	Firms (1)
78:14;80:4;153:8;	facing (2)	fasting (1)	Fifteen (1)	60:13
185:21;227:9,13,14;	42:18;60:9	116:4	21:22	first (64)
262:5	fact (3)	fat (3)	fifth (1)	11:20;12:3;14:6;15:2;
exposures (6)	13:15;169:2;229:6	151:4,5,	79:9	20:13;24:5;25:12;34:19;
69:22;70:12,19;78:9;	factor (6)	favor (1)	fight (1)	48:18;49:16;60:10;
80:5;195:1	52:17;81:11;133:4	96:19	138:14	62:13;65:8,16;66:20;
express (1)	184:10;202:11,11	favorable	figure (22)	69:17;70:18;74:22;
276:8	factors (17)	145:8	9:21;26:1;32:2;37:11;	79:14,17;82:5;87:1;
expressions (1)	16:18;22:14;39:22;	favorite (2)	41:3;47:9,16;48:6,11;	92:13;93:1,15;102:12;
157:16	40:13,13,20;70:3;77:16;	176:17;185:1	52:7,11,13;57:6;59:5;	103:22;104:11,13;
extend (3)	81:10;102:7;124:5;	FDA (52)	104:21;141:6;143:11;	112:20;117:9,17;
105:4;108:8;111:14	172:1;201:6;214:11;	1:15;7:12,20;8:13;9:2;	147:9;182:20;195:13,	130:11;136:6;139:18;
extended (1)	215:13;232:10;281:6	10:6,19;12:1,21;18:20;	13;282:9	142:12,13;154:1;
275:19	factual (1)	23:6;24:2;28:3;29:18;	file (1)	156:10;159:19;161:12;
extended- (1)	104:18	33:3,22;39:3;60:11;	42:12	166:20;167:14,15;171:8,
20:20	fail (4)	64:21;97:12;103:13;	files (1)	21;175:10;176:9;
extended-release (6)	67:21;73:15;248:16;	107:2;113:9;115:2,4;	253:19	182:14;188:18;189:5,
16:8;19:19;92:6;	275:21	137:21;152:16;174:6;	filing (3)	21;198:3;199:5;201:22;
98:16;136:14;164:2	failed (2)	189:13;204:8;206:16;	74:13;82:14,19	216:2;218:19;219:7;
extending (1)	110:15;15	209:10;212:2,9;213:20;	Filippos (12)	230:4;238:1;257:21;
111:4	failing (4)	218:10,11;234:16;	2:14;8:3;65:8,17;	268:17;279:3;285:8
extensive (1)	74:19;79:1;240:3,3	255:14;267:16;273:19,	126:22;132:12;169:18,	first-in-human (7)
130:6	failure (2)	20;274:10,14;275:18;	20;191:9;223:3;234:14;	68:8;69:22;70:9,16;
extensively	84:3;197:	280:21;281:8;282:3,8;	249:7	196:8;237:14;281:9
48:22	failures (2)	283:7;285:20;286:4	Filippos'	first-pass (3)
extent (4)	16:2;107:19	FDA-funded (1)	247:22	127:19;128:6;159:17
162:7;210:10;241:12,	fair (2)	114:16	fill (1)	fit (13)
18	165:16;251:11	FDA's (2)	137:22	52:18;96:21;105:10;
external (6)	fall (4)	267:12;281:1	filled (1)	107:5;127:3;129:16;
13:2;63:3;64:8,10	22:3,17;23:4;59:9	feasible (1)	142:8	130:18;131:20;160:16,
149:1;275:5	falls (1)	277:1	Filling (1)	20;162:1;166:7;224:16
externally (2)	64:3	features (1)	142:2	fitted (6)
163:6;214:13	familiar (2)	159:9	final (7)	81:13;131:13;132:4;
extra (2)	45:8;82:11	fed (9)	80:18;82:22;84:4	133:1;223:21,21
116:1;246:9	famotidine (1)	80:15;103:4;106:5;	114:22;142:20;186:1;	fitting (6)
extract (1)	71:10	133:18,20;134:8,18;	209:18	129:17,20;132:3;
126:14	fan (1)	151:2;243:16	finally (29)	224:5;272:16,18
extrapolate (10)	209:10	Fee (1)	16:19;26:3;27:8;	five (11)
15:16;118:14;120:2;	Fang (3)	61:9	36:13,20;42:15;44:15;	9:10;22:4;33:2,2,18;
126:12;128:11;130:3;	44:16;273:17,17	feed (2)	45:15;49:1;54:9;69:8;	46:18;47:20;132:6;
132:14;136:5;157:20;	far (13)	68:3;273:8	83:3;84:7,21;98:2;	231:3,12;266:12

fivefold (1) 125:10
five-year (1) 172:12
flat (2) 80:2;197:9
flexibility (3) 158:10;167:10;169:11
flexible (3) 158:5;160:3;167:17
floor (2) 188:22;190:8
Florida (1) 165:2
flow (3) 159:13;175:4;249:1
flowing (1) 174:21
fluid (9) 62:20;123:4,21;124:3, 13;143:5;144:7;178:15; 202:9
fluids (4) 178:17;179:16; 181:16,18
flux (1) 199:14
focus (17) 22:8;27:4;36:21;40:7; 66:2;85:5;102:11;157:5; 158:11;167:10;169:10; 248:19,20;281:7,11; 283:7;285:22
focused (2) 91:19;157:7
focusing (2) 139:10;205:17
folding (1) 237:17
folds (1) 60:18
folks (1) 7:13
follow (5) 141:12;200:14; 220:13;222:20;227:5
followed (4) 65:1;86:6;115:22; 201:6
following (8) 24:12;33:21;65:12,13; 84:12;158:12;211:21; 278:10
follows (1) 266:21
FOOD (43) 1:1;2:6,18;3:5,8,11; 22:16;68:21;79:9,10,20; 80:5,10;122:21;136:20, 20;137:3,15;138:15; 139:15;150:10,12; 151:14,16,17,21;152:5, 6;159:11;162:18;164:5;

201:10,13,14;204:10; 205:17;206:9;207:20; 209:13,22;210:6,11; 268:1
force (5)
43:6;152:2;234:11; 252:20;261:18
forcing (1) 262:16
forefront (1) 114:5
forget (3) 108:21;132:7;199:20
form (13)
30:12,18;60:22;66:22; 76:18,18;81:7;89:19; 114:22;179:5,11;191:9, 12
former (2)
106:22;110:14
forms (10)
11:11;15:4;24:9;64:7;
179:15;190:3,19;
198:20;280:14;287:1
formula (3) 90:6;168:20;169:1
formulate (2) 186:2;238:3
formulated (5) 92:6;98:15;182:15; 186:1,4
FORMULATION (97) 1:6;10:7;14:20;15:6; 20:18;21:15,19;22:16; 27:5;31:8;34:12,13;
48:17;50:5;63:8;65:22; 66:6;68:9,9;69:3,18,21; 70:4;71:13;72:5;76:19; 77:8;79:8;80:21;82:15, 21;83:1,18;84:3;89:11; 92:7;98:16;99:18; 124:10;126:8,9;128:12; 130:7;137:2,6,14;139:7, 12,20;140:4,5,15,17,22; 141:4,7,10,16,19;142:7, 11,13,14;149:8,21; 151:20;152:2;153:21; 155:6,8,13,19;163:10, 14;167:6;182:21; 183:21;186:11;192:1; 196:17,19;209:3; 214:11;219:19;220:6, 15;221:2,16,17;222:6,8, 9;226:1,22;230:14; 256:17;259:18
formulations (37)
16:4;24:20;34:11,14; 59:13;60:21,22;61:2,17; 68:11;71:16,21;72:1; 73:4;81:4,19;92:11; 128:16;142:20;149:18; 151:18;153:17,18; 157:22;164:2;169:7;

171:22;181:9;217:6; 230:15;233:7;241:17; 263:18;264:6,14; 280:19;284:10
forth (1)
23:1
fortunate (1) 91:21
fortunately (1)
138:20
forum (2)
65:20;138:10
forward (19)
48:20;66:6;72:6;82:4;
85:8;115:20;132:1;
181:2;188:2,12;205:22;
280:10;281:21;282:9;
283:15;284:2;285:14;
286:2;287:1
forward-looking (1) 67:13
found (4)
33:6;122:8;197:8; 203:19
foundation (2) 14:19;283:22
four (8) 41:8;47:20;105:21; 121:3;132:6;172:22; 174:17;189:3
fourfold (1) 125:11
fraction (8) 70:7;77:12,14,18; 78:2;146:12;154:12; 162:16
framework (10) 27:13,13;29:2;30:22; 31:1;38:13;84:14; 157:11,14,21
Frankfurt (1) 164:7
free (6) 77:4,9;78:6,7;165:11; 189:1
friendly (1) 167:14
friends (1) 189:18
fruitful (1) 13:10
full (9) 42:11;90:22;91:13; 143:19;150:14;155:10; 167:19;188:7;274:3
fully (11)
43:1;109:17;158:2; 205:19;208:16;222:21; 227:15;235:15;247:6; 261:4;273:3
function (17)
29:1;36:16,17;70:7; 77:14;80:2,5;101:16;

108:14;111:10;129:14; 131:12;145:16;160:16; 161:10;163:15;164:18
functions (1) 162:3
fund (1)
286:5
fundamental (11) 82:6;114:4;170:6; 171:11;173:1,21;178:6; 240:11;256:21;285:5,9
fundamentals (1) 264:1
funded (2) 103:13;172:13
furosemide (1) 161:9
further (13)
25:8,10;58:6;62:11; 81:2;105:12;150:16; 166:9;167:8;171:19; 200:18;204:13;266:6
future (24) 10:12;13:10;19:1; 26:3,4;31:7,12;45:20; 67:4,4;69:6;73:21; 76:15,15;80:16;172:9; 187:17;239:4;252:4,5; 263:21;281:4,22;283:5

\mathbf{G}

gain (2)
80:5;155:17
gained (1) 157:18
gaining (1)
69:9
gallbladder (1) 150:21
$\operatorname{gap}(11)$
180:15;236:14,19; 237:2;238:1;241:4; 246:18,19;250:7;255:5; 280:12
gaps (14) 25:6,7;137:19,22; 181:1;235:20,21;236:2, 2,19;239:5;241:2; 285:16,22
gastric (30)
103:16,17,18;104:6,6, 10,12,15;106:3,9,9,11, 13,14,18,19;107:5,20, 21;122:1,15,19,21; 129:20;151:7;160:21; 164:9;203:9;208:18; 247:2
gastrointestinal (16) 93:16;103:4;108:2,16; 111:8;113:17,20;177:2; 178:14;179:6,12,15; 181:16;182:6;231:15;

246:22
GastroPlus (9)
89:17;91:12;141:12;
142:21;149:1,5;151:14;
152:14;156:21
gather (2)
180:13;275:10
gave (6)
46:15;52:1;123:10;
222:10;269:6;286:10
GDUFA (3)
18:11;48:1;285:17
GDUFA-funded (2)
45:15;61:9
gears (1)
58:14
gene (1)
29:22
general (11)
15:17;26:14;48:14;
69:20;113:5;156:17;
159:9;198:16;199:17;
215:14;248:11
generally (2) 31:4;197:14
generate (7) 122:10;123:1;182:8; 187:8;241:13;252:16; 286:6
generated (6)
71:18;90:2,10,14; 123:9;187:20
generates (1) 178:6
generating (2) 187:4;240:10
generation (2)
142:22;173:7
Generic (68)
7:22;8:6,13;10:21; 11:12,21,21;12:4,6,20; 14:2,8,17,19;15:4;16:6; 18:13;20:9;24:2;39:12; 45:13;49:3;61:9;85:14, 17,19,22;86:4,6,8,20; 88:8;96:20;97:1,4,8; 100:7;110:13;119:22; 139:5;145:9;196:11,11; 202:14;212:6;216:22; 219:15;225:22;226:20; 227:6,16,21;228:6; 229:3,20;230:10,13; 237:11;249:13;250:10, 16;268:14;273:21; 277:15,20;280:12; 286:5;287:3
generics (3) 22:17;225:18;226:5
George (2) 2:2;254:15
geriatrics (1) 22:15
Germany (1)

123:8	252:16;254:11;257:9,14,	guess (22)	hard (3)	Heta (1)
gets (7)	16,18,21;260:1,20;	107:1;162:20;191:19;	113:2;180:9;257:1	44:16
102:4;143:15;194:1;	262:4,12,22,22,22;	203:14;206:17;207:17;	hardcore (1)	hey (1)
195:22;219:11;247:4;	265:22;268:20;269:13;	208:17;210:4,8,15;	24:4	189:16
275:18	270:7,9;277:2;278:4,19;	226:6;239:17;244:3,6;	harder (1)	Hi (2)
GI (29)	279:3	250:17;263:5;264:10,	237:15	202:13;277:8
15:19,20;20:2;21:5;	Gordon (9)	17;276:15,16,17,17	hardness (1)	hierarchical (1)
22:22;24:22;48:7;61:19;	8:7;65:14;100:13,15;	guidance (14)	43:6	166:2
62:3,6;81:3,15;108:11;	123:15;125:8;137:21;	14:1;18:6;46:8;84:12;	harmonization (1)	high (38)
113:14;121:3;123:4;	245:2;281:12	114:19,21,22;215:8;	84:19	14:16;50:19,19;51:8,
159:4,16;163:5;164:10;	govern (1)	216:2;248:12;257:10;	harp (1)	9;53:13,13;55:22;56:1,
216:14;220:7;245:10;	148:1	261:3;274:22;275:7	13:14	13;57:9,14;58:2;60:6,7,
255:6,13,15;256:17,18;	governance (2)	guidances (4)	$\mathrm{HCl}(1)$	7;62:2;72:6;74:5;75:10;
286:10	173:8,18	19:15;84:7,9,21	76:21	76:22;123:17;151:4,4,8;
GIS (1)	GPHA (1)	guide (2)	healthy (6)	163:20;195:9,18;197:12,
111:7	274:9	68:8;155:1	15:16;21:2,16;78:1	13,18;204:18;215:4;
GITS (2)	grade (1)	guiding (2)	120:2;251:1	223:14;246:21;250:2;
163:9,14	54:22	115:17;273:7	hear (9)	256:2;265:21
given (8)	gradient (1)	Gus (1)	14:10;38:13;45:7	higher (6)
144:8;171:6;180:18	243:16	114:11	46:4;214:3;220:9;241:7;	21:10;39:16;78:21;
189:2;201:19;211:15;	gradually	gut (1)	254:4;268:11	79:1;135:6;155:5
220:8;271:11	28:14;208:11;222:18	125:8	heard (11)	highest (9)
gives (7)	graduate (1)	guys (1)	46:14;68:18;69:12;	24:7;92:10;94:8,11;
41:21;140:2;142:17;	106:22	203:11	170:5;176:18;178:14;	190:1;203:15;204:2;
229:1;235:13;263:14;	grant (1)		262:17,19,20;267:18,22	205:8;278:11
283:10	113:9	H	hearing (2)	highlight (2)
giving (6)	granul		17:16;28	177:20;184:4
116:1;119:7;170:9	43:6	half (6)	heaven (1)	highlighted (3)
180:17;264:20;271:9	granule	:16,16;138:21;	12	139:19;140:13;171:8
glance (1)	186:6	172:13;183:10;187:22	heavily (1)	highlights (1)
199:5	grapefruit	half-hour (1)	48:12	181:3
glimpse (1)	164:9,13	188:21	Hello (3)	highly (5)
156:20	graph (6)	half-life (5)	117:3;267:21;276:5	20:5;79:13,14;160:22;
Global (2)	74:15;75:3,6;77:12	51:19;56:2,3;59:2	help (35)	189:9
84:19;266:10	128:15;135:13	60:7	14:4;16:21;25:	highly-mid (1)
goal (9)	graphs (1)	hand (8)	45:22;46:6,8;73:21;	38:10
32:10;44:8;98:14;	75:5	35:2;41:17;67:18;	85:6;110:20;139:12,22;	high-risk (1)
170:22;177:10;211:11,	gray (2)	160:14;184:21;220:17;	142:12;149:15,16;150:1,	207:2
12;218:13;276:3	95:21,21	243:3;266:18	15;151:20;152:5;	hiring (1)
goals (1)	Great (6)	handle (1)	155:12,17,19,20;178:21;	47:22
173:21	1:17;45:4;137:12	247:16	187:19;188:1;205:21;	history (5)
goes (7)	242:4;261:15;270:15	handled (1)	215:18;226:13;227:16;	28:2;101:8,10;103:14;
69:5;75:9;102:13,17;	greater (2)	148:11	228:6;238:1;240:12;	167:21
123:22;179:5;186:22	149:2;229:2	handling (1)	282:3;283:7;286:7	hitting (1)
Goethe (1)	green (1)	230:21	helpful (11)	148:4
133:7	94:12	hands-on (3)	15:20,22;16:2,9,11,17;	hold (1)
Good (79)	Greg (2)	47:19;61:7;269:2	93:17,17;197:5;238:9;	265:22
7:4;10:5;17:17,22;	109:11;113:8	happen (4)	286:17	home (1)
30:6;45:3;58:1;70:12,	grip (1)	12:21;120:22;121:12;	helping (2)	125:1
19;73:2;79:18;81:17;	131:2	196:8	139:21;147:9	honest (1)
82:3;85:13;94:22;101:5,	group (10)	happened (3)	helps (8)	225:11
6;105:17;121:22;	23:13;28:3,11;85:5;	177:19;223:10;224:	141:12;162:10;168:1;	honestly (1)
122:20;125:9;126:2,2;	123:16;135:4;140:12;	happening (12)	208:22;209:4;284:7,8;	213:16
129:4,10;130:2,12;	165:2;209:3;237:3	48:7;110:7;125:11	286:12	hope (4)
132:21;134:2;137:6;	groups (6)	127:11;131:18;143:12;	hepatic (3)	17:17;158:11;279:19;
150:1;158:22;161:13;	41:7,8;127:1;237:5;	145:15,21;216:13;255:6,	159:16;265:20;266:7	286:22
185:3;198:2;200:5,10;	252:1;267:5	8,13	hepatocyte (1)	hopeful (3)
203:20;206:10,18;	grow (2)	happens (9)	263:11	13:9;17:7,13
212:17;214:1;220:14;	17:5;43:12	63:1;124:4;129:6	hepatocytes (1)	hopefully (12)
224:16;226:16,19;	growing (2)	133:20,21;135:8;179:8;	247:12	13:20;45:21;61:21;
234:3;238:11;239:3;	28:18;204:3	277:17;281:5	Here's (5)	120:13;137:21;147:11;
242:11,12,12;247:8;	grown (1)	happy (3)	12:21;237:4,18;238:7;	155:22;156:19;179:17;
248:14;250:12;251:4;	28:14	15:11;220:9;228:3	282:10	190:21;236:16;253:19

hopes (1)
$245: 13$
Hopi (1)
$44: 16$
hour (3) 123:10,11,19
hours (8) 51:20,20;53:14;54:2; 56:3;73:17;185:16; 256:1
housekeeping (1) 9:5
huge (7) 109:22;121:21;129:6; 216:7,8;252:18;281:16
human (15) 61:12;73:7;178:11; 181:18;196:6,12,17,20; 197:15;218:8;237:12; 247:12,17;265:2;271:9
humans (1) 175:19
humid (2) 50:19;53:13
hydrochloride (4) 55:18;56:5,18;77:22
hype (1) 78:19
hypotheses (1) 91:6
hypothesis (1) 91:6
hypothetical (1) 95:7
hypothetically (1) 214:16

I

ibuprofen (2) 135:11;255:17
idea (11) 43:19;125:13,15,17; 126:19;130:22;171:21; 178:7;183:14;245:8; 278:21
ideal (2) 157:11;274:1
Ideally (2) 87:13;177:12
ideas (7) 13:19;14:3;17:20; 169:13;189:14;267:14; 276:8
identical (1) 76:11
identified (1) 72:5
identify (11) 20:13,15;70:3;71:22; 73:14;93:2;190:10; 202:18;250:5;257:3; 277:20
identifying (3)
139:6,7;180:22
ignore (1)
124:1
II (11)
22:3;59:12;68:7;74:5,
9;75:15;76:22;111:20;
112:6;149:4;208:20
II-C (1)
213:19
III (16)
21:11;24:18;63:9;
80:19;106:21;111:17, 20;112:7,7;207:5; 212:15;213:2;214:11, 19;215:9;216:5
imagine (4) 180:11;231:1;238:18; 248:20
immediate (1) 135:11
immediate- (4)
35:13;59:12;190:18; 193:10
immediate-release (12) 22:1;24:15;50:4;60:6, 21;61:2;81:6;84:16,18; 90:5;152:1;256:15
immunosuppressant (1) 20:10
impact (44) 12:18;16:1;20:12; 49:17,21;50:15,22;52:5; 55:9;56:14,20;62:10; 63:7;64:1;69:15;73:18, 19;78:12;88:2;96:12,13; 98:7;99:6;115:6;125:3; 129:19,21;132:22; 134:21;136:11;175:16; 185:13;186:19;187:10; 189:20;204:18;209:17; 214:14,19;220:6; 224:11;265:21;266:3; 284:4
impacted (1) 55:11
impacts (2) 19:13;136:8
impairment (2) 265:20;266:7
implement (3) 27:10,13;160:2
implementation (1) 166:17
implemented (1) 27:14
implementing (3) 14:8;99:20;181:2
implication (1) 42:4
implications (4) 42:5;104:9;106:19; 107:9
implicitly (1) including (10) 272:14
imply (1) 249:7
implying (1) 260:16
importance (4)
129:22;207:12;211:4; 284:6
important (44)
9:21;30:21;31:13,18, 21;32:8;34:19;36:9; 40:9;49:5;52:11;59:21; 61:5;67:7,16;72:12; 75:18;79:4;87:16;121:6; 122:22;123:3;124:14; 133:4;138:1;142:4,6; 145:22;158:9,16; 162:20;164:16;171:12; 176:7;180:3;184:2; 191:15;197:4;211:5; 213:5;280:22;281:10; 282:18;283:5
importantly (3)
17:6;27:21;29:9
impractical (1)
96:10
impressed (1) 237:2
impresses (1) 198:1
impression (2) 198:17;251:3
impressive (1) 11:1
improve (14)
15:1;25:8;45:16; 57:14;60:1;61:10;62:15, 16;64:5;130:19;170:6; 215:6;241:8;267:1
improved (6)
12:5,9;16:22;61:3; 133:17;228:19
improvements (1) 180:22
improving (4) 64:6;171:17;178:9; 234:18
inactive (5) 57:4;228:15,16;229:5, 8
inactivity (1) 228:18
incidence (1) 78:22
include (8) 12:9;15:15;19:17; 159:15;175:17;200:22; 283:3,4
included (2) 106:18;166:5
includes (1) 171:15

20:14;22:13;48:15;
61:13;86:1;90:11;139:4; 159:11;272:8;285:14
inclusion (1) 164:14
incomplete (1) 158:20
incorporate (6)
37:4;81:8;122:11; 130:1;182:21;245:6
incorporated (5) 90:19;91:11;95:8; 97:18;221:22
incorporating (1) 72:11
incorporation (3) 72:10;177:15;187:14
incorrect (1) 67:22
increase (5) 21:11;33:17;162:11; 212:9;277:4
increased (6) 69:10;82:5,13;83:1; 146:11,12
increases (3) 41:17;70:13;154:13
increasing (6) 21:20;22:19;23:2; 100:17;102:10;162:16
incredible (1) 14:15
independent (4) 83:19;199:9;225:2,7
independently (3) 122:9;225:1,9
index (2) 20:6;54:16
indicates (1) 29:11
indications (2) 38:20;55:21
indicative (11) 93:2,12;95:2,4;96:16; 98:19;99:1,12,22;101:3; 243:8
indispensable (1) 205:1
individual (16) 20:14;77:20;121:7,13, 13,14;123:10;129:9,10; 143:21;160:20;163:17; 250:22;253:1;270:22; 273:1
individuals (5) 15:12;119:7;121:8; 130:5;166:7
induction (1) 126:18
industrial (1) 172:6
industry (37)

10:19;14:1;15:9,9;
16:21;18:6;24:2,3;
27:20;30:6;45:21,21; 46:5,5,11,15;65:20;
82:10;88:9;152:15;
171:10;173:5,11,19;
191:5;212:2;217:7;
218:9,11;220:17;242:6;
251:21;267:12,13;
281:18;282:1;284:9
infancy (1)
267:20
infer (1)
182:10
influence (4)
70:4;103:17;164:8;
174:11
inform (10)
46:2;67:12,12,14;
69:2;71:13;82:7;165:8;
172:9;265:11
information (48)
42:8;43:12,15,17;
70:15;71:17;73:20;
75:17;83:20;89:10;
90:15,20;94:18;119:5;
121:4;122:22;128:5;
131:3;134:11;140:3,16,
17,18;141:18,19;142:2;
157:1,13;166:12;
174:21;175:4;177:7;
180:10,13;181:10;
182:21;205:3;214:5;
221:21;223:5;245:11;
249:14;250:9;251:7,19;
266:8,15;283:4
informed (1)
23:3
informing (5)
15:21;83:5;175:5,6;
183:12
informs (1) 176:8
ingestion (1) 179:9
ingredient (6) 89:19,22;90:9,17; 98:8;175:12
ingredients (2) 194:8;229:8
inherent (1) 83:18
inhibition (1) 126:18
inhibitor (6) 21:14,17;47:14;49:21; 201:2;203:4
in-house (5) 90:3,10,14,17;231:7
in-human (1) 70:19
initial (12)
43:17,21;44:1;54:1;

103:9;139:3,7;142:14, 15;154:7;180:15;262:6
Initially (1) 235:19
initiative (2) 114:15;172:14
initio (1) 193:16
innovation (6) 14:7,8,11,15,18; 267:13
innovative (8) 45:19;46:9;62:3; 88:15;97:2;171:14; 172:14;252:17
innovatively (1) 47:8
innovator (1) 14:13
innovator's (1) 230:14
input (37) 12:15;13:20;17:19; 19:4;36:14,15,18;37:10, 12;51:10;89:16;101:5,6; 108:14;109:8;111:10; 113:13;127:4;145:16; 162:3;170:7;179:3,4; 190:12;192:4,12;193:2, 12;197:19;201:21; 218:4;227:8;240:2; 242:4;247:8;248:2; 266:18
inputs (3) 108:11;193:9;254:13
insensitive (1) 208:16
insightful (1) 18:4
insights (1) 155:17
instability (2) 72:20;76:20
Instead (5) 49:11;77:4;169:19; 213:4;230:17
institutions (1) 173:11
instruction (1) 22:22
insufficient (1) 268:3
integrate (2) 160:12;205:3
integrated (5) 67:12;168:4;171:17; 174:22;285:12
integrating (1) 15:5
integration (3) 170:14;179:21;182:3
intended (4) 66:22;170:7;177:1;

185:2
intending (2)
71:18;178:20
intends (1) 171:10
intensity (2) 30:13,16
intensive (1) 206:22
intent (1) 177:5
intention (1) 39:6
inter- (4) 130:22;163:16; 224:17;250:21
interact (2) 217:11;229:10
interacting (1) 244:1
interaction (9) 62:9;70:17,22;76:20; 146:20;201:1;219:18; 230:21;281:15
interactions (7) 22:10;164:6;175:17; 202:20,21;268:6;282:7
intercellular (1) 168:18
interest (11) 11:2,10;41:3,5;43:16; 100:17;183:5;218:11; 251:22;280:21;281:9
interested (4)
108:12;181:5;212:14, 18
interesting (7)
75:3;80:8,21;124:17; 156:12;165:18;280:6
interfaces (1) 158:6
interfere (1) 57:19
inter-individual (1) 161:2
interlinked (1) 168:13
intermediate (5) 92:17;93:5;97:14,18, 20
internal (12)
48:16;61:7;63:4;64:8, 9;68:15,15;69:2;148:21; 251:6,20;275:4
Internally (3) 214:9,15;251:8
inter-occasion (1) 271:12
interplay (2) 195:22;244:1
interpret (1) 226:7
interpretation (4)

41:12,21;195:10; 234:3
inter-subject (2) 149:19;271:12
intertwined (1) 211:17
interval (1)
95:18
intervals (1) 54:14
inter-variability (1)
250:22
intestinal (9)
81:12;105:9;146:8,12;
160:9;178:16,19;
181:18;202:9
intestine (25)
74:7;75:12;77:1;
112:9;142:1;143:3,7,8,
13;144:1,3,5;145:3;
147:6;148:3,11;150:21;
161:11;191:3;194:11,
20;202:3;213:14;
231:17;232:1
intimately (1)
102:1
into (83)
10:11,12;11:15;22:3,
17;23:4;36:19;37:13,18;
40:21;58:5;64:3;66:9,
19;68:3;69:17;75:9;
77:18;81:9;82:19;86:14;
90:20;91:4,12;95:8;
97:18;107:6;126:1;
127:4;141:10;143:2,3,
17;144:4,22;145:4;
148:7,15;155:17,21;
158:1;159:5,14;161:12;
162:3;168:16,17;
170:12;174:15;175:4,
19;176:6;178:13;
180:22;182:21;183:12;
184:1;187:14;191:7;
193:2;194:17;196:13;
197:19;198:11,15;
199:15,18;204:14,17;
213:11;215:16;218:20;
219:10;221:6;239:15;
248:8;250:19;251:5;
253:15,20;274:9;
275:14;284:4
intra-subject (2)
49:6;61:20
intrinsic (5)
119:10,11,12,13; 126:15
introduce (8)
25:10,21;26:10,20;
32:16;65:6;95:20;117:7
introduced (2)
156:17;159:4
introduces (1)
40:6
introduction (7)
7:17;18:10;65:19;
117:13;156:15;205:7; 265:17
investigate (2)
213:18;220:20
investigated (2) 133:22;136:10
investigating (1) 63:14
investigation (1) 200:9
investment (1) 267:20
inviting (1) 156:11
involved (1) 139:17
involvement (1) 274:18
involves (1) 171:9
IPA (2) 50:15,20
IPD (3) 111:3,15;112:13
IR (4) 21:22;42:1;48:18; 230:5
irrelevant (3) 96:9,9;109:17
irreverently (1)
201:16
isolation (1) 67:8
issue (9) 39:19;56:5;74:22; 185:18;227:11;245:3; 251:13;258:1;265:21
issued (1) 53:10
issues (5) 9:5;47:1,6;63:20; 251:13
issuing (1) 48:1
IV (9) 22:3;48:17,18;68:7; 111:20;112:6;166:22; 183:17;279:4
IVIVC (55)
80:19;81:20;83:5,20; 84:10,12;93:7;97:15; 117:19;127:22;128:11, 17;129:5,8;130:3,21; 131:15;136:13;137:16, 18;142:16;148:19; 149:7;162:11;232:6,7, 17;233:2,6,12,16; 234:17;257:10;258:6,8, 12,15;259:14;261:2,17; 262:15;270:20;271:2; 272:11,12;274:22;275:3,

6;276:9,10,10,21;277:2; 278:13;279:1
IVIVCs (8)
69:11;84:6;183:16;
232:14,14;235:5,8;
282:13
IVIVC's (1)
139:15
IVIVC-type (1)
238:4
IVIVE (4)
118:13;119:18;
125:18;127:14
IVIVE-linked (1) 117:17

J

J\&J (1)

152:21
Jamei (18)
2:11;8:14,14;117:8,
11,12;138:13;222:20;
234:5;235:15;245:1,17;
246:5;252:8;258:2,4;
259:8;261:4
Janssen (1)
267:22
Japan (2) 124:16;174:7
Japanese (1) 120:10
Jasmina (6) 3:1;8:5;65:13;85:12; 139:3;202:13
Jennifer (1) 133:6
job (7) 30:6;32:5,9;36:6;58:1; 139:3;147:19
John (14) 2:5;7:19;23:20;25:11, 11,14;44:21;132:17; 139:19;196:10;206:15; 222:21;275:18;276:6
John's (2) 46:14;199:7
Johnson (2) 267:22,22
joint (1) 133:5
journal (3) 112:22;168:4;178:1
journals (1) 253:18
Judy (1) 107:3
juice (2) 164:9,13
jumping (2) 66:9;69:17
justification (4) 33:8;44:3;92:17;

226:17	11;252:2,6;267:6;	11:7;38:14;64:2;	99:19	listened (1)
justified (1)	280:12	82:10;93:19;105:21;	light (3)	268:8
97:15	known (6)	112:4,11;113:16;127:9;	9:9,9;212:18	listening (1)
justify (2)	78:13;79:15;89:20;	156:13;158:21,22;	lights (1)	279:19
42:13;223:22	90:8,11;98:5	160:2;164:17,19;	107:1	liter (1)
	KP (1)	184:17;193:16;203:17;	likely (5)	202:5
K	225:8	205:18;206:19;207:22;	38:21;56:20;91:6;	literally (1)
		209:14;210:8,9;215:19;	93:22;226:1	219:8
Kathleen (3)	L	231:18,19;242:13;	Likewise (1)	literature (12)
3:4;9:20;10:3		257:9;262:1;264:19;	111:18	48:16;69:1;90:13;
keep (13)	label (1)	267:5;272:13	Lilly (1)	91:15;111:6;151:13;
9:8;28:16,18;44:2;	269:7	Leave (2)	72:14	185:5;207:19;209:14;
53:5;67:7,17;121:16;	labels (1)	237:1;282:5	limit (5)	232:11;283:17,21
$156: 15 ; 209: 6 ; 252: 3$	23:3	leaves (1)	57:2,11;77:10;201:20;	little (34)
266:22;280:22	Laboratories (1)	169:12	274:5	12:4;25:19;33:4;
keeping (1)	8:4	leaving (1)	limitation (3)	58:14;75:13;84:17,18;
$131: 15$	lack (1)	211:16	$162: 17 ; 223: 17 ; 236: 8$	$101: 19 ; 139: 10,13$
Kesisoglou (18)	203:2	left (14)	limitations (3)	143:20,21;150:16;
2:14;8:3,3;65:9,16,17,	large (3)	9:11;19:20;41:14,20;	42:7;223:15;224:15	170:14;178:13;182:5;
18;169:18,20,21;191:8,	62:17;76:7;156:22	106:12;109:13;110:10;	limited (9)	186:7;201:5;208:21;
9;207:17;234:21;	larger (4)	121:20;131:11;135:13,	22:13;88:6;118:15;	211:13;216:12,18;
239:16;244:3,9;264:17	78:8,18;186:9;195:7	15;153:17;160:14;	131:6;175:20;194:21;	217:18,20,21;220:5,16;
ketoconazle (5)	largest (2)	165:17	209:15;249:16;274:20	225:11;226:6;237:11,
133:9,14,20;134:8,13	12:12;273:20	left-hand (4)	limits (11)	14;247:22;263:3;264:22
ketoconazole (3)	last (17)	70:22;73:7;79:22;	59:10;79:5;93:4,11,	liver (4)
127:10;133:19;249:21	22:8;29:10;68:19;	184:19	13;95:11,14,15,19;	143:16;148:5;247:12,
key (14)	118:5,9;124:16;152:22;	less (13)	98:22;100:1	17
44:14;108:14;113:11,	156:13;169:16;177:17;	24:20;31:9;33:19;	line (14)	loading (1)
12;114:7;117:4;173:10,	182:2;228:21;231:21;	53:20;56:20;109:19;	7:13;58:4;71:22;80:3;	73:4
19;175:15;176:11;	253:5;265:12;276:11;	167:7;191:21;218:12,	90:22;91:9,10,14;97:2,3;	local (10)
201:18;212:3;238:11;	285:15	14;229:2;270:21;281:4	101:7;128:17;154:22;	21:5,7;37:15;62:6;
283:14	Lastly (1)	Leuven (1)	275:15	113:16;144:5;201:15;
kind (31)	13:14	202:4	linear (3)	224:9;255:16,17
13:14;37:8;43:6;	later (8)	level (27)	52:9;70:20;92:8	local-acting (1)
101:7;103:20;108:5;	11:8;28:8;44:2;70:17;	11:1,2;22:19;71:22;	linearity (1)	256:13
140:6;159:3;160:3;	104:9;105:14;157:5;	93:7;94:19;97:15;	135:14	locally (3)
164:18;165:12;190:4;	273:11	106:19;124:13;125:9;	lines (2)	21:4;22:20;231:21
200:16,17,20;210:9;	lateral (1)	161:4;173:12;201:4;	75:5;95:15	locally-(1)
211:17;212:2,5;218:10;	67:9	206:2;214:15;219:11;	link (7)	24:22
221:10,10,11;225:16;	latest (1)	221:1;223:14;231:1;	52:15;67:2;118:8,10;	locally-acting (1)
230:10;241:12;249:8;	15:5	241:14;258:20;268:2,4,	127:21;169:5;179:15	20:2
254:13;266:7;267:17;	Laughter (5)	5;270:13,20;271:2	linked (1)	located (1)
275:18	45:10;65:11;101:11;	levels (6)	72:15	28:5
kinds (4)	115:10;268:15	103:18;104:5;146:17;	linking (4)	location (2)
152:11;164:3;205:3;	Lawrence (1)	173:18;232:22;263:4	23:9;69:10;127:22;	127:20;131:1
278:5	105:2	leverage (3)	141:15	locked (1)
kinetics (2)	laws (1)	172:6;263:22;264:6	Lionberger (18)	167:22
161:16;218:8	285:8	leveraged (1)	2:17;8:10,10;189:15;	lofty (1)
Km (1)	lead (5)	174:13	190:13,14;191:4;	170:22
146:19	13:9;56:10;161:4;	Liang (19)	192:21;196:3;215:8;	$\mathbf{L o g}(3)$
knew (1)	201:17;204:17	3:10;10:4,12,14;11:3,	216:22;217:3;232:4;	90:7;225:6,8
93:20	leadership (1)	14;17:17;18:8;29:14;	236:18;271:3,7;279:22;	Logistics (1)
knowing (6)	173:12	32:19;33:5;47:16;63:22;	280:3	7:3
93:20;147:6;212:14,	leads (1)	138:18;203:11;204:10;	lipophilicity (1)	long (11)
19;223:12;245:12	173:10	205:6;265:17;280:3	160:10	17:14;51:19;56:4;
knowledge (29)	learn (4)	Liang's (2)	list (12)	60:7;70:10;101:9;147:3;
$15: 5 ; 22: 20 ; 40: 11$	$130: 15 ; 138: 3 ; 157: 15$	$229: 14 ; 247: 14$	$24: 6,13 ; 25: 3 ; 189: 22$ 190:4 5:7.199•3:212.	$\begin{aligned} & \text { 190:5;219:13;256:1; } \\ & 257 \cdot 18 \end{aligned}$
$\begin{aligned} & \text { 100:5;137:19;157:18; } \\ & \text { 166:5,10;167:8;171:11; } \end{aligned}$	$\begin{gathered} \text { 167:6 } \\ \text { learned (1) } \end{gathered}$	$\begin{array}{\|c} \text { liberation (1) } \\ 159: 10 \end{array}$	$\begin{aligned} & \text { 190:4,5,7;199:3;212:1, } \\ & 12 ; 215: 2,4 \end{aligned}$	$\begin{gathered} 257: 18 \\ \text { longer (6) } \end{gathered}$
172:6,7;173:1;178:6;	206:14	life (7)	listed (2)	163:13;186:7;190:7;
179:21;180:4;181:1;	learning (4)	44:5;86:15,19;87:20;	16:6;172:16	212:16;213:3,5
190:5;205:14;214:22;	17:6,7,8;267:1	89:4;92:3;198:7	listen (1)	long-term (1)
230:19,19;239:18;240:2,	least (34)	lifetime (1)	212:4	63:15

look (53)	lousy (1)	man (1)	183:13;187:19;218:17;	150:22;151:5,5
47:9;51:6;55:5,19;	248:16	253:1	244:15;247:7;278:17	meals (4)
58:14;72:1;77:19;78:3,	low (31)	manage (1)	mass (2)	151:3,4,4
11;104:3;107:9;109:9;	11:20;24:16;25:6;	137:2	100:18;285:6	mean (23)
119:19,20;121:1;123:7,	34:4;47:21;51:8,8;52:1,	managed (1)	match (7)	14:13;38:18;78:10,10;
9;124:9;125:14;129:5,	1;55:8,22;56:1,8;60:19;	128:16	31:7;142:10;243:10;	110:16;123:20;124:19;
12;133:14;135:13,15;	62:14;74:6;77:1;90:18;	management (9)	260:7,13;261:11;277:15	143:21;149:10;150:7;
137:1;143:20;146:1;	123:12,12;151:4;	44:17;86:20;92:3,5;	matching (2)	154:21;219:4;234:8;
152:6;153:3;160:19;	192:17;202:2,7;203:1;	99:6,19,20;100:7;173:16	149:11;245:1	244:14;256:4,8,8,9;
161:1;168:9,17;185:4,	213:13;230:6;233:21;	manner (2)	material (8)	267:4;270:20;272:7;
22;195:13;207:19;	235:20,22;255:3	101:16;283:1	23:18;33:14;93	273:1,14
213:8,11;221:9,12;	lower (15)	manufacture (1)	98:4,6,7;155:11;185:18	meaning (4)
223:7;231:5;239:15;	21:9;39:15;53:15	92:3	materials (1)	183:20;204:14;213:2;
242:16;244:18;245:19;	56:10;90:22;95:10,14,	manufactured (2)	86:2	275:3
246:17;248:17;258:8;	19;160:11;195:5,18;	87:7,11	mathematical (2)	means (12)
282:17;283:7;285:22	202:6;205:8,9;265:16	manufacturers (3)	179:22;182:11	28:22;33:4;38:9;48:6;
looked (13)	lowest (2)	85:21;86:1;96:20	mathematically (64:4;86:12;91:5;186:20;
58:5;72:14;	92:9;94:6	manufacturing (16)	167:8;266:14	239:22;270:20;274:1,3
136:6;161:15;162:14	lowly-mid	31:12;33:13;36:1;	mathematician (1)	meant (1)
17;163:9;164:7,15;	38:10	43:4,5;56:7;74:11;86:9,	105:16	165:14
165:3;190:17;245:18	luck (1)	14;87:18;88:17;99:8;	MATLAB (1)	meanwhile (1)
looking (30)	17:22	111:1;153:1;155:13;	158:6	53:10
10:14;67:18;	lucky (3)	221:19	matrices (1)	measure (13)
85:8;115:20;129:19;	125:8;127:9;137	manuscrip	81:5	61:16,19;160:10;
130:4;135:7,22;136:2;	Lucy (1)	62:6	matrix (1)	179:8,10;181:22;
150:6,17;152:13;164:5;	273:17	many (32)	16:7	182:12;194:6;198:6,6;
172:22;188:12;196:18;	Lucy's (1)	8:9;11:9;13:2;18	matrix-based (1)	255:16,17;265:1
200:7;204:12;205:10,	274:10	22:9;110:3;115:3;	92:6	measured (7)
16;223:6;224:8;227:3;	luggage (1)	119:16;120:19;124:2,5;	matter (6)	1:14;51:15;90:17;
231:11;241:2;244:13;	279:18	126:4,13;128:10;136:7;	145:5;172:18;198:21;	106:11;127:7;202:4,6
248:5;272:17;277:14	Lukacova (11)	138:7;144:10;154:22;	199:1;256:9;266:15	measurement (4)
looks (9)	2:20;8:15,15;138:15,	158:14;181:16;187:20,	matters (1)	42:2;44:6;179:7;
57:11;156:20;166:19	17,18;156:5;194:9,9;	20;219:17;234:9;	199:11	192:19
182:10;185:3;186:1;	227:3,5	239:11;241:5;243:14;	mature (2)	measurements (1)
272:14;278:11,12	lumen (2)	252:10;257:13,13;	212:5;252:6	200:4
lose (1)	159:6;179:1	267:18;287:1	maximum (2)	measures (3)
80:4	luminal (1)	$\boldsymbol{m a p}(2)$	152:8;177:1	61:20;62:5;240:21
loss (1)	103:6	54:18;215:19	May (44)	measuring (2)
50:15	lumped (1)	Marciani's (1)	1:10;18:18;40:8	228:10;286:10
lost (1)	148:15	123:16	60:13;96:6,10,15,20	mechanism (5)
50:20	lunch (4)	Marilyn (1)	98:7;117:5;121:12;	20:20;31:20;63:6
$\boldsymbol{l o t}(58)$	9:15,17;100:22;188:7	129:4	132:6,15;135:20,21,21;	219:10;253:20
17:15;28:15;36:5;	luncheon (1)	Mark (1)	141:22;144:21,22;	mechanism- (1)
40:1,6;41:12;42:5,	116:8	187:18	145:22;146:14;151:1,5,	252:4
43:15;49:6;50:11;52:7		marker (1)	8;169:13;175:16,17;	mechanism-based (9)
60:11;61:8,13;64:13;	M	106:10	193:20;196:7,17;201:4;	12:16;18:21;19:1,6;
67:15;82:18;87:7,9,10;		markers	207:1,5;209:17;215:17;	:1;56:15;59:13;63:19;
153:2;154:9,20;156:10;	m	81:21	217:5,16;249:17;	64:11
169:12;170:3;171:20;	22:11;70:3;117:15	market (1)	260:14;268:2;271:1,20,	mechanisms (3)
175:19;176:15;178:18;	118:6;153:20	10:21	21;277:2	16:5;204:22;264:8
179:1;181:10;182:22;	major (10)	markets (1)	maybe (42)	MECHANISTIC (49)
183:1;187:21;196:4;	41:3,5,6,13;42:7;86:4;	74:13	101:19;108:12;137:4,	1:5;10:6;17:11;25:17;
206:14,20,21;221:3,14,	110:8;173:1;174:4;	Markov	9;142:16;185:17;193:7;	32:7,17;42:17;44:10;
16,20;229:1,2,17;239:8;	243:13	166:6	198:21,22;199:10	72:14,15;100:18;
241:7;249:14;255:4;	majority (6)	MARROUM (8)	205:14;209:16;213:18;	102:11;104:17;114:2,4;
257:7,11,11;262:5;	22:2;23:4;47:6;117:4;	257:2,5,5;258:1	215:2;217:6,20;224:14;	117:19;123:1;137:8;
270:12;281:8,13	182:15;258:21	260:15;261:14;262:17,	231:3;232:2;242:13;	139:13;140:13,19;
lots (19)	makes (5)	21	247:22;249:4,16;252:5,	141:14;146:19;147:1,2,
17:18;94:2,4,4;	112:1;143:14;145:4;	Maryla	9,13;258:5;263:9;266:6,	14,17;148:8,19,20;
118:20;119:20;131:11;	235:13;254:21	1:18	6,8,12;270:11,12;	149:7;150:11,14;
137:7,9,19;154:6,19;	making (5)	Masoud (13)	271:16;276:15,16,19,21,	152:13;153:3;162:10;
155:7,8;184:11;252:22;	18:15;110:8;113:4;	2:11;8:14;117:	22;277:3,4	165:12;169:4;205:11;
259:11;267:20;280:7	272:7;284:22	147:18;156:16;157:7;	meal (3)	232:6,8,13;233:1;236:7;

244:16;250:15;261:19; 262:10,14
mechanistically (5) 120:19;125:16;126:5; 165:8;277:12
Mechanistic-based (3) 14:22;233:12,18
media (12)
34:10;71:18;93:22; 109:20;164:20;178:18, 22;183:2,20;184:9; 193:22;220:8
median (2) 123:11;273:13
Medicine (1) 172:14
mediocre (1) 269:12
medium (8) 34:14;35:11;37:5,16;
92:13,20;233:7;272:18
meet (3) 88:14;99:11;259:5
Meeting (16)
2:1;7:8,14,15;13:17; 18:19;22:8;29:17; 102:15;115:18;117:5; 171:19;190:9;250:13; 280:6;287:8
meetings (4) 11:19;13:15;19:15; 46:12
meets (2) 16:20;96:1
Mehta (8) 8:19,19;212:11,22; 214:3;215:7,22;262:19
Mehul (1) 8:19
member (1) 173:14
members (14) 7:11;9:12;25:2;47:18; 188:11,20;189:5;190:9; 201:11;232:12;241:10; 253:8;270:14;279:17
Meng (2) 44:16;276:5
mention (2) 96:4;121:22
mentioned (29) 18:16;66:15;71:6; 72:9;82:17;84:21;90:20; 125:8;136:21;167:10; 176:12;180:2;181:4; 182:9,22;189:15; 192:22;205:7;207:18; 224:2,3,14,19;244:16; 245:2;247:7;268:17; 269:6;278:16
mentor (1) 276:7
Merck (6)

2:15;8:3;85:6;191:10;	microns (2)	64:21;109:14,19;188:8;	262:3,10,11,11,15;
206:3,7	154:14;186:8	254:3	264:19,22;265:8;267:4,
merge (1)	microphone (1)	missing (2)	15;269:16,20;270:1,4,7,
165:22	254:12	118:8;126	12;271:11;272:12;
mesalamine (2)	microsomal (1)	mission (2)	273:5,7,16;274:5;
62:5;255:17	263:11	171:8,20	275:16,21;276:22;
met (2)	microsome (2)	mistaken (1)	277:2;278:4;282:10,12,
261:17;28	247:12,18	258:21	15,17,21;283:3,4,8,9
metabolism (12)	mid (2)	mitigate (1)	modeled (3)
126:17;128:6;144:21;	105:1;216:3	152:5	91:8,9;104:17
146:8,11,13;148:3,6;	midazolam (1)	mitigating (2)	modeler (1)
159:16;210:21;216:19;	146:7	70:16,21	274:7
252:10	middle (7)	MoBi (5)	modelers (2)
metabolite (1)	25:6;106:8	158:2;167:16;168:7,	24:4;237:19
58:8	230:11;231:1;235:20;	11;169:12	MODELING (175)
metabolites	236:1	Model (247)	1:5;7:7;8:2;10:7;
57:1,3,6	might (31)	25:17;36:10,11;37:22,	12:11,16;13:1,4,11;
metabolization (2)	59:15;67:19;82:20	22;42:13,19;44:1,13;	14:10,22;15:11;16:22;
157:3;168:19	84:19;106:5;138:19;	45:19;46:2,17;48:13,21;	17:11;18:10,21;19:2,7,
metabolizer (1)	144:11,12,17;149:17,21;	52:8,9,10,17,20;57:3,5,5,	12,18,22;20:7,12;21:4,
130:7	152:4;161:7;184:2;	8,14;59:17;60:1,1;	13,18,21;24:8;31:21;
metabolizers (1)	185:18,20;186:13;	61:14;67:14,17,22;68:3;	32:8,17;33:8,11;35:7;
130:6	187:5;192:19;193:12;	71:5,13;72:4,16,16;	36:5,10,19;37:6,8,9,10,
method (32)	195:22;202:21;203:5;	74:22;75:1,4;80:3,11;	19;39:6,21,22;42:17,17;
20:14;23:16;60:12;	210:3;217:15;229:18;	81:8,9,19,21,22;82:20;	43:10,15;44:9;45:6,12,
83:10,19;95:2,5;96:8,15,	233:12;239:11;249:7;	90:20;91:11,12,12;	16;47:2;48:13,17;49:9;
16,18;97:4,12;98:19,20;	277:15,16	104:17;105:11;118:17;	50:1,7,8,13;51:2,3;
99:1,13,22;109:15;	mileage (1)	119:22;120:21;121:5;	56:16;58:19;59:13;60:6;
111:4;128:17,20;	205:20	122:15;126:1,5,6;127:4,	61:8,11;62:15;63:19;
139:22;140:1;148:19;	mill (1)	8;128:3;129:8;130:12,	64:1,11;65:21;68:5;
166:21;200:15;223:2;	185:21	16,18,19;132:10,11,12;	72:2,12,15;80:22;83:5,
242:3,15;261:6,6	milled (1)	134:11;136:13;140:14,	12,20,21;84:1,9;85:16;
methodologies (1)	185:18	20,21;141:2,4;142:8,22;	86:18;87:1,3,16;88:3,7;
14:2	milligram	143:1,19,19;145:18;	89:2;91:18;92:4,22;
methodology (21)	90:6	146:10,19;148:12;149:1,	95:9;98:3,17;99:3,15;
15:13;33:9;34:4,8,10,	milligrams (2)	5;151:16,18;152:14;	100:3,4;105:6;117:18,
18;35:18;38:2;59:22;	146:9;154:5	153:11;154:1,2,3;	20;118:8;123:2;132:13;
113:6,18;200:11;	milliliters (4)	155:19;158:4;159:4;	139:5,8,11;153:9;
221:11;235:6;238:12;	62:22;123:10,12	160:6;161:1;162:15,20;	155:16;156:16,18;
240:19,22;241:4;242:8,	124:21	163:21;164:11,17;165:4,	158:13;159:2;162:10;
11,15	millimolar (1)	13;166:3,19;169:6;	165:21,22;167:21;
Methods (23)	109:18	178:7;180:1;181:1;	168:11;176:12;177:14;
7:6;8:1;15:22;60:13;	millimole (2)	182:21;183:3,12;184:5,	182:18;183:4;185:5;
62:3;96:6,6,7,10,12,17,	202:5,8	21;185:6,9,20;186:6,15;	190:2;193:17;196:4;
19,20;114:6;148:14;	mimic (2)	187:2,4,6;191:13,16;	198:14,16,17;199:6,17;
166:7;175:8;181:22;	81:16;177:	192:3,7,12;194:12;	203:16;204:4,22;
183:1,8;187:16;273:18;	mind (5)	196:13,21;197:14;	206:22;208:5,15,15,16;
277:9	67:7,17;209:6;281:1,	198:12,15;199:15;	215:18;217:4;226:14;
methylphenidate (1)	19	205:11;206:11;208:7,13,	235:7;243:3,4,6,6,7,11,
19:18	mindful (17,22;209:2,6;210:1,14;	21;244:2,16;245:4;
metoprolol (4)	116:5	212:7;218:5,7;219:8;	246:7;250:16;252:5;
125:15;128:14;129:9;	mine (1)	221:9,22;222:1,3,7,9;	257:8;264:11;267:1;
130:4	107:3	226:12;227:15,17,	273:18;277:9,10;280:9;
metric (1)	minimal	229:19;232:9;236:7,8,	284:1,5,6,7,20;286:7;
21:1	73:1	21;238:18,19,21;239:7,	287:2
metrix (1)	minor (1)	10,19,20,21,21;240:1,3,	modelings (1)
63:7	87:22	14;241:8,15;242:2;	22:9
mic] (1)	minus (1)	246:9;248:8,16;249:15,	models (105)
254:15	272:9	19,21;253:15,19,22;	24:12;42:9;44:11
Michigan (8)	minute (1)	254:17,19;255:3;256:7,	61:2;62:19;63:11;67:8,
2:3;8:8;61:19;100:14;	111:21	9,20;257:9,19,21;	12,16,21;68:8,19;69:19;
103:12;114:17;242:17;	minutes (10)	258:11,13;259:10,17,20;	71:6;80:14;82:3,6,8,11,
254:15	9:10,17;35:15;55:1,2;	260:20;261:7,10,20;	14,18,22;83:2,16;84:9,

22;103:20;104:22; 105:5,11,12,18;120:20; 125:13;139:14;141:14; 147:2,5,8,15,17;148:9, 22;150:15;157:2;158:4; 166:2,17;168:6;169:4,5; 170:4,15;171:12;172:3, 8;173:3;175:4,5,7,14; 176:8;177:9;179:19; 180:19,22;181:12;182:4, 11;184:6,22;187:15; 191:7,17;193:3;194:16; 208:2;210:4;211:20; 223:12,13;226:5,8; 228:5;239:11;240:10; 252:12;254:16;257:13, 14,17;258:19,21;259:5; 263:16;264:4;265:11; 273:16;274:6,19; 275:11;283:18;285:2,10, 14
modern (1) 14:19
modernize (1) 15:3
modifications (1) 68:10
modified (4) 16:4;72:21;81:14; 84:17
modified-release (11) 22:2;24:17;48:20; 61:4;63:5;68:11;80:20; 84:6;231:14;256:17; 277:14
modify (1) 203:5
modulating (2) 204:11;269:1
module (3) 129:17;130:21;136:14
moieties (1) 57:6
molecular (3) 90:6,7;160:9
moment (4) 125:19;254:6;266:1; 268:2
momentum (1) 28:21
money (1) 276:20
monkey (1) 119:8
monolayer (1) 176:21
Monte (1) 166:7
month (1) 270:11
months (4) 22:5;122:17,17;253:1
more (104)

10:22;17:6;18:17;
23:21;25:2;31:9;33:20; 48:3;49:13;61:4,4; 68:17,17;75:16,18; 76:17;81:21;82:10,12; 83:4,4;84:17,19;90:4; 101:2,14;102:13;104:1; 105:19;106:2;109:9,16, 16,20;110:4;111:21;
113:15;117:5;133:16; 139:13;140:1;143:20; 147:8;148:14,18;161:8; 166:18;167:7;168:11; 170:14;176:6,22;
178:13;185:1;186:20; 187:22;190:11;191:21; 192:16;193:22;199:4; 208:12,21;210:21; 211:8;212:14;213:5; 216:18;217:19,20,21; 218:13;221:5;222:16; 224:2;232:1,10,18; 237:11,14;239:17;246:7, 7,12;247:5;251:10,12; 254:9;261:14;263:9; 264:22;267:14;268:19; 270:12;274:7;276:19; 280:14,15;281:5,8; 282:1;283:6,11;286:12
morning (17)
7:4;10:5,10,16;25:13; 45:3;69:12;82:17;85:13; 115:16;121:22;132:12, 17;136:21;170:16; 184:5;220:2
most (42)
27:21;29:9;34:19;
53:8;55:12;72:11;79:6; 91:6;93:22;96:7,17; 124:20;125:20;127:17; 130:4;133:11;134:6,22; 135:6;145:8;158:16; 167:11;170:9;177:13; 178:6;179:2;184:8; 185:1,4;191:7;200:16; 208:18;209:22;226:1; 229:12;231:13;243:1,1; 252:2;258:19;267:12; 278:8
mostly (7)
66:2;68:14;69:1;
82:14;103:8;176:15; 202:3
motility (6)
103:5,10;104:3;122:7;
178:15;231:16
move (10) 11:13;48:20;70:15; 72:6;92:2;174:15;182:2; 185:15;205:22;286:2

moving (15)

66:5;74:1;79:8;82:4; 86:13;121:20;127:14;

130:10; $138: 22 ; 144: 4 ;$	nature (1)
$145: 2 ; 181: 2 ; 188: 2 ;$	$171: 6$
266:10;284:1	NCPT (1)
MRI (3)	$118: 4$
$123: 7,8 ; 181: 22$	NDA (5)
much $(\mathbf{3 3)}$	$209: 16 ; 226: 3 ; 230: 9 ;$
$32: 16 ; 38: 22 ; 44: 19 ;$	$250: 9 ; 275: 14$
$48: 22 ; 59: 17 ; 84: 5 ; 90: 22$,	NDA's (1)
$22 ; 92: 15 ; 100: 10 ; 104: 1 ;$	$251: 7$
$109: 19 ; 117: 12 ; 118: 11 ;$	nearly (1)
$124: 6,18 ; 131: 2 ; 139: 2 ;$	$114: 21$
$145: 4,20 ; 176: 22 ; 199: 1$,	necessarily $(\mathbf{1 1)}$
$4 ; 212: 14,18 ; 221: 5 ;$	$37: 8 ; 38: 18 ; 67: 18 ;$
$225: 18 ; 230: 16 ; 246: 13 ;$	$129: 1 ; 219: 1 ; 228: 16 ;$
$271: 21 ; 281: 16 ; 287: 2,6$	$229: 12 ; 235: 9 ; 239: 20 ;$
mucosa (1)	$244: 11 ; 265: 4$
$168: 18$	necessary (7)

mucosal (2) 159:6,13
multi- (1) 105:10
multi-climate (1) 133:17
multidimensional (1) 59:3
multidisciplinary (3) 171:3,6;172:5
multimedia (2) 74:2,13
multi-particulates (1) 81:5
multiple (15)
59:16;60:9,15;61:12; 87:9;91:6;92:7;183:9; 224:20;249:16;251:1; 263:15,18;265:19;278:2
multiply (1) 33:1
must-have (1) 23:11
mutual (1)
243:22
myself (2) 249:3;265:8
\mathbf{N}
name (7) 7:5,18;28:6,9;65:10; 257:5;267:21
nanometers (1) 152:8
narrow (5)
20:6;54:14,16;146:3; 250:7
narrower (3) 153:21;155:2;267:8
narrowing (1) 267:7
national (1) 29:17
naturally (1) 203:22
neutral (4)
111:22;112:15;184:7; 213:9
New (52)
8:22;11:22;14:12,13;
15:12,14;18:13;22:7,12; 23:8;24:2,21;48:1,2;
66:1;68:5;71:15,16;
74:16,18;101:22;109:2;
138:2;153:2,18,18,22;
154:20,21;155:5,13,13;
167:13;169:12;196:10; 212:6;225:17;226:18; 227:1;229:17;230:13; 249:14;264:6,14;267:14, 14;274:19;280:18,19; 284:16;286:1,6
newly (1)
54:4
next (27) 44:22;65:6,6;71:15; 85:11;95:3;100:13; 112:11;117:7;126:9; 130:21;132:1;133:16; 138:14;142:22;143:14; 145:3;156:7;180:14; 187:21;241:14;244:17; 256:16;281:21;282:6; 283:14;284:4
nice (10) 139:3;147:19;149:7, 10,14;160:8;161:5;
206:15;263:1;278:21
nicely (11) 140:12;154:3,10; 162:9,15,19;163:8,15, 18;164:11;227:1
nifedipine (3) 137:2,5;164:8
nightmare (1) 242:18
NIHS (1) 174:6
Nikunj (2) 137:1;278:6
Nikunjkumar (1) 133:6
nine (4) 59:2;122:17;143:2,3
Nineteen (1) 22:1
nirvana (1) 108:6
nobody (1) 222:22
non- (1) 106:10
non-absorbable (1) 181:21
non-bioequivalent (1) 35:4
noncontroversial (1) 203:13
none (2)
210:3;222:21
non-engineered (2) 154:7,19
non-ionizable (1) 207:14
nonlinearity (5) 52:9;146:6,18,21; 249:18
normal (2) 70:10;71:3
normalization (2) 94:5;272:13
normalize (1) 77:20
note (1) 22:3
notice (1) 36:9
noticed (2) 138:19;192:21
Nottingham (1) 105:9
Novakovic (12) 3:1;8:5,5;65:13,13; 85:11,12,13;202:13; 242:21;270:16;271:6
Novartis (1) 79:12
novel (2) 157:21;181:22
nowadays (2) 96:17;253:18
Noyes-Whitney (1) 184:13
NTF (1) 277:18
number (31) 11:5;12:12;13:6; 21:20;23:2;52:18,19; 64:3;88:7;95:6;107:15, 18;119:14;199:21; 200:8;209:17;211:16,17, 18;224:15;229:1;234:1; 235:17,19;238:20; 241:6;255:2,11;256:11; 276:12,14
numbers (2) 51:13;64:2
numerical (3) 261:6;279:6,11
numerically (1) 166:18
numerous (2) 11:19;15:10

\mathbf{O}

Oak (3) 1:15,16;7:12
obese (1) 120:9
obesity (2)
$22: 15 ; 201: 8$
objective (2)
18:19;175:12
objectives (1) 171:19
observations (2) 130:14;161:7
observe (6) 39:14;50:21;51:13; 70:19;226:12;231:4
observed (20)
50:18;51:12;56:13; 57:7;58:4,15;73:11; 80:10;81:18;90:22; 127:12;151:21;182:19; 249:3;257:16;260:8,8,9, 11;270:2
obstacle (1)
243:13
obtain (3) 12:14;19:4;243:18
obtained (1) 97:19
obvious (4)
32:12;90:17;128:22; 209:1
obviously (4)
76:3;176:7;193:19; 254:5
occasionally (2)
174:7;198:20
occasions (1) 218:5
occur (1) 107:19
o'clock (1) 254:3
October (1) 172:11
off (6)
192:13;193:21; 254:15;272:16;280:16; 282:5
offer (2) 10:17;159:18
Office (28)
7:7,21,22;8:11,12,13, 19,22;9:1;19:11;23:8; 27:15,16,17;28:5,7,9,17; 44:17;45:1,13;49:3; 50:10,10;63:12;204:7; 279:22;280:12
offices (1) 63:12
office's (2) 28:6,8
of-spec (1) 96:14
often (14)
70:2;74:2;76:17; 102:13;104:11;108:21; 110:3;193:15;196:6; 217:1;264:4,18;282:12;

286:11
oftentimes (1)

192:13

OGD (11)
7:7;19:12;44:22;50:9; 63:18;64:6,9;97:12;
140:12;189:13;280:1
OGD-recommended (2)
96:18;97:4
OGD's (2)
8:11;45:5
old (6)
74:16;136:17,17;
228:18;235:6,11
onboard (1)
48:2
Once (20)
86:8;87:11,17;117:5; 142:7,13;143:14; 151:18;154:13;155:20; 183:22;186:1,10;
188:18;194:4;246:21;
252:6;256:12,18;266:20
oncology (1)
269:5
one (194)
9:15,17;10:10,13;
11:18;18:11;24:7;27:19,
19,20,21;34:11,12;
35:16,16;36:8;40:13;
41:13,20;42:2,8,18;43:7,
13;44:4;57:3,4;60:10;
62:13,16;65:8;69:5;
72:17;75:17;76:17;79:2;
80:3,13;83:13,16;84:13;
91:7;92:12,19;96:21;
101:1,21;103:3;105:17;
109:10;110:14;111:8;
112:18;114:1;117:17, 18;118:16,16,21;120:6, 7,11,20;121:6;123:6,9, 11,19;124:4;125:19; 126:3,4,17;128:12,13; 129:7;131:1,16;133:9, 16;134:7;135:5,15; 136:6,9,11;137:1; 145:19;147:14;148:15, 17;150:10;151:12; 152:17;155:6;156:2,21; 157:6,15,18;160:19; 161:9;162:4,19,22; 163:19;169:13;171:19; 174:21;177:4,7,18,20; 178:5,19;182:20;
183:11;185:17;186:20;
187:2;190:11,14;
192:21;196:1,1,10,22;
197:22;198:17;199:13,
16,16,20;201:7,8,9,22;
202:11,11;204:14,19;
206:3,4;211:12;212:12, 22;216:9;218:19;219:7; 220:20;222:3;224:2,6,7,

12,13;231:21,22;232:8;
234:8,15;235:1;236:19;
237:1,7,10;239:5,13;
242:2;243:1;245:5;
246:12;247:15;248:1; 249:4;250:8;253:4;
255:1,21;259:8,10,13;
260:2,4;261:14;263:4,
13;266:17;267:2,10;
269:5,8,8;274:3
one- (1)
121:11
one-color (2)
121:8,10
one-hour (1)
116:4
ones (9)
150:18;151:6;155:1;
189:22;203:19;232:2;
234:9;252:18;283:15
one's (1)
285:7
one-to-one (1) 193:15
ongoing (6)
61:11,15,18;62:4;
214:10,13
online (2)
254:7,9
only (39) 9:10;10:10;18:12; 23:4;30:15;32:22;33:2; 35:5,20;36:1;37:14; 40:13;47:18;60:3,16; 80:8;90:15;112:5,16; 120:1;125:6;127:17; 128:8;133:15;149:17; 150:7;151:2;168:22; 189:3;190:22;207:2; 225:22;226:11;227:7; 228:12;263:7;273:5,13; 276:12
onset (2) 30:12,15
ontogeny (1) 267:2
open (3) 13:17;121:9;190:8
opening (5) 9:22;10:3,13,17; 188:21
operate (1) 115:6
operation (1) 72:21
operational (1) 173:12
opinion (10) 189:7;212:1;226:4; 247:18;249:10;251:16; 254:6;268:11;275:7,9
opinions (1) 25:4
opportunities (5) 28:22;86:22;88:4; 137:7;139:4
opportunity (11) 17:8,9,21;32:15;46:4; 64:16;65:19;115:12; 117:13,16;285:18
OPQ (3) 23:8;28:15;29:8
optimal (1) 66:21
optimistic (2) 265:15;266:14
optimization (2) 40:5;62:17
optimize (3) 40:4,4;177:10
optimum (1) 220:20
Option (6)
36:13,13,18,21,22;
37:1
optional (1) 90:2
options (3) 36:12;129:13;143:17
ORAL (48) 1:5;10:6;11:11;12:11, 12;13:12;15:3;19:3; 24:8;25:17;31:20;32:7, 17;44:10;45:6,12,16; 61:10;62:18,21;64:7; 65:20;72:12;82:11; 100:18,20;101:14,14; 102:8,9,11;147:12; 156:17;159:1;165:3; 169:7;170:8,21;177:11; 183:16;190:2;206:5; 209:11;217:1;219:15; 260:5;279:4;280:14
OrBiTo (21)
126:21;138:9;169:17; 170:1,7,8,18;171:8,10; 173:22;174:9;178:16, 20;179:13;187:20;
237:3,13;238:10;239:2; 240:8;286:4
order (28) 7:15;17:3;25:18;26:6; 27:13;39:4;43:1,12; 52:15;57:15;88:2;94:16; 103:22;104:11,13; 142:10;157:1,12; 159:20;163:13;169:8; 174:11;193:18;222:14; 227:19;230:11;266:19; 268:19
organism (2) 157:9;167:5
organization (4) 27:14;29:4,9;32:13
organized (1) 170:10
organizers (2) 156:11;280:4
organs (2) 168:15,17
oriented (1) 207:1
original (7) 153:17;154:19;155:6, 8;191:19;192:9;207:17
osmotic (3) 16:7;20:21;63:6
Others (2) 33:10;217:18
other's (1) 220:9
otherwise (1) 161:7
ourselves (3) 91:2;167:16;253:4
out (57)
13:22;19:20;21:22; 24:13;26:1;32:2;37:11; 59:9;63:1;71:1;102:12; 103:3;104:21;105:19; 106:2;118:20;123:15; 129:7;131:7;134:2; 140:11,11;141:6;147:9; 151:15;152:3;158:19; 159:19;165:7;166:13; 177:7;179:3;180:6; 188:1;191:2;197:3; 198:18;203:18,21; 204:5;207:22;211:18; 215:19;226:4;232:10; 235:10;237:4,10; 239:10;242:15;245:21; 246:14;255:19;271:20; 272:20;278:17;282:9
out- (1)
96:13
outcome (5) 86:12;129:14;134:2; 249:4;250:21
outcomes (1) 76:2
outliers (1) 202:19
outlines (1) 139:11
output (3) 41:5;95:9;101:6
outside (3) 37:9;79:8;95:19
outstanding (2) 65:7;189:7
Over (16) 19:10;23:12;31:19; 44:17;72:15;82:8;118:5, 8;168:7;195:2;222:3; 232:14;253:5;256:1; 279:21;282:13
Overall (7)
137:7;146:18;160:17;

191:17;210:10;240:13; 272:19
overcome (1)
151:21
over-discriminate (1) 35:1
overlap (2) 34:17,21
overlaps (1) 91:14
overly (1) 96:8
over-prediction (1) 133:3
overview (3) 25:20;26:8;168:14
own (10)
71:7;105:22;122:1; 143:4,5;144:5;155:10; 160:2;168:5;282:16
\mathbf{P}
package (18)
155:11;173:4,9;175:2, 9,9,13,22;176:14; 177:10,17,20;178:4,5; 179:20;180:6;207:16; 223:7
packages (8)
172:22;173:6;174:16,
17,20;178:3;226:19,20
page (1)
32:19
paid (1) 40:8
pain (1)
135:16
painkillers (1) 20:1
pairs (1)
54:12
panel (25) 7:10;9:4,12;13:5,7; 19:4;25:2;41:18;115:22; 188:10,16,20;189:5,16; 190:9;200:17;201:11; 232:12;263:2;264:11; 270:14;274:11;279:17; 280:7;286:20
panelists (1) 278:7
panobinostat (1) 269:7
paper (11)
13:21;17:19;45:18; 46:21;47:3;49:8;106:18; 107:7;112:21;118:3; 121:9
papers (2) 69:1;185:4
paradigm (6)
26:16;27:2,3;141:13;

220:19;249:8 parallels (1) 117:21
parameter (22)
58:22;70:2,5;71:1; 73:14;79:22;120:1; 126:15;132:4;167:22; 192:12;193:2;194:2; 197:2,15;201:18; 220:21;221:1;223:6; 247:8;248:2;270:21
parameterize (1) 157:2
parameters (40) 23:19;33:13,15;35:9, 22;36:1;43:5;90:10; 118:20;119:10;124:2; 132:5,19;133:1;137:20; 148:12;151:6,20; 157:17;163:1;167:1,2, 19;176:11;183:5; 201:16;209:17;210:2; 214:18;221:18;223:20; 224:6,8,15,17,22; 225:10;236:6;240:7; 265:2
parameters' (1) 236:10
parent (1) 57:1
parsimony (1) 91:4
Part (32) 17:16;50:5;66:12; 67:9;72:22;79:6;103:12; 113:9;120:11,12;123:6; 126:21;128:8;134:18; 154:1;155:10;171:8; 179:19;180:3;182:2; 184:8;185:1;186:13; 208:18;231:22;238:1; 245:9;250:11;252:13; 282:18;283:5;285:17
partial (1) 277:19
participants (2) 88:7;173:14
participate (3) 7:14;18:18;189:1
particle (92)
24:14;36:3;37:11,13, 13,14;38:8,10,16;40:15; 41:4,16,19;43:3;46:17; 52:3,4;55:8,8;59:5,9; 68:10;135:2;152:1,2,4,6; 153:2,5,14,16;154:8,12, 21;159:20;161:20; 162:1,4,8;163:14;164:3; 179:4;184:11,16;185:6, 8;186:5,21;187:3,10; 190:17;191:1,2,6,12,18; 192:11,14,15;193:11; 194:7;195:1,6,7,11,14,

17;197:2,3,6,16,20;
198:2,4;199:8,11,22,22;
200:9,19;203:21;204:4;
207:11;208:7,8,10;
211:4;219:5;224:11,21; 230:4;238:16
particles (7)
153:22;154:7,19,20;
163:12;186:3,10
particular (10)
10:19;199:1;203:6,15;
209:11;219:14;230:1,
13;266:11;271:9
particularly (5)
105:1;110:6;112:7,8;
200:5
partition (1)
225:6
partly (1)
82:16
partner (1)
182:16
partners (1)
180:4
partnership (1) 171:7
parts (3)
26:5;66:20;131:20
part-time (1) 47:19
pass (7)
35:16;55:6;79:14;
260:20,22;274:2;275:21
passing (3)
49:12;54:22;58:12
passive (4) 144:18;145:1;148:2; 160:5
passively (1) 160:7
past (8) 207:22;209:9;235:4, 10;244:12,22;282:13; 285:4
PATEL (1) 278:6
pathophysiology (1) 157:16
patient (19) 27:4,5,9,21;66:15; 67:1,6;69:15;77:20; 78:15;102:4,4;120:3,6; 196:19;198:8,22;203:6; 250:22
patient-central (1) 32:11
patient-centric (13) 26:6,7,9,11,14;27:11, 12;29:1,7;31:1;38:12; 42:16;43:2
patient-first (1) 26:21
patients (6)

15:17,17,18,19;20:10; 114:9
Patrick (2)
257:5;258:4
pattern (1)
103:6
patterns (3)
103:5,6,10
Paul (2)
8:21;44:17
pay (2) 103:7:220:3
paybacks (1) 10:12
PBPK (151)
22:9;23:4,11,14; 24:12;33:7,8,11;34:2; 35:7,17;36:4,10,19;37:6, 8,9,13;39:6,21,22;40:12, 22;42:16;43:10,14;44:6, 9;71:4;72:16,22;75:6; 80:22;81:8,19;83:20; 84:1;86:22;87:3,5,10,15; 88:3,7;98:17;99:15; 100:3,4;115:17;117:17, 20,22;118:2,4,8,13,16, 18;119:19;126:1;127:4; 128:3,15;129:2,5,8; 130:3,15;136:10;137:8, 16;141:14;143:19; 153:10;156:13,15;157:8, 11;158:13;161:6; 162:20;163:8;165:12,21, 22;166:1,3,5,17;169:5; 170:15;176:11;177:14; 182:4;184:1;185:5,10; 187:15;200:22;204:4, 22;206:22;209:10; 210:1,4;211:20;212:7; 213:1;219:21;226:8; 227:15;228:5;230:20; 234:12,17;236:5,15; 242:2;246:6;248:11; 249:2;251:20;252:4,6; 254:17;257:7,13,21; 258:21;259:10,21;260:5, 13;261:7,10,19;262:9, 15;263:8;264:4,11; 266:9,20;268:2;273:5, 16;274:19;276:22; 277:2,10;278:4
PBPK-related (1) 32:21
PD (5)
135:8,21;169:4;
277:18;278:2
PD/PK (1)
20:12
pediatric (6) 120:13;122:14; 135:12;136:11,15,16
pediatrics (1) 267:3

```
peer (1)
    208:1
peers (1)
        237:21
pen (1)
        17:19
penetration (1)
        263:9
```

Pennsylvania (1)
8:4
pentaglycine (1)
71:9
people (61)
11:4,6,8;13:6,18;
14:10;15:9;18:17,18;
28:13,15,18,19;29:5;
48:2;64:13;117:4,4,5;
119:16;120:9,11;
124:18;125:1;138:5;
161:17;180:17;190:15;
193:8;196:15;208:1;
223:8;224:3;234:10,11;
236:20;244:13;248:16;
252:12,14,15;254:7,10;
259:22;260:10,10,12,14;
273:19,21;276:16;279:5,
13,18;281:8,22;283:21;
284:8,22;285:2,7
Pepin (1)
169:17
per (4)
97:3;158:21;202:5,5
percent (54)
12:3;32:22,22;33:1;
54:22;55:1,3;58:12;
59:10;70:12,13;73:17;
75:10;76:6;77:9,21;
78:6,7;79:6;88:10,16;
104:12;109:14;185:17;
215:10,11;216:6,7;
222:22;223:1;225:14;
239:12;258:8,9,17;
263:7;270:8,9,10,11,18,
19,21,22;271:1,21;
272:1,10;275:3,4,11,12;
276:1,2
percentage (3)
58:3;79:1;88:13
perfect (1)
35:17
perform (3)
48:16;51:3;148:22
performance (45)
14:21;16:3;23:10;
31:3,17;32:2;44:7,13;
50:16;52:16;61:16;
75:21;77:3,11;81:20;
83:21;84:2;85:4;89:8;
92:14;102:3;112:2,3;
114:8,8;130:14;137:14;
140:3;142:7,11;170:21;
171:15;172:2,4;175:16;
176:18;177:22;205:6;

234:7,19;235:4;258:11;
259:17;278:20;286:14
performed (1)
154:18
perhaps (4)
199:10;224:16;256:9;
270:4
period (4)
9:15;19:10;22:4;23:12
periodically (1) 174:7
permeabilities (1) 81:12
permeability (27) 40:16;41:8;60:8; 77:16;90:8;101:17; 102:6;112:8,9;114:18; 119:13;125:6,11; 127:20;128:7;160:9; 195:19;213:13;239:9; 246:13,15,15,16,16,21; 264:3;269:13
permeability-limited (1) 75:16
permeable (1) 79:14
permeation (1) 213:13
person (3) 171:4;218:1;271:13
personal (3)
249:10,10;251:15
personally (1) 248:13
perspective (6) 27:10;50:2;158:15; 206:19;233:11;273:21
perspectives (1) 280:8
petitions (1) 19:14
pH (99) 15:20;22:16;34:11,14, 15,15,17,22;35:10,16; 37:17;49:18,19;50:21; 51:8,9,10,17;52:1,19; 53:2,4,4,5,7,15,16;55:1, 2,8,12,17,22;56:1,13,20; 58:9,16;59:6,7,8;60:12; 68:22;70:7,10,13,21; 71:9;74:15,16,17;75:22; 76:13,14;77:14;78:2; 89:21;90:8,16,19;93:20, 21;122:3,5,6,7;125:22; 133:15,17;143:5;144:5; 150:19;161:10;184:8; 194:14,18;201:15,17; 202:1,1,5,12,15,15,17, 19;203:3,5,9;204:11; 213:12,14;216:13; 243:15;245:6,7;260:2; 268:22;269:11
pharm (2)

219:21;265:18
pharmaceutical (15) 8:6;27:16;28:17;30:7; 85:14,19,22;88:9;89:19; 152:15;172:15;175:12; 178:1;180:12;202:14
Pharmaceuticals (1) 257:6
pharmaceutics (1) 23:7
pharmacokinetic (11) 16:11,12;62:18;63:10; 86:18;99:2;103:21; 140:20;142:3;243:3,21
pharmacokinetics (3) 92:8;109:5;154:10
pharmacologists (1) 52:8
Pharmacology (15) 8:20;9:2;28:5,7,9; 63:13;82:9;118:19; 169:4;204:7;205:5,13; 260:3,4,6
Pharmacometrics (5) 9:2;103:16;204:7; 260:4;273:7
phase (11) 221:15,15,15,15,20, 20;222:17,17,17;249:16; 269:4
phases (2) 86:4;153:10
pH-dependent (1) 269:14
phenomenon (1) 133:2
phosphate (1) 245:20
pHs (3)
78:22;144:14;243:14
physical (4) 30:11;100:19;141:18; 211:5
physical-chemical (2) 30:17;31:22
physically (1) 22:21
physiccochemical (1) 89:18
physicochemical (7) 141:15;171:22;173:2; 174:19;175:2,14;176:11
physics (2) 285:5,10
physiologic (3) 15:7;112:10;207:15
physiological (12) 32:1;70:11;119:4; 121:17;157:1;159:14; 163:22;165:6;172:1; 184:8;266:3;281:15
physiologically (2) 106:3;279:12

```
physiologically- (1)
    98:2
```

physiologically-based (19)
24:8;46:16;48:17;
62:18;63:10;86:17;89:2;
99:2;117:19;130:21;
157:2;190:2;232:9;
243:2,20;258:15;
278:13;279:1,7
physiology (10)
22:22;61:19;120:4;
141:17;147:7;157:15;
178:9;230:22;285:5,12
pick (1)
157:6
picked (1)
118:9
picture (1)
114:11
piece (1)
50:12
pieces (2)
282:20;286:16
pill (1)
72:19
pilot (3)
46:1;142:14,15
Ping (7)
9:1;22:8;32:20;204:6;
206:18;218:16;268:1
Ping's (3)
33:17;220:13;267:10
pivotal (1)
86:10
PK (56)
19:17;22:10,14;46:1;
51:18,21;52:5;55:11;
56:20;58:20;60:16,18;
69:11;70:18,20;71:20;
89:18;90:1,10;91:13,15;
94:4;97:19;135:7,20;
140:18;142:5,7;155:14;
160:16;166:12;167:2,3;
169:9;179:3,9;180:16,
18;185:18,21;186:18;
187:5,11;193:21;194:3;
201:5;208:19;218:8;
230:15;245:16;246:3;
255:11;256:7;260:5;
265:20;273:6
PK/PD (2)
20:7;78:13
PKa (5)
51:7;90:7;112:10;
207:13;245:21
pKas (1)
55:22
PK-Sim (6)
8:18;156:21;158:1;
167:12,18;168:6
place (7)
43:22;82:3;83:8,13;
144:8;170:11;179:17
plant (1)
78:1
plasma (14)
40:17;89:22;90:11,12;
103:17;104:5;106:19;
107:20;122:2;127:15;
142:4;255:4,9,12
platform (3)
69:20;158:1;230:20
platforms (3) 51:4;267:16;279:6
play (3)
41:19;105:15,17
playing (2) 31:18;206:7
plays (2) 30:21;195:2
please (10) 9:6;14:3,3;116:5; 201:21;207:10;236:14; 257:3;258:3;286:15
pleased (1) 10:16
pleasure (6) 45:4;100:16;102:10; 115:7;156:12;169:22
plot (5)
77:13;91:9;94:14;
95:13;97:1
plotted (1) 77:14
plotting (1) 77:12
plug (4) 71:16,17;126:1;185:9
plugged (1) 198:11
plus (3) 134:13;228:13;272:9
pm (4) 1:11;117:2;188:14; 287:8
PO (1) 166:22
podium (2) 9:22;25:12
poignant (1) 263:12
Point (38) 8:4;36:8;54:6,12,20; 93:18;96:4;101:12; 102:12;103:3;105:19; 108:12;113:11;126:14; 147:20;155:12;156:21; 157:6;162:20;164:16; 196:3;198:9;206:18; 207:8;219:2;220:14; 221:4;224:12,13; 238:11;244:6;246:12; 250:12;251:11;257:20; 266:21;270:6;278:19
pointed (2) 263:15;278:17
pointing (1)
140:11
points (14)
100:21;158:8;181:9; 183:11;187:9;204:9; 205:17;212:22;219:4; 224:14;231:10;243:2; 268:19;278:8
policy (4) 115:5;251:5,13,13
polymer (7) 93:9;98:5,6,6,17;99:9, 10
poor (2) 130:7;230:4
pop (1) 166:1
population (25) 77:7;78:9,15,18,20; 79:1;107:16,17;120:3,7, 8;129:22;130:9;134:1; 137:11;150:5;161:3; 163:16;165:21;166:8; 196:19;205:9;272:4,9; 273:6
populations (6) 21:3;22:11;63:8; 78:16;157:20;201:6
pore (1) 163:11
portal (5) 143:15,16;144:22; 148:4,5
portion (3) 78:8,19;203:20
posaconazole (5) 133:9,18,21;134:15,18
posed (1) 214:4
position (1) 172:9
positive (3) 17:18;86:12;189:9
possibilities (1) 140:5
possibility (4) 43:1;72:6;142:19; 147:2
possible (14) 25:8;57:10;59:17; 91:5;127:9;140:3; 149:20;152:9;165:14,19, 21;167:12;245:4;270:5
possibly (4) 38:21;76:8;142:15; 151:8
post (1) 122:16
post-approval (2) 86:15;280:20
post-marketing (1) 16:19
posts (1)

276:3
potency (3) 52:12,14;55:11
potential (7) 16:3;20:17;47:10; 69:6;77:10;107:19; 243:9
potentially (9) 17:2;52:13;61:14; 64:4;69:14;80:16; 137:17;197:4;211:4
powder (1) 185:2
power (3) 99:5;205:15;249:15
powerful (2) 44:11;100:4
PPBK (1) 254:18
PPI (7) 47:14;59:8;71:19; 133:20,21;203:4;268:7
PPIs (1)
207:20
PQRI (1)
85:3
practical (4) 152:9;171:13;186:19; 269:21
practically (2) 91:14;97:8
practice (5) 48:14;69:5;89:14; 125:20;183:11
prasugrel (6) 55:18;56:2,5,18,22; 58:8
precious (1) 276:20
precipitate (2) 41:11;195:15
precipitation (8) 40:16,17;41:10;62:14; 75:13;124:12;144:12; 224:22
preclinical (4) 71:8,12;72:3;158:14
pre-clinically (1) 67:11
predefined (2) 159:18;260:19
predict (46) 57:15;97:21;118:14; 120:6;130:17;132:10; 136:22;137:3;149:15, 16;153:15;170:20; 171:15;172:3;179:5; 196:7;197:7,14;201:5; 204:15;209:13;210:1,7, 10,12,15;217:4,14; 218:7;228:2;238:21; 245:14;254:20;255:7,8; 256:2,7;271:4,5,8,16,19;

$273: 1 ; 275: 22 ; 279: 6 ;$
$280: 16$
predictability (16)
$60: 2 ; 147: 12 ; 150: 15 ;$
177:11;199:6;219:12;
261:18;264:13;268:18;
$275: 5,5,12,16,20 ; 276: 3 ;$
$281: 5$
predicted (10)
$54: 6 ; 111: 4 ; 127: 13 ;$
$145: 18 ; 150: 9 ; 160: 16 ;$
$162: 8 ; 218: 20 ; 222: 10 ;$
$273: 12$
predicting (11)
$58: 2 ; 113: 12,12 ;$
$141: 20 ; 149: 7 ; 179: 3 ;$
$200: 11 ; 206: 5 ; 246: 15 ;$
$247: 11 ; 272: 2$

prediction (48)
55:14;57:14;61:6; 95:22;119:20;125:16; 127:10;137:6,15;149:2; 161:14;177:22;192:13;
200:15;204:10,11,14; 205:12,18;209:18; 231:5;237:20;238:4; 247:9;248:18;254:18, 21;256:6;257:15;259:9; 266:19;267:8;268:1,6, 22;269:1,8,16,22; 270:18,19,20,22;271:22; 272:8,10;278:20;279:2 predictions (10) 64:7;80:14,15;133:17; 193:17;201:12,14; 202:17;263:21;267:7 predictive (23)

59:15,18,22;60:13; 101:4;109:21;110:7,12; 113:6;175:7,8;176:19; 177:9;178:22;179:18, 22;183:7;187:16; 200:10;205:6;262:12; 268:11;270:1
predictivity (1) 59:20
predict-learn-confirm (1) 266:22
predicts (1) 222:7
preferred (2) 232:14;233:2
pregnancy (2) 22:14;201:7
preliminary (1) 112:19
preparation (2) 62:7;100:9
prepared (2) 18:10;252:13
preparing (1) 28:14
present (5)

13:3;115:12;169:19, 22;285:1
Presentation (27)
18:8;22:6;23:22;
25:12,14,16;45:2,8,11;
46:14;65:17;85:12,15; 86:16;88:22;100:9,15; 103:19;117:11;138:17; 139:18;156:9;169:20; 182:3;194:22;222:2; 247:22
presentations (10)
11:19;24:1;64:20;
108:13;115:21;189:11; 190:15;232:6;247:7; 263:15
presented (15)
29:15;47:17;65:7;
66:11;94:5,6,11;95:15, 18;124:16;152:21;
159:22;237:13;249:7; 265:17
presenter (3)
65:16;117:9;169:16
presenters (2)
212:13;268:9
presenting (1)
85:6
presents (1) 232:17
president (1) 117:8
press (1) 168:8
presumably (1) 213:20
pre-term (2) 165:3,4
pre-terms (1) 165:6
pretty (24) 41:16;54:13,14;55:4; 56:4;62:2;73:2;75:5; 77:22;79:18;80:2,9,11; 81:17;82:2;92:14; 160:17;170:22;185:3; 202:17;233:17;248:3; 265:15;275:6
previous (6) 38:15;77:5;144:2; 154:22;222:16;247:10
previously (4) 97:16;99:3;221:4; 274:14
Price (1) 107:3
primarily (1) 69:20
primary (2) 44:9;251:21
Principally (1) 112:6
principle (4)

91:5;165:11;171:4; 273:8
principles (1) 115:17
prior (1)
166:11
priorities (1)
18:11
probability (7)
49:13;104:14,19;
141:9;149:16;153:15;
155:20
probably (33)
26:2;30:5;72:11; 102:21;117:4;138:15; 147:8;152:8;158:16; 176:16;183:10;189:3; 190:6;191:5;195:21; 213:8;215:11;228:18; 233:10,17,18;235:16; 239:14;240:3;247:20; 249:15;251:20;261:22; 269:10,15;273:11;
278:11;279:3
probe (1)
264:6
problem (13)
26:1;34:22;158:21;
217:8;220:16;228:22; 238:3,4;244:10;246:14; 250:11;261:1;266:3
problems (4)
39:7;119:14;228:1,21
proceed (2)
211:16;235:17
proceeding (1)
167:17
process (28) 23:18;33:15;35:22; 43:4;48:6,9;86:7,9;87:5; 88:1,13,17;103:11; 104:20;108:2;133:8; 139:9;140:13;147:11; 155:13;156:1;168:20; 208:1;220:21,22; 221:18;243:22;272:19
processes (16) 120:21;128:4;143:12, 22;144:18;145:2,6,6,8, 11,20;146:6;147:22; 148:11;191:15;227:19
product (138)
12:6,18;16:17;17:3; 19:8;20:16;21:10;22:22; 23:9,10,15,17;24:15,17; 26:18;44:5,12;45:20,22; 46:6;47:7;50:2;54:19; 60:17;64:12;66:16;67:5; 69:16;76:16;84:5;85:4, 18;86:4,6,7,9,11,13,14, 21;87:4,6,17,19,21; 88:14,15;89:4,9;91:22; 92:1,3,5,9,14;94:8,11;

95:11,22;96:2,15;97:1,2,	286:6	72	purpose (8)	187:17;240:17,
4,22;98:15;99:15,17;	pro	pr	2:14;27	2:13;247:
101:22;102:3,5,5,9,15		-	50:13;260:7	75
16,22;103:1,2;106:6;	progre	protocols (2)	3:8	uality-by-design
108:16;109:7,14;	110:8	75:1.181.	purpose	$66 \cdot 14$
110:22;111:1,1;112:2,3,		proton (4)	216:3	quality-related (2)
17;113:3;114:8;119:4;	50:14,17;67	21:14,17;47:14;4	purposes	27:15;33:7
120:14;137:15;140:9,	;83:21;103	provability (1)	15;152:11;199:	uantification (1)
10;141:16,20;145:10;	170:10;173:7,12,20	233:20	44:10	57:2
149:12;158:17;171:15;	174:1	pr	p	(3)
172:1;175:11,21;176:6,	projected	92:9;97:5;99:16;235:5	15:20	73:12,12,13
10,18;186:2,4,13,15;	:21;80:1,9;185:	provide (15)	pursuing	quantitated (1)
187:17;192:2;196:5	-7	42:2;47:10;65	104:8	06:15
198:8;207:2;211:3;	projectin	121:5;156:19,20;	push	Quantitative (10)
212:8;220:4;227:21		;161:2;167:13;	84:8;108:10;218:	7:6;8:1;38:20;71
9:4,9;230:5;231:14	project	71:5;174:8;175:13	pushed (1)	11:18;241:21
235:14;240:18,20;	18:16;184:1	177:14;203:8	52:22	264:21;273:18;277:9
241:3;242:9;247:2,3;			pushing (1)	quantitatively (1)
248:7,21;271:9;281:6,	project	42:8,12;13	234:1	161:21
12,18;286:14		provider (1)	put (34)	quantititative (1)
productivity (1)	72:2;180:8;	56	$3: 22 ; 17: 19 ; 39: 5,20$	$260: 6$
47:21	projects (2)	provides (3)	:9,13,15,21,21;43:18;	quick (7)
Products (54)	1:9	66:22;157	:19;50:19;52:10,19;	$7: 16 ; 148: 1$
8:22;12:11,12;13:13	prolon	providin	:13;118:3,18;126:4,	203:10;255:21;268:13,
14:3;16:8,22;19:3,19	64:9	38:10	80:	16
20:3,21;21:22;22:1,2,4	promine	P	6:10;191:1,13;204:5;	icker (1)
23:8;25:1;46:10;48:20	19:17	185:	232:20;237:4,10,19;	218:13
49:22;60:8,20;61:4,6,13	promisi	PUBLIC (16)	238:17;253:7,14;279:3	quickl
62:21;63:5;84:6,16;	72:1;16	1:2,11:19, 19	putting (6)	8:13;77:
85:22;97:11;100:7;	pronou	7:16;102:21;115:5	11:15;119:16;121:12;	45:
102:8;108:20,20;109:4	65:10	176:22;251:5,12,13	5:5;191:	ite
120:17;139:7;170:21	pro	253:17;280:17;283:16,	puzzled (1)	56:22;103
192:18;200:16;207:2;	30:12;12	18;286:17	250:21	22;163:20;183:6;
$\begin{aligned} & \text { 208:9;214:12;215:4; } \\ & \text { 216:22;217:1,10; } \end{aligned}$	pr	publication (4)	Q	$\begin{aligned} & \text { 205:20;212:20;219:15; } \\ & 257: 15 ; 264: 8 \end{aligned}$
74:1	194:1	233		
280:13;284:10;287:	pro			\mathbf{R}
roduct's (1)		152:12;188	9	
99:11	31:17,22;32	publicly (2)	QC	R\&D (2)
Professo	55:20;89:18;134:2	283:20;28	60:10,12;96:5,8,15,17	117:8;267
124:15	141:15,16,19;143	publis	qualification	radius (5)
profile (46)	157:9,10;167:5;175:15	112:20	84:10;235:3;248	40:17;41:11;152
22:10;36	182:19;200:2;211:6;	published	278:1	154:22;195:1
38:1;51:15,16,22;52:	236:10	.18,	qualify (2)	raise (4)
54:5;57:8;59:21;66:17		106:8,17;107:3;111:	82:16;130:	36:7,8;37:20;196:3
$89: 9,21 ; 90: 1,1,8,12,1$	236:10	112:21;128:20;146:16;	qualitative (2)	raised (2)
16,21;91:1,10,13,15;	propo	149:4;161:17,17;162:2;	99:6;111:19	204:9;274:
93:16;108:15,17;		18:17,181:18,19	qualitatively	ran (1)
113:13;127:17,18;	pro	182:1;184:22;207:19;	264:20	187:5
129:3;140:7;141:6;		253:22;266:1	qualities	range (19)
142:10;183:17,17;	propose (6)	publishing (4)	137:15	39:16,17;51:20;52:14
186:14;208:19;228	26:3;46:9	223:8;252:13;253:3	quality (55:4;58:6;59:10;70:11
243:8,11,18;255:5,9,11	112:6;197:1	pump (6)	14:16;16:9;20:1	20;112:10;131:14
profiles (27)	propos	16:7;21	23:10;26:6,7,9,11,15,16,	132:9;133:2;150:3
15:7;51:10,17,	46:18;220	49:21;63:6	17,22;27:12,16,18,19;	151:20;154:4;175:13
52:18,22;58:16,18,20	proposing	Pur (1)	28:17;29:1,2,12;30:19,	184:8;216:8
60:18;73:10;75:20;76:1	112:4,14;209:8	158:13	21;31:1,3,6,7,15;32:11;	rank (1)
92:19;94:3,4;95:14;	212:16;249:9	purely (1)	33:11;34:13;35:8;39:5,	94:16
97:7,17,19;150:3,7,8,9	proposition (1)	106:9	7,14,19;43:2;44:7,12;	rapid (2)
182:4;184:16;215:12	212:15	purgat	47:7;52:11;60:16;66:16;	108:8;213:4
rogram (9)	protease	1	69:16;83:10;85:4;86:20;	rapidly (1)
12:4;18:12;2	201:2	purple (1)	92:4;99:19;100:6;	118:4
172:10,11,12,20;285:18;	protect (1)	121:1	110:19,21;111:15;	rare (3)

189:12;210:5,15	realized (1)	recruited (1)	regions (4)	release (33)
rarely (1)	91:17	28:15	81:12;141:22;144:2	15:7,22;16:4,5;20:21,
193:16	really (94)	red (5)	94:20	21,22;24:21;35:14;53:1;
Rasagna (1)	13:17;14:4;16:20;	35:16;91:10;94:6;	registered (1)	59:13;66:21;68:10;
114:11	17:18;49:4;62:1;72:13;	95:15;97:2	18:17	81:14;84:17;92:12;
rat (1)	73:21;102:14;114:3;	reduce (3)	registration (1)	93:10;94:3,15,18;95:7,8;
119:7	136:17;145:5;147:6;	16:16;17:1;46:3	18:19	97:11,17;98:5,7,19;
rate (24)	148:9;158:3,16;160:20,	reduced (5)	regression (1)	99:13;135:11;140:6;
11:20;12:3;49:12;	22;161:21;162:10;	12:7,8;70:14;78:9;	94:21	163:14;190:19;193:11
55:12;58:12;62:1;97:11;	163:5,20;164:22;165:8,	81:2	regulated (1)	release- (1)
103:22;107:20;108:18,	20,22;166:3,7,9,13,20;	reduces (1)	186:12	98:16
19;110:1;145:12;	167:1,6,16,22;168:2,12;	164:10	regulations (2)	released (3)
148:15;152:3;162:7	169:3;174:22;179:4	reduction (2)	74:12;218:12	83:10;159:7;163:5
163:12,13;224:22;	187:9,13,15,16;188:1;	135:18;152:4	regulators (2)	releases (1)
247:4;264:3;276:18,22;	193:21;199:11,18;	reemphasize (2)	281:17;284:13	163:11
277:5	201:11,21;206:13;	29:16;30:8	regulatory (50)	relevance (2)
rate-controlling (1)	210:15;211:22;212:4;	reference (9)	12:7,8,19;13:2,13,22;	34:20;206:20
93:9	213:15;218:3;226:13,14,	34:12;60:17;86:1	17:2,3;18:12,14,22;19:4,	relevant (43)
rates (12)	16;227:7;232:16,20,22;	92:9;97:21;135:2;	15;24:13;25:9;41:22;	16:10;20:13;23:17;
24:21;68:11;92:12	233:1;237:2,3,7;239:2;	271:18,22;272:15	42:4,5;43:14,21;44:2;	26:12;34:6,7;53:8,8;
94:15,18;95:7,8;104:19;	244:19;248:10,14;	reference- (1)	46:7;47:3;63:20;64:12;	55:12;67:20;69:13;73:6,
106:14;145:6,11,13	255:13;256:11,11,1	16:5	66:7;68:17;84:7,14;	22;75:20;76:14;82:20,
rather (7)	258:1;261:21;266:22;	referenced (3)	108:6;138:7;174:1,3,5,9,	22;83:6,14;84:15;87:15;
49:13;101:15;126:3;	275:11;276:1;277:11,16,	86:5;92:1;149:1	13;197:5,20;205:15;	92:13,15;93:3,11;98:12;
160:1;192:14;204:20;	19,19;278:4;279:16;	reference-listed (13)	206:19;211:21;219:1;	99:4,5,11;111:12;112:7;
245:7	280:6,22;281:11;283:15,	39:11;87:2;88:12	221:5,13;222:15	120:5;141:3;157:1;
rating (1)	21;285:21;286:12,17	89:7,12,15;94:8,10;96:3;	225:15;265:7,21;	192:19;201:9;206:21;
129:18	realm (3)	97:6;98:1;99:16;109:13	285:18;286:6	207:7;209:11;210:2;
ratio (7)	22:17;226:5;251:5	references (1)	reject (2)	212:2;237:11;249:12
40:18;53:6	reason (5)	100:8	35:4;223:	reliability (1)
97:21;271:18,22;272:15	91:2;118:6;261:	refine (1)	rejected (1)	285:3
ationale (1)	265:15;276:19	67:13	112:22	reliable (3)
192:17	reasonable (10)	reflect (4)	rejecting (1)	192:16;202:18,22
raw (1)	42:14;79:6;80:14;	87:14;113:18;240:22;	258:12	reliance (1)
272:2	161:14;162:6;192:3,3,4;	277:16	rejection (2)	22:20
reabsorbs (1)	240:1;272:11	reflecting (1)	259:15;261:9	relief (2)
75:13	reasonably (1)	249:11	relate (1)	135:16;218:10
reach (1)	70:12	reflection (2)	161:21	relieve (2)
284:21	reasoning (1)	95:21;243:1	related (16)	17:2;262:3
reached (2)	118:16	reflective (3)	12:19;30:19;47:6,14;	rely (1)
51:5;232:19	reasons (1)	93:22;134:6;171:2	52:11;62:13;112:17;	179:9
reactions (2)	241:5	reflects (1)	122:15;126:7,7;159:3;	remainder (1)
78:4;169:1	received (3)	274:22	170:16;196:5;232:4;	85:8
reactor (1)	23:13;189:8;226:19	refrain (1)	249:6;263:5	remains (1)
105:6	Recently (6)	9:13	relates (4)	174:9
read (2)	33:5;47:12;62:4;88:6;	reframe	11:11;30:12,16;31:3	remarkable (1)
24:13;211:18	181:19;182:1	27:14	relating (1)	11:10
reading (2)	recess (3)	regard (10)	79:1	remarks (5)
159:20;209:14	65:3;116:8;188	14:17;23:11;26:3	relation (1)	10:1,3;18:4;280:1,2
ready (3)	recognize (1)	31:11,20;212:4;216:13;	161:20	remember (6)
17:19;26:18;209:1	284:	221:3;252:3;265:20	relationship (12)	63:22;107:14;108:20;
real (11)	recombinant (1)	regarding (7)	41:15;122:19;127:12;	131:16;233:21;234:1
40:3;43:4;63:1;88:5;	30:1	33:22;159:1,18;160:5;	195:5,16,20,21;199:9,	remind (1)
102:10;104:18;114:12;	recommendation (2)	204:10;238:14;251:19	12,13;262:6,7	63:21
115:7;193:5;254:20;	56:17;62:22	Regardless (3)	relative (4)	remove (2)
256:4	recommendations (2)	75:19;80:3;183	78:2;79:2;109:4;259:6	128:6,7
realistic (2)	23:3;113:5	regimens (1)	relatively (6)	reorganization (1)
123:1;131:17	recommending (1)	141:8	60:7;68:13;74:6	28:1
reality (7)	213:2	region (4)	75:13;186:4;192:16	reorganized (1)
75:15;123:20;124:3,	reconvene (1)	93:20,21;144:5;145:3	relax (1)	27:15
21;174:19;179:10;187:8	116:6	regional (6)	213:17	repeated (1)
realize (1)	records (1)	$81: 1,9 ; 93: 15 ; 141: 21$	relaxed (3)	128:21
15:10	57:17	163:7;246:15	186:20;213:22;214:2	replace (2)

80:17;205:2
replicate (1)
282:14
report (1) 17:18
reported (5) 50:3;51:13;91:15; 192:16;193:4
repository (1) 253:12
Reppas (1) 127:6
representation (1) 88:21
representative (1) 169:17
representatives (2) 174:4,5
represented (6) 90:21;91:1,13;97:2,3; 172:19
representing (3) 8:18;95:13;143:11
represents (4) 37:14,15;85:21; 164:18
reproducibility (1) 158:10
request (3) 19:8;24:18;213:1
requesting (1) 253:18
requests (1) 62:12
requirement (1) 103:9
requirements (1) 186:21
Research (26) 7:7,22;8:4,11;19:11, 16;25:7,9;45:1,5,15; 48:1;50:10;61:10;63:4; 64:8;103:12;113:9; 114:16;170:6,11;214:9; 235:21;236:3,15;279:22
reservations (1) 225:16
residence (1) 105:7
resource (3) 173:15;207:1;253:21
resources (3) 48:15;51:14;58:17
respect (1) 206:4
respectfully (1) 9:13
respond (2) 206:11;214:8
responded (1) 219:7
respondents (1) 88:10

Responding (4)
204:8;229:14;265:12; 268:17
response (10)
67:1,2;78:14;150:21;
187:11;203:13;262:5; 273:6;277:18;278:1
responsibility (1) 267:11
responsible (2)
173:11,14
rest (3)
119:17;145:2;148:4
restricted (1)
246:20
result (8)
14:6;76:10;77:18; 91:12;95:12;212:10; 229:10;271:8
resulted (1) 153:1
results (12)
50:6;54:9,10;91:18; 94:16,16;96:14;132:11; 163:3;193:13;233:19; 238:13
retested (1) 269:9
reveal (1) 93:15
revealed (1) 238:8
reverse (1) 14:15
review (14)
15:12;25:18;39:4; 45:19;64:12;177:18; 178:2;197:5;208:1; 209:15;218:12;225:15; 238:15;287:4
reviewed (1) 23:13
reviewer (5) 39:2,20;40:14,19; 195:3
reviewers (1) 34:1
reviewers' (1) 212:9
reviews (6)
13:13;19:4,13,21; 173:15;181:4
revising (1) 114:22
right (51)
14:14;28:18;41:8,18;
62:21;75:6;103:11;
110:11,17;121:20;
147:8;153:19;194:11;
195:14;196:13;198:7;
200:3,12;203:21;207:2, 6;209:19;213:4;217:3; 219:7,18;220:14,17;

221:7;227:8,12;230:9;
233:14,15;235:6,14;
240:6;248:12,14;252:8;
253:12;256:13;259:21;
260:14;264:20;271:10,
11;272:10;274:22;
275:12,16
right- (1) 184:20
right-hand (4)
73:10;78:8;80:6;
164:12
ring (1) 9:7
risk (17)
16:18;20:19;21:18;
23:15;27:6;44:12;66:13; 77:2;86:20;92:4;99:20;
100:6;215:12;237:6; 277:1,3,19
risks (5)
63:5,20;215:4,19,19
risperidone (1) 149:6
RLD (3) 16:6;39:10;109:13
road (4) 16:20;248:4;253:21; 266:12
Rob (11)
8:10;190:13;191:1;
198:4;203:11;216:1;
217:15;233:3;273:4; 274:17;278:19
Robert (3) 2:17;189:15;279:22
Rob's (1) 228:12
robust (4) 13:5;230:22;262:12; 282:17
Roche (1) 136:9
role (9) 26:8;30:21;31:18; 32:6;41:19;87:4;195:2; 205:1,1
roles (1) 86:17
roll (1) 168:1
Room (5) 1:17;169:12;215:6; 218:22;254:10
Roster (1) 2:1
rosuvastatin (1) 120:9
rotation (1) 243:15
rotational (1) 183:21
rough (2)

43:19;276:8	17,21,21;220:7;221:2;
roughly (1)	224:21;227:9,10,12,20;
70:11	229:9;233:18;234:3;
round (1)	241:17;246:6;258:14,
18:5	15;260:11,12,13;261:1,
Route (2)	8,9,12;270:19;271:1;
89:20;147:4	275:3;278:15,17,18;
routes (5)	282:15
101:13;113:15;147:3,	sample (2)
10,13	16:16;88:19
routine (1)	samples (2)
96:11	107:16,17
routinely	sampling (6)
63:18;68:6,12;82:3;	62:3;121:8,10,12,15;
96:8	181:15
RPM (1)	Sandra (3)
125:22	44:16;274:13;278:16
R-squared	Sao (5)
78:1	8:21,21;203:10;
rubber (1)	206:17;239:5
16:20	satisfying (1)
rule (1)	115:1
226:4	saturable (2)
run (8)	145:20;146:8
49:10,11;78:17,18;	saturation (1)
133:13;250:19;260:11;	146:10
282:15	save (1)
running (4)	282:5
127:2;149:13;150:13;	saw (11)
155:21	47:16;74:15;106:13;
S	183:14;190:14;221:3;
	232:5;243:11
SAD (1)	saying (10)
249:16	38:20;108:9;109:21;
safe (2)	209:10;214:1;258:13;
54:19;216:	259:16,20;267:5;275:19
safest (1)	scale (2)
131:6	81:10;168:15
safety (4)	scale-up (1)
16:19;31:6,11;221:21	139:9
sake (2)	scenario (7)
48:10;208:15	51:12;58:2;134:6,7;
salt (7)	218:8;226:2;250:20
57:16,18;76:21;	scenarios (5)
150:20;151:10;194:15,	57:10;129:6,12;
17	133:22;201:13
salts (1)	Schmidt's (1)
144:6	165:2
salt-to-base (5)	science (21)
56:6,9,18;58:3,11	10:20,21;13:20;17:10,
same (71)	10;18:12;25:9;30:7;
38:4;39:10,10,12;	64:6;103:2;108:10;
41:6;51:5;53:5;60:17;	109:2;115:5;173:22;
61:21;76:3;77:19;82:8;	177:19;211:8;232:16;
88:13;101:18,20;	281:12;283:16;285:18;
108:21;109:4,5,6;	286:6
118:22;119:13;120:12,	science-based (3)
13,14;121:19;123:20;	92:21;218:12;226:11
125:7;129:1,8;134:20;	Sciences (1)
135:4;136:20;137:9;	178:2
166:8;168:9;189:19;	scientific (8)
194:6,8;211:2;216:16,	115:1,2;171:4;173:6;

$231: 7 ; 232: 21 ; 236: 22$	226:9;235:13;244:14;	189:8;200:21;235:4;	131:9	$77: 13 ; 81: 10$
8:22	272:5	253:17;274:1	shy	implified (3)
scien	sensit	shape (3)		48:5,9;165:9
112:15	51:22;52:5	125:21;195	side (34)	simplistic (1)
scientists (8)	195:7;197:17;206:11	share (12)	14:12,13;15:12;22:12;	101:16
47:11;50:6,17;51:3;	sensitivity (38)	12:22;13:3;18:20	70:22;73:7,11;78:8;	simply (2)
152:16;200:18;241:21;	40:10,12;41:2;5	45:14;49:15;63:1	79:22;80:6;118:2;119:1;	198:11;229
267:12	52:3;53:7;54:17;58:7;	88:22;189:14;252:15,19,	25:19;126:20;127:14;	simulate (4)
scope (1)	59:3;70:2,6;71:2;73:14;	21;270:15	128:7;135:7,8,14;136:7;	57:15;71:18;14
133:3	80:1;132:16,18,20,21;	sharing (6)	137:13;138:2,6;159:6;	184:15
screen (1)	133:4;141:5;151:22;	171:7,9;180:3,	164:12;166:15,17;	simulated (10)
204:8	153:13,14;154:11;195:4,	251:19;252:3	184:20,21;189:10;	71:4;77:8;81:1
screensho	4,9;197:3,15;198:19	sharp (1)	221:21;252:10,17;274:3	0:21;91:13;97:19;
167:18	224:3,5,7,9,20;225:5,9;	188:9	sides (3)	107:11,13,16;202:9
se (1)	282:16	shed (1)	267:11;274:4	simulates (1)
158:21	sentence (1)	212:17	signed (1)	71:9
seat (1)	170:19	shift (5)	11:4	simulating (1)
9:19	sepa	26:16;27:2,3;277:16	signifi	243:16
seated (2)	34:15;83:11;102:2	22	41:20;50:12;55:9;	SIMULATION (104)
65:5;188:18	118:19;126:6;128:4,5;	shifts (1)	69:14;74:18;78:1;	1:6;10:7;12:11;13:1,4,
Second (16)	183:19;210:20;240:17;	272:19	107:22;135:19;144:11;	11;14:9;15:11;17:11;
24:10;35:20,	242:14	shoot (1)	153:7;174:20;180:5;	18:11,22;19:2,18;20:3,7;
55:15;61:22;62:16;67:2	separated		286:3	21:5,13,18;31:21;32:8,
117:18;136:9;158:2;	167:21	short (3)	significantly (4)	18;42:17;45:6,13,17;
176:14;182:22;222:7	separately	46:21;156:16;18	52:6;56:20;70:14	47:2;49:2,4;50:7,9,13;
237:1;269:18;285:8	83:11		104:5	51:2,4,21;54:4,11;56:16,
sections (1)	separa	2:8;277	silence	17;57:17,21;58:1,5,6;
82:14	126:10;245:1	should	9:6	61:8,11;63:19;64:1,11;
seeing (5)	separation (2)	161:5	silico (10)	65:21;70:9;71:1;72:2;
13:6;115:1;143	159:9;167:5	show	38:14;67:10;171:16;	73:3,7,8;75:19;77:5;
185:14;287:2	separations (1)	31:5,10;	173:3;174:18;175:3,5,	78:15,18;80:6;87:16;
seemed (1)	136:4	14;60:5	14;179:20;240:9	88:8;89:3;92:22;95:9;
190:19	series (1)	101:10;103:14,18;104:4,	Silver (1)	97:19;98:3,18;100:4;
seemingly	107:6	8;106:6,12;107:5	1:18	102:9;105:13;108:13;
229:8	serve (2)	111:13;118:15;122:19;	Simcyp (7)	111:11;114:2;127:11;
seems (11)	69:6;84:8	149:10;152:9;153:6;	2:12;8:14;1	136:7;139:5,8,11,14,20;
$41: 19 ; 43: 13,16 ; 88: 18$	serving (1)	160:13;163:16;165:14;	118:3;156:22;252:15;	149:10;151:15;153:4;
$199: 4 ; 220: 4,18 ; 232: 11$	265:10	279:16;282:7	278:6	154:8;155:9,16;184:19;
242:1;247:16;268:3	session (7)	showed (25)	Simcyp's (1)	197:14;214:16;215:18;
sees (2)	65:6,6;117:6;188	32:19;33:6;34:2,9,13	138:6	217:4;241:14;243:12;
28:22,22	21;189:2;206:14	35:7;37:2;41:2;44:4;	similar (23)	270:8;273:10;280:9;
seizure (1)	set (27)	63:22;71:2;77:5;83:22;	31:9,10;39:13;56:13	284:2,5,6,8,20;286:8;
277:19	24:1;26:12;34:2	132:17;154:11;167:11;	74:17;81:21;97:10;	287:3
select (12)	35:11,12,15,18,20,21;	169:6;179:2;187:12;	130:11;134:20;147:5,	simulations (29)
34:3,6,22;35:11,17;	36:1,2;38:10,16;66:10;	194:22;195:3,5;222:6,7,	12;148:22;153:20;	12:17;19:7,12,22;
36:20,21;42:19;87:9,10	79:5;110:20;215:14;	8	156:21;157:21;159:21;	20:4;58:10;63:15;71:11;
177:13;26	230:3;231:10;238:16	showing	161:9;178:2;218:18;	73:12;75:21;77:7;80:17;
selected (2)	240:19;250:4;253:11;	68:22;71:2;76:2;97:8	219:6;235:3;274:22;	85:16;86:18;87:1,3;
36:12,13	254:8,19;279:3;280:22	104:10;146:5,16,17;	275:6	88:4;92:4;101:5;107:15;
selection (4)	setting (16)	153:16;154:3;155:5	similarity (1)	131:12;133:13;150:11,
33:9;34:19;184:5	25:20;33:10,12;38:3	184:18;186:17;197:16;	74:20	14;152:10,14;153:14;
217:7	7,22;112:12;161:6	275:19;277:21	Similarly	154:18;163:16
selections	162:22;163:2,8,22;	shown (10)	146.	SimulationsPlus (3)
68:9	164:19,21;166:14;280:6	34:11,15,	simple (8)	2:21;8:16;138:16
self-regulation (1)	settings	79:18;87:17;164:14	162:2;184:9;194:10;	simulator (2)
77:22	38:16	170:19;224:20;263:6	198:6,11;208:7;225:4;	111:8;252:10
semantics	seven (6)	shows (17)	229:5	simultaneously (1)
110:2	22:4;28:12,	$20: 11 ; 21: 20 ; 38: 13$	simpler (6)	224:16
send (2)	$122: 3 ; 256: 1$	$41: 12 ; 57: 7 ; 70: 5,9 ; 75: 4$	106:5;108:5;128:10;	sing (1)
42:1;168:6	several (15)	6;80:1;86:13;109:22;	143:18;182:6;244:20	9:7
sense (11)	36:12;46:22;52	121:2;155:1,3;185:13;	simplest (2)	single (9)
$31: 2,16 ; 37: 12 ; 103: 21$	60:18;61:11;68:22;75:1;	195:11	66:18;91:5	49:10;70:22;74:1;
104:18;204:17;207:4;	154:18;174:5;180:1;	Shriram (1)	simplicity (2)	170:18;171:4,4;180:9;

223:6;25	53:15;54:2;186:5	solution (10)	spanning	speed (1)
single-point (1)	208:	92.19.93.	154:4	118:1
35:	sn	82:1	sp	ing (1)
site (7)	79:14;88:20;105:9	243:22;244:2;279:4	65:19;203:20;207:7	155:22
74:10,16,18;	34:20;145:16;185:13;	solutions (1)	53:10;282:1	speeds (2)
2:7;113:14				183:21;2
sites (2)	smaller (4)	solve (1)	44:22;85:11;100:1	spend (3)
(2)	86:3;195:8;	240:1	17:7;138:14;156	138:1;170
ting (2)	small-scal	solved (1)	speakers (9)	spending (2)
29:7;279	$175 \cdot 21$	227:22	7:10;9:8;65	101:2;139:
situation (12)	S	some	38:21;188:6;189	spent (1)
37:20;38:12	17:6	122:6	219:17;279:17	252:22
88:5,21;97:10;133:1	so-call	so	speaking (1)	spirit (1)
165:16;182:8;194:1;	39:9;52:17;86:8;91:	71:5;96:18;274:	202:13	10:18
278:5	:16;107:15;228:1	Someone (7)	Sp	split (2)
situations	257:14;274:1	29:18;185:19;186:16;	231:19	143:2,3
94:22;96:7;	So	87:3;190:21;232:17;	special	spoke (1)
229:19		262:17	1:3;39:21;20	11:3
six (9)	sodium	Sometime	06:14;218:5	sponsor (6)
40:9,	49:17;50:	28:6,8;29:17	species (5)	34:5;35:6;
18;122:17;132:6;260:10	51:6;	some	19:3,9;263:22;264:5,	229:3;
size (85)	soft (1)	21:10;40:3,5	9	sponsoring (1)
16:16;2	4:9	87:21;102:1;123:1	specific	251:20
37:11,13,13,14;38:8,10,	software	132:6,9;193:1,3,4;	15:18;22:11;	sponsors (1)
17;40:15;41:4,16,19;	24:3;37:6,9,1	208:22;209:5;212:7,8,9;	49:18;50:14;67:20	39:10
43:3;46:17;52:4;55:8;	12,22;42:20,21;51:1	225:2;261:22,22	110:5;119:6,8,1	sponsor's (1)
59:6;68:10;88:19;96:21;	72:22;75:7;78:21;117:9;	somewhat (4)	124:10;128:15;144:4,6;	155:15
121:13;152:2,4,6;153:2	156:13;158:2;160:1	166:16;211:7;255	154:8;157:20;179:13;	Spring (1)
6,15;154:8,12,21;	162:4;166:6;168:9	262:8	192:1;201:5;207:2	1:18
161:20;162:1,4,8;164:3;	169:8,10;172:19	somewhere	214:19;215:16;225:15;	squares (2)
179:4;184:16;185:6,8;	184:15;185:10;193:	37:7;68	239:10;253:14,14,21;	91:1;94:6
186:6,21;187:4,10;	223:17,18;230:20;231	soon (4)	281:7	Squibb (1)
190:17;191:1,2,6,12,18	6;238:12;251:22	:20	specif	263:1
192:11,14;193:11;	253:14;266:1;268	129:8	12:19;49:19;8	SS (1)
194:7;195:2,6,7,11,14	269:8,9	SOP	0:4;170:14;272:22	105:8
17;197:2,3,6,16,20;	software-sp	2:3,	285:	stability (2)
198:2,4;199:8,11,22;	3:19	sophisticated (2)	specificatio	87:12;96:
200:1,19;203:21;204:4;	solid (9)	219:8;252:11	26:13;33:10;34:7	stable (1)
207:12;208:7,8,10;	5:3;61	sorrow	35:12,13,14;38:3,7,8,16;	144:14
211:4;219:5;224:11,	200:2;216	30:5	9:1;44:12;52:14;73:22;	staff (1)
230:5;238:16	233:17;280:13;285:1	sorry	83:15;84:4;87:13,14;	47:18
sizes (5)	solubility (95)	30:5;44:	93:3,11,13;95:4,11,14,	stage (14)
135:3;153:1	24:16.34.5.37	244:	19;96:1;98:22;99:4,5,	25.21-43:
185:11;192:15	17;41:7,14,15,17,18	sort (20)	12;100:1;111:16;131:6;	4:1;86:19;89:3,6
skeptical (1)	51:8,9,10,17,18,22;52:	106:2;15	197:6,21;213:17;230:5;	99:15;205:11;221:13,
123:14	55:8,22;56:1,9;57:7,11,	229:15;232:8;236:21;	283:2;284:1	16;226:3;227:1;253:14
slide (12)	12,13;58:9,16,18,22;	237:13;238:2;249:10;	specifications (22)	stages (5)
20:11;63:22;75:3;	59:15,19;60:7,19;74:6,7,	269:5,9,11;272:12,14,	16:10;23:16,17;24:14,	86:7,15;147:9;170:21;
104:8;138:19;139:3	8;75:11,11,18;76:22;	19;283:8,10,22;285:15;	1;33:12;34:3;35:19,21;	176:1
143:14;170:19;172:21	77:1,17;89:21;90:8,16,	287	36:2,3;69:13;83:6	stakehold
183:13;187:12;205:7	18;91:8,9,11,11,17,20;	sorted	84:15;98:12;110:21	23:6;174:3
slides (15)	102:6;112:8;119:11,12;	246:14	113:1,2;140:8;150:2;	stakeholders (5)
18:10;29:15;32:19;	162:17;192:14,17,18;	sounds (1)	190:18;238:17	12:15;19:5;64:10
33:6;77:5;79:18;85:7	193:2,5,9,11,16,20	201:18	specifies	205:21;251:18
124:15;138:20,22;	194:6,9,15,16,19;195:2,	source (2)	$275 \cdot 7$	stand (1)
170:2;172:16;177:16;	5,8,12,18;199:8,10	183:3;2	specify	254:12
187:19;195:3	201:17,18;203:2	so	5:10	standard (6)
slightly (2)	206:10;208:17;224:10;	60	specs (1)	4:20;72:21;150:1
186:5;235:18	230:6;245:16,20;246:3;	space	206:21	151:5;153:10;184:13
slow (6)	247:16,17;248:1;264:3;	21:11;27:8;	spectrum (1)	standardized (1)
49:17;50:21;111:16;	265:2,3;269:11	131:6;164:1,22;168	,	181
233:7;247:4;272:18	soluble (2)	174:14;197:9,17;264:11,	speechless (1)	Standards (12)
slower (4)	79:13;203:1	18;265:6,10;267:8	30:3	7:7;8:1,11;19:12;20:2;

45:1;50:11;10	282:6	188:7	studying (2)	168:16
112:12,13;280:1;283:9	Stephan	strong (1)	15;103:1	uccess (15)
standing (3)	165:2	77:15	stuff (2)	16:15;37:2;72:6;
71:6;100:22;155:9	steps (5)	stronger (1)	43:6;179	117:22;118:1;141:10;
standpoint (1)	14:20;26:4;180:21	8:22	Suarez (2)	145:3;149:16;155:20;
186:19	283:14;284:4	st	274:13,13	173:20;197:8;258:7;
stands	stero	229:21;233	sub	276:18,21;277:5
170:8	90:5	struck	24:6	successful (5)
standup	still (37)	4:1	sub-areas (1)	118:4;152:17;203:20;
28:15,16;29:8,	28:21;33:19;63:21	structure (3)	189:22	207:20;268:9
158:4	73:18;76:8;78:3;83:7;	218:19;239:	sub-bullets	sufficient (4)
start (28)	106:1;113:7;122:8;	structured (4)	204:21	73:18;229:19;276:1,2
7:17;29:3;83:13;86:3;	140:10;145:14;165:16,	172:10,20;219:4,	subclass (6)	suggested (3)
87:1;89:5;93:12;101:2;	17;166:14,15;168:10;	struggling (1)	112:5;113:	58:7;59:5;76:12
112:4;130:20;141:20;	188:6;194:1;198:22;	265:18	207:12;218:2;264:16	suggesting (1)
142:8;154:15;176:5,9;	200:12,16;205:20;	stuck (1)	subclasses (3)	58:21
178:9,10;185:14;188:9,	209:19;227:17;228:6;	260:18	111:22;113:7;213:	suggests (7)
9,19;190:11,13,15;	243:17;247:19;249:20;	student (1)	subclassification (1)	73:8;75:7;80:3;186:6,
193:17,19;228:3;234:15	250:19;256:6;262:7;	106:22	112:11	15;191:11,14
started	5:18;267:19,	students	subcompartments	suitable (1)
89:15;105:1;114:15;	20;280:13	110:14	159:5	96:21
151:18;172:11;180:1;	stole (1)	studied (1)	subject (7)	sum (1)
253:7;278:7	183:13	178:16	61:21;121:11,19	155:16
starting (11)	stomach (33)	studies (58)	122:4;172:17;178:19;	summaries (1)
78:9;87:12,19;93:18;	55:17;56:19;59:8;	15:17;16:	273:1	181:5
101:12;130:11;139:6,	70:7,10,13;71:9,19;	20:4;21:9;39:15;46:1,1;	subjected (4)	summarize (1)
21;140:15;141:17;175:9	72:19;74:6;75:10,18;	48:1;49:12;55:5;61:12,	86:10;87:7,19;92:11	63:18
starts (3)	76:19;77:1;105:19,22;	12,15;62:9;63:3,16;	subjects (7)	summarized (1)
86:5;154:12;203:21	106:1,3;122:4,6;143:8,8;	64:8;66:2,9,11;68:16;	47:14;55:17;59:8	32:20
state (17)	144:4;150:19,19;151:7;	69:4,7,1	8;149:19;155:	summarizes (1)
80:15;103:4,8;104:7;	161:11;202:16,19;	80:17;82:1;85:1;86:11;	272:3	177:21
106:4,5,6;134:12,18;	231:17;246:22;255:21;	94:17;105:22;108:1;	submission (6)	summary (8)
150:20;151:3;177:21;	256:1	131:22;141:9;179:13;	34:2;44:3;155:10	20:11;33:17;42
232:15,19;237:21;	stood (1)	181:9,13,16,20;182:18;	223:10;274:8;277:21	44:7;99:14;155:4,9;
281:22;283:5	27:1	214:10,14,16;215:21;	submissions (13)	169:6
statement (5)	stop (2)	219:2;222:5,8,16,17;	12:13;17:1;23:14,15;	Sun (2)
170:18;171:9,2	230:18;270	225:21;239:8;259:4;	32:18,21;33:3,7,22;42:7;	254:14,14
191:22;242:22	stopping (1)	263:20;274:2;275:21;	209:16;248:12;253:12	SUPAC (2)
state-of-the-art (1)	28:20	284:11	submit (8)	93:6;96:13
181:6	storage (1)	study (91)	:18;14:4;39:10;	super (2)
states (2)	56:7	16:14,15;20:8;21:16,	43:10,11;248:17;	50:10;190:4
22:15;201:8	story	16;30:10;31:16;38:5,8,	267:15;282:2	super-imposable (2)
static (1)	125:7;229	9;53:10,11,12;54:9;	submitted (3)	73:10;76:4
123:21	straightforward (1)	55:7;61:18;62:4,5,20,20;	269:8;274:19;275:14	supersaturation (2)
statistical (4)	52:7	63:2;69:18;70:9,16,19;	submitting (1)	62:14;124:12
104:15;166:2;262:	strategies	71:8;72:8,13;73:8,12;	133:8	supplement (1)
271:14	99:2	76:9;79:9;82:7,12;	sub-points	263:5
status (4)	strategy (5)	108:3;110:15,17	231:12	supplementary (2)
25:22;32:17,18	35:6;89:11;91:20	124:20;130:5,9;134:2;	subpopulations (1)	265:6,11
177:18	99:18;100:2	135:4;139:16;142:14,	15:18	suppliers (1)
stay (3)	strength (10)	15;152:17,18;153:5;	subsequent (3)	86:1
120:12;145:11;255:22	80:8;89:20;90:6;94:6,	163:4;164:15;166:21;	68:9;105:12;111:15	supplies (3)
steal (1)	7,9,10,11;97:20;109:19	184:3,3;187:5;196:8;	subsequently (3)	74:11,16,18
23:20	strengths (10)	204:16;205:12,14,14;	72:7;108:19;114:18	supply (2)
steep (2)	21:9,10;92:7,10,16,18,	212:7;214:14,16;218:6,	subset (2)	175:20;253:19
41:16;78:	18;93:5;97:14,18	9;219:2;220:22;222:4,6,	203:19;266:6	support (22)
steering (1)	stretch (2)	7;226:15;230:11,17;	substance (11)	17:3;18:6;24:12,14,
173:13	64:22;165:20	237:14;238:22;239:4;	15:5;50:4;51:7;55:20;	16,18,19,21;44:11
step (14)	striking (1)	248:22;249:3,21,22;	57:1;62:15;163:3,11;	64:14;137:22;208:5;
15:2;41:22;71:15;	133:11	250:20;255:1;256:14;	191:6;194:4;217:12	211:20;213:1;219:5;
110:9;112:11,19;126:9;	stringent (1)	260:9,11;268:20;269:1,	substrate (1)	223:1;225:14;226:8;
$130: 21 ; 132: 1 ; 167: 21$	261:17	5,14;272:7;282:22;	201:1	231:2;267:15;282:21;
171:19;180:14;244:17;	stroke (1)	$284: 15$	substructure (1)	283:3

supporter (2)	176:15,16,20,20,22,22;	technique (1)	therapeutic (5)	thrust (1)
21:7,7	183:9;244:20;247:13;	54.1	14:21;20:6;54:1	267:14
supporting (2)	260:6	te	:1,5	hunder (1)
155:11;283:1	system	13:11;243:14	apeutically (23:20
supportive (2)	236:6	Technology (7)	277:17	Thursday (1)
82:15;231:13		56:8;165:18	erapeutics (1)	1:10
supports (1)	T	21:11,19;267:10	260:3	timeline (2)
226:9		-11	therapy	212:9;218:14
supposed	table	telling (3)	30:	times (6)
72:4;169:16	7:16;51:	225:13;244:19;258:10	thereby	49:6;82:
suppress	159:20;282:	tells (3)	166:9	175:19;212:16;228:21
71:10	tablet (4)	11:9;93:17;195:2	there'd (tissue (1)
sure (16)	90:5;124:19;	temperature (3)	11:7	225:7
13	179:8	:19;53:14;135:	erefor	title (2)
141:2;145:	tablets (14)	template (1)	38:1;87:15,20;157:11;	25:16;85:15
214:1;215:7,22;217:17;	48:19;49:17;50:1,16	37:3	203:2	Tmax (5)
228:4,7,11;248:3;251:21	18;53:13,17,19,20,22;	term (5)	thermodynamics (1)	125:5;154:16;16
rface (1)	54:1;55:18;56:6,19	102:13,	285:9	277:16,22
245:6	Talattof (1)	226:13	thinking	TNO (1)
surprising	106:22	terms (24)	13:18;43:11	177:1
79:19;229:10;255:19	talk (29)	58:1;66:6,18;89:7	196:15;197:10;202:15,	today (42)
surprisingly (1)	17:21;25:19;45:5,15	93:18;103:5;106:3	16;249:10;273:15;	7:8;9:5;11:16;12:10,
229:4	59:18;66:2;69:9;83:9	116:3;117:16;120:4	281:20;285:13	21;17:8,22;18:16;24:1;
surrogat	86:17;97:13;101:8;	193:9;197:1;202:18;	third (5)	5:16;45:5,7;46:4,13,20;
69:6	102:18;108:13;109:8;	204:21;217:7;230:20;	25:5;39:2,3;62:20	60:5;65:19;66:15;68:18;
surrogate	110:3;111:21;156:6,13;	234:6;247:10;248:5;	241:16	82:2;85:6,14;105:3;
84:22	158:12;170:9;183:15;	265:14;268:18;275:10;	Thomas	106:16;111:18;113:22,
surveillan	189:7,9;190:9;204:13;	277:21;285:2	2:8;8:17,156:7	22;114:20;170:13;
16:19	206:20;247:21;255:10;	test (34)	thorough (2)	72:19;176:13;178:14;
survey (280:8	26:19,19,19;51:17,18;	36:4;225:20	179:2;205:19;213:15;
33:5;88	ta	53:18,21;84:1;92:20	though	214:2;218:3;219:17;
233:9	115:9;26	93:2,13,19;95:1,5;96:16,	11:13;52:1;152	232:6;264:16;267:18;
usie (10)	talkin	18,19,20;97:4,12,21;	189:18;220:7;265:14;	268:8
11	74	98:18;99:1,22;109:12;	277:13	today's (4)
44:22;64:19;206:4	20;103:1,7;105:13	135:1;142:17;149:8,11;	thought	12:14;18:19;
224:14;280:5	108:20,22,22;109:3,6;	158:17;271:18,22;272:3,	03:21;192:18;214:4;	86:16
Susie's (4)	110:2,5;112:4,12;114:3;	15	245:6;252:8;255:20;	together (30)
192:22;216:10;248:9	144:3,10;183:18;	tested	262:19;276:11	11:16;17:6;27:19
269:20	190:16;196:14;198:2	8;12;	thoughtfulness (1)	2:1,4;37:5;39:20;
suspect (1)	202:14;207:3;210:18;	97:3,11;99:12;249:	286:21	40:10,14,21;43:12,18;
191:4	211:2;225:17;227:6;	testing (5)	thoughts (4)	83:14;126:5;127:3
suspensio	241:20;263:6;264:2;	15:22;20:14;26:	13:18;14:5;66	157:12;168:13;169:11;
48:19	273:5	208:17;247:2	115:17	172:7;180:7,10;189:14;
switch (1)	talks (3)	tests (2)	thousands	195:22;208:13;214:22;
58.14	176:12;187:1;206:3	164:16	49:11	215:1;229:9;238:17;
symbol (2)	$\boldsymbol{t a p}(2)$	thanking	three (27)	255:15;267:17
41:9;195:	181:10;	286:19	19:14;2	told (4)
system (25)	targ	thanks (6)	36:21;41:7;62:12;65:2,	11:3;51:21;54
20:22;21:1;73:1;	66:16;71:21;89:9;	17:12;156:10;169:13;	7;81:4,5;94:2,3,4	204:19
118:18;119:3;120:1,12	141:6;227:14;228:9;	269:17;279:16;287:6	115:21;117:15;119:2	tolerate (1)
126:10;136:3;176:4,19;	229:3,4	theme	121:3;125:3;128:16;	249:5
177:1,6;178:7,8,14;	targeted (1)	26:5	162:5;189:3;209:16;	tomorrow (4)
183:4,19;184:1,9;	16:18	themes	222:4;233:6;253:5;	17:16;234:1
219:22;240:4;247:11;	task (3)	36:9	274	286:
260:4;267:1	31:7;95:3;253:13	theologi	three-compartmental (1)	tongue (1)
systematic (2)	teal (1)	201:16	166:19	10:9
131:10;167:7	94:9	theoretical (5)	throughout (13)	took (2)
systemic (8)	team	37:11;172:3;228:22;	86:19;89:4;170:	37:18;107:
21:7;143:17;145:4;	170.1,180.6,21	236:9	171:1;172:17;173:1	tool (23)
148:7,16;159:8,15;	Technical (2)	theoretically (2)	176:12;198:7;205:18;	23:11;
211:10	85:3;189:10	213:22;246:2	219:20;263:15,19;268:8	44:11;45:22;46:2,5,8
systems (13)	technically (1)	theory (2)	throw (1)	47:10;55:16;87:5,11;
22:20;137:20;169:4;	165:14	229:6,7	235:10	99:5,16;100:5;132:21;

149:15;150:1;176:17;
235:8;243:21;280:22; 282:3
tools (38)
14:9;18:12;21:8;66:4, 12,19;83:7,12;89:16;
170:9;171:14;173:1,2,3, 3;174:19;175:1,2,3,3,6, 14;176:1,8,15;177:11, 13,22;178:4,9;179:21;
237:5;244:15;264:12;
281:2;283:17;284:18; 286:8
top (14)
22:18;41:7;65:14;
74:14;77:12;133:14;
134:8;135:12;172:21;
181:7;186:18;189:13;
230:7;260:5
top-down (2)
32:3,4
topic (7)
11:2,10;13:16,19,21;
25:19;45:9
topics (6)
9:4;19:9;117:15; 145:19;170:12;181:6
total (1) 193:16
totality (2)
208:4;265:10
totally (2)
226:4;279:10
tough (4) 62:1;201:7,8,9
toward (1) 206:2
towards (2) 220:18;266:10
trace (2) 249:1;253:15
tract (19)
81:3,15;103:4;108:16; 113:14,17,20;121:3; 123:4;159:4;163:5; 177:2;179:6;182:6; 216:14;220:7;245:10; 255:6,13
traditional (11)
26:17;84:6,12;148:14, 19;166:1;233:6,16,19; 272:11;276:10
tramadol (1) 131:10
transcribed (1) 190:10
transfer (3) 74:10;126:18;176:20
transform (1) 170:19
transit (8) 103:6;105:10;143:1,5; 144:1,2;159:10;181:21
translate (10)
12:7;74:21;76:12;
84:3;157:17;178:17;
182:7;194:12,16;245:12
translating (1) 31:16
translation (1) 178:11
transparency (2)
158:11;169:11
transparent (1) 168:3
transport (4)
100:18;104:22;246:2; 285:6
transporter (4) 144:19;148:2;216:19; 247:12
transporter- (1) 201:2
transporters (8)
62:10;144:20;146:3, 14,20;159:16;214:14; 217:11
transporters' (2)
214:17;216:13
traveled (1) 279:18
treated (4) 53:17,19,22;54:1
tree (1) 177:12
trees (1) 176:3
tremendous (1) 32:14
trend (1) 29:11
trending (3)
28:20;32:12;33:16
Trevor (1) 136:12
trial (12)
31:5,8,10;49:10; 75:22;107:12;119:16; 149:13;150:4;153:13; 155:3;273:10
trials (8)
49:12;87:10;139:15; 142:19;149:9,14; 155:22;156:2
tried (8)
37:4;54:18;93:1; 112:20;129:12;133:9; 151:15;237:3
trigger (1) 163:6
tripled (1) 33:19
trivial (1) 181:14
true (11)
88:21;101:13;108:7;

113:14;187:10;198:5, 13;246:5,19;248:1; 257:1
trust (7)
42:10;82:12;190:5;
201:12,14;212:10;218:5
try (17)
101:1;128:18;132:14;
165:22;167:13;204:9;
231:3;232:9;238:18;
240:19;248:13;250:6;
261:11;265:21;268:13;
271:8;284:6
trying (34)
66:18,20;67:2;70:8;
82:21;91:3;102:2;
104:20;110:18;113:22;
117:21;146:1;147:17,
21;148:10;155:18;
175:22;178:7;179:5;
183:16;189:18;196:7;
208:6;227:14;240:8;
244:13;253:11;270:2;
271:4,4,16,19;272:22;
284:21
tube (1)
105:5
tune (1)
194:2
turn (2)
9:10;279:21
twice (1)
61:21
twister (1)
10:9
two (64)
9:14,17;23:5;34:11,
14;35:7;36:20;38:6;
40:13;41:6;51:3,4,10;
54:2;55:20;57:1,3,6,6,
16;59:11;60:3;66:20;
73:3,17;74:11;83:11;
86:7;96:6,11;108:19;
109:4;124:15;133:12;
134:16;135:2,14;
160:18;177:18;206:3; 209:16;215:12;224:6,7; 225:7,10;229:8;231:12; 232:21;234:13;236:18, 21;241:16;244:13,14; 249:4;253:5;254:2;
258:5;259:8,16,19;
261:11;274:16
two- (1)
166:18
twofold (1)
259:1
two-state (1)
53:21
type (31)
13:1;15:10;45:22;
46:5,8;48:13;49:9;54:3;
55:16;60:1;80:16;

104:15;105:6;121:4;
122:21,22;131:3;133:1;
141:12;165:13;214:18;
223:4;237:14,16;238:5, 6;242:9;272:12;280:21;
283:2;286:22
types (6)
61:6;63:11;96:11;
151:3;236:18;283:3
typical (1)
104:10
Typically (7)
14:10;69:4;78:17;
83:9;182:17;183:15; 265:1

\mathbf{U}
Uhl (5) $3: 4 ; 9: 21 ; 10: 3,4 ; 18: 16$

ultimate (3)
44:8;98:14;135:9
unappreciated (1) 200:8
unbiased (2) 167:7;279:11
uncertain (1) 193:5
uncertainties (5)
40:6,7,8,10;132:22
uncertainty (7) 12:7;17:2;40:2;
165:17;273:14;281:5,14
under (7) 62:6;66:10;71:3; 178:16;201:13;218:4,8
undergo (1) 144:9
undergoes (1) 146:7
underlying (2) 100:20;239:22
under-prediction (1) 133:3
under-predicts (1) 57:8
understandably (1) 252:22
understood (5) 160:18;162:9;163:8, 21;226:13
underused (2) 88:8;100:5
unexpected (1)
198:12
Unfortunately (2) 170:1;254:7
unique (5)
36:11,12;37:1,19,20
unit (1)
202:5
universal (1) 238:19
universities (2)
172:17;180:13
University (9)
2:3;8:7;61:18;103:12; 114:17;127:6;133:6; 164:7;254:14
unknown (2)
90:7;133:1
Unless (4)
227:22;252:21;
258:20;274:11
unsatisfied (1) 229:15
untreated (2) 53:19,22
unused (1) 88:18
unusual (1) 185:14
up (52) 11:4;27:17;54:2; 68:22;74:3;76:5,17; 78:20;108:4;118:1,9; 123:22;125:15;127:21; 128:10;131:14;136:18; 139:8;142:9,16;146:9; 155:16,22;157:7;169:3; 188:17;198:3,4,9; 199:10;200:14;220:13; 222:14,20;225:18; 227:5;240:20;241:11; 243:7;248:15;249:1; 250:6;253:11;254:8,12; 257:12;271:1;278:10, 21;280:6;282:7;286:13
update (3) 45:12;174:8;206:15
updated (2) 267:3,6
upfront (1) 229:15
upload (1) 252:14
upon (4) 11:18;14:19;179:9,14
upper (2) 95:10,14
Uppsala (1)
114:17
upside (1) 281:16
uptake (1) 115:2
uptakes (1) 144:19
use (100) 13:20;14:1;19:17; 21:17;35:17;36:11,14, 15,17,20;41:9,10;42:12, 20;43:7;45:22;46:2,8; 47:8;57:7;64:15,22; 66:11;68:5;69:21;76:15; 80:16;83:4,16,19,22;

84:8;88:3;89:10;98:2;
102:14,19;109:15,17;
112:14;128:3,15;129:2,
8,14;132:14;136:14;
137:8;139:8;140:22;
142:14;151:15;157:18;
164:21;166:6;169:2;
172:3;176:17;177:4;
183:2,4;185:5;187:2,3;
191:18;192:11;206:8;
218:21;223:14;229:1;
235:8,12,13;240:19;
250:15;251:8;254:18;
255:3,7,8,11;256:6,19; 257:20;259:3;262:7;
264:18;265:5;266:8;
274:4;275:10,20;
276:22;277:3,19;278:4,
17;282:4;284:18;287:2
used (72)
16:15;20:4,7,13,15,16,
19;21:1,5,8,14;33:11;
37:21;38:4,17;46:16;
47:6;52:13,16;54:20;
55:16;60:1;61:14;65:21;
67:4;69:20;71:13;81:4;
88:16;89:17;90:14;93:6, 7;94:18;96:8;100:8;
105:3,7;110:21;114:19; 120:20;130:18;140:14;
141:5;151:13;153:13;
154:8,9;158:13;160:15; 161:9;164:20;171:14;
175:15;176:2;180:7;
183:10;184:10;185:20;
213:1;221:19;222:4;
227:15;228:20;233:6; 244:12;270:7;274:21; 275:2,3;279:13;282:21 useful (12)

44:3;217:12;235:5;
240:18;242:18;244:7; 254:16,17,22;277:11; 282:4;284:8
useless (1)
234:9
User (2)
61:9;167:14
uses (1)
46:5
using (71)
9:13;14:9;21:21;24:7;
33:7,8;34:2;35:7;37:7,
10,22;38:4;40:4,20;
44:6;54:4,17;58:17;
72:18;83:13;84:21;87:5, 10;88:11,14;97:15;99:2, 12;104:17;119:18; 121:10,11;123:8,13; 128:14;129:17,17;130:3, 13;131:22;132:5; 133:16;137:11;141:1; 142:8,21;151:18;161:1;

177:3;184:13;190:1; 200:22;205:11;221:9,10, 11;222:3,16;228:3; 238:12,12;243:15,15; 252:15;258:14;261:6,7, 7;268:2;269:8;279:6
USP (7)
109:12,15;110:10; 202:7;231:19;242:11; 244:7
usually (11)
14:11;40:1,1;48:14; 67:21;103:8;115:9;
127:15;167:15;193:17; 210:12
utilities (1)
139:20
utility (5)
13:11;19:1;47:10;
209:6;226:5
utilization (2)
82:13;266:17
utilizing (3) 146:19;149:5;152:10
\mathbf{V}
valacyclovir (1)
146:17
valid (7)
16:22;131:15;207:8;
208:2;229:18;259:11; 284:17
validate (16)
36:11;67:16;80:13; 141:2;172:8;184:6; 222:5;238:13;255:11, 12;256:12,19,20;264:12, 18;265:8
validated (10)
37:22;57:5;140:21; 141:4;151:19;153:12; 160:5;228:7;233:8; 241:15
validating (1) 227:11
validation (36)
38:2;42:9,10,11,19; 44:13;48:21;67:19;72:3; 148:21;149:1;154:2; 221:8,12;222:1,13,16; 225:13;226:22;229:22; 236:5;238:11;239:18, 19;241:7,12,18,20; 248:10;253:8;255:10; 263:18;266:11;269:20; 273:5;274:15
validations (3)
225:17;226:3;256:22
validator (1)
241:1
validity (1)
267:15
valuable (2)
115:19;189:12
value (7)
40:3;53:20;78:10; 123:20;124:19;132:17; 244:20
values (5)
146:20;153:19;
168:22;248:15;272:3
variabilities (3)
49:7;134:1;247:1
variability (26)
16:12,13;80:9;81:2;
108:2;119:19;123:17,
18;124:6;125:10,17;
129:22;131:1;149:19,20, 20;150:8;160:21;
163:17;178:19,21;
213:13,14;231:16;
271:11,13
variable (4)
20:5;113:19;114:7; 160:22
variables (3)
15:7;110:4;111:2
variance (1) 61:20
variation (9)
104:3,7;106:9,10,18, 20;107:11,22;272:8
varied (1) 104:5
varies (2) 193:4;245:20
varieties (1) 119:12
variety (2) 105:5;152:12
various (9)
12:15;19:5;47:2; 63:20;120:21;129:5,12; 133:13,22
vary (3) 112:9;214:17;246:3
vast (1) 258:21
vein (5)
143:16,16;145:1; 148:4,5
venues (2) 46:11;267:16
verification (6) 48:21;71:7;75:4; 229:22;241:8,20
verified (3) 72:7;73:12;75:1
verify (3) 61:14;71:5;249:21
version (2) 14:17;147:20
versions (1) 167:15
versus (22)

16:7;51:10,17;58:16; 88:15;89:22;90:12;92:8; 97:5;111:18;151:4,4,5; 153:18;216:11;218:21; 250:22;251:1;255:11; 263:8;270:1;279:11
via (4)
11:6;46:11;64:7;
143:18
viable (1)
159:19
vice (1) 117:8
Viera (7)
2:20;8:15;138:15,17; 156:16;159:4;194:9
view (11)
65:20;102:2;168:10, 11;191:20;192:6,8; 212:5;240:14;257:20; 259:15
viewed (1)
234:10
virtual (16)
38:5,7,9;75:22;77:6;
121:8;134:5;137:18;
141:8;149:9,14;152:18;
153:13;154:17;155:4,21
virtually (2)
38:6;198:1
viscosity (2)
124:7,8
vision (1)
170:18
vitro (67)
15:6,22;31:16;50:21; 52:15;59:14,15,22;
61:16;67:3,10;68:2;
83:17;90:1,13;93:10; 97:17;98:19;99:1,13; 108:10;118:7,10;126:7, 15;127:21;131:14; 142:17;146:19;161:18; 164:15;171:16;173:2;
174:18;175:3,14;176:8, 14,19;177:13,21;182:8; 183:19;192:19;194:12; 200:10,15;208:4,12; 228:1;230:18;243:10, 18;245:11;246:7,9; 247:11,15;255:4,7,11; 256:7,19;261:11;263:11, 16;286:13
vitro- (1)
178:11
vitro-in (6)
24:19;69:11;94:19,20;
147:16;240:11
vivo (116)
20:3,17;21:9;24:19; 30:15;31:17;37:17;44:7; 50:15;52:16;53:8;54:8; 55:13;57:12,13;59:18,

20;61:16;66:21;67:2,11; 68:3;69:11;75:8,15,21; 76:12;77:17;88:3;89:8; 92:14;94:1,19,20;101:4; 102:4;107:22;110:6,7, 12;111:3,12;112:2;
113:12,18;118:7,10;
127:21;131:13;137:14; 140:3;142:9;147:16,18; 153:6;160:16;163:22; 164:19;170:20;172:4; 173:3;174:18;175:3,16; 177:22;178:4,8,10,11, 12;179:16,19;181:13,20; 182:8,9,12;184:1;187:8; 192:19;193:5,18;
194:22;200:11;202:2,8; 205:13;216:16,21; 221:14,20;227:12,13,13, 20;228:2;240:11,22; 243:19;245:13;255:6,7; 256:4,7,8,12;257:16; 261:12;263:17;266:17,
20;268:20;286:1,6,14,16
vivo-absorption (1) 161:19
voice (5)
27:19,20,20,21;254:6
volume (4)
37:4,15;143:5;150:19
volumes (2)
151:7;178:15
volunteer (3)
78:16;203:7;251:1
volunteers (4)
15:16;21:2,16;120:2
W
Wagner (1) 164:6
wait (2)
226:15;258:2
waive (5) 212:7;218:6,9;249:22; 259:7
waiver (9) 21:8,11;93:5;97:14, 15;129:14;219:2;269:6; 282:22
waiving (2) 21:9;259:4
Wang (2) 276:5,5
wants (1) 274:11
warfarin (10) 49:16;50:1,3,16,18; 51:6,19;53:13;54:15; 55:10
warning (1) 9:9
water (8)

$\begin{aligned} & 123: 11,12 ; 124: 6,18 ; \\ & 134: 10,13 ; 181: 22 ; \\ & 193: 20 \end{aligned}$	$\begin{aligned} & 1: 15,16 ; 7: 12 ; 13: 21 \\ & \text { whole (14) } \end{aligned}$	128:13;131:21;147:5; 156:3;166:2;168:4; 196:16;252:1;259:19	$\begin{aligned} & \text { 253:5;261:2;266:12 } \\ & \text { yellow (1) } \\ & 9: 10 \end{aligned}$
way (40)	172:20;206:14;223:7;	works (2)	yesterday (2)
42:18;64:13;65:10;	224:10;229:12;231:20;	136:19;184:21	11:3,7
82:8;102:17;104:18;	251:18;266:21;272:4,7;	WORKSHOP (14)	young (1)
110:19;123:3;139:8;	276:11	1:2;7:9;10:6,17;11:16;	267:19
143:9;148:22;159:14;	who's (1)	12:14;14:5;17:13;45:4;	Yu (1)
162:6;167:7,17;182:20;	181:5	85:9;156:12;212:3;	105:2
193:21;196:1;203:22;	wide (1)	268:14;283:13	
210:7;219:3,13;228:17;	55:4	workshops (2)	Z
231:17;233:6,11,16,19;	widen (2)	46:13;281:21	
234:2;235:11;237:7;	24:18;213:1	world (3)	zero (2)
248:14;252:2;256:10;	widening (1)	63:1;112:2;231:5	163:12,13
259:18;262:18;264:6;	212:15	worried (1)	Z-factor (1)
271:20;272:22;277:11	wider (2)	227:7	36:20
ways (3)	149:2;263:7	worry (4)	Zhang (13)
111:14;209:19;238:3	willing (1)	79:15;215:3;217:9,9	3:7;7:21,21;22:5;
weak (5)	64:9	worst (3)	44:22;45:2,3,11;64:19;
70:1,6;74:4;76:21;	window (1)	74:7;134:7,18	192:10,10;214:8;241:7
79:13	146:4	write (1)	Zhao (56)
WebEx (1)	wish (2)	223:19	3:10;7:4,5;9:1,1,3;
11:6	17:16,22	writing (1)	18:1,3,8,9;22:8;25:15;
website (1)	within (14)	223:18	32:20;44:21;64:19;65:5,
252:14	19:11;23:6;54:20;	written (2)	12;85:11;100:12;
weed (1)	93:10;142:21;150:3;	47:4;101:15	115:14;117:3;138:13;
198:18	152:14;180:9;198:8;	wrong (8)	156:5;169:15;188:5,17;
Weibull (5)	219:20;253:11;256:16;	132:13;187:6;209:8;	200:14;204:6,6;207:10;
36:16,17;131:12;	259:1;267:7	239:12;254:5,16;256:9;	209:7;211:15;217:22;
160:15;161:10	without (14)	267:4	218:16;225:11;226:18;
weight (2) $90: 7 ; 160: 9$	$\begin{aligned} & \text { 18:18;21:16;25:10; } \\ & \text { 42:9,10;71:7;94:5; } \end{aligned}$	X	$\begin{aligned} & \text { 229:14;235:16;242:1; } \\ & \text { 247:6;250:12;251:11,15, } \end{aligned}$
Weitschies (1)	101:5;118:13;130:12;		17;253:10;254:2;257:3;
123:8	164:13;187:4;243:6;	X2 (1)	258:3;262:13;265:12;
Welcome (8)	256:21	268:7	267:9;268:13,16;273:3;
7:3,4,9;9:20;10:5;	wonder (1)	Xavier (3)	274:10;279:14
25:11;45:3;267:14	276:21	169:17;170:1;187:18	zoom (1)
well-absorbed (1)	word (3)	X-axis (2)	168:16
106:20	14:10;101:19;194:10	41:4;59:6	
well-behaved (2)	work (55)	Xinyuan (4)	
68:18;80:12	15:12;33:22;36:5;	3:7;7:21;45:2;192:10	
Werner (1)	50:13;100:10;103:15;		
123:8	105:8;106:2,21;121:21;	Y	
West (1)	129:4,7;130:10;131:10;		
8:4	133:5,5;137:21;138:6;	Yamashita (1)	
wetted (1)	158:9;168:13;172:22;	124:16	
191:3	173:4,6,6,9;174:16,17,	Y-axis (2)	
wetting (1)	20;175:2,9,9,13,22;	59:5;77:21	
200:1	176:14;177:10,17,20;	year (14)	
what's (14)	178:3,4,5;179:20;180:6,	19:10;22:5;29:10;	
38:5;54:15;80:21;	6;185:2;198:15;199:18;	47:20;62:12;107:4;	
101:2;106:2;110:7;	223:5;239:1;255:14,15;	112:21;124:17;152:22;	
162:12;183:10;196:7;	257:6,11;268:19;280:5;	172:12;187:21;256:16,	
216:13;219:19;257:18;	283:19	16;276:11	
261:22;262:1	worked (6)	yearly (1)	
whatsoever (1)	137:5;160:17;208:9;	237:17	
261:3	239:21;245:22;255:14	years (25)	
whenever (3)	workflow (2)	8:9;46:19;68:19;82:8;	
29:3;47:8;221:8	231:2;248:20	102:13;104:4;114:16;	
Whereupon (4)	working (19)	118:5,9;122:3;136:17,	
65:3;116:8;188:14;	8:8;47:18;105:1;	17,18,18;177:18;185:1;	
287:8	107:1;109:11;111:9;	205:21;209:9;216:3;	
White (4)	113:7,8;126:21,22;	219:20;234:13;248:4;	

