GDUFA 2012 REGULATORY SCIENCE INITIATIVES
 Part 15 Public Hearing

May 20, 2016

A Matter of Record
(301) 890-4188

1 Duxin Sun Page 5		CONTENTS (continued) Page 7		
2	University of Michigan	2	AGENDA ITEM	PAGE
		3	Issues Associated with Generic Drugs	
-		4	Used in Children	
4	Kathleen Uhl			
5	Food and Drug Administration	5	Catherine Sherwin, PhD	113
6		6	Confidence in Generics: Need for an Integrated	
7		7	Approach to Formulation Research and	
8		8	Knowledge Management	
9		9	Ajaz Hussain, PhD	133
10		10	Mechanism for an Integrated Approach to	
11		11	Formulation Research, Knowledge	
12		12	Management, and Knowledge Sharing with	
13		13	FDA and Industry	
14		14	Stephen Byrn, PhD	146
15		15	Integrated Approach for Evolving	
16		16	Standards for Formulation Design	
17		17	Case Example NTIs	
18		18	Kenneth Morris, PhD	161
19		19	Integrated Approach for Evolving Standard for	
20		20	Analytical Characterization	
21		21	Case Example: Excipient Variability	
22		22	Eric Munson, PhD	176
	Page 6			Page 8
1	CONTENTS	1	C ONTENTS (continued)	
2	AGENDA ITEM PAGE	2	AGENDA ITEM	PAGE
3	Opening Remarks	3	Relevant Challenges in Determination of	
4	GDUFA Regulatory Science Update	4	Bioequivalence of Generic IV Iron Formulations	
5	Robert Lionberger, PhD 13	5	Amy Barton Pai, PharmD	193
6	Presentations and Questions from Panel	6	In Vitro-In Vivo Correlation for Complex	
7	Regulatory Science for Generic Drugs	7	Drug Products and In Vitro-In Vivo	
8	Michael Fischer, MD, MS 61	8	Stability Issues	
9	Regulatory Product Research: Oral Systemic	9	Diane Burgess, PhD	205
10	Drug Products	10	FY 2017 Regulatory Science Priorities	
11	Gordon Amidon 76	11	GPhA's Perspective	
12	Potential New Method to Improve BE of	12	David Gaugh, R.Ph	214
13	Modified Release (MR) Drug Products by	13	PBPK Modeling in Generic Product Assessment	
14	In Vitro Dissolution Studies in Human	14	Nikunjkumar Patel	232
15	GI Tract	15	Challenges with the Demonstration of	
16	Duxin Sun, PhD 88	16	Statistical Non-Inferiority of Adhesion and	
17	Non-Biological Complex Drugs: Challenges in the	17	Irritation for Transdermal Drug Delivery	
18	Assessment of Similarity or Equivalence of	18	Systems Using the OGD Bioguidance Method	
19	Ophthalmic Emulsions	19	Russ Rackley	248
20	Chetan Pujara, PhD 102	20		
21		21		
22		22		

1 DR. FRIEDMAN: Rick Friedman, deputy director, Office of Manufacturing Quality. DR. KORTEPETER: Cindy Kortepeter, Division of Pharmacovigilance, deputy director, Office of Surveillance and Epidemiology. DR. PINHEIRO: Simone Pinheiro, acting deputy director, Division of Epidemiology I in the Office of Surveillance and Epidemiology. Good morning. MS. PEREZ: Good morning. I'm Gisa Perez, branch chief at the Division of User Fees Management at Generics Branch. DR. STODART: Good morning. Brenda Stodart, CDER Small Business and Industry Assistance with the Office of Communications, CDER. Thank you. Opening Remarks - Robert Lionberger DR. LIONBERGER: I'd like to thank all of our panel members for giving their valuable time and spending the day here to listen to your presentations and provide input into our regulatory science planning. 22 So today we have an agenda of 19 speakers in	1 The meeting will be transcribed, and copies 2 of the transcript may be ordered through the docket 3 or accessed on our website approximately 30 days 4 after this meeting. 5 Each speaker will have approximately 610 minutes to present. And after each speaker 7 presents, five minutes will be allotted to the FDA 8 panel members to ask questions. So we will ask 9 questions, really, to try to get people to focus on 10 what you want us to do and help on the input, is 11 the main purpose of the questions. So if you, in 12 your presentation don't tell us what you want FDA 13 to do, I think you can expect that question from 14 our panel. 15 Please remember that the meeting is being 16 transcribed, so we want all the panelists to use 17 the microphone when speaking. If we ask you a 18 question, speakers should also submit their 19 responses asked by the panel members to the docket. 20 If a speaker ends early, we'll move on to the next 21 speaker and leave more time for panel questions. 22 We'll have a timer light for the speakers to
1 the scheduled presentation slots. I will speak 2 first and give an overview of our regulatory 3 science program and set the stage for the input 4 that we're looking for. $5 \quad$ In order to keep to the agenda, I want to go 6 over some ground rules. First, this meeting is 7 informal. Rules of evidence do not apply. No 8 participant may interrupt the presentations of 9 another participant. 10 Only the presiding officer and FDA panel 11 members will be allowed to question a presenter. 12 FDA may recall a presenter for additional questions 13 at the end of the meeting, assuming time allows and the presenter remains available. 15 Public hearings under Part 15 are subject to 16 FDA policy and procedures for electronic media 17 coverage of FDA public administrative proceedings. 18 Representatives of the electronic media may be 19 permitted, subject to certain limitations, to 20 videotape, film, or otherwise record FDA's public 21 administrative proceedings, including the 22 presentations of speakers today.	1 know when to begin their presentation, which will 2 be green, and when to stop, which will be red. The 3 yellow will indicate a two-minute warning for the 4 speakers. $5 \quad$ This meeting is being webcast live, but it's 6 not an interactive webcast. So if you're listening 7 to the webcast, you won't be able to ask any 8 questions or speak in any way. For those of you who did not register to 10 make an oral presentation but would still like to 11 comment on what you've heard or what you think we 12 should do in our regulatory science program, you 13 may submit comments to regulations.gov. It's 14 docket number FDA-2013-N-0402. So because of that, 15 this hearing is not your last opportunity to 16 comment. 17 The docket will be open until June 17th, and 18 we strongly encourage all interested parties to 19 comment. To submit a comment with confidential 20 information that you do not wish to be made 21 publicly available, you can send your comments as a 22 written paper-only submission and indicate that it

contains confidential information. And this is detailed in the Federal Register Notice.

Given the agenda, we ask that each speaker
keep to your allotted time so we can keep on
schedule and end on time and meet our breaks and lunch schedule.

I want to thank everyone for your interest in the generic drug program and your participation
today. We look forward to a very productive public
hearing. So we'll now begin with the presentations.

So to start the meeting, I'm going to give an overview of where we are with the GDUFA regulatory science. And really, this is looking back. This is our fourth public meeting, and so it's really a look-back at the whole aspect of what we've been doing and what some of the impacts are to really give a context for the comments now in terms of that.

So this is part of our GDUFA regulatory science process where we prepare a yearly list of research priorities with input from all

Page 18

stakeholders. The results of last year's input,
our FY 2016 priorities, were post-market evaluation
of generic drugs, equivalence of complex products,
equivalence of locally-acting products, therapeutic
equivalence evaluation and standards, and
computational and analytical tools -- a strong
scientific foundation for the generic drug program.
As we've been implementing this, we
implemented this mainly through both internal and
external research collaborations. We have
approximately a hundred ongoing research
collaborations that come out of these regulatory
science inputs. So we're partnering with
scientists around the world, leading experts,
engaging them to build a strong scientific
foundation for the generic drug program.
Under GDUFA, this has really allowed us to
scale up the scientific foundations to
approximately 10 times the size of the pre-GDUFA
effort that FDA was able to make in generic drug regulatory science. In addition to external collaboration, it supports work in our FDA labs; it

Page 17
Page 19
1 supports post-doctoral fellows, both in our offices
2 and our laboratories, who do a lot of the internal
3 activities.
4 Linked into this, the office I lead in OGD,
5 the Office of Research and Standards, we manage
6 most of these research activities and we really try
7 to link them in to the development of our guidances
8 and our responses to questions that industry asks
9 through the controlled correspondence process to 10 pre-NDA meetings.
11 So the results of the regulatory science
12 research feed into the standards for generic drug
3 approval and evaluation that FDA uses. So we try
14 to have a very strong link with that, and I'll try
15 to point out that as we go through the program.
16 To give a sense of how much we've increased
17 because of the GDUFA resources that have been
18 supplied to regulatory science here, from looking
19 back to the three years prior to GDUFA, you can see
20 there's about a tenfold increase in the regulatory
21 science activity that OGD has been conducting
22 because of GDUFA. And this leads to -- as we begin

Page 20
1 these projects, each year we award new projects.
2 Many of them are multi-year projects, so there's a
3 large number of projects that are under management.
4 So we've been continually growing the program.
5 Now, by the fourth year of the program,
6 we're reaching approximately a stable plateau of
7 activity. But there's been a huge scale-up in
8 activity, a large number of resources. But I want
9 to talk today about some of the impacts that come
10 out of this research activity.
11 As we do that, and I'll come back to these
12 at the end when we're looking for comments, the
13 areas of impact of our regulatory science program
14 are generic access in all product categories. This
15 is a strong focus. It's critically important to
16 both the industry and the American public that
17 generic products be available wherever possible.
18
As we go through today, you'll see that even
19 given the great success of the generic drug
20 program, reaching I think it's 88 percent of the
21 prescriptions dispensed being generic products,
22 still in that remaining 12 percent there are a
large number of very complex products without
generic drug competition. And that's a big focus
of the access aspect of our regulatory science
program. And if you think about the return on
investment of that, each one of those complex
products is probably a billion-dollar market.
So everything I'm going to be talking about in terms of complex product access, each one of
those represents probably at least a billion dollars in savings to the American public a year if generic products are available in that category.
So that's the scale of impact that we're talking about.

If it's not a billion dollar-impact, it probably doesn't make it even into this presentation. So there's still very significant areas where the scientific challenges prevent access to generic products, and we're working very diligently and collaboratively to address those.

The second area of impact is in confidence in generic drug substitution. As we've moved from an environment when I first joined FDA in 2003,

Page 22
about 50 percent of the prescriptions dispensed
were for generic drugs, to where we're nearing 90 percent.

So that's a much bigger responsibility for
both FDA's generic drug program and the industry
that's providing that. You're providing the drugs
that almost everyone is taking for almost every
condition that they're being treated for.
So it's important that there be strong
confidence in the products that we're producing,
the regulations that are governing them, that people know that they'll be substitutable. And that's what the industry intends. That's what FDA believes when we approve your products.

So there's a strong research focus on
identifying areas and research that can sustain
that confidence. If you don't have confidence,
it's a very unstable situation, given the great
responsibility for that large part of the
pharmaceutical products that the American public uses.

The third impact is really developing the

Page 21
Page 23
1 tools for both product development and product
2 review. So these could be computational, modeling
3 tools. Yesterday we had a day-long workshop on
4 oral absorption modeling. Still, solid oral dosage
5 forms are the vast majority of generic drugs. So
6 tools that predict what happens in your
7 bioequivalence studies that aid your formulation
8 design are essential to the efficient development
9 of generic drugs and the review of those products.
But these tools also touch more complex
products and analytical and computational methods
across the scope. And this is an area where
there's huge benefit to industry in using the best
available tools, and as I said, by engaging with
5 leading pharmaceutical scientists who bring that
16 information into our review processes.
17 So when we meet with you on a pre-NDA 18 meeting on a complex product, we've also been
19 engaging with experts in that area as well. So
20 we're able to really be on the leading edge of
21 science as we do that, and I'll talk about some
22 examples where that's led to recent approvals of

Page 24
generic products.
2 So as I said, the success of generics is a
3 large fraction of dispensed prescriptions and the
4 limited cost, but there's still a lot of things on
5 the table.
6 As we move toward translating the regulatory
science results into generic drug applications and
8 approvals, one way we do this is through the
9 bioequivalence guidances and the product-specific
10 information. And you can see that the number of guidances is growing each year under GDUFA. We're
maintaining this, and we project that this year
we'll produce even more than the year before.
But one thing that you don't see in just
looking at the numbers is that the fraction of
these guidances that are for complex products is
increasing. So we have about 1500 guidances currently posted. The initial surge of that was capturing a lot of the immediate-release products.

Now, as we're moving forward, a lot of the work that's going on in these guidances is much
closer linked into the regulatory science

Page 26
about generic substitution; talk a little bit about
post-market surveillance of generic substitution,
and our product-specific standards.
In the tools for development and review,
we'll talk about some of our modeling and
simulation activities, but also the analytical and
in vitro tools that help really develop more
complex products. If you have an in vitro release
test, that's something you can use to guide your
development of a bioequivalent product, and many of
our research projects are touching on that critical
aspect of pharmaceutical development.
We have approximately 20 collaborations with
14 different FDA labs on new analytical methods that
15 impact some of our generic drug approvals. I'll
16 talk a little bit more in specific examples as we
move forward.
So focusing on the little bit deeper
analysis, going through some of these product
categories under generic access, one area of
complex products are the complex active
ingredients: peptides, complex mixtures, natural

1 source products.
2 Under GDUFA, we've approved the first ANDA for glatiramer acetate generic. This is an
4 immensely complex product. It wouldn't have been
5 possible without significant scientific work from
6 our scientists and our FDA lab collaborators to use
7 high-resolution analytical methods to support the
8 evaluation of those ANDAs. It's a critical
9 approval, a multi-billion dollar drug product, many
10 long, complex review processes. Without a strong
1 scientific foundation, you'll never be able to
2 approve products like that.
13 To move forward in other longstanding complex products, we have draft guidances under GDUFA for conjugated estrogens, a natural-source product that's challenged FDA for 20 years. And we have a guidance with extremely detailed information about analytical methods, developed in conjunction with our FDA laboratories in St. Louis, to provide a clear pathway for how to analyze these types of products. There's still a lot of work to do for 22 the applicants to match up these complex products,

1 but we've really provided, I think, a clear pathway
2 for that in these guidances.
3 We have other draft guidances on other
complex mixtures as well, so the sevelamer
5 products, talking about characterization, natural
6 source mixtures for the omega-3 products.
$7 \quad$ On our guidance agenda, we have on our
8 public guidance agenda a guidance on rDNA origin
9 reference products and the pathway for generic
10 versions of those that we hope will be appearing
11 sooner this year. But it's on our public agenda.
12 We've been able to clear the backlog on
13 controlled correspondence questions related to this
14 type of peptide sources. This is another complex
15 category where access to generics was blocked in
16 the past, but through the scientific efforts that
7 we've made, we've been able to open up that pathway 8 moving forward.
19 We still have research activities in this
20 area. Many of these complex products raise issues
21 related to impurities and immunogenicity. And
22 we're working with many FDA internal collaborators
to develop better tools for assessing that, for
identifying if there are differences in impurities,
whether they'll cause any risk or not.
We continue to work on the high-resolution
analytics and multivariate data analysis with our
FDA lab collaborators to develop the analytical
tools that will help advance this area. But you
can see here the huge impacts of a strong
scientific foundation on pathways towards complex
generics, and even approvals of very complex products.

The challenge here -- just this cartoon is, what you try to do in these analytical methods is you look at some of the pieces from your analytical methods, and through the combination of complex
modeling and simulation approaches and the
analytical methods, try to reconstruct similarity
of the products. So there's a lot of complex
science that goes on behind these approvals, and the resources from the GDUFA program really support that activity.

Probably the largest category where there's

Page 30
no generic competition are the inhalation products.
And we have significant research activity here
looking at the role of dissolution, particle size,
PK studies. We have CFD modeling projects.
We have research that's supporting looking
for areas where we can move away from having a
requirement of being Q1/Q2 for the inhalation
products to understand. For excipients that have
been used in other inhalation products, they may be
acceptable under certain conditions in identifying
the analytical and in vivo studies that are needed
to support that.
So there's constant research to advance our
understanding of this product category, but we've
been extremely successful in GDUFA at translating
these research findings into guidances in this
particular category.
So as of our April posting, we now have
13 product-specific guidances for inhalation
products available. So when we started GDUFA we
had none, no pathway for this I think multi-tens of
billions of dollar a year market. No guidances at

1 all. Right now we have 13 available for different
2 product categories. So there's significant
3 scientific activities that support this.
4 We recognize that these products and
5 these -- what we're asking in the guidance is very
6 challenging in some places, so we still have
7 research activities to improve, identify better
8 dissolution methods for inhalation products that
9 may help you select particle -- raw material 10 suppliers.
11 It may help us review that to look at
12 alternatives to some of the very challenging
13 studies that some of these guidances ask for. But
4 we've made a huge effort in providing guidance
15 across this very large and important product
6 category.
17 Really, this pushes a lot of the
18 responsibility onto the industry to engage with
19 these guidances to develop products; if you have
20 questions, to meet with us around this area. We've
21 also had significant pre-ANDA meetings with
22 companies working in this space, responding to

Page 32
1 these guidances, and we've prioritized those
2 because this is a complex product category with
3 essentially no generic competition.
4 In ophthalmic products, again, there's been
5 very challenging generic products that require very
6 difficult clinical endpoint studies in the past to
7 develop. We've been developing guidances with
8 alternatives to those, two guidances specifically
9 under GDUFA for some of the ophthalmic emulsions
10 that provide what we call a Q3 approach.
11 So this is having a formulation that has the
12 same active and inactive ingredients, but also the
13 same microstructure as well, as we've determined
14 for these cases that that's the most appropriate
15 bioequivalence method. It's much more sensitive
16 and reproducible than a potential clinical endpoint
7 bioequivalent study for those products.
18 We have a broad portfolio of research
19 activities in the ophthalmic product space that
20 includes modeling and simulation, but also
21 significant efforts on in vitro release methods for
22 ophthalmic suspensions, ophthalmic emulsions,
ophthalmic ointments, to really broaden the ability
to apply these Q3 approaches to other dosage forms
as well. We've also done a significant amount of
guidance development in this ophthalmic space.
We've produced 10 guidances for ophthalmic
suspensions.
We're engaged in research activity to
improve ways to do some of the very difficult and
challenging aqueous humor PK studies, and also the
significant focus of research on the Q3
opportunities in this case, again, another large
product category with very limited competition for
the ophthalmic suspensions, ointments, and emulsion
14 where there's been significant research activity,
15 very significant guidances coming out that will
16 enable competition in this area in the future.
17
18 research activities looking at the role of PK
19 studies, in vitro and in vivo modeling projects.
20 But I want to point out also one innovative
21 technology, the MDRS particle sizing. This is
22 Morphology-Directed Raman Spectroscopy. This is an

Page 34

instrument that wasn't even available until 2012,
but it was used to support an ANDA approval in
2016.

So before this technology has even been used
in a new drug application, they used it to support
a generic drug application. And this essentially
allows you to, if you have a suspension that has
two different types of particular sizes, do a
particle size comparison of only the API active
10 ingredient. So this is critical for doing a Q3
1 analysis of some of the more complicated
suspensions.
We wouldn't have been able to do this. We wouldn't have been able to approve this product, unless we had one of these pieces of equipment in our FDA lab to understand how it works to be able to give good responses to the submission to analyze them correctly. So without our investment in the regulatory science foundation, we wouldn't be able to approve these complex products through this type of pathway and using this type of very current new scientific technologies to support approvals of

Page 33
Page 35
1 these complex products. And this is a
2 category -- there weren't any generics in this
3 space before this approval. It was supported by
4 this novel technology.
5 Another product category where there's
6 significant lack of generic competition is in the
7 topical dermatological products. This is a little
8 bit different. There, we have longstanding
9 clinical endpoint studies in this area that have
10 been used. So there are some generic products
11 available. But if you look at the category -- and
12 we have for the topical corticosteroids a
3 pharmacodynamic endpoint approach available.
But compared to the broader population of products, there's still a large number of topical products that lack generic competition in this area. But it's a much broader number of products than a lot of the other complex products.

But we have a very significant coordinated research activity to advance the Q3 equivalence approaches for these products. We're collaborating with people round the world. In this project,

1 we're working with people in Europe, Australia, and
2 the US, generating new in vivo data. We're
3 manufacturing semisolid formulations,
4 characterizing them. We have modeling approaches
5 integrated into this approach.
$6 \quad$ We've made significant progress in this
area. We've done, as an example, some Q3 testing
on some acyclovir creams. We've obtained
9 formulations from around the world to look at them,
10 characterize them through all of the different
11 characterization methods are available through the
2 rheology, the particle size characterization.
13 We've looked at them in in vitro permeation
14 tests, which are excised human skin studies. We've
15 looked at them through in vitro release tests,
16 which are artificial membranes, putting together a
full picture to understand which of these tests are
appropriate for comparing formulation differences.
I think one of the things I'm most impressed
with for the regulatory science program in the
topical area is an in vivo study that we've done on
what's called open flow microperfusions. This is a
type of microdialysis. And we did a 20-person
study looking at two different -- comparing the US
reference product to a product that's available in
Europe.
This study shows -- one of the challenges
with the microdialysis studies in the past has
been, are they reproducible? So this is a
replicate design study. We show that using the
reference product, you get very reproducible results.

Our investigator in this did something very novel. So essentially, all of the microdialysis in the skin data that's available in the past has been limited to about 6 hours because you had to hook people up to these giant pumps. They couldn't move, so they were stuck there.

New technology. These are wearable microdialysis devices. So people look like cyborgs in the pictures with them, but they can walk around. You can then get out to 40 hours of data, looking at the long time, so just basically the leading edge of approaches to this type of new in

Page 38
vivo study that is directly relevant to drug
delivery across the skin, again, funded by -- and
publication in this is under preparation. Should
be available soon. We've talked about these
results at public meetings as well.
6 We've shown that in a reasonably-sized
study, 20 subjects, you can demonstrate
bioequivalence between the replicate studies, and
you can also show that a formulation that we know
10 is Q3 different also has different drug delivery
11 and doesn't show equivalence as well; so a strong
12 development of a potential new in vivo approach to
13 this as well as new characterization- based
approaches.
We've also done work on looking at the IVPT
and developing ways to do bioequivalence
comparisons for these types of in vitro permeation
tests as well that could be used for
bioequivalence. But also, these studies are used
right now in product development to select formulations and really help understand a lot
of -- they're also used for post-approval changes

Page 37
Page 39
1 as well, so having better ways to do statistical
2 comparisons for them.
3 By lining these up with different
4 formulations, we've been able to compare between
5 different labs, different collaborators in
6 different labs, to help us develop better protocols
7 for how to do these in vitro permeation tests.
8 Another complex product category is the
9 liposomes and nanomaterials -- seven grants on in
10 vitro release, product characterization,
11 identifying the critical manufacturing variables.
12 We have guidances now on many different liposomal
13 products under GDUFA guidance, on some of the
14 nano-sized iron chelate products as well, to help
15 develop generic versions in this complex product
16 category.
17 We have a significant program in looking at 18 some of the long-acting injectables and microsphere
19 controlled-release products, nine grants looking at
20 different aspects of these products. We've
21 developed guidance on some of these products under
22 GDUFA. I have some pictures here of some of the

Page 40
1 microspheres that we're doing.
2 Here we've also seen a significant interest
3 in the number of pre-ANDA meetings. There seems to
4 be a large interest in these product categories.
5 They're very long-acting, so there could be
6 challenges to do PK studies for long periods of
7 time. So we're really focused on also the
8 characterization of these materials as well.
9 So this is a significant area of very
10 limited generic competition in this product
11 category that we think that will be enabled, and
12 will have a much stronger fundamental of the
13 material science that drives drug release in these
14 products from these research activities. And this
15 will feed into our discussions with you in pre-ANDA
16 meetings, our views of these products, and our
7 development of guidances in this product category.
18 In looking at complex drug-device
19 combinations, this includes the dry powder inhaler,
20 the metered dose inhalers I mentioned earlier,
21 nasal sprays, but also transdermal systems, auto-
22 injectors. This is an important area for research
to understand the patient factors that affect how people use devices.

This is something that's an emerging area
for the review of these products and developing
these products. How do you compare the devices?
How similar do they have to be to be a
substitutable generic product? What types of
studies and comparisons of the device you have to
use?
So a lot of our thinking of this is fed into our guidances on the metered dose and dry powder, especially the dry powder inhalers, where there's lots of diversity in the devices.

But also on our guidance agenda that will appear soon, there's a new guidance on adhesion for transdermal systems that's been developed as well that will be a transformation on how we do the adhesion bioequivalence studies. We have research
activities looking at the irritation type studies
for transdermal systems as well, as well as the patient use factors.

So again, significant efforts in trying to

Page 42

understand the regulatory review issues related to
these more complex drug-device combination products
that are eligible for generics can reference these
products.
Another significant guidance that was
developed is our guidance on generic abuse-
deterrent formulations. This guidance, that was
released in March as a draft, provides a path for
generic versions of abuse-deterrent opioid
10 formulations; relies primarily on a comparative in
11 vitro and occasional PK studies. But the GDUFA
12 research support was essential to this guidance, so
13 this has a huge public health impact. It's a very
controversial area. We have to have very strong
scientific foundations for anything we do in this area.

We had a contract with NIPTE through our GDUFA regulatory science research to do external research on this, but also significant support for ORISE fellows in FDA's labs for testing these products. So without this recent GDUFA research, we wouldn't have that guidance. We wouldn't have

1 that impact. We wouldn't have a pathway for
2 generic versions of currently approved abuse-
3 deterrent formulations.
$4 \quad$ I think this will be also an important part
5 of FDA's overall view of the landscape of abuse-
6 deterrent formulations. Once you have a pathway
7 for generic versions, that gives people confidence
8 that as products move towards abuse-deterrent
9 formulations, there will be generic versions
10 available in the future now that we have this
11 guidance and a clear pathway for that. But without
12 GDUFA regulatory science support, I don't think
3 we'd be anywhere near this point without the data
14 that we developed, both internally and externally,
15 on this very complex issue.
16 Now, changing a little bit to talk about the 17 confidence in generic drug substitution. So one of 18 the things we've been doing in this area is 19 brand-to-generic switching studies in patients. As
20 many of you know, almost all generic products are
21 approved based on studies in healthy subjects
22 because we think that that's really the best test

Page 44

1 of the formulation comparison. So from a
2 scientific point of view, we have strong reasons to
3 understand that.
4 But sometimes, if you think from a clinical 5 perspective, you say, well, these products are used
6 by patients, and you're testing them in healthy
7 subjects. Does that make sense? So we've worked
8 in several areas where there's been significant
9 questions about generic substitutions,
10 specifically, first, for anti-epileptic drugs and
11 immunosuppressant drugs, to do studies that look at
12 generic substitution in patients.
13 Essentially, from FDA's point of view, we
14 absolutely believe that these studies are going to
15 show they're equivalent. We've really focused on
16 what we think is the strongest, most sensitive test
17 of the formulation. But this really helps the
18 broader community understand generic drug substitutability.

So we've conducted these studies. We give
21 an overview of what they look like. These are
22 generally replicate studies where people go from
the generic to the brand to the generic to the
brand, back and forth. We generally look at PK
outcomes, but we show very clearly -- this is the
first study that was conducted at the University of
Maryland with Jim Polli, who I think will be
speaking later today, bioequivalence in generic and
brand product, PK profiles essentially
superimposable between the brand and generic.
We did a similar study with a different
group, looking at generic-to-generic substitution; again, similar type of design, here looking at what they thought was the lowest generic versus the highest generic, trying to look at the extremes of the space, to get approved under our standards -- again, completely bioequivalent in patients in both of these cases. A similar type of study design in transplant patients on generic versions of tacrolimus; again, direct comparison in patient population bioequivalence as well.

So we've begun to publish these results. As we've published these papers, there's been accompanying comments or editorials about this.

Page 46
And I think this really shows the significance that
this type of data can have on the community
perception of these drugs.
Organizations that have been generally
skeptical of generic substitution said these
studies really are a step forward in addressing
their concerns. We worked very closely with these
communities to say, what kind of studies would
address your concerns about generic substitution?
As we follow that up with the publication
from the second study, again people have questioned
the safety of generic substitution. Quite
reassuring that organizations with a negative
attitude to substitutions would consider reviewing
their position. So I think these new sets of data
are an important and critical part of understanding
confidence in generic drug substitution.
It's a very different way to approach
questions about generic substitutability, but it
really -- these are the most expensive type of
studies that we support under our GDUFA regulatory
science program. So it requires significant

1 resources to do these types of studies, and conduct
2 them, and make them publicly available from that.
3 In this area we're also looking at -- the
4 question is about substitutability, confidence in
5 generic substitution. So we've also funded
6 research to help us get an idea about what are the
7 patient perceptions about generic drugs? What are
8 physician perceptions about that? So we've
9 published some of this work as well to understand
10 what drives questions about generic
11 substitutability, both in patients who generally
12 prefer generic products and also physicians
13 confidence in this.
14 But again, I think we've seen that -- our 15 collaborators on this saw an increase in confidence
16 in generic drug substitution over the last few
17 years. And I think it's very useful to see that,
18 but this is a way to measure broadly how we're
19 doing as an industry and a generic drug program in
20 reaching out to both patients and physicians about
21 generic drug substitutability. So this has been
22 part of our generic drug research program, to

1 provide this baseline information, as well.
2 Other aspects of confidence in generic
3 substitution have to do with making sure that we
4 are monitoring the products that we approve
5 effectively. And there's really two large sets of
6 data that you could potentially look at to say, are
7 generic products being substituted effectively?
8 So we look at adverse event reports. These
9 have very significant challenges for using them to
10 look at generic drug substitution. Oftentimes
11 people don't know which generic product they're
12 taking. There's huge potential reporting biases.
13 I've been switched to a generic. Am I more likely
14 to complain about something that just was a normal
15 expected adverse event from the brand product?
16 Questions about normalization.
17 We have some research activities looking at 18 authorized generics. So these are generic products
19 that are essentially the exact product as the brand
20 product, just marketed differently, to see what
21 types of adverse events people report about those 22 products. We do actually see complaints about

generic substitution with authorized generics. So
 that's an interesting, unique, natural experiment
 to help understand some of the biases in figuring out what's really significant.
 The other big chunk of data that you could
 look at are either electronic healthcare records or insurance claim data. These have some advantages.
 They oftentimes can be linked into an NDC code to a
 specific product. But you may see substitution events here.
 But there are significant challenges with how to look at this data to understand questions about generic drug substitution. So we have some research activities to look at substitution patterns -- what do you expect to see? What would be unusual? Looking at how to compare other things.
 But I think in the future, these datasets are going to become more -- we're moving toward a big data future. So these datasets are going to be available to more and more researchers, more and more generic companies. So we have to be prepared

Page 50
to think about how we're going to analyze generic
substitution questions in these types of
information sets and do it in a way that gives us
good information.
I think there's lots of ways in these
retrospective datasets to do bad studies, and that
can give misleading results about generic products.
So it's really important that we have a broad-based
research program in understanding how to do these types of analysis well for these specific questions about generic drug substitution.

The other side of confidence in generic drug substitution is making sure that people have confidence in the standards that we as FDA are applying to products. And two areas that we focused research efforts on are for narrow therapeutic index drugs.

So we're really moved significantly, under the first few years of GDUFA, to providing guidances identifying which products we think have a narrow therapeutic index, and having tighter bioequivalence standards on that.

2 the idea that there's higher- and lower- risk drugs
3 and they should have tighter standards for the
4 higher-risk products, I think is a strong part of
5 confidence. I think there's been -- there's some
6 challenges as we change guidances and evolve our
7 standards in this area. But this is moving toward,
8 I think, a much stronger foundation for our
9 program. As we get ahead in guidance development,
10 we should be making these decisions on which drug
11 we think have a narrow therapeutic index very soon
2 after the new drug approval.
13 We have a new internal working group to coordinate activities between OGD, OCP, OND around which drugs have a narrow therapeutic index. So
what you can expect to see in the future is these
decisions made much earlier, before any kind of generic drug development happens.

Similar thing with a partial AUC. This is an approach to say, there's a smaller number of products that may have very critical -- the PK profiles being much more similar than needed. And

Page 52
1 we work closely to develop those cases. And again,
2 as we move our guidance development closer to the
3 new drug approval, we want to have these questions
4 identified early.
5 So this links into the tools for
6 development. Both of these examples -- narrow
7 therapeutic index drugs, partial AUC
8 comparisons -- really are driven by what I call the
9 pharmacometrics for generics. This is the PK/PD 10 response.
11 Which drugs have a sharp exposure-response
12 relationship? Which drugs have a close connection
13 between the shape of the PK profile and their
14 pharmacodynamic responses? This is a scientific
15 question that's going to determine whether we have
tighter standards for these two categories.
So we're trying to support strong program internally and through research in what I call the pharmacometrics for generic drugs. This is the PK/PD modeling that can support these risk-based decisions, provide the input into this. And these two critical questions are the most important
applications of that, and they drive our guidance
development and our reviews of the activities. But
I think as we establish a clear scientific
foundation, it will also be clear to the industry,
as we develop the products, which cases this is important.

The other modeling and simulation area that's critical, links into the complex products,
is that we have a broad set of what we call PBPK
for non-oral routes of delivery. So we had a
workshop yesterday all day on solid oral dosage
forms. That's much more well-established science
of absorption modeling than the non-oral routes.
But as we look at the landscape of complex
products, it's the non-oral, the ophthalmic,
inhalation, nasal, topical products where much of
our activity and our scientific challenges are going to be found.

So we want to have a strong mechanistic foundation of drug absorption on all of those categories. So we've begun to fund, in each of the categories, several research activities to begin to

Page 54
advance the models that are used for drug
absorption through these routes of administration.
And this, I think, will serve as a scientific
foundation for our program going forward.
The third aspect of the better tools -- and this links a little bit closer to product
development -- better in vitro release methods. We
know that generic drug development strongly depends
on having good in vitro release methods to pick
10 your formulation, to determine which product you're going to put into your bioequivalence studies. So
we have significant research support in the solid
oral dosage forms. This links into the oral
absorption models.
Some of the research we've been funding in this area are direct measurements of Gl
concentration of drug. This is the thing that sits in between. I do an in vitro dissolution
experiment. I give the product to a patient and
measure some PK profiles. But what's really the mystery is, what's the in vivo dissolution of the product? What happens to that drug product in the

Page 53
Page 55

1 Gl tract?

2 We can try to infer it from what we test in 3 the lab, what we measure in the PK profiles. But
4 to really be sure we're doing it correctly, you
5 need some direct measurements of what's going on in
6 the Gl tract. So we've done intubation studies to
7 measure that directly to provide a unique, albeit
8 limited and highly expensive to obtain, dataset
9 that can really help drive better in vitro release 10 methods for solid oral dosage forms.
11 But for the complex and locally-acting
12 drugs, here it's much more of a challenge. For
13 each product there may be a specific type of
14 in vitro release test, but probably 20 of our
15 grants have outcomes of improved drug release
16 methods for these complex or locally-acting 17 products.
18 This touches on the in vitro permeation and
19 in vitro release tests for the topical products,
20 for the ophthalmic products, identifying for the
21 different suspensions in ointments. What's an
22 appropriate dissolution method that will help us

1 evaluate product equivalence and help develop
2 bioequivalent products? So these in vitro tests
3 are critical in these complex product areas.
4 We have some for the inhalation products on
5 dissolution. I think we've received very
6 significant feedback from people informally that
7 these are critically important to the development
8 of some of the inhalation products.
$9 \quad$ People have approached our collaborators.
10 They're trying to buy the method and buy them out.
11 So I'm glad we funded it and make it publicly
12 available to get these into the public domain. So
13 there's a lot of interest in the dissolution
14 methods for the inhalation products as being
5 critical to product development as well.
16 So again, what we're interested in today is
17 your input into these areas. So as you talk and 18 you hear questions from us, we're probably going to
19 ask you, how does what you're proposing help
20 provide generic access across these product
21 categories, or build confidence in generic drug
22 substitution, or provide tools for generic drug

development? So we want to develop our future
 agenda in these types of categories. So l'll try
 to fit our questions and inputs into your
 discussion as we have the discussion going forward.
 But just to conclude my initial discussion,
 there's a huge public health impact for a
 relatively small regulatory science investment.
 All right? My return on investment calculation
 says that if we approve generics in even one of
 these categories, that's a multi-billion dollar a year benefit for a program whose net cost over five
 years is around $\$ 100$ million. So just one of these
 product categories can give you 100 -fold return on
 investment. And there's multiple multi-billion dollar categories that are being addressed by this.
 This broadly puts a strong scientific foundation for our program; that's of huge benefit to the industry and to the public. We've taken these research activities. We're driving guidance development for complex products. The inhalation guidance, I think, is the leading edge. That's the one we've recognized for a long time is the most

Page 58
significant one.
You see there, as these research projects
drive in, you see this surge of guidances across
that product category, 13 in that specific category
alone, enabling broad generic competition in a very
complex product space.
A lot of these issues are very complicated, not just externally but also internally. We have
to get alignment across -- in order to have a guidance on abuse-deterrent formulations or adhesion or rDNA source RLDs for peptides, there's a huge number of internal stakeholders have to get aligned on that.

The FDA research activities in there can be very critical in driving that. They provide data that people can look at and say, well -- people can raise hypothetical concerns. We have real data to address that. We can help drive the alignment on getting a policy or guidance implementation of these complex issues out. So there's lots of things going on behind the scenes on many of these complex issues that are in addition to the publicly

Page 57
Page 59
1 available science.
2 The confidence. I think the FDA scientific
3 support for confidence in generic substitution is
4 very unique. Even if a generic company went out
5 and did these studies on generic substitution,
6 right, they'll say, well, you have an interest and
7 a bias in that.
8 I think when FDA supports them, when we
9 partner with academic groups that are
10 essentially -- and some, in some cases, have been
11 skeptical of generic substitution in the past. I
12 think that makes a much, much stronger public
13 statement of confidence in generic products that
14 really has the biggest possibility for impact on
15 perhaps even changing some of these groups that
16 say, don't substitute approved generic products.
17 I think, from FDA's point of view, we
18 wouldn't approve the products if we didn't think
19 they were substitutable. And we hope that people
20 will begin to understand that and see that
1 perspective. But this type of data really provides
22 very strong prospective studies designed to answer

Page 60
1 those questions and prove that.
2 The tools that we're developing -- the goal
3 is faster development and review. If you have
4 right modeling and simulation tools to predict
5 what's going to happen in the bioequivalence study,
6 if you have the right in vitro characterizations to
7 say, what's the critical attribute of the brand
8 product and does my product match that, that's
9 going to drive faster product development.
10 But that's also going to drive a faster
11 review. If you have strong tools that say, this is
12 the right study, this is the right analytical data,
13 we'll be able to make better decisions and
14 evaluations about that. And by having these tools
15 publicly available, everybody knows what they are.
16 They become commonly established. That feeds into
7 this cycle.
18 I think, from my perspective, it's been
19 incredibly exciting to be involved in the growth of
this part of the generic drug program. And the input that we get from these public meetings and the comments to the docket really help align what
we're doing with what the needs of the industry and the public are.
I really personally appreciate all of the comments that you've given. And I think it's just
incredibly exciting to be involved in all of these
different research activities across FDA with all
of our external collaborators.
So with that, we will be moving on to our
first speaker of the day, and I have to go back to
my seat so I can change roles. So our first speaker will be Dr. Michael Fischer from Brigham and Women's Hospital, Harvard Medical School, to talk about regulatory science for generic drugs.
So welcome.
Presentation - Michael Fischer
DR. FISCHER: Great. Thank you very much.
Thanks for the introduction and for the opportunity
to speak here. As Dr. Lionberger said, my name is
Mike Fischer. I'm a primary care physician and a
researcher in the Division of Pharmacoepidemiology
and Pharmacoeconomics at Brigham and Women's
Hospital, affiliated with Harvard med school. I'm

Page 62
presenting on behalf of a group of several of us in
our division who do work in this area.
Dr. Lionberger was kind enough to cite a
couple of the projects we have ongoing, and it's a
nice chance to thank the office for the chance to
collaborate on that initial work. And what l'll be
doing is making some suggestions on what those of
us in our group working on this see as exciting new
areas to move into in the coming months, years, and
into the future.
Since it's in the printed materials, I won't
read what's on this disclosure slide in terms of
potential conflicts of interest. It's all there
printed for those as needed.
Quick orientation on what our division is.
The Division of Pharmacoepidemiology and
Pharmacoeconomics, besides having large business
cards -- although I think the FDA has equivalently
long titles for their offices, so I feel much more
at home here -- we're a group of 18 faculty
members. We mix health services research, drug
safety and outcomes research, a lot of methods
work, law and policy.
2 We have a diverse portfolio of funding -- as
I mentioned and as Dr. Lionberger cited, some work
4 with the FDA, but also grants from many federal and
5 federally affiliated agencies, as well as a variety
6 of collaborations with manufacturers, with
7 insurers, and with others.
8 We have several specific programs. I direct
9 the National Resource Center for Academic
10 Detailing, which is supported by AHRQ and does
direct outreach to front line clinicians. Aaron
Kesselheim, who testified at this meeting last
year, runs something called PORTAL, the Program on
Regulation, Therapeutics and the Law, that looks at
regulatory science. Our colleague, Niteesh
Choudhry, runs the Center for Healthcare Delivery
Sciences. And then we have other core faculty who have various roles at PCORI, FDA, Sentinel, and others.

So that's who we are. Let me transition now to what we want to put forward as suggestions. And
22 the format for the several slides I'll have, just

1 since we used the same format for all of them, is
2 basically we'll cite a piece of existing evidence
3 to set the stage. I'll be hitting those very
4 briefly, just given the time constraints that we
5 have.
6 Then a couple -- one or two research
questions that we would suggest for the coming
8 months and years. And then a quick note about why
9 we think that's relevant for this office, what the
10 results of that sort of research might offer as
11 useful information.
So the first area are single- or limited-
3 source generic products. This is a paper that's
14 currently under review out of our group. But over
15 a third of the entities eligible for generic
16 competition have three or fewer approved generics.
7 And as I think lots of people in this room would
18 know, many are single source.
19 So from a research point of view, trying to
20 get a better understanding of the predictors of
21 when a generic agent will become available only
22 from a single source would be a productive area for
study.
From a regulatory point of view, being able to identify proactively, prospectively, when that
situation may arise and sort out what might be
appropriate targets, either for regulatory or
incentive-based approaches when these situations
are coming up, might help address that problem.
Similarly, thinking about the next stage in
that cascade, how does a single-source generic
change utilization patterns or clinical outcomes when compared to multi-source generic medications?

Understanding the impacts of, especially single-source generics, again would provide useful information for FDA regarding the impact of policies that might be considered, or eventually implemented, to address the challenge of singlesource generics.

The next topic we wanted to put forward for consideration is generic medication shortages.
There, I think again, the background would be familiar to most of the people listening to this session. Over the last six years, over a thousand

Page 66
drug shortages were reported to the FDA. So there
are several research questions that we thought
would be of interest in this area.
When these generic drug shortages arise, how
do prescribers and other clinicians change their
treatment patterns in response to generic
shortages? Both what are the changes in
prescribing patterns or, looking at clinicians more
broadly, in other ancillary care delivered? What
are the spillover effects when there might be a
generic shortage?
Our group is especially interested in
medication adherence. We do a lot of research on
chronically taken medications. So when there are
generic drug shortages, what are both the immediate
and the longer-term effects on patient medication
adherence? And do those changes, most importantly
from a patient-centered point of view, eventually
affect clinical outcomes?
All of these findings at the different
stages in the process might allow for contingency planning in the event of future medication

Page 65
1 shortages which, based on experience, seem like
2 they will continue to arise.
3 Generic drug safety and effectiveness of
4 course is of huge interest to this office, and as a
5 broad topic, the areas in which our division has
6 had interest and that we'd put forward for
7 consideration here. Drug recalls are of course
8 common, occurring nearly once per month.
9 So one of the interesting questions to look 10 at is whether there are specific manufacturer 11 characteristics or other characteristics to help 12 predict which generic medications are most likely 13 to have safety -- that should be "or," not 14 "of" -- to have safety or effectiveness problems 15 when they're on the market.
16 Related to that is the increasing use of 17 compounded drugs as well. So we'd be interested in 18 research on the question of whether compounded 19 generic medications differ in their safety and 20 effectiveness from other generics. Findings from 21 both of these areas could help provide guidance for 22 regulatory policies or safety interventions with

1 clinicians or with manufacturers.
2 This is some of the research that
3 Dr. Lionberger cited that our group's been very
4 interested in, looking at patient and clinician
5 attitudes, beliefs, and behaviors regarding generic
6 drugs. We've done studies, going back several
7 years, finding that patients and prescribers have
8 some degree of skepticism of generic drugs,
9 although that has been changing over time.
10 One of the areas that we think is
11 interesting, and the kinds of research that we do
12 and the kinds of large datasets to which we have
13 access, are those prescriptions that are written,
14 "Dispense as written," which is often either
15 written by the prescriber or elected by the
16 patient, both of which indicate some degree of
17 skepticism about generic drugs.
18 Identifying prescriber or patient
19 characteristics that predict that decision can help
20 identify areas for educational interventions when
21 that's an avenue that can be used to increase the
22 use of generic drugs.

Page 73	Page 75
1 (Laughter.)	1 finding value in us surveying a range of
2 DR. UHL: We appreciate that. Thank you.	2 therapeutic classes in order to assess the generic
3 DR. FISCHER: Yes. So one quick note is	3 space entirely? Or have you all identified
4 actually -- and Dr. Lionberger talked about the	4 specific therapeutic classes for which you'd like
5 sorts of data that are available. I'd put out	5 additional evaluation?
6 there the point that our research group, as do	6 DR. FISCHER: So in that last bullet, I
7 several others, has a lot of data resources,	7 think, as an academic group, we're interested in
8 existing resources with large claims datasets and	8 all of them. The study I cited looked at statins
9 so on, which actually can be leveraged. So a lot	9 and cardiovascular disease. And I think
10 of the research can be done relatively efficiently	10 realistically we would anticipate -- for the kind
11 in terms of the cost of doing research.	11 of research that we do, so other groups may speak
12 So I think, while I will actually answer	12 to different sort of types of designs -- we would
13 your question and not dodge it, they can be done	13 be looking at highly prevalent conditions where you
14 efficiently by our group and others, taking very	14 have a lot of patients who are treated with both
15 sincerely your point that it is possible to do bad	15 generic and branded medications.
16 research with these observational databases, and	16 So it's spaces like outcomes of diabetic
17 one needs to be very careful.	17 care, anti-hypertensive treatment, medication
18 That said, let me actually answer the	18 classes where there are a large number of patients
19 question. I think among these, we would think	19 under treatment with both branded and generic
20 about the ones that have the largest impact on hard	20 agents, and relatively higher risks of adverse
21 clinical outcomes as being the most important. So 22 I guess I can't really use -- well pointing at my	21 clinical outcomes. So those are the ones we would 22 start with.
Page 74	Page 76
1 slide doesn't do you much good. But I think about	1 If you asked us the long-term question,
2 the impact of shortages on use and outcomes is an	2 eventually we'll study everything and then when
3 area where there has been a lot of concern, and	3 we've studied all the drug classes, we can all
4 that appears that it will continue to be a	4 retire.
5 potential safety issue in the future	5 UNIDENTIFIED SPEAKER: (Comment off mic.)
6 The clinical outcomes across a range of	6 DR. FISCHER: That's a good plan.
7 therapeutic classes at the end, again very	7 DR. LIONBERGER: All right. Thank you very
8 influential, both because it touches on hard	8 much.
9 clinical outcomes and because I think it will	9 DR. FISCHER: All right. Thank you.
10 influence clinical guidelines, some of the pieces	10 (Applause.)
11 that Dr. Lionberger was talking at the end about	11 DR. LIONBERGER: So our next speaker is
12 clinical societies	12 Professor Gordon Amidon from the University of
13 Then if I was going to just go with the top	13 Michigan. He'll be talking about regulatory
14 three for those, I think the single-sourcher	14 product research.
15 generics, which relates to the shortages, is	15 Presentation - Gordon Amidon
16 another that we're very interested in, although	16 DR. AMIDON: Thank you, Bob. I'm going to
17 obviously we're interested in all of them over the	17 talk mostly about oral products, the biggest
18 long term.	18 product category that the FDA has to deal with in
19 DR. TOUFANIAN: Thank you for your	19 the generic area. And I'm going to talk about
20 presentation. And following up on your las	20 product research, not drug research. The patient
21 bullet, could you provide a little bit more	21 gets a product, not a drug. We all know that, but
22 information in the desired evaluation? Are you	22 we use the term drug when we mean product. So I'm

going to talk about product research, if I can do this. Okay.
So I'm going to argue that the
bioequivalence needs some scientific development,
which is happening now today for the first time.
We need things such as Cmax predictors, AUC
predictors. Remember, bioequivalence is about the
same drug, different products. Same PK. Same
ADME -- same DME, I'm sorry -- different
absorption. So the science of bioequivalence is at the absorption site. And we need to extend in my
area, oral, to further immediate-release and modified-release oral dosage forms.

The BCS that started this, I'm going to say 20, 25 years ago, was actually funded by the FDA 25 years ago, when Carl Peck was the Center Director here. And that's really been penetrating further and further. And today I'm going to propose we do subclassification, the next step, I think, in biopharmaceutics classification.

My thinking when I was working with the FDA in 1990 -- on sabbatical; they let me out after one

Page 78
year -- was, some products are simple. Some are
hard. Why? Why? So that led to eventually categorizing in a classification system.

We now have guidances based on BCS which
allow in vitro biowaivers for BCS Class I drugs, I
think probably principally based because if drug products dissolve rapidly in the stomach -- disintegrate, dissolve rapidly -- what you're measuring in vivo is gastric emptying, not a product difference. So why do it?

So at any rate, we're continuing to pursue that line of reasoning and how far we can develop
the dissolution methodology to Class III drugs, II
and IV low solubility drugs, and then modified
release products, which are even more complicated
because of the changing luminal environment along
the intestine, as well as the differentiation of
intestinal cells along the gastrointestinal tract.
So we continue to do studies there.
I think the key science then for oral delivery, oral product equivalence, is in vivo dissolution, and I think Dr. Lionberger mentioned

1 that earlier. What's really happening in the
2 gastrointestinal tract? Surprisingly, we really
3 don't have much measurements there, especially
4 under dosing conditions or our standard
5 bioequivalence conditions. So we need to look at
6 the media and methods.
7 I'm going to propose an in vitro -- I'm
8 sorry -- in vivo predictive method, dissolution
9 method, which is not a QC method. That's a
10 separate science, so that's -- they do a good job
11 over there for quality control. That's a whole
12 package for a product. But for product development
13 we need a dissolution methodology and that would be
14 useful for things like SUPAC changes, scale-up
15 post-approval changes, dose scaling, biowaivers,
16 even QbD and PAT targets for modification of
17 manufacturing process.
18 What's your target going to be? Clinical?
19 Human? No. Way too expensive. We need a better
20 target, and that would be the in vitro dissolution
21 for oral products if we had confidence in the
22 dissolution methodology as representing the in vivo

Page 80
1 processes.
2 So that's what we're in the process of
3 trying to do at Michigan with various intubation.
4 I think, again, Dr. Lionberger mentioned this as
5 one of the FDA contracts where we put a tube here.
6 In human subjects we measure 15
7 motility -- contraction; pressure contractions;
8 different sites, stomach, duodenum, jejunum, ilium;
9 as well as sample from those four sites.
10 We aspirate fluid and assay for drug marker
11 pH , buffer capacity. It turns out buffer capacity
12 is way much lower than the USP buffer capacity.
13 I'm not even sure why we call it simulated
14 intestinal fluid because it's not. But we're
15 learning things like that, and we're measuring drug
16 concentration in the intestine.
17 So we're learning now for the first time
18 what's really going on between the in vitro product
19 you're developing, the manufactured product, and
20 what happens when you put it into the human
21 subject. We need something in between there. We
22 don't want to use the human subject as our

Page 82
That's a USP apparatus. But when you actually use
something that's more physiological -- I'm not
going to make a case that this is, yet, because we don't have the data -- but it takes 60 minutes to dissolve in a physiological buffer. Well, how do
we develop a methodology that is reflective to
in vivo? Well, we have to go after the in vivo data under relevant oral product disintegration.

So I'm proposing BCS subclasses. I'm not going into that in detail. But I think we need a product development person. If the drug is an acid, base, or neutral, that makes all the difference in the world to what you can do with it.
So I think we need to classify dissolution methodology, what I'm calling in vivo predictive dissolution methodology, based on subclasses. And we're going to have a number of -- maybe 10 or 20 different, maybe more -- dissolution methodologies that would be predictive.

They're not going to be quality control, although quality control could be a derivative. That is, once you decide what's most important for

1 your product, you could set a quality control
2 standard. But what we need is a method to help us
3 decide what is that critical variable, or critical
4 variables, and then what standard do we set to
5 ensure that product quality, over time, for both
6 brand and generics. It's a product standard, not a
7 drug standard. I mean, the drug is obviously
8 critical, but it's a product standard.
9 So the in vivo test is our gold standard, no
10 question about that. There's no argument there.
11 We may have to tighten it for narrow therapeutic
12 index drugs, but I believe that we need to
13 develop -- and is the in vivo test the best? In
14 some cases, we know it's not. For BCS Class I
15 rapidly dissolving, it's not the best test because
16 the in vivo test tells us nothing. Okay?
17 So how do we develop a predictive test?
18 That's what we're in the process of doing at
19 Michigan now, what I'm calling iPD. In vivo
20 measurements under typical BE conditions are
21 clearly needed, which is what we're doing. And
22 then we can extend the GI measurements based on

Page 84
1 non-invasive MRI methods.
2 That's what we're currently
3 implementing -- developing the protocols to do next
4 year, collaborating with the world's expert group
5 at measuring, by MRI, GI fluids and motility where
6 we can do it in patients. We can do it in
7 pediatrics. We can do it in special populations.
8 So I think we're looking at how we extend these
9 techniques to patient conditions.
10 So I think advancing product research in the
1121 st century is a bigger point that I want to make,
12 is that for oral we need, of course, in vivo
13 predictive dissolution methodology. And we need to
14 measure the Gl variables.
15 But when you think about the type of
16 products and the list of topics and complex
7 products, the topics that Dr. Lionberger referred 18 to this morning were impressive. The range of 9 issues the FDA has to deal with is enormous, just 0 enormous.
21 I think it's maybe incomprehensible to most
22 of us how many different things, and the expertise

Page 85	Page 87
1 you need to develop a good scientific decision 2 around the world.	1 happen in people, but it's good enough for quality 2 control.
3 So I think we need, really, a product	3 You can correct me if I interpreted what you
4 regulatory research institute. This is blue sky,	4 said is wrong.
5 of course, but what do we need to regulate products	5 DR. AMIDON: No, industry is working on
6 for the 21st century when we're seeing all of these	6 that. Greg Amidon and myself, we were at a
7 complex products come down the pipe? And where do	7 conference at Lilly three weeks ago on this
8 we get the expertise to make the best decision we	8 particular issue. Lilly, Boehringer Ingelheim,
9 can make on that product for ensuring efficacy, to	9 Merck were there, and AbbVie.
10 the best of our ability, to patients?	10 So yes. It is happening in industry, but of
11 I think I finished on time. Thank you.	11 course that tends to be private and proprietary.
12 DR. LIONBERGER: So I have a question. If	12 So how do we set public standards and to have that
13 you could only get one -- so in the next year one	13 information in public so that it gets an
14 new in vivo dataset to help advance in vitro	14 appropriate vetting? But the answer is yes It's
15 predictive dissolution, what would it be?	15 happenin
16 DR. AMIDON: If I could only get one?	16 What we're developing is based on what was
17 Probably MRI.	17 developed in industry. It's called the artificial
18 DR. CONNER: Like yesterday and today,	18 stomach duodenum, ASD. I said to the inventor of
19 you've made some side comments as you were	19 this technology, you don't want to take something
20 presenting your predictive methods, several times	20 artificial to your boss, do you, unless it's a
21 saying, oh, well, quality control measures, they 22 don't really need to do this. The FDA --	21 Christmas present or something. But at any rate, 22 yes, so it's happening, Dale, but it's a matter of
Page 86	Page 88
1 DR. AMIDON: Be careful. What I	1 the public standards.
2 use -- okay	2 DR. LIONBERGER: Thank you very much.
3 DR. CONNER: I'm just interpreting what you	3 DR. AMIDON: Okay, thank you.
4 say. You can correct me.	4 (Applause.)
5 DR. AMIDON: I don't want to take down	5 DR. LIONBERGER: So we will go to our break
6 quality control	6 now, and we will reconvene about 10:40.
7 DR. CONNER: The FDA right now is putting in	7 (Whereupon, at 10:22 a.m., a recess was
8 quite a lot of effort to make their specifications	8 taken.)
9 more clinically relevant.	9 DR. LIONBERGER: Welcome back, everyone.
10 DR. AMIDON: Yes. Yes.	10 just want to let everyone know, we've had some
11 DR. CONNER: So wouldn't that effor	11 questions. The slide presentations will be
12 dovetail with what you're saying, if making all	12 available on the regulatory science webpage as soon
13 in vitro -- or making relevant in vitro method	13 as possible. We will ask the speakers for
14 that predict what we want to know, which is usually	14 permission before we post them, however, but we
15 relevant to the patients? So that includes both	15 will have those that we have permissions available
16 bioequivalence or bioavailability plus qua	16 as soon as possib
17 control, so that you have a spec that actually	17 So again, to continue with our program, our
18 means something to the patient and to th	18 next speaker is Professor Duxin Sun from the
19 prescriber	19 University of Michigan. So welcome, Duxin.
20 DR. AMIDON: Yes	20 Presentation - Duxin Sun
21 DR. CONNER: It's not really that, oh well,	21 DR. SUN: Thank you very much for the
22 it's no good for predicting what's really going to	22 opportunity of presenting. This represents a group

\square Page 89
effort from the University of Michigan. So I will
focus on the BE standard mainly for modifiedrelease drug product.
So the current BE standard for IR, so
immediate drug release product, works pretty good.
I think mostly work fine. And the challenge is for
the BE study of modified release and a locally
acting drug product.
So of course we still use AUC and a Cmax
comparison, and that's perhaps not enough. Then
for some of the products we use partial AUC to
improve the standard. That's definitely
improvement, but still I think there's still
challenge. I'll show you some of the data what I
mean.
6 So I will present two ideas. One is one specific idea to ask, can we add this another parameter to compare the BE of generic and brand?
And also then I also going to present, once we get the data, what are the broader implication?

So the question for this specific one is then I want to introduce this composite appearance

Page 90
rate. I show the later the data. What do I mean?
The question is, how do we estimate that? How do
we validate that? How do we compare between
generic and brand?
So in the BE study, we use AUC and Cmax
comparison. In here we use a simple -- the
underlying assumption uses simple pharmacokinetics.
8 So we made a pretty good assumption the absorption
9 rate -- the absorption is the first order kinetics.
10 KA is a first order absorption rate constant, is a
11 constant. We know this is not right and yet we
12 teach students all the time, for the last 30 years,
13 because -- that's not because we teach students the
14 wrong thing, because we have to make
15 simplification.

17 in the oral dissolution case, that's perfectly work
18 fine. For most immediate=release drug products, if
19 they are really released, they have dissolution
20 completed within 30 minutes. They're very similar,
21 like a solution go down the Gl tract. That's also 22 works fine.

1 The problem is for local-acting and modified 2 drug release. So here what I mean is, you can see
3 this slide is a busy slide. If you have MR product
4 and local-acting drug product, they may or may not
5 have a dissolution in the stomach.
6 Of course, they have structural gastric
7 emptying. Then you go to Gl small intestine. They
8 also have dissolution release in different region
9 of the small intestine differently. Of course, you
10 have a transit.
11 Then some of the drug may have a
12 precipitation, and then only the drug dissolving
3 solution, they are absorbed through the membrane.
4 So that's we refer to the first order drug
5 absorption. Even that perhaps is not first order.
16 I think along the Gl tract, they may not be a first 7 order.
18 So what I propose to you is another term; we
19 can use deconvolution, get a composite appearance
20 rate. Basically, use how fast drug can appear in
21 the blood, then you can include everything here.
22 You can include the drug release and the

Page 92
1 dissolution in Gl tract, precipitation, perhaps
2 even transit. So I show you how we did it, some
3 preliminary data.
4 The question is specifically as applies to
5 BE, then how do we exactly estimate that? How do
6 we validate? How do we compare? So what we really
7 need to do -- the last slide, I will show you what
8 my proposal is. Here just refresh, is we really
9 need to measure in vivo drug dissolution and
10 releasing in human Gl tract. So we have done, just
11 finished the local acting drug product, and we are
12 currently doing IR drug product.
13 We really need a one right now is modified-
14 release drug product for in vivo Gl tract drug
15 release and dissolution. After we get this, we can
16 get deconvolution from the plasma profile, get this
7 composite appearance rate based on the plasma
18 profile compared to oral solution. Then we need to
19 validating statistical analysis to compare brand
20 and the generic.
21 So l'll show you some of the preliminary
22 data what do I mean. So in Michigan, we have this
technology. We did 60, about almost 100 patient
already for the intubation study. We put a tube in
the human GI tract all the way down from stomach,
duodenum, jejunum, and early ileum. So we cannot
get colon because that's too down there.
Then you can see the different product in the different location. We get a sample from
different location. We get a GI motility. We get
a pH. We get a structural capacity. Then got really covered everything together.

I'll show you one piece of the data here to illustrate my point. So for example, we actually get a sample. The patient stays there for overnight but we can do intubation for 7 hours, so every hour we can get a sample. Then we measure drug concentration to represent the release and the dissolution in the Gl tract. So you can see we did Pentasa, Apriso, and Lialda.

So here's the stomach on the very first left column, and from stomach, duodenum, proximal jejunum, middle jejunum, distal jejunum, and early ileum. So you can see from here Pentasa is

Page 94

released from stomach pretty high level and all the
way from duodenum to early ileum.
Once the surprise is found in here, we never
imagine -- we could actually -- by many years we
can never imagine that the drug concentration stay
in stomach for 7 hours. We always assume they
finish by 2 hours or 30 minutes. Simply is not true, and we use that assumption for the last -- I don't know how long, 50 years.

So then what does that mean? What impact does that have? So that's very surprising. So you can see this drug release very clear, very beginning. They release from the very beginning to the end.

Now, if you compare Apriso, they don't have a release in the stomach. They have a very tiny small amount of release from duodenum to jejunum, then maybe start releasing in late jejunum or early ileum. That's a very clear difference between these two drugs, drug product.

If you compare to Lialda, Lialda is designed to releasing then later, the colon region of the

Page 94	Page 96
1 released from stomach pretty high level and all the	1 clearly see they are different.
2 way from duodenum to early ileum.	2 Pentasa in the left lower corner, you can
3 Once the surprise is found in here, we never	3 see release drug from the very beginning all the
4 imagine -- we could actually -- by many years we	4 way until 10 hours. Then for Apriso, the first
5 can never imagine that the drug concentration stay	53 hours there's no release, then sharp release,
6 in stomach for 7 hours. We always assume they	6 then perhaps stop release at 10 hours. Then Lialda
7 finish by 2 hours or 30 minutes. Simply is not	7 is continued release later part.
8 true, and we use that assumption for the last --1	8 So those slides tell you two things. One,
9 don't know how long, 50 years.	9 the CAR is much more sensitive. We can mirror the
10 So then what does that mean? What impact	10 Gl real release compared to plasma profile. That's
11 does that have? So that's very surprising. So you	11 number 1. Number 2, very surprisingly, everything
12 can see this drug release very c	12 seems to stops around the 10 hours. So l'll show
13 beginning. They release from the very beginning to	13 in other datasets. We don't know what that means,
14 the end.	14 but maybe it means two things.
15 Now, if you compare Apriso, they don't have	15 Number one, for modified-release
16 a release in the stomach. They have a very tin	16 formulation, maybe if you make too long after
17 small amount of release from duodenum to jejunum,	1710 hours, they are never going to be released
18 then maybe start releasing in late jejunum or early	18 because they reach colon. Colon have no water.
19 ileum. That's a very clear difference between	19 Then they don't release. They don't release. They
20 these two drugs, drug pro	20 don't have no absorption. So that's one
21 If you compare to Lialda, Lialda is designed	21 possibility
22 to releasing then later, the colon region of the	22 Number two, so whether it's a release

Page 98
product. And also then we can estimate and
validate the CAR compared with oral solution, then
validate that by oral GI drug concentration. Then
we need to statistically validate how do you
compare this to a product. How do you use number?
So that's just a specific question. So once
we get those data, then the broader implication
will be we can validate the in vivo predictive
dissolution condition, device, everything, and also
validate all the PBPK modeling, and also cross-
validate the MRI study, the non-invasive MRI study,
for drug transit and motility.
With that, I stop and take of course
questions. Thank you very much.
DR. LIONBERGER: Thank you, Duxin.
Questions? Cindy?
DR. BUHSE: Yes. When you talk about doing
your Gl studies with the modified-release products,
different manufacturers often have different
release mechanisms for their modified-release
products. Do you envision having to actually
repeat these complicated clinical trials for all

1 the different release mechanisms? Or do you think
2 you can do some, and then do some in vitro work to
3 try to compare that?
4 DR. SUN: Yes. So that's a good question.
5 The idea will be that's not feasible to do the
6 study as a routine BE standard. That's just way
7 too slow, way too expensive. The idea is, let's
8 gather the different class of compound and data to
9 have confidence. Then eventually the gold standard
10 has to be blood concentration.
11 Then how do we use blood concentration
12 compare to mimic clearly? Ideally, then, we have
3 datasets to validate all the PBPK model or in vitro
4 test model. So ideally, we have different
5 datasets, IR, MR, local acting. So that's the
16 minimum I say we should have. We don't have any
7 for last 50 years.
18 If we want more than that, then perhaps then
19 different BCS class compound, we need to have each
20 class compound have a representative, but that's
21 another few compound. So that's the ideal
22 solution. But I think if we don't have that much

Page 100
1 effort need to go forward, but minimally we should
2 have an MR drug product to get that down, put in
3 the public, let everybody use that data to validate
4 their condition, in vitro condition and model.
5 DR. LIONBERGER: So when you say absorption 6 composite appearance rate, do you need some kind of
7 oral solution to deconvolute that, or is this
8 something you could obtain from just analysis of
9 plasma data?
10 DR. SUN: Ideally, so ideally you have
11 another arm for oral solution, though, because then
12 basically you have a brand, generic, and also oral
13 solution. Then you have an additional arm. In
14 that way, you can against the oral solution to do
15 deconvolution, that have a few advantages. Number
16 one is really to reduce the variability because you
17 see each individual subject to get rid of our
18 variability. Number two is really to deconvolute
much more accurately.
Of course, you can also use the literature
data with IV data or other IR release formulation
22 to do the deconvolution. But that's perhaps
against the average rather than individual. So you have an advantage and disadvantage.

DR. CONNER: When you use your oral solution
as your baseline for deconvolution, do you pay
attention to how you do the oral solution? Because
we have a tradition of assuming that an oral
solution is uncomplicated. There's no possibility
you can have any change in bioavailability.
9
10
11
12

15 have to take that into account?
16 You can't just kind of blindly go into that type of drug and say, oh, any oral solution is fine, whereas two investigators using different extemporaneously compounded oral solutions could come up with very different results.

DR. SUN: True. I think in FDA, the old days said the oral solution is self-evident.
have a precipitation.

So the proposal I have is two things. One
is when we do the intubation, we should also do
oral solution intubation. We know exactly what's
going on. That's actually very valid. Too bad the data we have, currently have, we're going to publish, we have a solution arm, but we did not do the intubation. We thought we don't need it.

So right now, we will look back the data. We really need an intubation for dosage form and a solution. Then we get a good idea. The solution, oral solution, will give you deconvolution because that will mimic all the transit and everything, metabolism. I think is actually better, even better, than IV. You're right.

DR. LIONBERGER: Thank you. So our next speaker is Chetan Pujara from Allergan.

Presentation - Chetan Pujara
DR. PUJARA: First of all, thank you to the FDA and Dr. Lionberger for inviting me to present here. I really appreciate that. And my talk's

1 going to be on nonbiological complex drugs. And I
2 want to further highlight -- I think there's been
3 enough presentations on complex drugs, but I want
4 to further highlight the challenges in the
5 assessment of similarity or equivalence of
6 ophthalmic emulsions.
7 A real quick declaration of interest from 8 the NBCD working group. I'm not going to read
9 through this. It will be part of the slides that 10 will be posted. So l'll move on.
11 So the outline of my talk, I'll quickly
12 introduce what nonbiological complex drugs mean.
13 And then we'll talk about emulsions as complex
14 dosage forms. And I feel strange standing in front
15 of Ken Morris and Steve Byrn and others talking
16 about emulsions. They're the ones who taught me
7 all this. And I'll spend a little bit of time on
18 assessment of similarity and equivalence of
19 ophthalmic emulsions.
20 So I think there's good recognition that we have small molecule drugs, tablets, capsules,
22 et cetera, that are formulated, and we have

1 biologicals that are considered complex drugs.
2 More recently the term -- or yes, I guess the term
3 nonbiological complex drugs is starting to gain
4 popularity. There was an article also published on 5 this.
6 At a very high level, NBCDs constitute of a 7 multitude of closely related structures. The
8 entire complex is the active pharmaceutical
9 ingredient. I think Dr. Amidon mentioned earlier
10 it's not just a drug, it's the drug product.
11 The properties cannot be fully characterized
12 by physical-chemical analysis. And it was good to
13 see Dr. Lionberger talk about Q3, talk about
14 microstructure analysis. The well-controlled,
15 robust manufacturing process is also fundamental to
16 reproduce the innovator's product. And that's
17 something I want to further emphasize as we go
18 through the few slides that I have.
19 So with respect to assessment of similarity
20 or equivalence for nonbiological complex drugs, we
21 believe that new knowledge and policies need to be
22 created. I think practically everyone in this room

link in these guidances to in vivo performance is
still missing. And it's also deficient in details
on how robust these characterization methods need to be.

What I mean by that is several years ago, I
think, when I was part of PQRI, we published
particle size methodology and we indicated how
different particle size methods can give you
different results. And this was just for solid particles.

If you take an emulsion, as I showed the little cartoon there, it's malleable, and the characterization methods can affect how these emulsions will perform in the method. So both the sampling characteristics and the way the emulsion is measured, or determine the particle size, will be affected by the instrument, but also the parameters that are used much more than, I would say, a solid particle.

So what that leads me to say is, and we have obviously done some research on this, that we can take disparate emulsions and show that they are

Page 110
similar just by changing the parameters with which
one can determine the particle size. So the
robustness of these characterization methods is
very important.
Further understanding of locally-acting
ophthalmic emulsions is necessary to create
scientifically robust guidance with respect to
assessment of similarity or equivalence of
ophthalmic emulsions. We believe that. So I would
10 submit to the panel here that research in the
11 following areas would be a good first step.
12 In vitro drug release methods that can be
13 linked to in vivo performance -- I think we've
14 already heard a couple of talks on this earlier
15 today, and probably more to come. I saw Diane's
16 topic. She's going to talk about in vitro-in vivo methods and how we can link them.

With respect to ophthalmic dosage forms, it's even more critical because it's locally acting. There are no methods, as far as I know, 21 that are available. And most of the methods 2 basically take a 900 mL dissolution bath and they

1 try to miniaturize it, and I don't think that's
2 probably sufficient.
3 So this is an area that's ripe for research.
4 And I'm looking at all the great professors sitting
5 in the front here, and I would submit that a lot
6 can be learned here to make better drug products
7 available to patients.
8 Then, as I mentioned earlier, robust
9 emulsion characterization methods, research in this
area would also be a good first step -- for
example, drug distribution. And in the recent
update to the guidance, I noticed that that's there
in terms of how the microstructures can affect.
Droplet size I already talked about. And of course, the intention of developing better methods is to provide meaningful information on impact of in vivo performance.

So with that, I have four seconds remaining.
9 I will stop and thank the panel, and take any 0 questions.
21 DR. LIONBERGER: Thank you. So in terms of 22 the in vitro release method, what do you think are

Page 112
some characteristics of a good in vitro release
2 method for an ophthalmic product? And to your
3 knowledge, do any of the approved brand products
4 have good in vitro release methods?
5 DR. PUJARA: Yes. That's a very good
6 question. I'm not aware of any good in vitro
7 methods in the ophthalmic area. You're absolutely
8 right. Typically, companies would use in vivo
9 methods to further understand because we can get an
10 assessment of both tolerability of the dosage form,
11 because this is a locally-acting drug, and we can
12 understand in which tissues these drugs are going 13 into.
14 We've not spent much time in developing
15 in vitro methods because this is an area that I
16 think is -- I think we need some disruptive
7 technologies to further advance the science in this
8 area, and we haven't invested a whole lot in it.
19 However, as I mentioned, for development purposes,
20 we typically do use in vivo methods.
21 DR. LIONBERGER: Thank you very much.
22 DR. PUJARA: Great. Thank you very much.

```
DR. LIONBERGER: So our next speaker is Professor Catherine Sherwin from the University of Utah.
Presentation - Catherine Sherwin
DR. SHERWIN: Good morning, everyone. And a
slight change of topic and a slight change of
direction for my talk, but hopefully very of
interest to everyone, and also very relevant to me
in my research group. I want to talk about issues
associated with children and generic drugs. I have nothing to disclose.
Some things that we're concerned about, those of us who work in pediatrics and pediatric clinical pharmacology, is what are the differences
between the generic drugs and the brands. And I'm
a big fan of generics. I'm an advocate for them.
I think they are needed, vitally needed. But in
some circumstances in pediatrics this is becoming
very difficult with regards to the clinical
perspective, the parents' perspective, and then
also the perspective of the child.
So is it always good that these are cheaper
```

Page 114
and always available? Are they just as good? And
we've heard lots of very in-depth scientific
presentations yesterday and also this morning about
oral absorption. And in that circumstance, are we
considering differences in maturation within
children and their different maturation of the
gastrointestinal system?
So can we maintain the quality and reduce
healthcare costs if we use more generics? And I
think we can. I just think we need more
consideration, particularly on the pediatric side.
So what criteria should we have for switching from brand to generic drugs, particularly
in a pediatric population? And do we have a
therapeutic switch? And if we do these, how do
they differ and is this relevant for that patient population?

So the generic approval differences are available within the brand drug. For pediatric indications, they usually test in adults first, and this is obviously due to ethical considerations and constraints. We can't get a child, line up a whole

1 bunch of children, and tell them to volunteer to
2 take a drug that they don't need and they won't
3 need. I can't see many parents consenting to see
4 that happen.
5 Also very difficult to take the number of
6 blood samples that we need to look at the PK within
7 that patient population. So we are definitely
8 relying on the information that comes from adults.
9 Bioequivalence is based on kinetics and the 10 pharmaceutics. We've heard about dissolution.
1 We've heard about absorption. These things vary in
2 children. They vary in the neonatal population.
3 They vary between ages of children and between a
child that's a 2 -year-old versus a 10-year-old. So
does this mean that we need to look at differences
16 in repeating assessments for steady states of drugs
7 within children? And how do we compare the
8 therapeutic effectiveness between drug A and drug B
19 within this patient population?
So we do a lot of bioequivalence evaluation
21 study design. We have very set, very specific
22 criteria to achieve that. It's done very

Page 116
1 standardized within the Office of Generic Drugs.
2 There's a lot of opportunities, and Dr. Lionberger
3 outlined this morning all the initiatives that are
4 being done. They do careful controlled crossover
5 studies. We do comparisons between the brands of
6 the generics.
$7 \quad$ The patients typically are young, healthy
8 adult and mainly male, and definitely not in the
9 pediatric realm. We're looking at comparisons
10 between AUC, Cmax. We look at measurement, and we
1 look at the half-lives between those patient
12 populations.
13 We know within pediatrics those half-lives
14 for many of these drugs actually vary. And
5 depending on the age of the child, we have a
16 variability in clearance. We have a variability in 7 absorption.
18 So it becomes very difficult when you're
19 trying to equivalate these from an adult population
20 across into pediatrics. We typically, in the adult
21 population doing crossover designs, look at
22 different half-lives. And all of those becomes
fundamentally different within the pediatric side.
Substitution is not all the same. And
something that clinicians I work with talk about a
lot is the difference between generic substitution
and therapeutic substitution. And substitution
with generic substitution is substitution of a drug
without market exclusivity, but the drug has the same active ingredient as the branded product.

Within therapeutic substitution, it
substitutes a drug considered therapeutic equivalent to one that has been ordered. And the
basis is, similarity is not always clear or focused
with regards to pediatric patients, and I'll give
you examples shortly on that.
So why would a clinician want to fight this,
or why would they might not think that this is
something that actually wants to be done? A
branded formulation is pediatric-friendly so you
usually are trying to have a solution or a
suspension, something chewable.
What we find sometimes in the patient population, and I see this in my own children, you

Page 118

have a brand that you're prescribed. All of a
sudden you get the generic version. It goes from
being an oral square tablet to a round tablet. My
son freaks out because he's used to the square one.
He doesn't want the oval one.
You have differences in taste. One minute the formulation tastes like strawberry. The next minute it tastes like cherry. And in a pediatric
population, that's highly concerning. If we're
talking here about the equivalence, all of the
kinetics, that's fine when we're looking at adults
and we're saying okay, the kinetics are the same.
But when we break it down to the formulation
differences that we see within the pediatric, that
becomes a difficulty when we switch between a brand and a generic.

So there's few pediatric therapeutic studies that have looked at the branded drug to support different age groups in the patients. And this isn't always considered when we're doing these studies and when we're trying to equivalate, and when we're looking at differences in absorption,

1 and if a drug has a narrow therapeutic index, how
2 that's actually going to equivalate within a
3 pediatric population.
4 Some examples. A 3-month-old child who has 5 probable GERD, the doctor orders Prevacid and
6 omeprazole is dispensed. Are these therapeutically
7 equivalent? Have they been studied? Do we know
8 this? Omeprazole's suspension has never been
9 labeled for children less than 1 year old.
10 For a lot of infants, newborn infants, GERD
11 is a very serious consideration that the doctors
12 want to treat. PPIs are quite commonly given. But
13 we know they have variable kinetics in all ages.
14 And we know that the formulations are different.
15 And we know that these have not been tested in
16 children this young.
17 Other differences, and something else that 18 is irrelevant, particularly in the pediatric side, 19 is differences in the pharmacogenomics. We know 20 that the PPIs are mostly cleared by CYP2C19 and not
21 as much by 3A4. And all know that there are
22 ontogeny or maturational differences in the

1 pediatric populations between a 3-year-old with
2 regards to their CPY2C19 level versus a 5-year-old.
3 And that's something that becomes an issue if you
4 switch between these drugs when we haven't got this
5 information available.
$6 \quad$ So is therapeutic switching appropriate?
What are the data? Should they be interchangeable?
8 In these children who are 3 months old, is this the
9 same? Is this therapeutically equivalent? So
10 these are the questions that I'm asking and that I
11 want to help answer.

13 of the pharmacology. It requires clinical trials
14 And as Dr. Lionberger said this morning, this is
15 difficult to do some of these studies, particularly
16 in the population, but we do have access to
databases, insurance claims information, electronic
medical records. The information is there; we just
need to actually find a way to access it.
Some of the areas that we have of concern
are the psychoactive drugs. Cardiac drugs are
being more and more used in younger populations as
the obesity epidemic grows and these children are
developing cardiac conditions. We're using cardiac
drugs that have never been tested in children.
Antidepressants, the same, being used in
younger, younger children where we've never done
these clinical trials or done these clinical
studies. Other areas of concern -- transplants and
oncology and a lot of drugs that we're using in
those that we're extrapolating the data from adults and using them down in pediatric patients.

Generics have a role. As I say, I am a fan of generics in pediatric medicine. They are desperately needed, particularly within the underserved populations, and for these children to have access to this medication. But we need to have consideration for this.

We need to look at the reduction in medical costs as being a benefit, and again, that was covered earlier this morning. But we also need to look at any unanticipated health costs which can come when we use these drugs in a pediatric population where we have no clinical information,

Page 122
where we don't have this information to know the differences.

There's few studies done in pediatrics where
we compare drug A and drug B, much less looking at
cost-effectiveness. And is it cost-effectiveness
in some of these cases to change a child from a
brand drug to a generic if we know that they may
have an increased likelihood of an adverse event?
Without pediatric studies about the
pediatric label, we have the exclusivity which the
FDA brought in through the BPCA and the FDAMA a few years ago, which has made a big change to industry having to do some of these pediatric studies.

But we still don't have as much information as we need within this population. So generic switches are seldom based on pediatric data. It's
usually the data that's been gathered from adult studies.

So in my summary, I am an advocate of doing, obviously, pediatric research. I would like us to
be able to use the data that we currently have
available. Again, as Dr. Lionberger said this

1 morning, we have data in these electronic medical
2 records. We have data in these insurance claim
3 bases. We have modeling and simulation which we
4 can use. We can extrapolate the data. We can do
5 models. We can take the data from the adult side
6 and extrapolate it down to children.
7 But l'd like us to look more at the
8 differences between the innovative and generic
9 drugs and how this affects substitutions within
10 this patient population. How do we distinguish
11 between a therapeutic and a generic substitution
12 when treating children?
13 How do clinicians make that decision? How
14 do the pharmacists who are filling the scrips make
15 those decisions? How can we identify the general
16 factors to consider for a therapeutic switch and a
7 generic switch?
I think there's a lot of innovations that
19 the FDA, through their granting mechanisms, are
20 actually starting to try and look at these things.
1 And I think this is something that we really need
22 to be doing, and not only in pediatric population,

1 but also within pregnant women, breastfeeding
2 women, and geriatrics as well.
3 My last point is to select therapeutic areas
4 for generic substitution increase of adverse events
5 and to look at those more closely so that we can
6 prevent those worse outcomes from occurring. And
7 that would be me.
8 DR. LIONBERGER: Thank you. Questions?
9 DR. STODART: Thank you for your
10 presentation. In general, do you see any
11 particular age range or ethnicity that is more 12 vulnerable than others?
13 DR. SHERWIN: So the age range that, from my
14 perspective that is the most vulnerable is the
15 neonatal age range and the under the age of 2 . And
16 ethnicity, I live in Utah and I work in Utah, which
17 is a very homogenous population.
18 But definitely within the studies that we
19 do, we see issues in the Pacific island population
20 and also in the Native American Indian population
21 within our region. And that's most of my
22 experience in America.

Page 125

DR. LIONBERGER: When we talk about differences between the brand and generic, as Gordon has mentioned, it's really a product formulation that's different. And I think a lot of the -- some of the discussion things like clearance. Right?

You don't think that the clearance of the active ingredient is going to be any different in whichever patient the product is given. So can you identify the specific product differences that you think are of concern for substitution in different populations?

DR. SHERWIN: So the one that we've done the most research on, and one actually which we have a grant through your office right now, is looking at the immunosuppressants and looking at tacrolimus. And we have identified some differences in the very younger age group patients, around 2-year-olds.

Above that, it does tend to equivalate to adults. But it's definitely in that 2- to 3-yearold range that we do see differences, which is obviously related back to maturation within that

Page 126
patient population.
DR. CONNER: Could you give a little bit
more detail on the differences? And I won't go to
therapeutic substitution, which is not a generic
drugs issue, because that's a substitution that's
made by the physician by writing a new order, a new prescription.

So it has all of the medical monitoring that any other prescription would have but the generic substitution, which does not necessarily involve the physician, but is done at the pharmacy or institutional level.

Also l'd like your ideas on if, you know for the generic substitution or generic products, if you feel that there isn't enough information in pediatrics, what would your suggestions be about going and getting it? Knowing that the generic product, when it comes in as a new application, has probably never been --

DR. SHERWIN: Never been used.
DR. CONNER: -- published or seen or is the world literature. It's a brand-new formulation

1 that is attempting to copy, in a way, the existing
2 product that's hopefully very successful in
3 patients in the marketplace.
4 DR. SHERWIN: So something that we see
5 within our institution is, particularly for one of
6 the studies that we're doing right now, looking at
7 Botox for children with muscular spasticity.
8 We've seen, actually, a difference in
9 adverse events within the difference between the 10 brand and the generic. So there's something that
11 we're seeing within a pediatric population that 12 hasn't actually been seen much in adults.
13 We've been looking at other specifics and 14 other drugs that we see differences in. Some of 15 the antibiotics that we see used within our younger
16 patient population is different to what we see in
7 our older patients. So within our neonatal
8 population, things like vancomycin, we see a
19 difference within the kinetics, depending on
20 whether the doctors are ordering the brand versus
21 the generic. And we have had reports from our 22 doctors.

1 The way that we have been addressing this is
2 actually pulling data from our large electronic
3 data warehouse. And we pull information on whether
4 the patient had the brand, whether they had the
5 generic.
6 We look at the outcomes. We look at when 7 did they switch? Why did they switch? What were
8 the differences? What were the indications? Was
9 there a therapeutic reason to switch? Was there a
10 concern from the patient about which drug they were
11 on?
12 It's hard for us. We don't actually work on
13 the outpatient side, where I think there's actually
14 probably a lot more of these concerns within the
15 patient population from parents. And we do get
16 that back through our patient pharmacy therapeutics
7 committee, but we don't see it much. I see more
8 the inpatient side.
19 DR. CONNER: It seems to me some of the
20 examples you just cited were injectables.
21 DR. SHERWIN: Um-hmm.
22 DR. CONNER: The vancomycin, I assume you

Page 129	Page 131
1 mean the injectable use of vancomycin.	1 indication -- sorry -- reason for switching?
2 DR. SHERWIN: Um-hmm.	2 DR. SHERWIN: Yes. A lot of the doctors
3 DR. CONNER: Another one, the Botox, I think	3 have to write -- if they change from one specific
4 is an injectable as well.	4 drug brand to another, and especially if there's a
5 DR. SHERWIN: Um-hmm. Injectable, yes. IM.	5 cost association, they actually have to justify why
6 DR. CONNER: So a generic of that would be	6 they make that change.
7 virtually identical as far as its inactive	7 DR. PINHEIRO: Great. Thank you.
8 ingredients.	8 DR. LIONBERGER: All right. Thank you very
9 DR. SHERWIN: Um-hmm.	9 much.
10 DR. CONNER: The active ingredients -- I	10 Sorry. Ruth?
11 think the Botox is a somewhat complex drug	11 DR. BARRATT: I have one question, Rob. So
12 substance.	12 these are a lot of suggestions, and quite varied
13 DR. SHERWIN: Yes.	13 type of studies that you're suggesting.
14 DR. CONNER: So your problem, if it exists,	14 DR. SHERWIN: Of course.
15 could be there. But as far as generics go, they're	15 DR. BARRATT: So trying to wrap my brain
16 essentially a very simple approach of trying to	16 around this to -- do you have any sense of, if not
17 copy, literally copy -	17 priorities or areas where you can make the most
18 DR. SHERWIN: Copy.	18 impact, maybe top two? Because it could be
19 DR. CONNER: -- an injectable point by point.	19 surveys, it could be EHR.
20 DR. SHERWIN: Yes.	20 DR. SHERWIN: Yes.
21 DR. CONNER: Unlike some oral products,	21 DR. BARRATT: It could be assays. It could 22 be palatability studies
22 where you have different excipients.	22 be palatability studies.
Page 130	Page 132
1 DR. SHERWIN: You have absorption and	1 DR. SHERWIN: Yes. So my priority would be
2 everything else. Yes. And that's something that	2 particularly with the medicines where there are
3 we're looking at, is with regards to excipients	3 high costs to the family and looking to provide, I
4 within the neonatal population in particular, that	4 guess, confidence within the fact that the generic
5 is of concern, is the excipients that are used	5 is going to work within the pediatric population.
6 within the formulations. I don't do that much in	6 We have a lot of very expensive brand drugs
7 oral drugs because I am working in neonatal	7 that are used. Kalydeco is one used for CF that is
8 populations, so we typically are using more IV and	8 tremendously expensive. Lupron is another one that
9 IM .	9 I'm actually already doing with the FDA which is
10 But there are ones where we still have	10 tremendously expensive
11 concerns, mainly from the clinicians who say,	11 So any information that we can gain for,
12 don't want to give my patient this brand o	12 one, either working towards having a generic
13 tacrolimus because I want to use the generic. O	13 available or, two, providing confidence, if there
14 you have the opposite. I have one doctor who will	14 is a generic available, for the clinicians to use
15 only use the generic, will not use the brand. So	15 those within a pediatric population.
16 we get differences in perception which I think come	16 The argument I get back is, well, it's never
17 from the clinicians in their obviously own	17 been tested in children. It's a generic. Why
18 experience.	18 would I use it in my patients? So I think we need
19 DR. PINHEIRO: Just a quick follow-up on	19 to provide that confidence and that evidence to the
20 what you mentioned earlier. Did you say that in	20 clinicians.
21 the databases that you've been considering, you	21 DR. LIONBERGER: All right. Thank you very
22 have information on the	22 much.

$\text { Page } 133$	Page 135
1 (Applause.)	1 experiments that we did next were sorbitol and
2 DR. LIONBERGER: So our next speaker is Dr. Ajaz	2 excipients came out of that sort of analysis. So
3 Hussain, who is representing NIPTE. Presentation -	3 that knowledge base is not really available often
4 Ajaz Hussain	4 for us.
5 DR. HUSSAIN: Good morning. The discussions	5 I think keeping that in mind, what I would
6 earlier today, I think, highlighted some very	6 like to do is really build in the point that drug
7 important aspects. So I wanted to start with	7 shortages are often due to manufacturing
8 summarizing some of my takeaway from listening to	8 difficulty. I think when I was at FDA 2002,
9 those discussio	9 looking at those reasons for shortages are the
10 Drug shortages expected to continue was one	10 sam
11 of the messages Dr. Fischer said, and that we need	11 Manufacturing difficult is the foundation.
12 a plan to deal with that in a more efficient basis	12 And manufacturing assessment is based on QC
13 I'm a pharmacist by training, and I think NIPTE	13 methods. So you cannot ignore QC methods. You
14 focuses on pharmaceutical technology and education	14 cannot ignore formulation even when you're
15 from a pharmaceutical technology perspective. A	15 developing bioequivalence methodologies for
16 clinical community thinking about planning to deal	16 assessing these things. So that's the heart of the
17 with drug shortages on an ongoing basis is not an	17 issue here.
18 acceptable situation	18 So again, good morning. My name is Ajaz
19 I think confidence in substitution has been	19 Hussain. And I represent NIPTE as their president.
20 a work in progress, and Rob Lionberg	20 I work, just for disclosure, devote 50 percent of
21 really highlighted some of the significant advances	21 my time to NIPTE and 50 percent of my time is a
22 Office of Generic Drugs has made in this area. And	22 consulting practice which is completely focused at
Page 134	Page 136
1 I think it is work in progress, and we need to do 2 more in that area.	1 the moment on complex generics and biosimilars. 2 And following my FDA tenure, I had an opportunity
3 I think the point that -- Dale Conner aske	3 to work for Sandoz Biopharmaceuticals, leading
4 that question; I want to hone in on that question	4 their biocomplex generics and biosimilar program.
5 to frame the talks that NIPTE wish to share with	$5 \quad$ In my practice for the last 10 years, I jus
6 you -- is clinical relevance of QC methods. We	6 wanted to share with you one definition of
7 cannot ignore that question. It is part and parcel	7 complexity. I think we think about complex dosage
8 of everything we do. And every method we may	8 forms. I think that's a good way of looking at it.
9 develop for bioequivalence, there is a built	9 But complexity depends on available knowledge and
10 assumption that the product you're using is the	10 available expertise
11 right product for that method	11 So if I think about something which is
12 What we have learned, especially -- Gordon	12 complex, something which is complicated, something
13 is not here, but Gordon, before Dr. Amidon	13 which is simple, something which is complicated,
14 sabbatical, I was with him at FDA then.	14 good practices work for that. Something which is
15 advantage we had was, we had the biopharm filing	15 simple, best practices work for that. Something
16 room right next to my office. We were able to	16 which is complex, you have emerging practices.
17 review every NDA application that was submitted for	17 Good practices don't work for complex systems. So
18 the BCS guidance fin	18 the development and assessment has to reduce the
19 What we found was that dissolution is	19 complexity to be complicated so that good practices
20 product-specific, formulation-specific. Seventy	20 work.
21 percent of the time it's over-discriminating, but	21 With that in mind, let me quickly share with
2230 percent of the time it's not. And the	22 you some thoughts. Quickly, NIPTE is a 501(c)(3)

non-profit organization. There are 15 schools, and
the 16th school will be joining, and Ken Morris
represents the new school that is joining up. So
we bring together pharmacy and engineering and
medical schools especially to focus on improving quality, lowering cost.

It is completely funded by FDA through a U01 grant so far, so I think we want to acknowledge FDA
funding. And we made it a point to come to this
discussion without focusing that NIPTE should be
funded for these products. So we wanted to have a
general discussion for this.
The point I think is important to remember
is, US FDA strategy response to maximizing how
generics meet public health needs is really fairly
well-articulated. I think that Rob Lionberger's
presentation on how he's progressing is very
impressive. And I think looking at the points
Dr. Woodcock made at the recent congressional
testimony on the 4th of February, first, generics
is a public health priority. And I think that's an important element.

Page 138
GDUFA 2 negotiations, thinking of pre-ANDA
process; clearly pre-ANDA process will not likely
to be available for every applicant because sheer
volume of that. Pre-ANDA is an opportunity in one
sense, like end of phase 2 meeting on the new drug
side. So think about that. I think Ken Morris
will cover on that.
I think today we are here for looking at
prioritization of research at this meeting, but I
also wanted to emphasize the need for additional regulatory -- regulation is the words Dr. Woodcock used, but I say better assurance of quality in an increasingly globalized industry. One voice of quality is another major opportunity, and all these pieces really need to come together.

So in the challenges, you have organized this conference very well. I'm not going to go through this slide, but I think the NIPTE presentations you have are covering multiple aspects of the topics that you have outlined.

The key aspect I think I want to emphasize is public perceptions are shaped by the few errors

Page 137
Page 139
1 and recalls. Even if we do 95,97 percent of our
2 job fantastic, nobody is going to give us credit
3 for that. They will count the mistakes we make.
4 Unfortunately, that's what we have to deal with,
5 and I think we are up to that challenge.
6 I think stark reminder of the perception
7 impact, I think, is the color and shape guidance
8 that FDA had to finalize, and the impact it has on
9 patient perceptions.
10 Totality of evidence is increasingly the
11 dominant part for complex generics. Complexity is
12 increasing generally. And l'll urge you to think
13 about complexity as emerging practices. You have
14 to reduce complexity to be complicated for good
15 practices to work. And therapeutic equivalence
16 increasingly demands notable attention to
17 integration of product and process, design with
18 orthogonal analytics in vitro, and when necessary,
19 in vivo.
20 Without that integration, the risk of making
21 incorrect decisions is high. Knowledge base and
22 decision-making process pertaining to integration

Page 140
1 of evidence really is the topic we wish to share
2 with you as important considerations as you think
3 about your program going forward.
4 Some examples, simply some examples I wanted
5 to share with you. I think if I look at the
6 guidance on methylphenidate hydrochloride, we had a
7 setback. We came with the modified guidance. And
8 then we have involved or incorporated subject by
9 formulation interaction as a requirement in terms
10 of the bioequivalence.
11 Is that the right question to ask? I don't
12 have an answer for that, but having spent a lot of
13 time thinking about subject drug formulation
14 interaction during my FDA days, isn't formulation
15 science a better answer, would be a question I
16 would like you to consider. I think if I look at
17 mesalamine, the draft guidance is asking for the
18 applicant to provide high variability and
19 bioequivalence parameters.
20 I'm going back and looking at the work of
21 Cindy's lab in St. Louis, when I was there, we did.
22 I think the mechanism for the variability can be

Page 141
identified. Isn't there a better way of dealing
with that and integrating the formulation science
aspects to this?
I think I had an opportunity to guide a
client through the first approval of the nasal
spray product that I'm talking about. I think this
is the right question, the right time, can be significant benefit here.

So I think need for integration and clarity is important from these aspects. And I will skip through a number of things to go back to the summary slide, maybe, to think about the totality of efforts that need to go in.

I think the regulatory science agenda, really, if you -- I request you to consider locating a portion of your funding and prioritization to knowledge base and standards for integration development across the product class categories that you have.

I really would leave it at that to say that to achieve the public health objective of first generics right on time, right question at the right

Page 142
time is necessary. One voice of quality. And we
believe the missing element here is the integration
and knowledge management that needs your
consideration. Thank you
DR. LIONBERGER: Thank you very much.
So can you clarify a little bit about what types of knowledge you'd see in this?

DR. HUSSAIN: Sure. I think immediate high
priority in terms of that would be what we have
been looking at. Just based on your research, I
think you're looking at Q1, Q2, Q3 aspects. And
actually moving away from Q3 aspects for inhalation
and so forth are important.
So the knowledge base that is missing there is the excipients. Our excipients are controlled based on certificate of analysis that actually do not tell you anything about the functionality.
Therefore, in knowledge base of excipients and how
to use those excipients in those settings would be
important.
I think excipient knowledge base is important all across, but one can prioritize to the

1 high areas and then think about that. We tend to
2 focus on excipients only in terms of oral, but
3 excipients get more and more important for topical,
4 inhalation dosage form and so forth. That would be
5 one area.
6 The other area, really, I think, from
7 knowledge management is, I think, what are the
8 right questions to be asked at the right time? I
9 think, given that we are using more analytics,
10 especially, I think, if I look at my thought
11 process in helping Sandoz go through first in/last
12 out. We have to use orthogonal analytics to
13 characterize the RLD and show similarity. Those
14 analytics are above and beyond those of compendial
15 and other trace requirements. That opens companies
16 and FDA vulnerable to challenge, continued
17 challenge.
18 So what is the right knowledge base
19 of -- what knowledge base guides us through what
20 are the right analytics and how do we address that,
21 is another example. But I think integrating the
22 pieces together is something we struggle. We often

Page 144

1 tend to be focused on one particular area. Cutting
2 across and connecting the dots across multiple
3 disciplines is a challenge, and I think we can do
4 some significant focused efforts there.
5 DR. BOAM: Do you have any thoughts about
6 how to make this knowledge base visible to
7 everybody in the sense that for standards we have
8 our guidances, or we have it at the USP or ASTM?
9 Obviously, for knowledge we've often relied
10 on publications, the literature, I would say. But
11 how would you envision making knowledge a little
12 bit more transparent, maybe? Or what's important
13 the literature and what isn't, or et cetera?
14 DR. HUSSAIN: I think literature clearly is
15 part of the knowledge base, but it's not
16 sufficiently specific to help guide informed
17 development and other decisions. Draft
18 guidances -- guidances are knowledge summaries.
19 And if I simply make an -- to take an example, that
20 every dissolution method you recommend in your
21 draft guidance is formulation-specific, is derived
22 from that of the RLD or what's in the USP, the

Page 145

Page 147
generic industry has no choice but to use that as a
target. Then they stop thinking about, is that
method specific to this formulation? Or my
formulation would be dealt with that.
So if we can think about your draft
guidances, if you can think about a summary
scientific assessment, scientific knowledge base
that could be a white paper that gets associated
with that, it could be specifically targeted for
each of those guidances. What are the other scientific considerations?

Or it could be, I think, as Ken Morris will talk about that in more detail, is it could be computerized information system which has the repository of data, but also the rules of what are the questions to be asked, what's the logic, and going in the direction of an expert system also.

So there are different ways of looking at that. And where you start from and where we want to go will depend on, I think, what topic we choose to work on that.

DR. LIONBERGER: Thanks very much, Ajaz.

Page 146

So our next speaker is Professor Stephen Byrn from Purdue University, also representing NIPTE.

Presentation - Stephen Byrn
DR. BYRN: Thank you very much. I'm going
to try to embellish on some of the questions that
were just asked, really, one about knowledge
management and one about specific areas of
investigation. I'm also going to try to hit a high
point on the pediatric formulations.
So the overall title of this part of the
NIPTE presentation is, "A Mechanism for an
Integrated Approach of Formulation Research,
Knowledge Management and Knowledge Sharing, being proposed and advanced by NIPTE."

We don't probably need to spend tons of time on this slide. This slide is just highlighting a complexity of formulation science. On the one hand, we have performance issues, reliability, formulation stability, bioavailability, safety, and then on the other hand, we have processes.

The design of the formulation, I think, is a

1 critical element. Characterization, we talked
2 about analytical recently. Prior knowledge in the
3 literature and in scientific meetings. And then
4 all of the approval and compliance decisions that
5 come into play. So all these combined, obviously,
6 as we've been talking about, make it a very complex
7 area.
8 The issues are broad, and the ones I'm going
9 to try to talk about relate to fundamental
10 understanding, and specifically the bullets, the
11 ones with the lines. The structure, obviously I'm
12 going to try to hit solid state chemistry,
13 reactions that can occur, as well as the components
14 like the excipients. And then the design, the
15 entire design of the formulation, structure,
16 performance, behavior, all of those issues.
17 Listed with the bullet points are four areas 18 of a special concern, the idea that acid-base
19 reactions can occur, especially with drugs and
20 excipients; the whole nanoparticle field; emulsion 21 formulations that Dr. Pujara already covered; and 22 control of these complex formulations.

1 Just some additional issues. Pediatrics,
2 stability, failure modes are often not fully
3 explored. We've been doing quite a bit of failure
4 mode work in the abuse-deterrent area, but still
5 generally they're not fully explored. And then
6 Dr. Morris is going to cover the question-based
7 review and the right questions at the right time.
8 So this slide is a summary of what I'm going
9 to present in the next few slides. It highlights
10 complex or problem formulations that we know about.
11 It's a lesson that can lead us to more
12 understanding as we go into the future. We don't
13 want to forget about history, is what I'm saying.
14 So on the controlled release side, we've got 15 both the bupropion, Wellbutrin, which we've already
16 heard a little bit about, and the methylphenidate 7 area.

18 On the emulsion-base formulations that have
19 already been covered, we had the pretty well-known
20 Neoral situation. We have the nanoparticle side.
1 And then there's tremendous interest in BCS
22 Class II, using the old system of formulations of

Page 149	1
1 those products, because those, especially in the 2 antiviral area, those are tremendously important	1 I guess she's about 10 or 12. And the ad is quite 2 interesting.
3 products. And of course, we're curing some	3 These are two products now. They're
4 antiviral diseases now with BCS Class II products.	4 bioequivalent, Metadate and Concerta. And what
5 And then I already mentioned failure mode.	5 they're advancing on this ad is that the Metadate
6 So I'm go	6 is better blood levels in the critical learning
7 historical examples. Some of these have bee	7 areas. So it's again -- and these two are
8 addressed earlier, and these are quite interesting.	8 structurally different formulations. The Metadate
9 This is the Neoral case. And you can see the first	9 is beads, coated beads, and the Concerta is an oral
10 vial on the left is Neoral in water. And a second	10 formulat
11 vial is another product in water. And you can see	11 Of course, there's tremendous -- there has
12 the particle size is trem	12 been historically quite a bit of internet traffic
13 those two vials	13 on which of these formulations work best in adult
14 This reminds me of a quote from Yogi Berra	14 ADHD patients. And perhaps it's related to these
15 where he said,	15 levels.
16 watching."	16 This is not a scientific study, it's an
17 (Laughter.)	17 advertising study, but it's pretty interesting to
18 DR. BYRN: Okay. So we can see a lot about	18 see what people are advancing as different blood
19 the particle size by just watching these two. And	19 levels from different structures of formulation.
20 if we got to apple juice, you see the same, a big 21 difference. And then more similarity in the last	20 Just a structural difference in the way they work, 21 really.
22 two vials.	22 Here's the famous ritonavir case.
Page 150	age 152
1 Clearly, there's a structural particle size	1 Ritonavir, a very important anti-HIV drug, the
2 variation of the type that Dr. Pujara was talking	2 Magic Johnson drug, crystalized in Form II. After
3 about. We need to understand that better. We need	3 a year and a half on the market -- this is about 15
4 to understand how those formulations are performing	4 years ago, and had to be -- the origin
5 and what role the particle size. And Dr. Morris	5 formulation had to be withdrawn, and there was
6 will talk about QbR related to tha	6 about a year delay. And if we go through, I'm
7 This is a famous bupropion/ Wellbutrin case	7 sorry this isn't a very good picture on the right,
8 In that case, one thought is that it's structurally	8 but it's similar to that Neoral case
9 related to the two different formulations. The XL	9 The bottom flask is the magic surfactant
10300 bupropion dose-dumped, whereas the Wellbutrin	10 that creates -- when you dissolve this formulation,
11 formulation, which was made by different technology	11 it creates a clear solution, which would be very
12 and had a different structure, the memb	12 small particle size. The top two vials,
13 technology did not dose-d	13 Erlenmeyer flasks, are dissolution experiments
14 Again, QbR questions in that area and just	14 where the product results in an opaque solution,
15 specifically trying to figure out what	15 again similar to the Neoral.
16 structure of those two formulations are, the	16 The bottom product is purported to be better
17 manufacturing, and how those parameters lead to	17 and gives higher blood levels. And there's a lot
18 different behavior	18 of discussion about precipitation in the Gl tract
19 Here is one on the pediatric side. This we	19 and so on. Again, a very complex formulation
20 found in a magazine in one of our children, when we	20 that's even affecting precipitation in the Gl
21 took one of children to the doctor. We found this	21 tract.
22 ad in a magazine. And here we have a young lady.	22 Finally, just a quick picture. This is a

Page 153

Page 155
picture of Abraxane, a very important drug for
breast cancer. Completely cartoon. From what I
can tell in the literature, we don't know what the
structure of that particle is, but this is an
advanced concept of what the structure might be.
Again, there will be generic products to Abraxane
in the future, and we need to know more about that product.

I'm going to skip this one and go to a conclusion. Here's my summary slide. So l've been trying to address the mechanism for an integrated approach. And down at the bottom bullet are some deliverables that we believe NIPTE can bring to bear, and it was related to some of the questions.

How are we going to develop this scientific information? One would be either targeted white papers or publications, "what if" scenarios, scenario based research, transdisciplinary elaboration to inform question-based review; and then, two key elements -- a training program, and we envision NIPTE to become the curated knowledge base for formulations, probably a web-based system,

Page 154
although this is evolving.
So I'll stop right now. And again, thanks very much for inviting me.

DR. LIONBERGER: Thank you.
DR. UHL: Could you expand a bit more about the knowledge base aspect? I know Cindy had a question, too. So what I heard -- because I appreciate you mentioning -- what you just said expands a little bit on what Ajaz just said.

DR. BYRN: Right.
DR. UHL: Because I'm trying to wrap my head around, what would that look like? Who would own it? How would it be available? These are just -DR. BYRN: Sure.
DR. UHL: How would you get the data to populate in the first place? So if you could just -- any kind of thinking you guys have related to this.

DR. BYRN: Sure. And other people can elaborate on this, and it's an evolving concept. We're academics, so we're open literature production. So we view it would be open. It could

1 be on a website, like the pharmaHUB. It would be a
2 combination of white papers, studies.
3 I can't get out of my head the idea that 4 therapeutically, like the conazoles -- so all that
5 antifungal conazoles, I can't get it out of my head
6 that those formulations might be somewhat similar.
7 So one structure would be based on drugs that hit
8 certain targets. We would classify those all
9 together, and we would have a white paper or 10 something on formulations.
11 On the emulsion side, we would break from
12 that and go straight to emulsions, I think, like
Dr. Pujara proposed. So we would have -- and
Dr. Munson is going to talk about analytical
strategies. For example, NMR is very powerful for
6 emulsions. So that would be an aspect also. So I
7 could envision white papers in these different
18 areas, but I think this is all evolving.
19 DR. UHL: Okay. Thank you.
DR. LIONBERGER: In your talk, you have a
bunch of somewhat older examples of product issues.
22 What do you think -- how do you think this

Page 156
1 knowledge base would address the -- prevent or
2 address those type of, say, formulation failures
3 that you tried to illustrate?
4 DR. BYRN: Sure. Especially in the emulsion
5 area, like Dr. Pujara said, we don't know where the
6 drug is, even. Is it in the oil droplet? Is it in
7 the micelle? Between the components and the
8 micelle? As he pointed out, it's equilibrating,
9 potentially. What controls the particle size of
10 that material? All of that is critical I think.
11 So we would address all of those issues.
12 I think some of these old ones that I showed
13 probably we know more about, but certainly in the emulsion side we don't know much more. And I don't 5 think we know much about the nanoparticles, either.
16 DR. CONNER: One of your examples, you made 17 the statement that Metadate CD is bioequivalent to 8 Concerta, I believe. That's simply not true.

DR. BYRN: Okay. Okay, great.
DR. CONNER: It's not rated that way. And I was checking the orange book just to make sure that my memory is --

1	DR. BYRN: Yes, okay. Pardon me, yes. 157
2	DR. CONNER: Yes, they are two separate
3	RLDs, two separate NDAs. No one has every claimed
4	they are bioequivalent or switchable in any way.
5	DR. BYRN: Okay. Good catch. Good catch.
6	DR. UHL: Right. But they're two separate
7	RLDs, so they're competitors, and one is
8	advertising its --
9	DR. BYRN: Well, that's why the ads are out
10	there.
11	DR. CONNER: Which makes your example make a
12	lot more sense.
13	DR. BYRN: Yes. Yes.
14	DR. CONNER: Because there are two NDA brand
15	name products competing again one another. This
16	one's saying, we have a better profile than that
17	other one that you might prescribe. But it's not
18	like a generic issue.
19	DR. BYRN: Good point.
20	DR. BUHSE: So I think this actually brings
21	up -- enhances the question that I was going to
22	ask, is that -- and l'd like to ask a little bit

Page 158
more about the training programs you suggest
because I think in a variety of presentations we've
had today, there still seems to be some sort of
fundamental misunderstanding about what a generic
is versus a therapeutic equivalent. When is
something signaled as substitutable?
It sounds like that we would benefit from
some training external to the agency space on these
issues. Can you talk about whether your training programs would incorporate that type of training, or what else you meant?

DR. BYRN: So we're thinking of three tiers of training. The first tier would be what you're talking about, general generics, the whole generics
101. And then the second tier that we're thinking about is formulation base, general formulation, understanding substitutions, salt switches, things like that.

Then the third tier would delve into some of these more complex issues related to, say,
structure; formulations; why they would work this way or that way; how you vary that; what the new

1 formulation strategies coming in the future are;
2 how the agency could gain education in that area so
3 when submissions come, people are well aware of how
4 those formulations work, how they're designed, what
5 their structure is, et cetera.
6 DR. BUHSE: Thanks for that question. So 7 that's the content of the training?
8 DR. BYRN: Yes.
9 DR. BUHSE: What's your thinking of the format of the training?

DR. BYRN: Yes, we've been discussing that also. There's a little bit of a discrepancy. We don't want to do it all distance. We may want to have either all live or a combination of live and distance.

DR. BARRATT: A question. So who exactly is the audience for all of this training?

DR. BYRN: So we envision as both the FDA
19 and industry. And I just want to add a comment.
20 It's clear I'm going to be in level 3, not in
21 generics 101. I'm going to be one of the 2 instructors.

Page 160
1 (Laughter.)
2 DR. UHL: So to expand on that
3 though -- because, Ruth, that's a good question.
4 And your answer was FDA and industry.
5 DR. BYRN: Yes. Yes.
6 DR. UHL: Those are two huge buckets.
7 DR. BYRN: Right. Exactly.
8 DR. UHL: So do you have more targeted ideas
9 or --
10 DR. BYRN: Well, we have a hundred profs in
NIPTE, so we think we have capacity to handle quite
12 a bit. But our strategy would be to start small
13 and maybe start a few buckets and build up.
DR. LIONBERGER: All right. Thanks.
Anyone? I think it's time for lunch. We will
reconvene at 1:00 p.m. for the afternoon session.
(Whereupon, at 12:02 p.m., a lunch recess was taken.)

	Page 16
1	A F T E R N O O N S E S S I O N
2	(1:01 p.m.)
3	DR. LIONBERGER: Welcome back, everyone, to
4	our afternoon session. It's my intention to start
5	on time, end on time. I know it's Friday
6	afternoon, and if you didn't get a chance to go
7	outside, it's a beautiful day outside. I hate to
8	tell you that, but --
9	So our first speaker for the afternoon
10	session is Professor Ken Morris from Long Island
11	University, also representing NIPTE. So welcome,
12	Ken. \quad Presentation - Kenneth Morris
13	\quad DR. MORRIS: Thanks, Rob. Good afternoon,
14	everybody, and thanks very much for the invitation,
15	Rob and NIPTE. So I'm going to continue discussing
16	some of the themes that Ajaz and Steve discussed
17	before break, but drilling down a little bit more.
19	And this is still focusing on the idea that QbR is
20	really an organizing principle that l'll try to put
21	in context of the larger theme that we've been
22	discussing.

Page 162

So I'll start with a quote from Janet
Woodcock at the same -- I think the same testimony
that Ajaz was talking about. And one of the things
she mentioned, or highlighted actually, was in
ongoing challenges for generics is that there's a
need for more research in the space, and that some
drugs lack generic competition because there's no
convincing bioequivalence test method available.
Similarly, methods for showing chemical
sameness for certain complex drugs are not available. And I'll show an example that is an apparently simple compound that turns out to be more complex, but something that I think some of you in the room are familiar with.

So what does it mean to say that QbR could 16 be an organizing principle? I'll start by saying
that QbR and QbD are not independent. They're really joined at the hip. And I know that, as Lawrence and Ajaz and Rob were formulating the QbR approach, it was never intended to be separated 1 from QbD . QbD is the framework within which we all 2 have to be developing our formulations and products

1 because those are the principles that have to be
2 adhered to, to have a quality product.
3 The question-based review allows you to populate the network and populate the framework of
5 QbD . And that's its highest and best use, in my
6 opinion. And all of that is captured at best, or I
should say should be captured at best, in the
development report, which requires that you
9 have -- and this is really the heart of QbR and
10 QbD , as far as I'm concerned -- which requires that
1 you actually have a good, sound scientific
12 rationale so that you can apply the fundamental
3 principles, prior knowledge, and heuristics to
4 justify and explain what it is that you are
5 designing into your dosage form.
16 The Q8 and Q6 principles are therefore implicit. And I think, actually, after we had prepared all this, there was an announcement specifying a little bit more, or lending a little more specificity to how Q8 and through 9 and 10 are applied.
22 Then you create the knowledge base. So some

Page 164
1 of the questions earlier this morning had to do
2 with knowledge base, and l'll try to address them
3 relatively quickly. But the development report and
4 development history has to be a living document
5 because you don't want to restrict companies from
6 improving things because of any barrier, real or
7 perceived, in improving their methods.
8 So this is complementary to what Ajaz was
9 talking about with respect to analytical methods
10 that are a generation or so behind the existing
11 state of the art that restricts you from improving
12 your product, potentially.
13 Then the idea that you can use new but also
14 prior knowledge to make decisions requires again
15 that you have a complete history, or at least as
16 complete as possible history, of the project
7 itself. This will also help you in capturing the
8 failure modes, and it will facilitate the sharing
9 of the knowledge between FDA in both review and 20 inspection wings, because we've done this.
21 Some people had asked -- and I can't
22 remember who now; you've all asked a lot of
questions, good questions, about the
training -- but we had done training for PAT when
the PAT guidance came out. We had done unit
operation training; Chetan Pujara was part of that
at the time. And those were very successful
groups. And I think the premise should be included, or should persist, but there are other mechanisms by which we can share knowledge as well.

Let me give you the example I was talking
about. So this is from -- there were a couple of advisory committees we had when I was on ACPS on levothyroxine. And this one just highlights the fact that for levothyroxine, there was a very small window. It's a narrow therapeutic index compound by classification, that is, pharmacologic classification. And very small changes in the potency would potentially cause very large changes in the patient outcome.

So Eric Duffy had compiled all the data. And you can see that between manufacturers, as well as within manufacturers, the intra-manufacturing data was showing a broad variety of behavior. And

Page 166

the question then arises, well, how do you approach a project like that?

Well, you start with the molecular
structure, of course, and then you build on that
and look at the structure of whatever the condensed
phase is you're working with, and extract whatever
knowledge that you can from that, and then proceed.
So if we look at the existing literature at
the time -- actually, before the time -- Steve
10 Byrn's book, which is sort of a seminal reference,
of course, had pointed out that if you had
compounds that were hydrated, and levothyroxine is
a pentahydrate, that desolvation could precede
oxidative degradation. So that was known. So I
would have hoped that we would have found that.
We had published work classifying the
hydrates, the structural basis of hydration in
crystal structures. And we found that there were
categories, such as channel hydrates, that would
allow the egress and ingress of water, not at will
but relatively facilely, depending on the
structure.

1 If you look at the structure -- I don't know
2 how well you can see this in the light, but -- so
3 this is the chemical -- the crystal structure, I
4 should say. The chemical structure's on your
5 right. The crystal structure shows that this is in
6 fact a channel hydrate, so it can pick up and lose
7 water.
$8 \quad$ What we also found was that depending on the
9 conditions of dehydration -- there's one of the
10 students from LIU is working on the continuation of
11 this project in the audience actually -- if you
12 dehydrate this under certain conditions, the
3 packing motif, that is, the way the molecules pack
14 in the crystal structure don't change, so that
15 leaves the pathway open, essentially, for small
16 molecules, particularly gases, to infiltrate the
7 crystal structure.
So what you see here is from a publication.
19 And you can see on the left-hand side that in fact,
20 when you don't dehydrate, when you maintain it,
21 fine. You take a crystal and put it on the bench,
22 it's fine. And that's what the curves on the upper

Page 168

1 part of the loss profile show there. If you
2 dehydrate it, even if you keep it at a relatively
3 low temperature, it degrades.
4 The graph on the lower right does the same
5 sort of a treatment, but now this is with and
6 without oxygen. So what Steve's book said about
7 channel hydrates being able to dehydrate and
8 oxidatively degrade is here. It was known.
9 So we knew it was an NTI. It was known that
10 it was a very low dose, so that the probability of
11 getting -- even at the same level of degradation,
12 could be a much larger percentage.
13 It's chemically labile. That was also in
14 the literature. There's a nice thesis from Patel
15 from Cincinnati. You may know that. And
16 processing affected the crystal structure because
7 if you break this up and you dehydrate it, then
it's labile. And there are excipient interactions known.
20 Couple that with the fact that the half-life
21 is 7 days. By the time you titrate your patient,
22 as the doctors at the ACPS used to talk about, it
could be months before you get to the point where
you're stable. Now, go from one generic to
another, or from brand to generic or vice versa,
and there you have the length of time we're talking about.
6 So what to teach? The dosage form specs need to be developed early. So you should design
your dosage form to meet your specifications, not
take the specifications that your dosage form gives you once it's made. I know that sounds illogical, but there you go.

So the development process has to be integrated so you can predict the downstream effects. And we'll skip the rest of this, but suffice to say that orthogonal analytics are critical.

So you really have to have a development based on categories. The data mining and creation of an NTI quality clinical response that is the same as a quality classification can be part of what we're talking about as a knowledge base and knowledge management. I won't go through it, but

Page 170
this is an example of the start of this sort of a process.

So the research on integrated product
development by category across disciplines is
really critical, the example I showed you as well.
The support for knowledge base R\&D, for formulation
design, has to be included like NIH includes the
necessity of biostatistics in every application.
And finally, development of programs for training
and expert support for generic companies and reviewers is a key part of the proposals.

So with that, I'll -- well maybe I won't
end. No, that's the last slide, and l'll be glad to entertain questions.

DR. LIONBERGER: Thanks much.
DR. UHL: So again, back to this knowledge
management, knowledge base, because I'm still
having a hard time wrapping my head around this.
So when I look at your third slide where you
explain development history, and the development
history basically creates the electronic living
document. Right? So the development history would

1 be the development history that the agency gets in
2 an application from industry?
3 DR. MORRIS: That's what l'd like to see. I
4 think historically, development histories were not
5 reviewed. And I'm not saying that it has to
6 be -- that's something that's up to you -- but to
7 me it makes perfect sense, yes.
8 DR. UHL: Okay. I'm just making sure I 9 understand where the data come from.
10 DR. MORRIS: Yes, yes. Yes. From the development project.
12 DR. UHL: So in that case, the data would be 13 proprietary to the applicant. Correct?

DR. MORRIS: Correct. Yes.
DR. UHL: So can you walk me through, then,
how this becomes something that's publicly
available? Intellectually, I understand, or conceptually it can massively increase or improve
product development. But how do we translate
proprietary data into a kind of pre-competitive
public/private partnership type thing?
I'm looking at Ruth who deals in this space

Page 172
1 all the time. But it's yours and NIPTE's proposal,
2 so I'd like to hear how you guys have thought
3 through this because, as you said, the development
4 history is in the application, therefore, it is
5 proprietary. How do we make this a teachable
6 database?
7 DR. MORRIS: Right. No, no, that's a great
8 question. And there's actually two, or depending
9 on what group we're talking within NIPTE, three 10 approaches.
11 One is that the development history training
12 is not just -- and I don't mean training in the
13 mundane sense of the word, but I mean the
14 introduction of the concepts that underlie the
15 science that lead to the decisions that are made
16 and the development history is part of it.
17 So they're training, and it can take the
18 guise, as we did with the PAT guidance under Ajaz's
19 direction, where we would come and work with
20 reviewers and go through the scientific part of it
21 in enough detail so that it shows the integrated
22 nature of the work.

Page 174
database. PharmaHUB is, and the hub system in
general -- the one at Purdue, at least, was -- it's
all NSF-funded, I guess, and therefore it's public.
It's secure.
We can have a section of that that is
password restricted to FDA accessibility, for
example. But then the distilled part of that, the
categorical treatment of the individual types of
dosage, or of APIs and dosage forms, can be
included for public dissemination. So that's the
sort of two or three layers that we're talking about.

Right now, if you go to pharmaHUB, and I don't have the link on my slide but I'll include it and send it so it can be put up on the web, you can take a course in crystallography. I mean, you can just start clicking and you can learn -- and, now, when I say crystallography, I don't mean crystallography like what's sodium chloride. I mean, Dave Morrichder [ph], who is one of our post-docs, developed molecular crystallography for drug substances. So it's very specific, so you

1 don't have to go through three years of mathematics
2 to be able to understand it.
3 In this, I would see something much more
4 akin to a searchable, like the FDA, website where
5 you can put in a compound and find out what
6 category it fits in if it's existing, particularly
7 for generics. But you can also do it by category.
8 You should be able to search by structure, and then
9 dosage form types.
10 So that's about as far as we've gotten. So
11 I'm not saying we have the answers, but that's the
12 idea. So it's really interactive. And in there,
13 in the pharmaHUB too, the third tier is that we did
14 ontological modeling. When I say "we," I mean the
15 engineers did it and I helped them with the subject
matter.
17 So there's actually a database -- sorry, there's actually a program. I can't remember
what -- it's an unfortunate acronym. It's POPE,
but no offense was intended -- which is the Purdue
ontology system to be able to say, okay, for an
immediate-release, solid, oral dosage form, here's

Page 176
the decision tree and the ontology that leads you
2 to a good formulation. It'll be a higher hurdle
3 for the more complex dosage forms, but certainly
doable. Sorry.
5 DR. UHL: All right. Thank you. I would
6 just say -- as an FDA employee, I can say this -- I
7 hope whenever this becomes something, that is more
8 or better searchable than the FDA website.
9 DR. MORRIS: Yes. Well, I didn't want to
10 put too fine a point on it, but yes.
11 DR. LIONBERGER: Thanks very much, Ken.
DR. MORRIS: Thank you.
DR. LIONBERGER: So our next speaker is Eric
Munson from University of Kentucky, also
representing NIPTE.
Presentation - Eric Munson
DR. MUNSON: So I want to thank the FDA for giving me the opportunity to talk with you about
analytical characterization. You've already had a
few lead-ins from the three speakers before as well.

So I do have to put up a disclosure. I
actually am partial owner of a company that
provides services to the pharmaceutical industry,
but I'm not going to be talking about any of that at this time.

So what I remember from last year's GDUFA
meeting was -- I believe it was Dr. Lionberger who
actually said this, and I think he repeated it
again today, so that supports that -- is that the
only difference between an innovative product and
the generic formulation, or generic product, is the
formulation. So that really stuck in my mind.
One of the things I decided to do is to figure out, how can we take that aspect and really
use analytical characterization as a way of
improving not only the product
performance -- because that's one of the things that clearly has been an emphasis, looking at things like the in vitro composition, the
dissolution properties and bioequivalence -- but
then getting back and analyzing the product.
The challenge has always been that analyzing the product has oftentimes meant analyzing maybe

Page 178
the ingredients, certainly the drug's excipients,
but also, then, are there ways in which we can look
at the processes? What happens during the process
that maybe changes an excipient? And l'll get into
that in a little bit greater detail here.
So the idea is to actually translate what
you learn from a formulation standpoint. So you
have all these ingredients. You figure out not
only see what are the drug substances that are
there, but also then looking at the excipients,
variability that exists, and then look at the drug
product in much greater detail than what we
currently do right now.
But probably more importantly, try to understand what interactions occur between the drug
substance and excipients in the drug product, and
see what impacts those have upon the physical properties.

So certainly, for example, we look at polymorphism in the drug substance, but it's actually quite rare that we spend a lot of time looking at polymorphism in the drug product. Also

Page 177
Page 179
1 try and understand physical and chemical stability
2 aspects.
3 So in other words, what's the propensity for
4 a drug to degrade once it gets into a formulation,
5 which was actually one of the bases for one of our
6 NIPTE projects on looking at the stability of
7 gabapentin. And we were actually able to predict
8 some of the stability properties based upon how the
9 material was changed during processing.
10 Fundamentally, once again, what we wanted to 11 be able to do is to take the information that we'd
12 learned on the drug substance and the drug product
13 and translate that into a functional property, once
14 again disintegration, dissolution, and the 5 bioequivalence.
16 So what I'm going to focus on for the rest of the talk is simply excipient variability. And that just so happens to be one of the topics I'm
going to focus on, but that being said, there's a
whole range of different ways in which we can look
at drug product.
So this came from a presentation that was

1 given by someone from the FDA, where essentially
2 risk reduction opportunities, there were two very
3 common causes that were listed. One is deficient
4 facilities and processes, and essentially that came
5 down to humans, and then ingredient variability, so
6 with excipients.
7 So this is certainly something that will be 8 addressed in a few other talks later today. I know
9 certainly that an organization like IPEC is
10 interested in excipient variability, or the lack of
11 excipient variability, and trying to show whether
12 excipients are equivalent. But certainly there
3 have been recalls due to excipient variability.
A lot of these happen to be due to things
15 like codeine, but fundamentally, what they amount
6 to is that you end up with a failed dissolution
specification because an excipient may have been
changed to a different vendor. Even the natural variation that comes based upon the time at which a natural excipient was harvested can potentially have an impact.

So I want to highlight one particular case.

If you're not familiar with magnesium stearate, you
probably should be. It's one of the most commonly
used excipients used in oral dosage forms. It's
also a very complicated excipient, naturally
derived.
Even though it's called magnesium stearate, in order to be called magnesium stearate it just
has to be 40 percent stearate by composition and 90
percent stearate and palmitate. And then you can
have any sort of range of other fatty acids that
can exist.
What's shown here on the left is the solid-
state NMR spectrum of three different magnesium
stearate samples that we obtained. And this is
showing the carbonyl region. And essentially, what
I want to highlight here is the fact that when
you're looking at this, there are quite large
variations.
The top one represents a disordered form of magnesium stearate. The middle one represents a mixture of, actually, a monohydrate and a dihydrate form of magnesium stearate. And then the bottom

Page 182
one represents a monohydrate form. And then you
have the corresponding differential scan
calorimetry data up on the top, and then the
corresponding thermographic metric analysis.
A couple of points is that if you look at,
for example, the top one there, it has a very different DSC thermogram. So this the top one.
And maybe I'll show over here. You can see the top
one there has a very different DSC thermogram than
does the third one.
Yet if you look at the water contents,
they're essentially -- the amount of water that's
lost is basically the same. They come off with
different points in the TGA, but they are very
different. So the question is -- we can certainly
see that there are differences.
One of the challenges that you have when you're dealing with magnesium stearate is how to
actually characterize it inside of a formulation.
And the challenge is that the bottom here
represents just an NMR spectrum of magnesium
stearate, and the area that's shown here in the box

1 on the left, you can see that that represents
2 magnesium stearate in this particular form, which
3 is very crystalline.
4 But when you put it into a formulation, it's
5 practically impossible to see that. So how do you
6 see a material that's present at 1 percent of
7 formulation, and especially study it
8 scientifically?
$9 \quad$ Our approach has been to actually make our 10 own magnesium stearate. What we do is we C13 label

1 it. And the advantage of C13 labeling is that a
12 signal that was present at only 1 percent by
13 natural abundance now is present at 100 percent.
14 So it's very easy for us to actually identify the
5 form of magnesium stearate that's present in this
16 sample.
17 This is one of our very first attempts,
18 where we started off with a mixture of a
19 trihydrate, a monohydrate, and a dihydrate. And
20 what we see is that as the material is blended, the
21 trihydrate basically disappears, is converted to
22 monohydrate. The dihydrate also disappears as

Page 184

1 well.
2 So there's definitely form changes that
3 occur in the magnesium stearate as you do the
4 blending process. So we can use this as an
5 analytical technique to start to really
6 fundamentally understand what happens to magnesium
7 stearate inside of a formulation.
8 Now the issue is, of course, does this
9 really matter? So the other thing that we're
10 working on in the laboratory is trying to do the
11 correlation of the dissolution data back to what we
12 can identify as the change in the NMR.
13 You can just see here simply very similar
14 changes, or you can see that magnesium stearate,
15 depending upon how it's mixed -- this is hand
16 mixing so it's quite variable -- but you can see
17 that it does have a pretty significant impact upon
18 the dissolution.
19 One of the things that we did is then we
20 actually tried to do very consistent, relatively
21 mild mixing. And you can definitely see here the
22 difference between the monohydrate form and the
trihydrate, the net result being that there are
considerable differences in terms of -- well, there
are differences between the monohydrate and the
dihydrate in terms of how it impacts the solution.
And we've done this for a number of different
cases, looking in this particular case that the
trihydrate always comes out last.
Interestingly, the disordered form, which is
one of the things that we would have thought would
have been coating the particles the most, actually
didn't seem to do that. And that was quite strange
for us. But trying to understand the nature of, as
you go from one magnesium stearate source to another, which is something especially in the generic industry, could be a very big deal How do you deal with that? So we can see once again another example of the impact upon comparing the trihydrate versus the dihydrate and the monohydrate.

So what l'd like to do is to summarize.
What does this mean? So fundamentally, it comes down to characterizing not just the performance,

Page 186
and there's a lot of impact on the performance, but
also the product. And I think that there is a lot
of emphasis, and l've seen that a lot, in the
presentations that have been given today. So what
it really amounts to is doing that advanced
analytical characterization of dosage forms using
the variety of analytical techniques that are
available to you.
The concept is really to understand the
complex dosage form, so really understand not just
what went into it, but after it's made, how is it
put together. And then convert this into a
knowledge base that's accessible. So, for example,
we talk about the excipients database, which
contains either the quantities of excipients, but
doesn't really address things like excipient
variability.
Then the third thing is to translate that through to reviewers through an education process.
And please, please, ask me about the education
process because I would like to provide a little bit more detail as well on that.

1 Fundamentally, you can see at the bottom, what do we want to have the FDA get out of this?
And what we really need to do is to say, okay, when
you have an analytical approach, what are the
5 different techniques that we'll give you to be able
6 to tell you what do you have inside of a product?
7 Then how do you integrate this into that design development space? And then how do you
validate it? So in other words, especially when you come up with some of these newer methods, how are you able to validate them?

Another question is that how well do these work across the dosage forms? So certainly we saw a lot of different dosage forms that potentially, for example, could be characterized using solidstate NMR spectroscopy. A lot of the ones that were presented in the first talk of today could certainly be studied that way.

Then fundamentally, when you have this information, how do you translate that into QC testing. Okay? And then when you have a root cause investigation associated with something that
fails, how do you take these approaches and be able
to solve your problem?
3 With that, I'll be happy to answer any
questions you have.
5 DR. LIONBERGER: Thanks much.
6 DR. BUHSE: So you and several before talked
about education of reviewers. But it also seems
8 that there needs to be maybe, potentially, a
9 fundamental education of drug developers as well in
10 terms of if they develop it, or if they ask the
11 right questions up front, before they start,
2 even --
13 DR. MUNSON: Yes.
14 DR. BUHSE: -- potentially, then we're not
15 put in a position where we have to try to figure
16 out that they used the wrong mix, data area, or
whatever. So it seems like the education needs to
start pretty far back in the chain, even before we
see a drug.
Is there a way you can infiltrate your
knowledge, et cetera, to especially the generic
industry, a lot of which often are not located in
this country, potentially, et cetera, to increase knowledge such as that what you showed today?

DR. MUNSON: Okay. Yes. So certainly that is exactly what we want to do. So one of the things that we actually talked about at dinner last night was establishing a series of short courses, maybe a one-day course that addresses various topics, analytics, unit operations, et cetera,
where we would come in and provide roughly 12 to 14 of these courses on a rotating basis.

So one or two professors would come in, provide a one-day short course to the FDA. And at the end of that, we'd end up with a certificate that you've accomplished this. And then we would translate that into something that maybe gets to -- and more advanced. So in other words, once you've done this first step, you may get into a second step, maybe into advanced formulation.

One of the things we want to do is to take that knowledge, then, and translate that into an industry program where we would also do these types of education events at industry. And we're

Page 190

actually currently working on doing that with
generics, l'll say, in another country. So we are doing that translational process.

But that's one of the concepts that we're
thinking about, is also giving the opportunities
for the reviewers and the inspectors to come in and
talk directly to, l'll say, the content experts,
the faculty, so that we are onsite and can answer
questions, and can get into a little bit of a
dialogue without getting into very specific issues
associated with a particular document.
DR. BUHSE: Can I just follow up on that a
little bit? Because when Ajaz presented, Ajaz said
that NIPTE already gets funding from FDA. Is that correct?

DR. HUSSAIN: (Nods affirmatively.)
DR. BUHSE: Thank you, Ajaz, for nodding
yes, since you're not on the microphone.
So in order to do those type of training
that you guys are talking about, it's not currently
incorporated into your annual strategic plan with
the current budget that you have. Is that what

Page 189
Page 191
1 you're --
2 DR. MORRIS: That's true. And once again,
3 certainly one of the things that we'd like to be
4 able to do is to work with the FDA. From our
5 perspective, what we want to be able to do is also
6 talk to people at the FDA, especially as individual
7 faculty members coming and telling you about what
8 we know. And from our perspective, that's -- we
9 can talk about the relative cost of it, but we
10 don't want to do it for a large cost.
11 DR. UHL: Right.
12 DR. MUNSON: What we'd especially like to do 3 is to have the opportunity to talk to the FDA.

14 DR. UHL: So I know that there are several 15 speakers coming up that represent industry, in the 16 generic trade industry. So since the GDUFA 17 research, regulatory research program is 18 essentially funded through GDUFA funds, maybe you
19 have some speculation on how the generic industry
20 might feel about this. Because that's -- Rob laid
21 out the program already. It's about $\$ 20$ million a
22 year.

Page 192
1 DR. MUNSON: Yes.
2 DR. UHL: So I don't know if the generic
3 companies who are going to come up and present want
4 to comment on how they'd like to see these monies
5 spent, or if you guys want to think about it and
6 submit to the docket. But it's a limited pool.
7 How do we best use it to drive the outcomes that we
8 really need from a generic product development
9 standpoint?
10 DR. MUNSON: Yes. Well, certainly one of
11 the things I remember -- and once again this is all
12 speculation because I'm not going to present that I
13 represent the generic industry -- however, we do
14 know that they are very interested in education.
15 They have approached NIPTE for education. So we
16 know that that is a very important component.
17 In terms of specific topics, I've talked to
18 people from GPhA about things like excipient
19 variability, and we know that that's a very big
20 topic for them as well. So there are several ways
21 in which we -- we feel like we're trying to address
22 the questions that I know people from the generic

```
industry do care about. And that is one of the
things that we're trying to address.
Now, once again, I can't speak for the generic industry per se. But I think that these are topics that they care about. And certainly education, I think, is something that they would also be very interested in, especially because if anything, that helps them get through the review
process, so that the FDA people and the people in the generic industry understand that they're getting the same level of education, that that would actually be quite beneficial for them going through the review process.
DR. LIONBERGER: All right. Thanks very much, Ken.
So we'll move on to our next speaker. It's Professor Amy Barton Pai from the Albany College of Pharmacy and Health Science. Presentation - Amy Barton Pai
DR. BARTON PAI: Good afternoon. I just wanted to extend my thanks to the FDA OGD for giving me this opportunity to really talk to you
```


Page 194

about challenges relevant to bioequivalence
assessment with IV iron formulations.
My research program focuses on differential
toxicity profiles of IV iron formulations, but in
addition, I am a nephrology-trained clinical
pharmacist, and l've worked in the dialysis
population for more than 20 years. And this
population is a ubiquitous user of these agents, so
it is a very relevant topic.
I have nothing to disclose.
As Dr. Lionberger really teed up nicely in his opening remarks, IV iron formulations are complex products in that they are colloidal suspensions of nanoparticles. This is something that I don't think most clinicians who use these products appreciate, so they do have unique challenges.

Most of our experience with these products is actually gleaned from the global market, where there are many generic iron sucrose products available globally. The regulatory oversight for these products is variable. And typically,

1 countries that utilize these generics have mandated 2 switches.
3 What we do know is that some animal models
have pretty universally shown increased oxidative
5 stress induction and higher tissue deposition of
6 iron with generic formulations of iron sucrose
7 compared the reference listed products.
8 Clinical observational studies are also
9 accumulating in the literature as these mandated
10 switches have occurred. And they have demonstrated
11 reduced efficacy as well as increased adverse event
2 profiles related to the generic products versus the
3 RLDs. Notably, these differential safety and
4 adverse event profiles have been mechanistically
15 linked to direct release of labile iron from these formulations.

So through some UO1 funding, our group was able to really engage in a systematic approach to try to better predict serum non-transferring-bound iron, which is also known as labile iron, from IV iron formulations.

Our project essentially looked in tandem at

1 studying a multiplicity of different assays to
2 measure labile iron through chelatable and redox
3 active mechanisms. We then studied all of these
4 assays in vitro to determine possible applicability
5 for measurement in vitro, and then subsequently
6 chose candidate assays to measure labile iron
7 release in vivo.
8 The products we studied were all of the
9 currently available reference listed drugs at the
10 time this study was initiated, as well as the only
11 approved US generic, which is sodium ferric
12 gluconate complex.
13 After the data from the in vitro and in vivo
14 pieces were accumulated, we sought to see if some
15 of these data could at least potentially begin to
16 inform an in vitro to in vivo correlation model.
So l'll walk you through a little bit of this
project.
Essentially, at the very beginning, we
exposed all of the products to the typical battery
of physical-chemical characterization techniques
that are used in the nanoparticle space. The ideal
here is obviously that physical-chemical
characterization is able to reliably identify
differences between the reference listed drug and
the generic, and that we could potentially be able
to use some of these data to predict labile iron release.

However, the dilemma is, as other speakers have alluded to today, that the formulation
complexity and variable stability profiles of these
formulations create very unique challenges in the reliability and reproducibility of PCC.

So just to share an illustrative example of that, when we looked at different particle size, or polydispersity, we first did a field flow fraction followed by quasi-elastic light scattering. The red dotted line here would represent monodispersity.

The important notation in this graphic is that sodium ferrate gluconate complex was able to be characterized by this technique, but Ferrlecit, the reference listed drug, was unstable to the washing step in the field flow fraction analysis.

Page 198

So we essentially are not able to compare these compounds.

We then again sought to evaluate a number of different labile iron assays. Notably, the first
assay listed here is the bleomycin-detectable iron
assay. This is currently an assay that is
referenced in the draft guidance for sodium ferrate
gluconate complex. The other redox active and
chelatable iron assays are noted here.
But importantly, these first three are
really not applicable at all for use in in vitro
work due to apparent interference of the actual
agents with the assay. And notably also with
bleomycin-detectable iron, it has other practical
limitations. Notably, it's used as a
chemotherapeutic agent in its assay technique, and
also requires -- is very highly subject to human
error. I'll leave it at that.
The assay we did identify that seemed to work quite well in vitro was an HPLC
desferrioxamine assay. And this assay actually
also had an interesting kinetic binding effect of

1 the DFO to the labile iron that could potentially
2 be exploited for possible bioequivalence analyses.
3 These are data from our in vitro work. And
4 essentially, we diluted compounds in saline in a
5 biorelevant matrix, which is rat serum. And all
6 concentrations, all final concentrations, were
7 essentially the predicted Cmax of a 40 milligram
8 per kilogram dose.
9 Notably, from this graphic here, it's
10 important to note that all the compounds did have
lower stability in saline, which is well-known.
And you can see there is some slight differences
between the Ferrlecit and the sodium ferrate gluconate.

I'd also ask you to note the bottom product,
which is an investigational product from GE Global
Healthcare. It's a pegylated iron product and was meant to represent an out-of-class assessment. But
if you note, the stability in rat serum is quite
stable and does not release tremendous amounts of labile iron. But there is a difference in vivo.

So moving on, this is our in vivo
concentration time profiles in healthy male rats.
2 We developed this PK analysis in a three-step
3 iterative process, which was first dose-finding,
4 followed by an initial PK to optimize sampling
5 times, and final PK analysis.
$6 \quad$ What you can see from the top panel with the
Ferrlecit, the reference listed drug, and the
8 sodium ferric gluconate complex, their
9 concentration time profiles are very similar, in
10 fact, perhaps superimposable. If you note again on
11 the bottom right panel, the GE product actually had
12 the most labile iron release in vivo. So that's in
13 great contrast to what we saw in vitro.
14 This is an initial PK analysis. So in this
15 analysis, clearance and volume are actually a ratio
16 over the bioavailability, which is the
bioavailability of labile iron release from the
compound, which is unknown. So these are relative
clearances and relative volumes.
We evaluated essentially a release constant, which we called KR. And this represents the rate 22 of direct release of labile iron from the iron
carbohydrate complex. So what you can see in this
analysis relevant to the RLD and generic is that this $K R$ is very similar between the two drugs.

So wrapping up here with what I believe is
probably still needed in this arena, clearly we
need further evaluation of physical-chemical
characterization limitations for inter-product
comparison. This could even be as granular as
instrumentation that's used between manufacturers.
We certainly need to study additional formulations, both in vitro and in vivo. Again, this represented just a single generic IV iron formulation. So many more need to be studied, whether that's in the global marketplace or handled domestically.

Lot-to-lot variations is another issue that has presented itself on the global market, with differences in labile iron release between lots. It will be important to more clearly define the optimal assay for labile iron measurement, both in vitro and in vivo. And essentially, leading to further analyses, to possibly develop stronger and

Page 202
more predictive models for labile iron release that obviate the need for in vivo work.

Finally, as these products start to emerge
on the marketplace, as a clinician I believe it's
really important to have close marketing
surveillance of these products, as well as
assessing usage patterns.
Ultimately, working in this space for the
past 20 years, I can say that clinicians who use IV
iron products are not aware of the complexity of
these formulations, and should be educated on the
complexity and the unique challenges that exist.
With that, I'll conclude, and I'm happy to take any questions.

DR. LIONBERGER: So with respect to your comment on -- there's multiple currently approved products. Do clinicians think that they are different, or do they interchange them? You know, is there a sense that there are differences between the approved different RLDs or not?

DR. BARTON PAI: I would say the clinician perceives the dominant differences as

1 immunogenicity, and their ability to give a larger
2 dose in a single infusion. But as far as physical-
3 chemical characteristics, they, I would say, are
4 largely unaware. They dose iron. It's all based
5 on elemental iron, so their switching is based on
6 safety profiles as well as ease of administration
7 when giving larger doses in more outpatient
8 settings.
9 DR. CONNER: The one generic that you had in 0 your list, what was the RLD for that, the reference listed drug?

DR. BARTON PAI: Ferrlecit.
DR. CONNER: Ferrlecit. So the real comparison, or test of your methods, is comparing that generic to Ferrlecit?

DR. BARTON PAI: That's right.
DR. CONNER: How well does that do in your testing?

DR. BARTON PAI: So again, just to recap the data here, in many of the physical-chemical characterization pieces, there were differences between the RLD and the generic, possibly because

1 of, again different steps in the analytic process.
2 The in vitro piece, it looked like the brand had
3 more labile iron release. However, in vivo, again
4 those profiles were very similar.
5 DR. UHL: Could you go back one slide? Same
6 question I asked earlier this morning. So you've
7 got seven potential ideas. We have about
$8 \$ 20$ million on an annual basis. So could you tell
9 me what your number one priority would be,
10 especially as it relates to this aspect of IV iron
11 therapy?
DR. BARTON PAI: I think this ties in
certainly to the confidence in substitution. So in
an incremental way, I would say the predominant
piece is elucidating these physical-chemical
16 characterization limitations because that's
inherent in the guidance right now, and following
up with additional in vitro and in vivo study of additional generic formulations.

DR. LIONBERGER: Thanks very much.
So our next speaker is Professor Diane Burgess from the University of Connecticut.

Page 205

Page 207

1 Presentation - Diane Burgess this slide had some of the physical-chemical

Page 206

characteristics -- the particle size, not too much
differences in particle size, a little bit with the
difference in the sieving and with the difference in the mixing here.

But what I really want to point out here is
the difference in the porosity because with the
ethyl acetate, we got much more porous microspheres
compared to with the DCM. This was also more
similar to the reference listed drug product.
So in moving on, we did our in vitro release testing. And the typically used method is a sample and separate method for microspheres, as reported in the literature. But in our lab, we've developed another method several years back, which is an apparatus 4 , where we put the microspheres between the glass beads and hold them in the apparatus 4 flow-through cell. The advantage of this method is you get around aggregation problems as well as floating problems that can happen with the sample and separate and even USP 2 apparatus.

This is results with the sample and separate. And we found that we did have some
aggregation, and we were able to resolve some of
2 that by using surfactant for the sample and
separate method. So we were able to get a better
resolution of our four different microsphere
5 products. This is not with the RLD, but the four
6 that we were making Q1/Q2.
7 With the apparatus 4, we got -- again, very
good differences here were able to show up. And
9 one thing I wanted to point out is that with the
10 more porous microspheres, the two that were made
1 with ethyl acetate, with either method we didn't
12 see very much burst release.
13 That method of manufacturing had eliminated
some of the burst release, whereas with the other
method, where it was less porous, we were getting
burst release. So that was one significant
difference, as well as the slight differences in the rates that we can see here.

We then went on to do in vivo work that we did in rabbits. So this is an IVIVC, as such, with rabbit data. And we used the Loo-Riegelman method to deconvolute the data. So this on the top here

1 is our rabbit data. So our in vivo release profile
2 with a rabbit for Risperdal Consta, this is the
RLD, and here we have the deconvoluted.
4 I'm showing the RLD here because we can,
5 from the literature, get the human data from the
6 literature -- for the RLD, obviously not for the
formulations we made. And we can see here we've
deconvoluted this data so there is very good
9 similarities but inter-species difference, as
10 you'll probably notice here, much, much faster in 11 the rabbit.

In our rabbit model, we used the hind leg, whereas the human it's into the gluteus maximus.
Big differences in fat content and also in the vascularization. Vascularization is probably the bigger difference, where you're going to get more ready dissolution, larger volume there. And the other difference is, of course, is the metabolism in the rabbits. We did do the risperidone. We looked at risperidone in vivo, and there are differences in the metabolism.

So looking at the four formulations that we
made, the big difference here is the two with the burst release. That's obviously going to be your Cmax and Tmax, whereas the ones without the burst release, their Cmax and Tmax is -- so is shifted, obviously. So that was one big difference here.

But we went on to do our deconvolution. And
our four formulations are to the left, and the
Risperdal is the red one to the right. So what we
did is we used three of our formulations to make an
IVIVC in order to predict the fourth formulation,
so 1 , 2 and 3 to predict 4 , or 2, 3, 4 to predict
1 , and so on. So this is our IVIVC for $4 / 3$
combinations.
Then we used this to predict the in vivo release for the fourth one, and you see here we're getting really very, very good prediction. So this is for a complex product. Microsphere is one of the most complex, especially when you've got the three phases of the burst, the lag phase and then the secondary release profile. So we were very pleased with this.

We also used these four to predict the RLD.

Page 210

And again, you'll see really, really good
prediction. And based on the USP 4 apparatus
method, we got really excellent prediction, the PE
of 10 percent or less. When we did use the sample
and separate method, which we had shown wasn't as
good an in vitro release method, at least for these
microspheres, then we didn't get a good IVIVC. It was basically inconclusive at best.

So we're now working, or we've just completed a study also with naltrexone. And this is two-phase. This doesn't really have burst release, but we've got three formulations. And we've shown excellent, again, IVIVC for these three formulations for the naltrexone as well. And we're now working on a peptide formulation.

So I think that, to quote from Ajaz, that I
think we're moving from the microspheres, from just being a complex dosage form, to a complicated one, if I understood what Ajaz was saying correctly; that now we're really starting to understand the physical-chemical properties that are important, and we are able to develop an IVIVC so we could be

1 able to -- in the future, obviously with more
2 information and really, really good physical-
3 chemical characterization, we could be able to move
4 towards at least some looking at bioequivalence for
5 this type of product.
6 Another product that I think we haven't
worked on yet but I think we should is the
8 long-acting suspensions because I think this is a
9 kind of low=hanging fruit, relatively easier
10 formulation, from the formulation and manufacturing
11 perspective. So I think this would be a good one
12 to tackle next.
13 The one that Chetan mentioned, the
14 ophthalmic, we are doing some work on the
15 ophthalmic area. And there I think we can get a
16 very good in vitro release method, definitely, that
17 could discriminate between manufacturing
18 differences. But to move towards an IVIVC for
19 something like ophthalmic, I think, would be, as
20 Chetan pointed out, very difficult. So some of the
21 physical-chemical characteristics might be more
22 important or at least as important there.

Page 212
1 The last thing I wanted to say was talk 2 about the in vitro and in vivo stability issues
3 with these complex products. With the
4 microspheres, for example, I'm familiar, and some
5 of the other PLG formulations. We get interaction
6 with the drug such as risperidone and naltrexone.
7 Even with the peptide drugs, we've got
8 interactions. And with the peptides, it could be
9 even more complicated because of the potential 10 immunogenicity problem.

11 These interactions can occur during 12 manufacturing; with different manufacturing,
13 methods may get more or less of the interactions
14 with these drugs, so more or less possibility for
15 immunogenicity, and so on. And how you manufacture
16 them can also change how they may behave during
7 shelf life storage because of different porosity
18 and so on with the humidity conditions.
19 That also can impact on those changes
20 occurring in vivo when you're looking at some of
21 these products, or not just weeks, but months and
22 even years, in the body in that human environment
with porosity and so on. So I think that this is another area that I think we need to have some focus on.

So just to acknowledge the funding,
particularly the FDA funding there in the middle.
And my research group, and to the left of me is Jie
Shen. She did a lot of the work I presented today.
Also, Janki to the left of Jie. And then this is
some of the rest of my group. So thank you.
DR. LIONBERGER: Thank you. So one of the challenges in these products is that since they're long-acting, you have to do very long PK studies to show bioequivalence. So how far are we, or what new data would we need, potentially, to support a waiver of a bioequivalence study?

DR. BURGESS: Well, I think with the microspheres, I can speak. I think we're getting very close to really understanding what are maybe the Q3 type of things, Something like the porosity would be a Q3 property, so to understand those properties.

There are a few products that we could still

Page 214
do and attempt to do IVIVC. And we've been able to
develop what I think are very robust IVIVCs for two products now.

So I think that we're really moving in that
direction because we're able to use those two, for
example, to predict the RLD. And even with two of
those having a burst release and two not having a burst release, we still got pretty good prediction.

So I'm confident that we're moving in that
direction. And with more robust -- if the generic
companies do a very good physical-chemical analysis
of their product, I think if they have a good
portfolio with that I think we could be able to
move forward with that for them.
DR. LIONBERGER: All right. Thank you very much.

DR. BURGESS: Thank you.
DR. LIONBERGER: So our next speaker is
David Gaugh, representing GPhA.
Presentation - David Gaugh
DR. GAUGH: Thank you, Rob, and good
afternoon, panel. And thank you for holding this

1 public meeting. We greatly appreciate it. As one
2 of the key stakeholders in the GDUFA realm, if you
3 will, this is very important and near and dear to
4 our hearts of the generic industry. So thank you
5 for holding this public meeting.
$6 \quad$ I think at least the panel, I know, knows all about GPhA, so I'm not going to go through
8 this. And I believe these are going to be made
9 public, so the rest of the audience will be able to
10 see them. But you can read them as we go along.
11 Just a list of our members. So we represent
12 approximately 35 full members and approximately
1345 associate members. So a large spectrum of the
14 generic pharmaceutical industry is represented by GPhA.
16 If you take not this slide and the numbers 17 that are on the slide, over 90 percent of the 18 products manufactured and sold for use in the
19 United States is represented by the GPhA companies.
So if you have questions about generics. we can get
that message out pretty readily to most of the constituents.

1 Statement of mission. I know that there
2 isn't a specific mission statement that the
3 regulatory science team has, but this is coming
4 from an article and an interview that
5 Dr. Lionberger had last year.
6 We think it's very important to make safe
and effective generic drugs available to the
8 American public by ensuring that OGD standards, as
9 reflected in review guidance and communication to
10 sponsors and the public, continue to be based on
11 the best currently available science and results of
12 regulatory science research. So we think that's a
3 very important tenet to keep at hand.
If you look at the GDUFA goals letter, which was developed back in 2012, "FDA will convene a
working group and consider suggestions from
industry and other stakeholders to develop an
annual list of regulatory science initiatives for review by CDER director."

Again, we think very important. This public meeting is one of those opportunities for a working group, but as you'll see as I go through my slides,
we think there's other opportunities for working
groups and collaboration that we would like to see the agency take on going forward.

GPhA and other stakeholders began dialogues
with FDA to explore how best to broaden industry's
input into the development process of the annual
list. But to date, no action plans that we
presented have been taken up, so we hope that these
working groups will help us get to that point.
While GPhA is supportive of the regulatory
science initiative, payers into the GDUFA program
want more input, and one public hearing is not what
we consider to be enough. So therefore, we're
asking for more working groups going forward.
So what I'm going to do is not address
specific products per se, but opportunities for
input, if you will, and consideration. So
increased collaboration to identify the annual
regulatory science priorities. Increased
transparency and involvement with the decision-
making process for the user fees that are used.
User fee funding of studies and projects to

Page 218
be distributed in terms of short, intermediate, and
long-term goals so the generic industry can benefit
from the knowledge gained from the results of these
studies, projects, in real time as much as is
possible. And again, we've already talked about the working groups.
7 From a transparency standpoint, FDA to
8 improve transparency and communication regarding
9 how it determines the focus of the studies and
projects, determines the scope of those studies and projects, and their benefit.

Determines how the results of the studies and projects are interpreted and utilized by the FDA. And determines the overall impact of the science and regulatory initiative program that has had an increase in patient access to generic medicines.

So there were some specific points that Dr. Lionberger and team put out for consideration, and so here are some suggestions that we think would be very important. And the user fee monies that are provided, we think, would benefit greatly
from this as well.
2
Opportunities for scientific or technical
advancements: First, a discussion and expectations
4 on nanotherapy and characterization. Opportunities
5 to have scientific exchanges between industry and
6 FDA in the form of workshops. I think I've said
7 that a few times already.
8 Number 2, innovative approaches to
9 pre-approval development of generic drugs, so
10 discussions and expectations on in vivo and
1 in vitro correlation methods for low-dose
12 concentration products such as otics, ophthalmics,
3 long acting injectables, and auto injectors.
14 Discussions and expectations on product
15 subject to clinical endpoint studies in which the
16 primary endpoint is difficult to measure and/or difficult to distinguish.

Discussions around developing a premise with
well-defined in vitro methodologies to replace the
need for clinical endpoint studies is another consideration. Discuss and expectations on setting
22 clinical relevant specifications. And discussions

Page 220
1 and expectations on qualifications of dissolution
2 apparatus and methods.
3 Third, innovation in scientific approaches
4 to evaluating the therapeutic equivalence of
5 generic drug products throughout their life cycle,
6 so the narrow therapeutic index products and drug
7 device combination products.
8 Four, the high-impact public health issues
9 involving generic drugs that can be addressed by
10 prioritizing allocations for the fiscal year 2017
11 funding. Timely guidance developed for high impact
12 generic products, first generics, NCE-1 products,
and very importantly, complex products.
Number 5, identification of specific issues related to generic drug products or scientific
recommendations and/or clarifications are needed.
So discussions and expectations of long-acting
microparticles of aseptic processing on
characterization of peptides and iron products; on
20 the characterization needed to show similarity for
devices for combination products.
The risk analysis for delaminating glass
vials and potential testing specifications for this
delamination. Extractables, leachables for all dosage forms, sterile and non-sterile.

Expectations on generic abuse deterrent formulation
products on a USP Chapter 232, Elemental Impurities.

On adhesions for transdermal products, on guidance to address the limitations with current
scoring scales and statistical methodology for assessing non-inferiority and adhesion and irritations for transdermal products.

Finally, under number five is the evaluation of the approach to safety evaluation for certain types of commonly-used excipients.

Number 6, strategies for enhancing quality and the equivalent risk management during generic drug product development. Assessment of the comprehensive safety risk for food additives in oral drug products.

So additional points to consider besides the six that you provided to us and we tried to give you some clarity on response; those are not deep

Page 222

dives, as you can tell, but we would love to be able to, as you develop programs, get into those working groups that we talked about before.

But one such area was the creation of new
tools by the FDA for use in assessing the safety,
effectiveness, quality, and performance of generic
drug products. We think that's critically
important, and I've heard that already two or three
times today.
The scope of this request was to include, but not limited to, the FDA addressing the concerns with regards to the reviewer consistency, updating, improving, and enhancing the IID, as well as improving the quality of the submissions that we're talking about.

Industry's ask on the IID was to ensure data reliability and the ability of industry and FDA to make consistent and sound regulatory decisions, improving quality standards for drug development, and encouraging and promoting innovation.

So in conclusion, we look forward to working closely with the FDA and other industry

1 stakeholders, besides just the generic industry, in
2 order to develop a comprehensive and meaningful
32017 regulatory science initiative program.
4 Thank you, and happy to take any questions.
5 DR. LIONBERGER: Thank you, David.
6 DR. BOAM: Thank you, David. I was just
7 going to ask, and since I realize this is probably
8 a compilation of recommendations from your members,
9 would just welcome a follow-up to the docket. But
10 one of the items under number 5 you asked for was
1 discussion expectations on aseptic processing.
12 It would be useful to know what about our 3 current guidance on aseptic processing is lacking.

14 If there are certain aspects of that you'd like us 15 to expand upon, or if there's certain things that
16 are either not covered or not covered clearly in
that guidance, we would certainly welcome that input.

DR. GAUGH: So no, we're going to start
20 working groups on these ourselves. So whether
21 they're taken up by the agency or not, we'll have
22 working groups on them. So a lot of things have

1 been changing over the past few years on aseptic
2 processing, and we want to make sure that we have a
3 clear understanding as the agency moves along the
4 spectrum of what aseptic processing is acceptable
5 and what is not. So we can come back with more
6 details.
7 DR. BUHSE: Thank you. These are many 8 specific targeted recommendations. But I want to
9 take a step back and ask about some of the terms 10 you used. I understand that the members in GPhA 11 are seeking more input into the development of the 12 regulatory science initiative.

When you make a request for a discussion and
14 expectations, I think I understand the expectations
15 point. But with respect to the discussion, are
16 your members looking for an ability to speak with
7 FDA as we develop these scientific understandings,
18 or develop the scientific regulatory agenda to
19 address those? Or are you referencing more
20 discussion once we have developed these with
21 individual companies in a one-on-one way or
22 iterative way? Can you just talk a little bit more
about what you meant by the discussion request?
DR. GAUGH: Sure. And the answer to your question is both. So at the moment, we are doing some of that, and when I say we, the agency, GPhA, and the appointed study universities, whatever they might be.

So once the program has been assigned and the program sponsor starts working on that project,
they do reach out to either industry companies or
to GPhA to have discussions and talk through how that process is going to work.

I think it's very helpful because in some cases, the definition that they have -- the study they've taken on maybe is not completely understood by the group that's taking it on.

So if it's utilization of products, for example, is it utilization of products that are currently on the market or is it utilization of products that -- not currently on the market, they are currently on the market. But in some cases the uptake of products is much higher than others.

I didn't go through the slide, but generics

Page 226
are 88-percent of the utilization. So if you're
looking at a study that would be about increasing
utilization, it's going to be pretty hard to
increase that global utilization.
But if you're looking at specific products,
where in many drug categories -- as you know,
products are not utilized at 88-percent if they are
generic necessarily. They may be lower, in the 10
or 15 percent range.
So having discussions with those study groups around that helps redefine that focus. So that's once assigned. But we would also like to have discussions as you're going into the assigning to make sure that the definition of where you're going with the project and where we might think it should go could have that discussion. And it might help redefine it. It might not, but we think it might be helpful.

DR. UHL: David, thank you for coming and thank you for your sharing of your members' requests or input to the agency. On your second-to-last slide, you mentioned new tools, creation of

1 new tools by the FDA. Was there any particular
2 input from your member companies about what kinds
3 of tools that would be helpful or valuable?
4 DR. GAUGH: No. We don't yet. So that's 5 part of --
6 DR. UHL: Because l've got a big toolkit.
7 DR. GAUGH: We've got a big toolkit. No, 8 not specifics, but we want to -- again, we're going
9 to do that on our own. We'll get into a working 10 group to help define what that can look like.

11 DR. UHL: Good. And then you could provide
12 that kind of input to the agency for sure.
13 DR. GAUGH: Absolutely.
14 DR. UHL: In some prioritization schema?
DR. GAUGH: Yes.
DR. UHL: Okay. That would be very helpful.
DR. GAUGH: Yes.
DR. UHL: Thank you.
DR. LIONBERGER: Do you have currently
20 different working groups in regulatory science
21 areas where you have participation from broad group
22 of companies in those subgroups? Do have those

Page 228
1 organized? I mean it wasn't --
2 DR. GAUGH: Yes, we do have.
3 DR. LIONBERGER: What are the topics that
4 you currently have or people are organized for?
5 DR. GAUGH: So it depends, if you will, on
6 what we're talking about. In some cases stability
7 was one. That's not what we're here to talk about.
8 Emerging technologies is another. So I know that
9 the FDA is taking up emerging technologies as a
10 working group internally, not necessarily
11 externally. Continuous manufacturing is another
12 one that's been taken up by the agency.
13 DR. LIONBERGER: I'm asking about groups
14 that the GPhA currently has of industry people.
15 DR. GAUGH: I'm sorry. I'm saying we have
16 our own industry groups not related to the FDA.
DR. LIONBERGER: On these topics? Okay.
DR. GAUGH: Yes. Those are just two
19 examples. Then we do have industry working groups
20 on continuous manufacturing, emerging technologies,
21 for example. And that also gets back to your
22 question about -- or not yours, I'm sorry,

Ashley's -- about the aseptic. So we're looking at that as well.

DR. LIONBERGER: We'd encourage, in topics
where you have interest from multiple companies, to
facilitate forming these groups and having those
groups provide very specific recommendations into
the docket. If they're prepared this year, get
those groups to send in their consensus, things
into the docket in particular areas.
DR. GAUGH: Right. Absolutely we will. Yes.

DR. STODART: Thank you. On slide 7, you mention several methods or several areas where we can improve transparency and communication. Do you have any specific suggestions as how we would go about achieving that?

DR. GAUGH: I'm sorry. You said slide 7?
DR. STODART: Slide 7, for transparency and communication.

DR. GAUGH: I'm still having a hard time hearing which one --

DR. STODART: No. On slide 7, you list

Page 230
about five different areas in which FDA can improve
its transparency and communication. So I was just
asking whether there are any specific suggestions
you have as how we could go about achieving that.
DR. GAUGH: Again, no. We've just started the working groups. So in the past years, to Rob's
point, we haven't had these robust working groups
together yet, and so we've just started pulling
those together. After conversations that we've had
with GDUFA negotiations in the past many months, we
realize to get to that point that you're asking
about, we need to get these working groups
together.
DR. STODART: Thank you.
DR. GAUGH: You're welcome.
DR. CONNER: Yes. There are quite a few points here where you're obviously asking for more input into the regulatory program. But to repeat
Cook, who has made this -- and l'll make the
request before I make my comment, that you have a
rather large list of good ideas here. But only
being approximately $\$ 20$ million, do you have any

1 prioritization or do your members have any
2 prioritization?
3 It folds into the next question. Obviously,
4 even if you look at the list of members you have
5 here, not to mention the other non-GPhA
6 constituents of the generic drugs program, which
7 often have very different interests, how would you,
8 or we, prioritize these things when you have so
9 many constituents of your own with very different
10 priorities and very different opinions about what's
11 important and what's not?
12 DR. GAUGH: You ask a great herding-the-cats 13 question.

14 DR. CONNER: Right.
15 DR. GAUGH: So to answer your question, we
16 do have a large regulatory working group, and we
17 will go through now and work on this and get those
18 priorities there. You're right, there's $\$ 20$
19 million that was earmarked out of GDUFA I, but I
20 don't think that necessarily stops the agency from
21 using more than $\$ 20$ million in the GDUFA dollars or
22 in appropriation dollars.

1 So we think there's opportunity for an even
2 broader base of projects and programs to work on.
3 But to your point, we'll come back with a priority
4 list because we know you can't work on all of these
5 that we're listing out, absolutely.
6 DR. LIONBERGER: All right. Thank you very 7 much, David.
8 DR. GAUGH: Thank you.
9 DR. LIONBERGER: So your next speaker is
10 Nikunjkumar Patel from Simcyp.
11 Presentation - Nikunjkumar Patel
12 DR. PATEL: Thank you, Rob, for introduction
13 and invitation to present at today's meeting. I
14 think there was a day-long workshop yesterday on
15 this topic which I'm going to speak today, so most
16 of the points I wanted to discuss today were
17 already discussed and debated. But this is a quite
18 interesting and evolving area of research which
19 could help generate product development and
20 assessment.
21 So for the people who were not here
22 yesterday, and who are not from the field, what the

PBPK is, PBPK is physiologically based
pharmacokinetic modeling. And as you can see, when
you talk about pharmacokinetic, there are multiple types of models which are typically used.

Some of them are empirical, like exponential models, some compartmental models. Those type of models are useful when you already have clinical data and you want to see whether that clinical data
was obtained from one bucket of blood or one bucket of blood and one bucket of fat, so those kind of analysis.

But when you look at the PBPK, PBPK is basically based on the underlying knowledge of physiology that we have, the current knowledge of physiology, and you try to port out the system by giving a drug product. So you are trying to assess how the drug is going to treat a drug when given in a particular product or a particular formulation.

So it has quite a good predictive power. And you can use prior information, so you can start using it from early development until late stage. And at each stage, you can try to build more and

Page 234

more confidence into your model, and finally will
have very good confidence so that you can use it to
make some critical decisions about product and
product changes.
So I think there is a long list of
applications where PBPK has been used, and these
are from the public literature. And this is not an
exhaustive list; there are even more applications.
Some of the critical one are an application in
quality by design or setting of dissolution specification, establishing IVIVC. This is an important one.

I think there was a quite good amount of interest in pediatric and how to assess them. Maybe PBPK can help to translate adult data to pediatric, or maybe a disease population. Impact of food effect as well as impact of proton pump inhibitor at a gut level drug-drug interaction, what show bioequivalence.

This is another important point I want to discuss today, is that assessing the untested scenarios to fill the gaps in the product

1 assessment.
2 Starting with QbD, so I picked up two
3 examples, but this is not and exhaustive list.
4 There are multiple examples in the literature. So
5 the first one is from the FDA group, so I think
6 this is a nice publication where they put together
7 a framework in which PBPK modeling can fit into a
8 quality by design type of assessment.
9 There is another recent publication from our 10 group, so I think they set up about, I think, five
11 or six different examples where modeling and
12 simulation can be used to answer or address some of
13 the questions which are typically raised in quality
4 by design paradigm.
5 Because of the interest of time, I am not
16 expected to go in detail. That's why I put the
7 references. So if you are interested, you can go 18 and have a look in detail.
19 But when we look at this and some other 20 publications, there are many times they fit
21 parameters because I think the model is not
22 obviously predictive, so you need to add some of

Page 236
1 the known or uncertain parameters.
2 So the question I have is, basically, when
3 you do a fitting, because these are the complex
4 models, and physiology is so variable and
5 uncertain, maybe you are estimating or fitting a
6 drug and formulation parameter which might be
7 accounting for some uncertainty in the physiology.
8 Maybe your physiology is not right and you are
9 unknowingly estimating a product parameter to 10 represent uncertainty in the physiology.
11 So in those cases, the question is, what is 12 a qualification criteria? When you fit a
13 parameter, what should be your endpoint? How do
14 you decide whether the parameter you fitted is
15 correct or you are not over-emphasizing on a
16 particular property?
17 The second question is that -- I think this 18 is another ongoing debate and discussion -- what is 19 a physiology in the PBPK platform? If you look at 20 different platforms, there are sometimes some
21 parameters which are arbitrary. Some of them are 22 assumed.

1 So the question is, when you use PBPK, do you need to have reference for physiology which is being used in a platform -- or by a user, because
they are obviously modifiable -- so do you have to
have a physiology which is scientifically
traceable, which is actually linking to a
physiological measurement based on our current
8 understanding? Or it can be assumed or arbitrary.
9 If it is assumed or arbitrary, what is your acceptance criteria?
11 Again, it is basically building upon the previous question. So basically, PBPK is a probabilistic modeling rather than an accurate, or basically like compartmental kind. It is where you have data, you try to explain it. So when it is a probabilistic science, is it all right to just use an average human physiology provided in the platform, or you need to do a population simulation?

I think there was a quite interest in the discussion yesterday on global sensitivity analysis. So that basically says to you that you

Page 238
need to account for all the uncertainty in the
physiology, as well as variability, to make a
decision. So this is another question. I think we
need to address all these questions before we can
move on to use it as a regulatory submission, too.
Another application is basically translating adult to pediatric data. So I think this is a very recent publication from Jennifer Dressman's group.
They developed and validated a formulation, or
basically PBPK model, for fluconazole and ketoconazole, and then tried to see if they can translate this information to a children or basically adolescent patient. So I think there was some discussion on ontogenies of enzymes.

So basically, these two drugs have been metabolized by the enzymes, which undergoes significant modification in early ages. And that's why the children dose is relatively higher in terms of milligram per kg as compared to an adult.

Also, the physiology difference is in the gut. If you use the same formulation in adolescent or children population, is it going to behave the

1 same under a given physiological condition,
2 et cetera? So probably this type of assessment can
3 be done using PBPK. This was another publication
4 from Rob's group.
5 The third publication is from AstraZeneca.
6 So what they did is they had an immediate-release
7 formulation and extended-release formulation in
8 adults.
9 Also, they had assessed the immediate0 release formulation in pediatric, but they did not 1 assess, or they did not have clinical data, of XR 12 in pediatric. So they wanted to see whether they 3 can make some projections how this is going to behave in adolescent patients.

So they had an IVIVC established, validated, and accepted for XR formulation in adults. So they tried to translate the IVIVC for children, and tried to make some decision on the dose as well as the expected population variability.

When we talk about pediatric, I think pediatric is an interesting area of research as 22 well as quite challenging, because obviously,

1 pediatrics are not that much involved in clinical
2 studies so we do not have sufficient knowledge of
3 physiology. And there are sometimes scarce and
4 contradictory data.
5 So one of them is basically gastric
6 emptying. So there is some publication which says
7 that the gastric emptying is related to the age.
8 Some people say that it is not. So in such case,
9 what to do? What is the physiology that you should 10 use?
11 So probably in such cases there is a 12 solution that you need to look and understand and 13 collect all the information available, and then 14 perform a scientific meta-analysis to see whether 15 you can find some sort of relationship or not.
16 We tried to do it, and it is published now, 17 the paper in DMD, that there is no age relationship 18 of gastric emptying. However, there is a strong 19 relationship with the food, and the food taken by
20 pediatric at various ages is different. So 1 basically the food, because of the type of food 22 they eat at different ages, probably that is why
they are seeing different gastric emptying time, not necessarily because of the age.
Again, when you have unknown or uncertain parameter, what should be the qualification
criteria? When can you accept the model?

Page 242

Another application is IVIVC. So I think with PBPK there was a lot of discussion, and this is one of the potential area that can have more confidence. So we tried to compare PBPK with conventional approach and I think I don't have lot of time to go in detail. But the same approach was taken up by a colleague in FDA, Bipin and Marilyn.
So they basically tried to assess the application
of mechanistic IVIVC at population level. They had access to individual data.

They perform two type of validation. Leave one formulation out, which is typical. So every time, they left one formulation out and tried to see how well the IVIVC predict for an unknown formulation. And they also performed a bootstrap.

But I think, on top of that, they performed an interesting analysis because the purpose of IVIVC is to predict for an unknown person or unknown population. So they left one individual out to see whether the IVIVC can predict all three formulations for a missed-out subject.

This is another application where they tried

1 to assess the equivalence at PD level rather than
2 PK. So you can see that for ibuprofen, the PK
3 level, there is a strong discrimination. But
4 because of the flat response profile, there is not
5 much discrimination.
$6 \quad$ This is a final and very important example I
7 wanted to discuss. So again, we generally assume
8 that the bioequivalence at healthy subjects is
9 valid for a patient population. But when you look
10 at it for ketoconazole and posaconazole, because of
11 the behavior of the drug and formulation, if the
12 drug was bioequivalent in fasted condition, does
13 not necessarily mean that they are equivalent in
14 fed condition.
15 There are certain conditions which are more
16 discriminatory than another condition. So probably
7 this type of simulation can also help what should
8 be the bioequivalent study design which can allow
19 you to discriminate to the best possible way for
20 different formulation.
21 So to summarize, we need to have more case
22 examples to improve the confidence in PBPK. The

Page 244
1 second and most important is that we need to have
2 more than qualification criteria. What is
3 acceptable model. Then we need to establish good
4 practices to improve the application of PBPK in
5 regulating modeling because at the moment, if you
6 look, there are multiple types of models available
7 and people use PBPK with a lot of different things.
8 So you need to have some sort of an idea of what is
9 good practice.
10 We need to understand more about
11 interoccasion variability. I think there was a
12 discussion, and FDA is already funding some grants
13 to do and understand more about how the human
14 physiology changes on different occasion, and how
15 the formulation will behave.
16 I think we need to also have some more
17 research on modified and enabling formulation, as
18 well as assessing the mechanistic assessment of
19 excipient impact; for example, cyclodextrin
20 exchange as well as some of the enabling
21 formulation where polymer is used to inhibit
22 precipitation, et cetera. And thank you.

Page 245

Page 247

```
DR. LIONBERGER: Thank you.
DR. UHL: So l'll ask my same question l've asked many times. Your previous slide had at least half a dozen or more suggestions. If you can answer this now, what would be your number one priority, or how would you recommend prioritizing that and submit it to the docket?
DR. PATEL: Well, if given a choice, I would invest all \(\$ 20\) million in this so we sort it out.
(Laughter.)
DR. UHL: Well, that's true. But you have a lot of suggestions related to PBPK.
DR. PATEL: Yes.
DR. UHL: So that, in the context of generic drug development, which do you think would be most impactful?
DR. PATEL: I think, with the current status and based on some discussions yesterday, I would say we need to first arrive at what is a qualified model and what are the good practices. So once we set up our baseline where the model works and where it doesn't, with current knowledge, then we can
```

Page 246
move further.
So I think for a first priority, I think we
need to set up some sort of a model qualification
criteria and what is acceptable model, what are the
good practices, and then see how well the
prediction performs.
So basically, there needs to be some
assessment of case examples where you can assess in
what cases you have good confidence or less. So
there needs to be more research on generating case
examples and generating some good practice
guidelines, and then the rest of them can be followed up.

DR. LIONBERGER: Thank you very much. Oh, I'm sorry.

MS. PEREZ: You mentioned that we need more research and then sort it that way. But when you say we need more research, are you suggesting the FDA does more research on this, or the industry, or yourself? Who is going to conduct this research and come up with these parameters for the industry?

DR. PATEL: Yes. I think, yes, that's a

1 very good question. So I think if you look at the
2 points, there are certain points where I think we
3 need more regulatory input. For example, what is
4 good practice? What is good model qualification
5 criteria? Where we need more input from regulators
6 and based on your own understanding or assessment?
7 Certain of research items, like interoccasion, it
8 can be funded by government or it can be funded by
9 academia or industry, et cetera.
10 So there are certain aspects which can be 11 done independent of regulatory funding, but there
12 are certain aspects where we need at least some
3 sort of cooperation between industry, academia, and
14 regulators to come up to a conclusion that -- and 15 this is not an easy question to answer. What is 16 qualified model is ongoing debate and discussion.
7 So it requires, really, a strong effort.
I think I forgot to mention about the OrBiTo 19 project, which is an interdisciplinary project
20 where a lot of effort has gone in to see where the 21 models can predict and where it cannot, what should 22 be the qualification criteria, and what should be

1 the good practices, et cetera. So I think there is
2 a need to have an interdisciplinary research
3 approach to arrive at some conclusion on what is
4 the good practice.
5 MS. PEREZ: Thank you.
6 DR. PATEL: Okay. Thank you.
7 DR. LIONBERGER: Thank you very much.
8 So our next speaker is Russ Rackley from
9 Mylan.
10 Presentation - Russ Rackley
MR. RACKLEY: Okay. Thank you. I'm Russ
12 Rackley. I'm head of global PKDM at Mylan
3 Incorporated. And I want to thank you all for
4 letting me make a brief presentation today. These
15 are my views and not necessarily those of the
16 official opinions or policy of Mylan.
17 But I will speak to the challenges with the
8 demonstration of statistical noninferiority of
19 adhesion and irritation for transdermal drug
0 delivery systems using the OGD bioguidance method.
21 So l'll get right to the issue here. The
22 problem with the current adhesion or irritation
noninferiority testing is based on using OGD's
recommended scoring scale. When a product scores
very well or performs well, the adhesion or
irritation scores are zero or approach zero.
So for the current guidance, the
noninferiority margin is proportional to the mean
score of the RLD. And the consequence of that is
its noninferiority margin also then approaches
zero.
So one thing, one comment: In my experience of 15 years at Mylan, and seeing a lot of evolution over time, I think this may not initially have been as much of a problem. But we're seeing more RLDs
that are performing very well, and this is where
the challenge comes in.
So the requirement is forcing generics
practically to perform as a superior product
relative to the RLD and/or could potentially
require extraordinary powering considerations. And
that's in a space, as I'll illustrate, where
there's little room to improve already on what we consider good product. So Mylan believes the

Page 250

current guidance, although again not intended to do
so, effectively serves as an inappropriate block to
generic approvals.
So I'll briefly touch on the criteria here,
the statistical test, as outlined in the current
guidances. And this is for adhesion and/or
irritation. Basically, we're looking at a one-
sided test for the 95 percent upper confidence
interval based on the mean test score minus
1.25 times the mean reference score. And this
should be less than or equal to zero.
The point I just want to make on this
equation is it could be rearranged so that you
could show the mean reference score in the
denominator. So as you have a mean reference score
that approaches zero, as we're starting to see more
and more of, this greatly inflates the metric such
that it becomes very stringent to meet the criteria
against any kind of constant or criteria for
noninferiority.
I'll try to illustrate that a little bit
with this graph. I've illustrated here a graph of

Page 249
Page 251
1 test mean irritation on the Y -axis and reference
2 irritation on the X-axis. And there's a line of
3 identity there you'll see that goes where the test
4 and reference would be equal. The dashed red line
5 shows where the criteria for noninferiority would
6 be, and it's proportional based on the ratio of
7 1.25.
8 So as you approach to zero, this margin
9 effectively diminishes. So test products are
10 forced into a performance at very low levels, so
11 around a mean score reference of 1 . There's a
12 little space there to operate or perform relative
13 to the same level as the reference product.
14 But as the reference scores become lower and 15 lower, this forces the performance of the test
16 product -- the generic, that is -- to be lower and
7 lower again and squeezed into an area where there's
18 little room for improvement. And the performance
19 is superior in that there has to have almost a
20 lower score, or does have to have a lower score.
21 I'm going to illustrate this with two
22 examples based on some actual data. This is

Page 252
1 example one, illustrating good adhesion
2 performance. On the left panel is data for the
3 generic, and on the right is the reference listed
4 drug. And this is based on 36 subjects that wore a
5 high-strength patch for one 24-hour interval.
6 Adhesion was checked at 4-hour intervals per
7 the OGD adhesion scale. And the scale score is
8 again zero -- it was the best performance -- 1, 2
9 and 3 . One is 90 , or zero is greater than
1090 percent, greater than or equal to 90 percent.
11 One is 90 to 75 . Two is 75 to 50 . Three is less 12 than 50 percent adhesion.
13 Over at the first check, at 4 hours, there's
14 very good performance. Nearly all subjects have a
15 score of zero. There's good adhesion. As time
16 goes on, there's a little bit of disadhesion over
17 time, and you'll see some distributions go out to
18 scores of 1,2 , and 3 , and so forth.
19 If you sum these scores over time, you'll
20 get the cumulative adhesion scores for each
21 product. And that's illustrated here graphically
22 in this bar chart, with the blue bars representing
the test product, the generic. And it looks like
the lighter bars up there -- maybe I'm colorblind.
On here it's blue, but up there it's grey. It's
switched. But anyway, the left side is the test.
The right side for each pair is the reference.
The point here is that there's a very
good -- there's a high proportion of zero scores in
this dataset. Distributions are fairly comparable
as you go out and tail out. So overall, this
represents very good-performing products.
So in fact, the total observations for the test product was such that 86 percent of observations had a score of zero, again accounting for all observations. The reference had 85 percent of all scores equal to zero.

We look at the mean adhesions on these, and they're identical at 0.181 . And we look at the metric here, and the upper confidence interval is 0.0225 , which is greater than zero, so it fails the metric in this case.

If you consider this amount, this interval above zero, it effectively relates to -- the test

Page 254

would have had to perform about 12 percent or more
better to shift everything down and meet the
criteria. So that's what I'm getting to, is in
terms of -- there seems to be push to a superior performance aspect.

Moving on, and these are busy slides, but this is a similar kind of situation where we're getting moderate scores, in this case irritation.
It could apply to adhesion as well. This was a
study in which 36 subjects wore a patch daily over 21 days with same site application. Again, the left side is the generic. The right side is a reference.

Starting out, both products have roughly -- about a third of the subjects had scores of zero. So even after one application, there's very few subjects that --there's a minority of subjects that had no irritation, and more that had
barely observable irritation. And that
distribution shifts over time as the study's
conducted to 21 days.
Again, if we sum the scores over 21 days per

1 each of the observed irritation scales, scores in
2 this case, you get the bottom score, which is a
3 cumulative irritation value. And that's
4 illustrated again the distribution in this chart.
5 So you'll see the preponderance of scores.
6 Again, on the left is the generic. The right is
7 the reference. Predominately scores of 1 , which
8 again is barely perceptible erythema on the dermal
9 scale; or a 2, which is definite erythema, or could
10 be a combination of scores of dermal and other
11 scores. But the point is, there is a very similar
12 pattern and distribution, again predominant around
131 and 2 for most subjects across the study.
14 If we look at the summary on this, you'll
15 see similar mean scores of about 2 . The upper
16 confidence interval is minus .41 , which is well
17 below the criteria, so it would pass. There's
18 enough space there in that interval such that you
19 could almost be 15 to 20 percent higher relative to
20 the reference and it would probably pass. And
21 that's normal for a bioequivalence type of
22 consideration, but this is one-sided with respect

Page 256
1 to noninferiority.
2 The current OGD guidance method suffers from
3 the use of nonlinear discrete scale, good adhesion
4 or irritation results, and datasets consisting
5 largely of zeros. And as a result, as the
6 reference approaches zero, the margin essentially
7 disappears, which again forces the generic to
8 essentially perform in a superior manner and/or
9 could require extraordinarily high numbers of
10 subjects from a powering point of view.
11 Thus, there's a need for an updated
12 noninferiority testing method for both adhesion and
13 irritation that will span the spectrum of RLD
14 performance, particularly for well-performing RLDs,
15 which predominately score out at zero, according to
16 the scales.
We've contemplated some alternatives. One
18 would be just change the scale for adhesion so it
19 directly relates to performance of the product. So
20 you could use any kind of score, but as long as it
21 relates to in this case it could be a 9 or 95 down
22 to a lower score, but relates proportionately to
\square Page 257
the degree of adhesion observed in the clinic
during the study. And I just note this because the
EMEA has endorsed this approach, and we feel this
method should be considered in reevaluation.
A more simplistic approach might be simply
to adjust the scale. Rather than start it at zero, start it at 1 . This is effectively adding 1 to your overall scoring. So this would compensate for
the problems that we have with the metric, and it
would be a very simple solution to implement, and
would accommodate the issue for both irritation and
adhesion.
So questions? Does OGD agree with the current metrics for noninferiority testing for adhesion and irritation that need to be modified to accommodate all types of product responses? And can OGD promptly provide an alternative method for generic companies to fairly compare their products to the RLDs across the full range or spectrum of RLD responses anticipated for both adhesion and irritation?

Again, acknowledge this has been an ongoing

Page 258
consideration, but we are seeking some
consideration. And I have already pre-prioritized
this as an issue for recommendation. So I'll take
some questions.
DR. UHL: Yes. So can you tell me what your
priorities are, then? Because you actually asked
us questions, which is not the forum in a Part 15
hearing. The agency gets to ask the questions. So
if you want to prioritize, that would be great.
10 And I have a follow-up question for you as well.

12 back to I prioritized these questions for the
13 panel to consider. So really, the issue is
14 fundamental. It's around the scales that the OGD,
15 I think, use. It relates to use of zero for
16 identifying with good performance, which is
somewhat counterintuitive, I think. But it depends
on which way you look at the scales.
So it's almost as though any other score
other than zero might work in this situation.
There are other ways to go about it using different perhaps statistical approaches or other

1 considerations. But I see the root of the issue as
2 being how to address the scale itself.
3 DR. UHL: Okay. So I appreciate that. I
4 just want some clarity on your concern here because
5 on your second slide, you say that this is for
6 good-performing products. So I just want to
7 understand what good-performing products means. Is
8 that products that have good adhesion?
9 MR. RACKLEY: Yes.
10 DR. UHL: Okay. So for --
MR. RACKLEY: And/or low irritation.
DR. UHL: Okay, so for product --
MR. RACKLEY: So clinically speaking, you
want a patch that has great adhesion, performs
well, and it consequently will score as a zero. It
16 should have low irritation as well, ideally, and
17 will consequently also score as a zero.
So the problem exists the way the guidances
19 are written for both adhesion and irritation in
20 that scores of zero reflect good performance of the
product, of the RLD, is what drives the criteria
22 here.

1 DR. UHL: I appreciate that. So what you're
2 saying is that this aspect of the noninferiority
3 testing problems that you're pointing out are
4 relevant for patches that are highly adherent?
5 MR. RACKLEY: Yes, highly adhering, low
6 irritating.
7 DR. UHL: Right.
8 MR. RACKLEY: This occurs, as I
9 mentioned -- we see this more and more, I think,
10 for some RLDs. They may have one or both of these
11 parameters that perform that way. So it presents a
12 problem, that the probability of encountering this
is fairly high.
That's where we see the issue, how to
5 address this when RLDs -- when you have to go up
16 against an RLD that forces you to want to perform
better, but there's little room to improve on a product that's already getting the best possible score sometimes.

DR. CONNER: Yes. Since this a regulatory research meeting, in this particular topic, what 22 are your research ideas? Where would you like us

Page 261
to focus research dollars on addressing this, or related issues to this? Do you have any kind of projects or things that need -- questions that you feel need to be answered through research?

MR. RACKLEY: There's a wealth of data out there already that have been, I'm sure, submitted.
And I believe this is a problem that is throughout
the industry. So datasets are there that could be
taken and potentially used in evaluations via
simulations, bootstrapping considerations, that
sort of thing, to really explore how best to -- if
one were to modify either the scale or the metric,
how to modify that sort of data.
So the question would be, then, how would you disseminate or make that data available? It needs to be relevant data relative to actual kinds of observations that are seen in these kinds of studies.

DR. CONNER: Also, I think, one of your first slides you specified the current noninferiority method that we're using. But I think that we've gone beyond this. This is not

Page 262

entirely 100 percent accurate since we've added a
90 percent role on top of that, which I think we
have actually discussed with some of your -- some
of the GPhA member companies who had issue with
this.
6 So this isn't the complete story on how we handle these, although, granted it is still an issue, and it's still worthy of pursuing. But it's
not entirely 100 percent accurate, as far as that goes.

MR. RACKLEY: Well, I don't know that it -- yes, I didn't know if that was necessarily
public knowledge, so I did not really comment on that. But I don't know that it necessarily, as I'm referring to this, really deals with the full
spectrum of RLD responses, so from 100 percent
down -- or from scores of zero to whatever the maximum score is.

So you can think of this as percentage of adhesion if you want to, so from 100 percent adhesion down to zero percent adhesion. So I don't know that it fully covers. I mean it covers one

1 end. It's not a problem on the other end. There's
2 still a potential problem in the middle.
3 DR. LIONBERGER: Thank you.
4 So our next speaker is David Schoneker,
5 representing IPEC Americas.
6 Presentation - David Schoneker
7 MR. SCHONEKER: I'd like to thank the FDA
8 for giving me the opportunity to speak on a topic
9 near and dear to us at IPEC Americas today. We've
10 heard a lot throughout the day, almost from every
11 speaker, about the importance of excipients in a
12 lot of different ways -- the importance to
formulation science, manufacturing science,
pediatrics. Ajaz brought up the need for simple versus complex formulations.

I'd like to put that into perspective with what's really happening out there that I'd like to talk about. And that is, we talk about the need for more focus and more science in the area of the impact of excipients on formulation quality and performance, which is what's really key.

But before formulators start picking

Page 264
1 excipients for formulations based on that kind of
2 data, the first thing they have to address is the
3 safety of the excipient. So that's actually the
4 first and the biggest driver that's actually going
5 into drug development today.
6 Unfortunately, due to the inappropriate use
7 of some of the existing tools, and the lack of some
8 new tools that are needed, we're finding that this
9 is driving generic drug development, in some cases, 10 in the wrong direction.
11 Now, I'd like to coin a new term today.
12 We've heard a lot about QbD, QbR. I'd like to talk
13 about Qb . And Qb is quality by IID. Okay?
14 Because that, as I go around the country and around
15 the world talking to generic companies, is what's
16 driving how many generic drug formulations are in
17 fact developed. And I'll talk more about that as I
18 go through the slides.
19 So IPEC Americas, as with GPhA, we have a
20 lot of members. We have over 80 member companies
21 here in the US, over 350 member companies around
22 the world, and we represent many of the biggest
generic OTC innovator drug companies, most of the major excipient companies all over the world.

So some of our key concerns, getting at my points earlier, is that we believe that some of the current OGD policies and guidance for generic drugs related to excipient safety review are really not science- and risk-based.

We like to talk a lot about science- and
risk-based, but what we see actually happening is
not necessarily so, based on good toxicology and good safety reviews used throughout the world.
It's not really aligned sometimes even with the way
these materials get looked at by other areas, even
within the FDA, from the new drug side, to CFSAN, to the cosmetic folks.

The current policies and guidances, such as
the RTR guidance and the controlled correspondence
guidance, related to where it talks about the use
of the IID are actually creating barriers to
innovation and significant confusion throughout the industry.

For example, in the RTR guidance, it says

Page 266
specifically that any use of novel excipients means
that it shouldn't be a generic drug, it should be a
505(b)(2). Okay? Now, I'm going to come back to
the fact that novel excipients can be defined a lot
of different ways, not just new chemical entity
type of excipients. But l'll come back to that.
Now, IPEC Americas and GPhA has had a working group, and we've been working very closely
with folks at FDA, a combination of people from
10 many different departments in OGD and many other groups. And we've been working since 2011 to not only make improvements in the IID, but also to try to address some of the policies around how this gets used in the area of drug development.

Unfortunately, we've submitted a lot of information, had a lot of discussions, but some of the most key decisions I'll touch on today have really still not been made that are needed to be implemented by FDA, even here in 2016. So we feel that there is a need on the one hand for better coordination of some of these concepts between OPS and OGD and the industry.

Page 265
Page 267
1 Now, putting it in context of the questions
2 that were asked for this particular session, I'm
3 going to focus on number 1,5 and 6. So in the
4 area of technical advancements that are needed to
5 overcome specific barriers, again we believe that
6 the current excipient safety review and the
7 IID-related policies are stifling innovation.
8 It's wasting FDA resources, and resulting in
9 the development of non-optimized generic drug
10 product formulations. Now, l'll come back to that 1 in a minute because that's a very interesting 2 point.
13 But on number 5, what I'll be talking about 4 is the need for a read-across approach to excipient toxicology review that is needed for the evaluation of excipient families. We tend to call that the family approach within IPEC. And that's needed in order to facilitate streamlined assessments based on good science.

This practice is the most common practice used by regulators around the world, and it's already used, as I mentioned earlier, in many other
parts of the FDA to essentially bracket families of
2 things like polymers where all the toxicology is
3 the same. That's not necessarily how it gets
4 applied in generic drug development.
$5 \quad$ The last one related to strategies for enhancing equivalent risk management. We believe
that the acceptance of this family approach, and
8 the need for an independent novel excipient
9 qualification process, could speed up generic drug
10 development, improve drug quality and performance,
11 and enhance the use of advanced manufacturing 12 techniques, such as continuous manufacturing.
13 Now, the ANDA process, the impact that the
14 IID has on this -- we believe, again, some changes
15 are needed to improve the efficiency of the ANDA
16 process for excipient safety review. This would
help the agency and industry meet GDUFA goals,
apply science-based risk assessment principles,
minimize reviews of redundant excipient toxicology
information, and reduce confusion regarding the
IID.
Now, the current IID and the associated
policies, as it's being applied today, we believe
is insufficient to support efficient drug
development and approval, and we must streamline
this process and use good science to assess what is
the real risk.
The real risk, in most cases, many commonly used excipients are extremely safe. There's really
not much of a safety issue when you're using
existing materials, even at higher levels,
et cetera, as I'll talk about.
So some of the new uses of existing excipients that come up in drug development, and novel excipients -- and l'll say that are not new chemical entities because FDA's own definition of a novel excipient includes new chemical entities, coprocessed excipients, higher levels of existing excipients, new routes of administration, coprocessed excipients, et cetera.

If we can use these materials more effectively, and again, recognizing that new chemical entity type of excipients might be more appropriate for innovator drugs, but a lot of these

Page 270
other types of novel excipients are being avoided
in many different ways.
If we can use these, it would enhance high
quality generic drug development at equivalent
performance to innovator drugs in many cases. It
would also allow us to improve manufacturing
productivity and help control the cost of the generic drugs.

Now, this next point I want to elaborate on
just a bit. I said many generics are being
designed with less than optimum formulations due to
barriers in the excipient safety review process for ANDAs.

I get out to many, many generic companies all around the world. I just came back from a week in India. I talked to hundreds and hundreds of formulators, and I've talked to many here in the US.

The thing I hear consistently from the majority of these people is that their companies have a policy in place that says under no circumstances should a formulator use any excipient

1 at a level higher than what's in the IID, and since
2 they don't know what the MDI is, that their MDI
3 shouldn't exceed what's in the IID, which doesn't
4 make a lot of sense.
5 But that's what's actually happening, and
6 people have told me they have formulated
7 non-optimized products just because they want to
8 stay under the IID, even though they know they
9 could use more of a particular excipient and get
10 much better performance. Instead, they use, many
11 times, multiple grades of the same excipient so
12 they can stay under the grade level that's listed,
13 which adds complexity and unknowns to the situation.

So the process should be consistent, we believe, with risk management concepts, good science and global toxicology practices, and quality by design principles. Some of the key things that we're looking for is, we'd like to have a standardized approach for supplying inactive ingredient information to streamline the submission and review process. We've already worked on some

1 of this. We'd like to see it implemented.
2 We'd like to use this -- again, the excipient 3 family approach -- to facilitate common pharm/tox
4 evaluations for related excipients; prioritize a
5 one-time review of excipient families where in fact
6 the same exact toxicology will always apply to
7 everything in that family, regardless of the
8 context of use; and revise FDA guidance documents
9 by correcting contradictory and inconsistent 10 information.
11 So what's an excipient family? Well, again, 12 I alluded to this before. It's many times many of
13 the families that are the most common excipients
out there, such as polymers like hypromellose,
15 et cetera, are chemically similar but may have
16 various grades in the family that are all covered by the same toxicological standpoint.

Hypromellose is a great example. JECFA, and in fact CFSAN, has already agreed that there is no safety difference between any grade of hypromellose. In the food arena, you can eat up to 20 grams. FDA's approved 20 grams. JECFA of WHO,
the Joint Expert Committee on Food Additives, said
there's no reason to even put a limit on
hypromellose, so their ADI is not specified.
Yet in the IID, we have many grades of
hypromellose, with levels as low as 40 milligrams,
and people being asked for full toxicology studies
on that particular grade of hypromellose to justify
100 grams, or 100 milligrams. It doesn't make any sense.

So I'll try to finish up because I know I'm about out of time here. Benefits of the family approach. Transparency to drug formulators on maximum excipient use levels by route, as supported by tox data.

This would minimize need for multiple FDA reviews of the same toxicology data once a maximum use level has been accepted. It could expedite FDA review of ANDAs, minimize errors and resources to maintain the IID, and reduce the complexity of the IID.

So our ask, if you will -- and I only have a couple, so it should be easy to see the priority

Page 274
here -- we really believe that there needs to be a
formalized acceptance of a lot of the things we've
already presented to the FDA related to this family
approach. We pretty much presented all the science
that exists to justify this.
If needed, we feel that through the regulatory sciences initiative, if there's some science that people feel is needed to be able to make this decision, we would like to see whatever studies it is that are needed to make this decision done under this initiative so that we could move this forward.

We'd also like to see revision of the RTR and controlled correspondence guidance to facilitate innovation related to the use of novel excipients that are not based on a new chemical entity, and work with industry to investigate the development of an independent novel excipient qualification process outside of the drug approval process. This could save everybody a lot of time.

Finally, I'd agree with GPhA, there's a need to set up industry working groups to look at the

1 priorities and investigate specific projects beyond
2 what we've done in the past. So with that, I'd
3 like to stop and ask for any questions.
4 DR. LIONBERGER: Thank you.
5 MR. SCHONEKER: Thank you.
6 DR. UHL: So based on your comments specific
7 to the RTR and the controlled correspondence
8 guidance, did IPEC send comments to the docket when
9 those were published?
10 MR. SCHONEKER: Multiple times. We brought
11 it up in every one of our meetings. We've sent
12 comments in. We've been talking about it since
132011 in every venue we can. But we haven't been
14 able to get a decision on some of these things, and
15 that's what we're not understanding.
16 If there is some science that's needed to be 17 able to get the decisions made internally that are 18 necessary, let us know what it is, and maybe we can
19 work through this venue or through any other venue
20 to get that science there that's needed, if there's
21 anything.
22
We're not sure what is needed because this

Page 276

1 approach we talk about here is what's used by every
2 regulatory agency in the world, and we've brought
3 in world-class experts to testify to that already.
4 DR. UHL: Thank you. I have a follow-on
5 question unrelated to that. Your third bullet is
6 an independent novel excipient qualification
7 process. So could you elaborate a bit on what that
8 would look like?
9 MR. SCHONEKER: I could. And in fact, we've 10 already started some initial discussions on that.
11 We did meet with Susan Zuk. We've put a meeting
12 together with some of the FDA toxicologists, both
13 from OGD and the new drug side, back last year to
14 initiate a discussion on how could we set something
15 like this up.
16 What came out of that discussion was, this
17 is something that -- it's different, but it could
18 look something like what goes on with the biomarker
19 qualification process, where you could have
20 something where there's an intended use
21 established, an intended exposure level
22 established, and then the safety data could be
presented to an appropriate group that could then
make a recommendation not to approve the material
but to qualify the material for those applications
up to a specific use level, whatever, based on the actual safety data that exists for the excipient.

It is a situation that could be funded
through user fees or through other mechanisms. We
proposed a lot of those things. And what came back
was there was an interest. I know l've talked to
Lawrence Yu about this as well, and what we're doing in industry is both IPEC and the IQ
Consortium is having some discussion. And we've
been having discussions with GPhA as well, about
how we could actually now take that concept that we
talked about and make a proposal to FDA for you to
review about how we could set something like that up that would be an independent review process.

Because part of the problem we have here is until we can have the excipient safety not become an issue, that ends up dominating the formulation discussions way beyond what the actual technical issues are, where we should be spending the

Page 278
resources about how to make better formulations,
how to improve quality by design, prepare things,
or even develop excipients that would enhance
things like continuous manufacturing.
But without addressing some mechanism to get
beyond this sort of safety concern that the generic
industry has, then nobody touches that. I guess
you could say it's QbF, quality by fear in that
situation. So somehow we've got to resolve that
because otherwise we're just going to keep fighting that all the time.

DR. UHL: Good.
MR. SCHONEKER: Thank you.
DR. BOAM: Hi, David. Thanks for the presentation. With respect to the family approach, I was going to ask whether you or your organization had a chance to follow up on thoughts about using the critical path innovation meeting approach to try to have discussions about that? And if you've gotten some feedback on that, what feedback you might have gotten.

MR. SCHONEKER: Well, and I know -- yes.

1 Well, Susan had told us that that might be an
2 avenue to pursue, and we're actually having
3 internal discussions now, both within IPEC, the IQ,
4 and GPhA as well, is how can we come into that
5 process. Again, it's not a process we're that
6 familiar with yet, but we want to get familiar and
7 then try to utilize that process in the near future
8 to make these proposals I was talking about.
9
Because we think that's a great idea. And again, we think that could tie into some of the science objectives too, because if there's some studies needed, some science that's needed, some need to address guidelines, all of this could be focused in there. Thank you.
15 DR. LIONBERGER: All right. Thank you very 16 much.
17 MR. SCHONEKER: Okay, thanks.
18 DR. LIONBERGER: We will now take a
15-minute break, and we'll reconvene at 3:20.
(Whereupon, at 3:05 p.m., a recess was taken.)

DR. LIONBERGER: Welcome back, everyone.

1 Please take your seats so we can begin the final
2 session of this meeting.
3 Our next speaker is Bahman Asgharian from
4 Applied Research Associates. Welcome.
5 Presentation - Bahman Asgharian
DR. ASGHARIAN: Thank you for the
opportunity to be here. I would like to present a
8 research idea that has been made possible by recent
9 advances in our computing resources and image 10 technologies.
11 I will be talking about the reconstruction
12 of lung airway trees to detect earliest stages of
13 disease in the children with lung disease, and
14 following it up by computation of three dynamic
15 calculations to study lung ventilation and drug
16 delivery. This type of work actually complements
7 PD/PK modeling in the sense of reducing uncertainty
8 for the dose that goes as input to the PK or PDPK models.

So the motivation for the proposed idea is to explore novel airway modeling techniques to detect lung disease at earliest stages before the

```
disease has a chance to damage or destroy lung
airways, and look for that, the window of
opportunity for drug intervention and treatment.
    Also, use the modeling technique to explore
new ways to target drug to the affected sites where
we know, because of the damage, the lung is
resistant to airflow and drug getting there. And
at the same time, reduce the drug delivery to the
sites that it typically goes to, undesired sites,
and as a result, minimize the side effects.
    3D modeling of the lung children, it cause
    high-resolution imaging. And this imaging actually
    is available already from other studies for both
    the diseased lungs and for healthy lungs of
    children.
    The idea I am proposing would add these
    knowledge gaps that have been identified by the FDA
    in terms of physiological variability within a
    subject, leveraging complex models and computing,
    model validation when we don't have data, and
    understanding the physiology in subpopulation -- in
    this particular case would be children with lung
disease has a chance to damage or destroy lung
airways, and look for that, the window of opportunity for drug intervention and treatment.
Also, use the modeling technique to explore
new ways to target drug to the affected sites where
we know, because of the damage, the lung is
resistant to airflow and drug getting there. And
at the same time, reduce the drug delivery to the
sites that it typically goes to, undesired sites,
and as a result, minimize the side effects.
3D modeling of the lung children, it cause
high-resolution imaging. And this imaging actually
is available already from other studies for both
the diseased lungs and for healthy lungs of children.
The idea I am proposing would add these knowledge gaps that have been identified by the FDA in terms of physiological variability within a subject, leveraging complex models and computing, model validation when we don't have data, and understanding the physiology in subpopulation -- in
this particular case would be children with lung
```

 Page 282
 disease.
 The example I will be presenting is cystic
 fibrosis. Cystic fibrosis is a chronic disease
 which targets the lungs mainly and start with the
 upper lobes of the lung. So the disease
 actually -- the changes to the lung due to the
 disease starts early in life.
 The way it's being diagnosed is they take
 CTs of the lungs, and those CT images we can use
 for the ideas I am proposing. So the treatment for
 this disease is to try to reduce the severity of
 the symptoms and slow the progression. However,
 intervention is the key. You have to intervene
 early, before the lung airways are damaged.
 So the problem is that detecting this
 disease at the earliest is a challenge. We have to
 look for biomarkers, variables, that can allow us
 to do that. The objective would be explore novel
 airway modeling techniques, and that includes 3D
 lung airway reconstruction and conducting
 computation of fluid dynamic studies in this
 geometry. And by doing the 3D reconstruction, we
 Page 282
disease.
The example I will be presenting is cystic
fibrosis. Cystic fibrosis is a chronic disease
which targets the lungs mainly and start with the
upper lobes of the lung. So the disease
actually -- the changes to the lung due to the
disease starts early in life.
The way it's being diagnosed is they take
CTs of the lungs, and those CT images we can use
for the ideas I am proposing. So the treatment for
this disease is to try to reduce the severity of
the symptoms and slow the progression. However,
intervention is the key. You have to intervene
early, before the lung airways are damaged.
So the problem is that detecting this
disease at the earliest is a challenge. We have to
look for biomarkers, variables, that can allow us
to do that. The objective would be explore novel
airway modeling techniques, and that includes 3D
lung airway reconstruction and conducting
computation of fluid dynamic studies in this
2 geometry. And by doing the 3D reconstruction, we

1 look for variables that are associated with the
2 disease.
3 This could include the bronchial
4 cross-sectional area, airway partitioning between
5 healthy and diseased lobes, airway resistant,
6 impedance, and other parameters.
$7 \quad$ By doing the computational fluid dynamic
8 studies, we would like to study drug delivery to
9 the -- first we would like to study the airflow
10 distribution, from which we can calculate or we can
11 estimate the lung function that we need to use as
12 the biomarker. And then next would be to study
3 drug delivery to the diseased lung.
14 This step actually is pretty extensive and 15 needs an expert of people in the field to do it.
16 However, it would be desirable to have this package
7 in a simpler way, like a multiple-path dosimetry
18 model that allows clinicians and other health
19 professionals to run the model for the specific
20 patient on desktop computers.
This model I'm talking about is a 1D
22 representation of the whole 3D modeling. It's been

1 simplified so it can run fast with fairly good
2 accuracy, and has already been developed for
3 healthy lungs. And the next step would be to
4 include the diseased lung at different stages into
5 this model.
6 Some preliminary results have already been
7 obtained. First, there are 8 CT scan of the lungs
8 of the kids, children with CF, 4 males, 4 females,
9 and ages from 3 months to 5 years old. And this
10 data has been collected as part of an NIH study
11 with PI Stephanie Davis and co-PI Julia Kimbell.
12 These are the reconstruction of all these
13 airways from -- it's a 3 month old girl, 10 months,
1412 months and 3-year-old girls, one 3-year-old boy
15 and three 5-year-old boys. So we did some
16 preliminary studies on these reconstructions.
17 The first thing we did was we calculated the
18 cross-sectional area of the left and right main
19 bronchi from reconstruction of the airway tree that
20 went down at least three generations, and then we
expressed it as a percentage of the total
cross-sectional area.

1 The same we did for the lung ventilation, calculated it by doing CFD studies assuming steady-
state respiratory flow at resting breathing rate.
We calculated the lung airflow going to the left
and right lobe. And then also we expressed that as
the fraction of the total inhaled airflow.
This is the results. I'm just showing the sense of it. On the left panel, we have plotted
for each subject the airflow rate and the
cross-sectional area in blue and red bars. And on the right, you have these two parameters plotted against each other. So early findings is that it show that actual the airflow distribution between left and right lobes are generally similar to the cross-sectional area between the two main bronchis.

There is also some work ongoing which I'll touch on that, looking at two 12-month-old CF subjects. So further work is needed to validate the accuracy of these reconstructions, and also look for other variables that might be of interest to detect the disease.

So these two actually would be very useful,

Page 286
have the potential to quantify the effect of CF at early age on lung structure and lung function.
Based on that, we can develop treatment policies.
These are the two 12-month-old subjects I just
mentioned, so subject-1 top, subject-2 bottom.
Left column shows you reconstruction of the lung at
the end of inhalation. The right column shows at
the end of exhalation. And there's a big
difference.
You can see the lung has shrunk at the end of exhalation. So this is actually to see -- the reason we see that, on the left the airways are fully expanded on the inhalation, but they disappear at the end of exhalation. And this is because airways have collapsed.

There are additional data available, so these were just two. There were over 50 scans, CT scans, of the lungs of 12-month-old children, and in addition, images are available for healthy kids from birth to 17 years old from a different R01 study. So this database can basically be the foundation to study drug delivery to diseased lung

1 and the dosing in healthy and diseased lung.
2 The last slide, I have personally noticed 3 recent interest by the FDA on doing CFD studies.
4 And what I'm trying to promote is that we probably
5 should be -- if data is available, should be using
6 actual scans rather than using idealized geometry,
7 which I have seen that a lot recently. And this
8 data are already available.
9 For this particular case, recommendation is 10 to use the 3D reconstruction of the CT scans of the 11 children with disease, and compare that with the 12 lung reconstruction of children with healthy lungs 13 for which scans are available, then, to study these
14 biomarkers. And conduct computational fluid 15 dynamic studies to study airflow in the lungs of 16 both healthy and diseased lungs.
17 Then look for possible ways to maximize 18 airflow and drug delivery to the lobes that are 19 affected. As I mentioned, they're hard to get to 20 normally because the lungs are damaged. And also 21 minimize the side effects as the results of drug 22 going to these sites that are not of interest.

1 Then we would like, as I mentioned earlier,
2 that we would like to package this is in a
3 multiple-path dosimetry model to allow clinicians
4 and health professionals to be able to run this for
5 a specific patient on desktop computers. And
6 finally, be able to validate these models by
7 comparing with experimental measurements. Thank
8 you.
9 DR. LIONBERGER: So can you say what would
10 the impact of this be on the development of generic
drug products?
DR. ASGHARIAN: Well, this actually is the
framework for any drugs, so if that could be -- so
basically, this is a generic model that can be
applied to any scenario, including generic drugs.
16 So that's the whole idea, that it's not anything
specific.
18
DR. LIONBERGER: All right. Thanks very much.

DR. ASGHARIAN: Sure.
DR. LIONBERGER: So move on to our next
speaker. It will be Tracy Rupp from the National

Page 289

Page 291

```
    Center for Health Research.
        Presentation - Tracy Rupp
    DR. RUPP: Good afternoon. Thank you for
    the opportunity to speak today. My name is Tracy
    Rupp. I am a pharmacist and the director of Public
    Health Policy Initiatives at the National Center
    for Health Research.
        Our research center analyzes medical and
    scientific data and provides objective health
    information to patients, providers, and
    policymakers. We don't accept funding from the
    drug or medical device industry, and I have no
    other conflicts of interest.
    The first policy issue or GDUFA research
    issue that l'd like to talk about is the inspection
    of manufacturing plants. We've heard today that
    patient and prescriber confidence in generics is
    disproportionately shaped by the recalls and
    quality issues that occur.
    So increased attention to manufacturing and
    quality control is critical. And importantly, we
    have heard how bioequivalency for complex generic
```

 Page 290
 drugs is highly dependent on the quality control of
 the manufacturing process.
 In 2012 Congress passed the FDA Safety and
 Innovation Act, or FDASIA, which among other things
 requires the agency to inspect foreign facilities
 that make drugs sold in the United States as
 frequently as it inspects domestic plants.
 In addition to achieving parity in the
 frequency of inspections, FDA also committed to
 ensuring that domestic and foreign inspections are
 conducted with comparable depth and rigor.
 A 2015 report from the Office of the
 Inspector General found that FDA has made progress
 on oversight and inspection of manufacturers of
 generic drugs, but gaps remain.
 For example, FDA increased its preapproval
 inspections by 60 percent between 2011 and 2013.
 However, it didn't conduct all of the preapproval
 inspections requested by its own generic drug
 application reviewers during this time period. And
 most unfulfilled requests were for inspections of
 foreign manufacturers.
 $1 \quad$ FDA staff attributed the outstanding
2 preapproval inspections to a lack of resources.
3 And in addition to improving drug quality and
4 improving consumer confidence in generics, timely
5 conduct of preapproval inspections could help
6 reduce delays in the availability of generic drugs.
7 In recent years, FDA has sent warning
8 letters about violations to companies with plants
9 in foreign countries, such as India and China. The
10 number of warning letters sent to Chinese and
1 Indian manufacturers for violations nearly
12 quadrupled from 2012 to 2015. Most of the warning
3 letters raised concerns about data integrity.
14 Many of the observations were for egregious 5 problems, like altering official documents in front
16 of an inspector, falsifying dates of quality
control testing, or documenting important
manufacturing data on scrap paper in pencil. And
these are the types of issues that can clearly impact consumer confidence in generic drugs.

Despite the increased resources from the GDUFA provisions of FDASIA in 2012, it's difficult

Page 292
1 to keep up with the increasing production of drugs
2 and devices in foreign countries. Imports of drugs
3 and medical devices from China alone increased by
4 nearly fivefold from 2007 to 2013.
5 The 2015 OIG report recommended that FDA use
6 its inspection resources more efficiently by making
7 greater use of authority granted by FDASIA to
8 request records in lieu of, or in advance of, an
9 inspection. The authority could increase FDA's
10 capacity for preapproval inspections. Record
11 reviews could be completed in advance rather than
12 using up the inspection staff's time during an
13 onsite inspection. The inspector's time onsite
14 could be prioritized to address the tasks that must
15 be conducted in person rather than on reviewing
16 paperwork.
17 Two important questions are: Has FDA
18 implemented this recommendation? And if so, what
19 impact has it had? Additional related regulatory
20 science research questions could include: Has this
21 new authority improved the quality of inspections?
22 Has it helped FDA hone in on the issues posing the
greatest risk to public health?
Can a more focused onsite review help improve drug quality and reduce the risk of patient harm from unsafe drugs? Does this new authority
reduce approval delays? Do more frequent
preapproval inspections result in fewer recalls?
And are problems identified and fixed earlier as a result?
facilities to inspect, using its risk-based
approach.

The OIG found that of the 432 generic drug manufacturers listed on ANDAs approved in 2013, 10 percent didn't match entries in FDA's registry of generic manufacturers. It's worth noting that 62 percent of the manufacturers that couldn't be located in the registry were foreign.

FDA can't inspect facilities if it doesn't

Page 294
know they exist. So research is needed to
determine what strategies are most effective for
ensuring registration, including incentives for
registering and effective penalties for those that don't.
Another important regulatory science question is the effect of generic drug labeling updates on patient safety. FDA has issued a
proposed rule that would allow manufacturers of
generic drugs to update their label with new information as it becomes available. And we strongly support that rule.

Currently, generic manufacturers have little incentive to monitor drug safety, and they aren't
required to update the label with new risk
information. As a result, safety monitoring basically stops when generics enter the market.

This puts patients at risk, since the FDA found that the median time from initial approval of
the drug product to the time of making a
safety-related labeling change was 11 years, past
the market exclusivity period for many branded

Page 293
Page 295
1 drugs.
2 The proposed rule would give generic
3 manufacturers the authority to initiate safety
4 labeling changes through the changes being effected
5 process. And the result will be to give patients
6 access to the most up-to-date product labeling.
7 It would be helpful if the FDA could conduct 8 or support research to determine the impact of the
9 current situation, where labels for generic drugs
10 are not updated unless the branded version is
11 updated. It's especially important to compare the
12 current situation with previous policies.
13 For example, prior to the Supreme Court
14 decision Pliva v. Mensing in 2011, generic drug
15 companies were responsible for updating their
16 labels. Now that they're not required to update
7 the labels, an interesting question is how many
8 labels for generic drugs were updated in the five
9 years prior to the Supreme Court decision compared
20 to how many have been updated since.
21 When and if the proposed rule is implemented
22 in the future, an important question is how will

Page 296
1 this affect the timeliness, accuracy and
2 completeness of drug safety labeling, and will it
3 protect patients from harm?
4 The third and last regulatory science
5 question l'll mention today is related to patient
6 copay coupons. Like we heard earlier today, as
7 drug costs continue to rise, brand name
8 manufacturers are more likely to use coupons to
9 entice customers to fill their prescriptions since
10 coupons defray or eliminate the copay costs.
11 In 2009, coupons were available for fewer
12 than 100 prescription medicines, but the number
13 exceeded 700 by last year, according to a recent
14 analysis by the Tufts Center for the Study of Drug
15 Development. These coupons are more common just
16 prior to generic competitors coming on the market.
17 The goal is to establish brand loyalty and reduce
18 the number of patients switching to generic
9 versions.
20 As we heard earlier today, a 2013 New
21 England Journal of Medicine analysis found that
2262 percent of coupons were for brand-name drugs for
which a lower cost option existed.
The important regulatory science questions related to copay coupons include: How do coupons
affect prescribing of generic drugs? What impact
do coupons have on patient outcomes, such as
adherence to therapy and treatment success? And
what is the impact on cost for patients for
Medicare and private insurers?
In summary, generic drug research and policies have an enormous impact on the health and safety of millions of Americans, and impact patient and prescriber confidence in generic drugs. We urge you to consider research that will improve drug quality through rigorous manufacturer inspections, increase patient safety through the communication of important drug information on generic drug labels, and promote the uptake of generic drugs where they have the potential to reduce cost and improve outcomes.

Thank you for the opportunity to share our recommendations today, and I'll be happy to take any questions.

Page 298
DR. LIONBERGER: Thank you.
DR. UHL: When you mentioned aspects of the inspections, and you talked about incentives for registration, do you have any other thoughts -- could you expand a bit on that? What would that look like? What are you guys thinking related to incentives?

DR. RUPP: I guess we haven't --
DR. UHL: What would be required in order to do that?

DR. RUPP: Right, right. We haven't specifically come up with any real great ideas. But we do feel like it may actually end up more in the realm of being some sort of a penalty being the incentive. But I think that there could be some further discussion between industry and the FDA and other groups, really, to what would be the best way to approach that.

DR. LIONBERGER: Well, thank you very much.
DR. RUPP: Thank you.
DR. LIONBERGER: So our next speaker is
Professor James Brasseur from the University of

Page 297
Page 299

1 Colorado.

2 Presentation - James Brasseur
3 DR. BRASSEUR: Thank you very much. Just a
4 quick background on myself since I'm rather unusual
5 in this group. I was at Penn State University for
627 years. One of my primary areas of research was
7 the interplay between the physiology and the
8 mechanics of the gastrointestinal tract,
9 particularly the fluid dynamics areas, because
10 that's my primary area of expertise.
11 About 15 years ago, I began working with
12 pharmaceutics, first with Janssen Pharmaceuticals
and then with AstraZeneca. I have a long
relationship with Bertil Abrahamsson and his
colleagues at AstraZeneca in Sweden. And about
two, three years ago, I began working with the
University of Michigan, and I'm part of the
FDA-funded program that Gordon Amidon and Duxin Sun
discussed this morning. And this project that I'm
discussing right now is in relationship to that
program of research.
22 The focus of my discussion and my

Page 300
1 recommendations are the improvement in our
2 understanding of the hydrodynamic effects on
3 dissolution in the gastrointestinal tract, and
4 in vitro and its effects on the absorption. and
5 details associated with modeling such as PBPK type
6 of approaches, and more complex types of models.
7 Obviously, the gastrointestinal tract
8 functions very differently from an in vitro device.
9 There's transport and mixing, which are both
10 required in order to deliver any molecule to the
11 surface, the epithelial surface. That would
12 include nutrients as well as drug molecules. And
13 this is a combination of different kinds of
4 motility events that take place within the
5 gastrointestinal tract.
16 It doesn't take much to notice, of course,
17 that an in vitro device doesn't represent even
18 approximately these, but that in itself isn't
19 necessarily indicating that there's a lack of
20 correspondence between the in vitro and the in vivo
21 situation. And that's something I would like to 22 get into.

2 in the Gl tract are peristaltic or propagating wave-type contractions and segmental contractions.
These are in the fed state. In the fasting state,
the MMC contraction event is primarily a
propagating type of event, but there are smaller,
different types of contractile events, very
powerful, in MMC3 and so on that are very different
in that the volumes in which the dissolution
process is taking place are much smaller than in the fed state. So there's very fundamental differences in the hydrodynamics associated with differences between the fed and the fasting state.

Obviously, the flow field, the velocity fields and so on, are very different than they would be in an in vitro device, and they're very different from each other in the different types of contractile events. And those are issues that we're trying to investigate and that we feel needs more work.

In particular, if one were to plot, as I'm showing here -- this is taken from rat data from

Page 302
and NSF funded program some years ago. And this is
a peristaltic contractile event where the diameter
is plotted as a contour plot, as a function of
time. And these propagating events appear as these
striped contraction reaches. Whereas in a
segmental contraction, you get this checkerboard
kind of a behavior which is consistent with this picture on the left.
You can imagine that the mixing process, the
release of drug from particles that might be contained within these segments and so on, will be very different. And in fact, they are, and we aim to quantify that using computational fluid dynamics-type of approaches.

So here's an example of a model that we just completed developing, and we're now in the process of using, to create computational experiments in coordination with the in vivo analyses, the in vivo experimental dynamics that are being measured at University of Michigan.

All right. So what I'm showing here are 500 pharmaceutical particles being moved around in

1 a simulated clean peristaltic wave. This computer
2 is slower than it should be, so it's not moving
3 continuously. But at any rate, these particles are
4 releasing drugs. This is a realistic simulation
5 for ibuprofen. The release rate is consistent with
6 the in vivo situation. This is the fed state.
7 The main message to take away is that these
8 kinds of simulations can give a lot of detail that
9 are not available in the in vivo measurements, in
10 the in vitro measurements, and certainly not in the
11 standard PBPK type modeling. And in particular,
12 you notice a lot of heterogeneity.
13 The uptake at the wall depends in time on
14 this heterogeneity. The details of the
5 heterogeneity depend on the motility and other
characteristics of the gastrointestinal tract versus in vitro.

All right. The modeling has to correspond with this improved understanding. And one of the areas in which I have focused in a couple recent papers is the importance of modeling from a physics-based type modeling strategy. Models tend

1 to be empirically based, and I argue that the core
2 of models should be, as much as possible, connected
3 to the laws of mechanics. And in particular, this
4 representation that I'm showing here is an attempt
5 to do that, where this object here, which has this
6 symbol "Sh" and stands for what's called a Sherwood
7 number, has the physics embedded in it. And this
8 is where the true modeling part lies.
9 But the solubility difference with what's
10 called the bulk concentration is another central
1 parameter, as well as the radius. And this has
12 come up several times in yesterday and today's
13 meetings. But it's this parameter in which the
4 hydrodynamics is embedded.
15 So one can write this expression as a first
16 term, which is a pure diffusion model in an
17 infinite domain, sink conditions. The second term
18 is a correction for those sink conditions. And the
19 third term is the hydrodynamics. And this has two
20 effects. One is shear -- or, sorry, one is
21 convection. This is the standard one. And one is
22 shear, which is a new one that we've found in our
work to be more important than convection.
So what are the mechanisms by which one can
compare in vitro and in vivo? And again, it's
obvious that the global flow is totally different.
But that doesn't necessarily mean that the in vitro
device is not relevant to the in vivo.
What matters is the release of drug from individual particles, thousands of these, that are
moving through the device. And if the rate of
release of drug is consistent with the in vivo scenario, then it's in vivo relevant.

The parameters that are required to describe this process of drug release are local, local to the particles of the drugs themselves. And these are fluid dynamics parameters that people in the fluid dynamics community understand. This one is called a Reynolds number. This one is called a Peclet number. But the point is that these are local to the particle.

For example, one needs to estimate the relative speed between the particle and the flow to determine these Reynolds numbers or these numbers

Page 306
that determine the rate of release of drug from the particle surface. And this is what is meant by hydrodynamic effect.

It turns out that there's another
hydrodynamic effect that we discovered a couple
years ago, and that's related not just to the
relative speed between the particle and the flow,
but to something called the shear rate. This is
something in the fluid mechanics of the flow itself.

But the main point is that it's very
different in this kind of a device than it is in
the in vivo situation. And this is a
characteristic that makes the in vivo situation
different from the in vitro situation.
So these are computer simulations, for example, from the literature of a USP-2 device
where this parameter that I call shear rate is up
at around 100 maximum, whereas we've done
simulations in our gut model, and their maximum to
$2,3,4,5$ inverse seconds. So two orders of
magnitude difference. And this is the main

1 difference between the in vivo and the in vitro
2 situation, not the global flow itself.
3 So these numbers, if you compare the
4 intestines with USP 2 device, are very different,
5 orders of magnitude different. But they're also --
6 this number is very different from this number, and
7 that's another issue. So for example, if one
8 actually does -- and so we did a large series of
9 calculations to show this Sherwood number, which is
10 a nondimensional release rate for the drug, as it
11 were.
12 So this is the number that characterizes the 3 hydrodynamic effect. One means no hydrodynamic
4 effect. Numbers bigger than 1, so this is twice
15 the non-hydrodynamic release rate, 3 times, 4
16 times.
17 What we're plotting here is against this
18 thing that I called Peclet number. But the details
19 aren't important. Important is that this shows
20 that there is a large variation. depending on this
21 number. And when you compare the in vitro with the
22 in vivo, they're very different, so that the in

1 vitro situation is releasing drug at three, four
2 times the rate of the in vivo situation. But even
3 in the in vivo situation, there's a broad range
4 that has hydrodynamic effects involved in it.
5 So we need to understand this better. We
6 need to include this into the modeling. It hasn't,
7 to date, been included in the modeling. Of course,
8 the beauty about computer simulation is you can
9 answer the question why. Why is there enhancement?
10 I don't have time to go into it, but in a nutshell,
11 it's because the particles spin because of these
12 effects, and the spinning creates a local
3 enhancement of the release rate.
14 This has been validated through in vitro
15 experiments that we did together as a group at the
16 University of Michigan. Greg Amidon and Deanna
7 Mudie worked with me and my team. And these were
8 well-validated.
19 This is a computer simulation or
20 mathematical model simulation compared against the
21 data, and we validated it. It works very well.
22 And not only does it work well, but it turns out

Page 309
it's in vivo- and in vitro-relevant. It's
important. We've now validated that.
This is the last slide, which shows -- this
is the standard way in which modeling is typically
done in the PBPK world. And it's done used what's
called a diffusion layer thickness model. And my
argument is that this diffusion layer thickness
model is ad hoc and it needs to be based on first principles.

In this case, we're basing it on the shear effect. And you can see that the curves, which are often represented in this form, depend on the shear rate, and the shear rate depends on the flow, the flow depends on in vitro versus in vivo, and also depends on the particle where it happens to be sitting at any given point in time.

So my take-home message is that the hydrodynamic influences are important to study.
There's very little that's understood about them, and so there needs to be a lot more. But also, the modeling needs to be put on a more first principles basis, bases that are based on the conservation

Page 310
principles, what are called the laws of mechanics
or the laws of physics, at the core. And I think
there needs to be a movement to try to move some of
these models to a more physical core.
Obviously I can only say so much in
10 minutes. There's all sorts of sub-issues that
perhaps will come up in the questions right now.
Thank you.
DR. LIONBERGER: All right. Thanks very
much. As a chemical engineer who has taught graduate fluid mechanics, it made perfect sense to me.
(Laughter.)
DR. BRASSEUR: Excellent. Excellent.
DR. LIONBERGER: Butit's a question, right, to identify. You know the question we're looking at here is what should we, as we're preparing a regulatory science research program, look at next to advance this area?

Should we be looking at the in vitro dissolution apparatus to make them more like the physiological situation? Do we need more data on
the in vivo physiology to confirm this? So what
would be the next sort of research --
3 DR. BRASSEUR: Well, obviously, the emphasis
of my presentation was more on the hydrodynamics
and the modeling aspects. And I feel very strongly
that this cannot be evolved or developed or
improved in isolation of the real situation.
8 The real situation is that there are
9 in vitro devices that are designed to measure
dissolution for situations that are in vivo-
relevant. So one of the big questions is, to what extent are they, and to what extent is that important? So these need to be integrated, and I already gave you one example of where we have done that.
16 But it also needs to be integrated with the in vivo scenario. And the in vivo scenario is a rather different one. You can do certain things with modeling and on the computer that you can't do in vivo and vice versa.

So the real challenge is to integrate them 22 in a way that advances our knowledge and our

1 modeling capabilities, and that's of course what
2 we're trying to do at the University of Michigan
3 with me and my team. And I think there needs to be
more of that kind of integration done.
5 DR. LIONBERGER: Thanks very much. So our
6 final speaker is Professor Jim Polli from the
7 University of Maryland.
$8 \quad$ Presentation - Jim Polli
9 DR. POLLI: Okay. I apologize, I do not
10 have any good videos. So a lot of people have
1 already mentioned, talked about excipients, so l'll
12 try to just be brief. My major comment is it would
3 probably be good to do more excipient-based 4 research.
15 As the group knows, drug product quality is 16 a major focus. There's a need over the lifespan of 7 products to make sure their quality is assured, both before generics and after generics. So there's always a need for equivalence testing.

So here we have two formulas, one of the innovator product of lamotrigine and one an example 22 generic of lamotrigine. And it probably would be
very interesting if we were to take a survey of
various folks -- healthcare providers,
pharmaceutical scientists, what have you -- when
they look at this, what is it that they see? What
sort of risks do they see? And I would suggest
that there's huge differences in points of view
among various stakeholders in how they would
describe similarity or differences between these
two formulations.
But arguably, a major area where differences can occur are excipients. And then we can ask the same question: Well, is there a difference between lactose and lactose monohydrate in the context of ongoing drug product quality?

To some extent that's been answered, but to
a fair extent it hasn't. And I think this
uncertainty has persisted for a long time, and it would be helpful from a biopharmaceutic standpoint
to have better-developed literature around excipients, or at least the most common excipients.

So as everyone knows, there are biowaivers.
There are all sorts of different types of

Page 314
biowaivers, including so called Biopharmaceutics
Classification System-based biowaivers where the
focus is on applying biowaivers using in vitro
testing, et cetera, to so-called less risky drugs.
But then the question is, which are those? And
within the last year, the FDA put out a guidance
that expanded the BCS to include so-called Class III drugs, drugs with high solubility and low permeability.

This is from an article from the FDA from a couple years ago illustrating the distribution in ANDAs with regard to BCS Class I, II, III and IV. And Class I and III make up a large part of drugs that are in ANDA applications. So it seems as if expansion of the BCS will have a fair impact.

Of course, the concern with excipients in the context of biowaivers are, to the excipients, are they in fact not doing anything that's bad in terms of drug absorption or any other types of issues? And the things that come to mind are gastrointestinal transit, dissolution, stability, interacting with transporter metabolism, that sort
of thing.
2 It would be very easy to point to certain things on here where there's very little studies.
4 There's probably not much study with regard to
5 excipients and transporters or excipients and
6 metabolism. So in some ways these excipients,
7 these common excipients, are very familiar, but in
8 other ways they're actually very poorly studied.
9 So earlier this year, working with the FDA, we published this article -- this was back in
January -- "Lack of in vivo impact of common
excipients on oral drug absorption of BCS Class III
drugs, cimetidine and acyclovir." So these were
two model BCS Class III drugs.
They were subjected to two studies -- I'm
going to very briefly describe them -- where the
goal was to examine 14 common excipients. There
18 was three capsule formulations for each drug
19 cimetidine and acyclovir, where large quantities of
20 excipients were in each of the various
formulations.
Each drug was subjected to a fasted single-

1 dose 4-way crossover study in healthy volunteers.
2 There's an oral reference. And average BE was
3 employed to assess impact of excipients. Here's
4 the design of what I just talked about. And
5 towards the bottom there, you can see there were
6 three test capsules of cimetidine and three test
7 capsules of acyclovir, each having large quantities
8 of excipients collectively across 14 common
9 excipients.
10 In study 2, there was follow-up with
11 cimetidine, HPMC, and magnesium stearate. And the
12 first study probably slowed down dissolution a
13 little bit, with was not the interest. The
14 interest was actually not so much a dissolution
15 study but more looking at whether excipients have
16 an impact on permeability or transit, that sort of
17 thing.
18 So in study 2, HPMC and magnesium stearate
19 were reduced. Okay? And then collectively across
20 the series of studies, we were able to
21 identify -- 12-of the excipients had no impact on
22 bioavailability. And you can see, or maybe you
can't, but in the second column after the listing
of the excipient, you can see that very large
quantities of these common excipients were studied.
The first two, microcrystalline cellulose
and HPMC, actually failed Cmax, so we weren't able
to say anything different than what's currently in
the guidance with regard to qualitatively the same
and quantitatively very similar. But overall, we
think there was a lot of regulatory relief that
could be found in this type of data.
So the conclusions were, 12 of the 14 were found to be non-problematic, and such that those excipients could be employed in Class III biowaivers such that they're not more than those that were studied here in this particular sequence of studies.

Again, HPMC and microcrystalline cellulose, because of the Cmax, with one particular formulation should be qualitatively the same and quantitatively very similar to the reference.

We do say in the paper some caveats. It's possible that other drugs might be different than

Page 318
these two particular ones, so there needs to be at
least some level of caution. And then we also say
the greatest concern would appear to be a drug that
depends on an uptake transporter such that the
excipient could possibly inhibit, by virtue of the
excipient having the same molecular structure,
similarity to the transporter's pharmacophore
recognition site.
Then soon after that was published, there
was actually -- some pharmacokineticist challenged
the -- not so much the data, but just the
interpretation. So this is where I'm going.
There's probably a need to have some sort of a way
forward to agree on what the biopharmaceutical
implications of certain excipients are.
I think this is actually a quote from their
letter. "Results obtained in our study should not
be extrapolated to other drugs." They're
suggesting that, oh, that's all great for those 2
drugs, acyclovir and cimetidine, but it shouldn't
be extrapolated to any other Class III drugs. And
then there's the reference there for our particular

Page 317
Page 319
1 reply. And I do have to say, I think they raise a
2 good point about just generalizability.
3 So to summarize, like many of the other
speakers, I think there's a need for greater
5 research in excipients. In some ways, they're very
6 familiar but I think in other ways, in critical
7 ways, they're actually -- there's a lack of data
8 underpinning certain decisions that could be made
9 that would benefit development.
10 There was also a presentation earlier today
11 about pediatric applications. And as you know,
2 that's a big area. There's been a lot of
3 improvement in the last 10-years. There's perhaps
4 been a doubling of labels, of drug labels. But I
5 still think probably not much has been broadly
16 generalized with regard to excipient use in 7 children.
18 I recall some of the questions this morning
19 about some of the excipient talks. And I guess one
20 suggestion would be -- l'm thinking about some of
the BCS biowaivers that are published in the Journal of Pharmaceutical Sciences, and those are

Page 320
1 extremely well-received. They're extremely highly
2 referenced and downloaded.
3 Maybe the same sort of thing for the
excipient side -- it would be very nice to have
5 monographs of excipients with regard to at least
6 biopharmaceutical aspects. A lot of chemistry
7 aspects are well-known with regard to excipients,
8 but with regard to some of these questions about
9 ongoing drug quality, it's the biopharm side that
10 seems to be a little less tied down. Thank you
11 very much.
12 DR. LIONBERGER: Thanks very much.
13 Questions?
14 So is there a sense that the issue with
15 excipients -- and you mentioned specifically -- is
16 it really specifically interactions with
17 transporters and enzymes? Or do we think there's
18 other mechanisms by which they have biopharmaceutic
19 effects?
20 DR. POLLI: My own personal opinion, I think
21 that the most common excipients are used incredibly
22 frequently, right, and in a variety of different

```
formulations where there's a variety of different
processing. And I think in -- for example, let's
just take lactose. Lactose is used in very large
quantities in many products.
    But having said that, this opinion here,
results should not be extrapolated to other drugs.
One could put together an argument that the levels
of lactose have not been well studied with regard
to bioinequivalence and that sort of thing.
    So it really is a matter of opinion, I
think. There's not one source that summarizes,
here's everything that we know about a particular
excipient. Everyone probably knows the handbook,
but that excipient handbook probably has nothing in
it with regard to biopharmaceutic elements that
often come into play. So I think a lot of things
have to do with what paper you might be familiar
with and how familiar are you with that particular
excipient, that sort of thing.
    DR. UHL: So your basic premise was that
there's a need for more excipient research?
    DR. POLLI: Yes. Well, maybe just a
formulations where there's a variety of different
processing. And I think in -- for example, let's
just take lactose. Lactose is used in very large
quantities in many products.
But having said that, this opinion here, results should not be extrapolated to other drugs.
One could put together an argument that the levels
of lactose have not been well studied with regard
to bioinequivalence and that sort of thing.
So it really is a matter of opinion, I
think. There's not one source that summarizes,
here's everything that we know about a particular
excipient. Everyone probably knows the handbook,
but that excipient handbook probably has nothing in
it with regard to biopharmaceutic elements that
often come into play. So I think a lot of things
have to do with what paper you might be familiar
with and how familiar are you with that particular
excipient, that sort of thing.
DR. UHL: So your basic premise was that
there's a need for more excipient research?
DR. POLLI: Yes. Well, maybe just a
```

Page 322
collating of what's already out there. And there's
been a lot of right progress in the last year with
regards to the inactive ingredient database. So
maybe more of that sort of thing, what's already
available.
What's the counter argument to someone
saying, you can't generalize it to another drug?
And you can go through the process that Dr.
Lionberger was outlining in terms of, well, it
could be this aspect. Could be transit. It could
be some sort of metabolism concern. It could be
some sort of transporter concern. But then you can
ask the question -- I can tell you, there's not
many articles that study excipient effects on
metabolism.
So it's very easy to say there's not much
you can hang your hat on. Having said that, these
common excipients are used extensively. So it does
come -- it often comes down to a matter of opinion
,I think.
DR. LIONBERGER: Thanks very much.
Question? All right.

Page 322
collating of what's already out there. And there's
been a lot of right progress in the last year with
regards to the inactive ingredient database. So
maybe more of that sort of thing, what's already
available.
What's the counter argument to someone
saying, you can't generalize it to another drug?
And you can go through the process that Dr.
Lionberger was outlining in terms of, well, it
could be this aspect. Could be transit. It could
be some sort of metabolism concern. It could be
some sort of transporter concern. But then you can
ask the question -- I can tell you, there's not
many articles that study excipient effects on
metabolism.
So it's very easy to say there's not much
you can hang your hat on. Having said that, these
common excipients are used extensively. So it does
come -- it often comes down to a matter of opinion
,I think.
DR. LIONBERGER: Thanks very much.
Question? All right.

Page 323

1 So that concludes the formal program.
2 Before I turn it over to Cook for closing remarks,
3 I want to thank some of the people who did all the
4 work to organize this meeting.
5 So that would especially be, if you were
6 involved in the meeting at all, Thushi Amini and
7 Jessica Alfaro, who are your contacts to set up the
8 scheduling. Got the room. Got the logistics
9 everywhere.
10 I know that Thushi's been responsible for this for the last four years and really been
handing it off and training the apprentice. So I
feel we just have to show up here and everything
works. That's just a sign of excellence.
I also want to thank a lot of other staff
from my office, Office of Research and Standards,
especially Krista Andre, who has been working on
8 the slides there, as well as all the staff from our
9 office -- the scientists who are doing this were
also the people who were checking you in. It's a
great privilege to work here. I know that people
22 in our office work very hard, willing to do
anything it takes to get this meeting successful.
The work that I talked about this morning,
there are people from our office involved with all
of these external collaborations, making sure that
5 they're running well, that they're meeting the
6 needs of the generic drug program.
7 So there's a huge of amount of effort by a
large number of staff that makes all of those
9 activities that we're doing possible. And I just
10 want to recognize them and thank them for all their
efforts in making this meeting successful. So
thank you very much.
(Applause.)
DR. LIONBERGER: So now our office director will make some closing remarks.

DR. UHL: Okay. So I get the dubious
distinction of being the one that gets the last word in, although the words are given to me, thank you very much, by Thushi. So on behalf --

DR. LIONBERGER: She took off.
Closing Remarks
DR. UHL: That's okay. Needless to say, I
have augmented and ad libbed a couple things here, so she's a little scared, I'm sure.

So on behalf of the FDA panel, I'd like to
especially express my appreciation to the
presenters today, and to everyone in the audience,
whether you're attending in person or whether you
are by webcast. And I don't think we have an exact
number of how many are by webcast, but those of you
out there, we're very appreciative of your interest
in this topic and for your attention to the
presentations discussed at today's meeting.
I'd also like to thank the panel members.
Everybody sitting up here has more than enough work
to do in their day job, and it's a Herculean feat,
I think, to get -- what do we have up here -- 12
FDA leaders basically agreeing to sit here, listen to these presentations, engage with the presenters, and ask provocative questions so that Rob and his
staff can work with all of the offices to create a very robust regulatory science program for GDUFA. So to all of you sitting up here, I thank you very much.

Page 326

I also want to echo some of Rob's thanks.
I'd especially like to thank Jessica for all her
hard work, and for making this public hearing run
smoothly today. I want to thank Thushi for
actually delegating and training Jessica.
So for those of you who have attended the
last three years, Thushi usually has massive
insomnia by this time, making sure that this
meeting runs as smoothly as it does. And I have
coached her extensively to delegate, so I am
thrilled to see that she has. And Jessica, I thank
you for letting her train you. So thank you very much.

I'd also like to thank all of Rob's staff.
All of the staff in the Office of Research
Standards at OGD are so engaged in this meeting and
are -- really want to be sure that this runs
smoothly. And I think, for those of you who are
not with the agency, what Rob said is true. Our
scientists are the ones out there greeting you.
This is not just standard admin support. I
mean these are the workers behind the scene that

1 provide you with what Rob showed, a pretty
2 incredible return on investment of this program.
3 If I was looking at my financial portfolio and saw
4 a company with that kind of ROI, if I was allowed
5 to invest in it, given the ethics standards here at
6 the agency, I would wholeheartedly.
7 So to all of them, I thank them for making 8 not just today run well, but for the success of
9 this program. And I thank Rob for his leadership 10 of this program.
11 Anyhow, for the Generic Drug Products, the
12 GDUFA Regulatory Science Program is a platform that
13 allows for collaboration between the FDA and our
14 external stakeholders in order to develop generic
15 drugs, and to find and establish new tools and
16 methodologies that could be used in generic drug
17 development and regulation.
18 As with our previous Part 15 hearings, this
19 hearing was extremely productive and informative.
20 FDA and OGD will carefully consider all the
21 comments, both today physically at this meeting and
22 as well from the submissions to the docket, as we

Page 328

1 develop the fiscal year 2017 regulatory science
2 initiatives under GDUFA.
3 Once approved by the CDER center director,
4 Dr. Janet Woodcock, the priorities list will be
5 posted on the GDUFA regulatory science webpage. So
6 it will be publicly available.
7 The docket will remain open until June 17th, 8 so you have a little bit less than a month to still
9 get any comments in. We strongly encourage all 10 interested parties, so those attending in person,
11 or those by webcast, or people that you know who
12 may have an interest in this field who weren't able
13 to attend, we ask you to please provide that
14 information so that they can comment to the docket.
15 It is your external input into this program that is
16 making this program as robust as it is.
We also ask, from any of the presenters, if
18 you have additional comments, if you can please as
19 well send them to the docket, and ask you if you
20 can elaborate on any of your recommendations. So I
21 know there were questions posed that were different
22 from what were in your slides, so please.

GDUFA 2012 REGULATORY SCIENCE INITIATIVES
Part 15 Public Hearing
May 20, 2016

		$\begin{aligned} & \text { 290:17;295:14 } \\ & \mathbf{2 0 1 2 (7)} \end{aligned}$	$\begin{gathered} \text { 119:4 } \\ \text { 3-year- (1) } \end{gathered}$	97:7
\$	$\begin{array}{r} \mathbf{1 2 : 0 2 (1)} \\ 160: 17 \end{array}$			7
\$100 (1)	$\begin{array}{\|c\|} \hline \text { 12-month-old (3) } \\ 285: 17 ; 286: 4,18 \end{array}$	$\begin{aligned} & \text { 216:15;290:3;291:12,22 } \\ & \mathbf{2 0 1 3 (4)} \end{aligned}$	$\begin{array}{\|l} \text { 3-year-old (3) } \\ \text { 120:1;284:14,14 } \end{array}$	7 (7)
$\begin{aligned} & 72: 6 ; 191: 21 ; 204: 8 \\ & \text { 230:22;231:18,21;245:9 } \end{aligned}$	$\begin{array}{r} \text { 12-of (1) } \\ 316: 21 \end{array}$	$\begin{aligned} & \text { 290:17;292:4;293:17; } \\ & 296: 20 \end{aligned}$	4	$\begin{aligned} & 93: 14 ; 94: 6 ; 168: 21 ; \\ & 229: 12,17,18,22 \end{aligned}$
	$\begin{aligned} & 13 \text { (3) } \\ & 30: 19 ; 31: 1 ; 58: 4 \end{aligned}$	$290: 12 ; 291: 12 ; 292: 5$	4 (11)	$\begin{aligned} & 70(1) \\ & 81: 16 \end{aligned}$
[14 (5)	2016 (5)	206:15,16;207:7;	700 (1)
[ph] (1)	316:8;317:11	266:19	252:13;284:8,8;306:21;	$75(2)$
174:20	15 (14)	$\begin{array}{\|l\|} \mathbf{2 0 1 7} \text { (4) } \\ 11: 4 ; 220: 10 ; 223: 3 ; \\ 328: 1 \end{array}$	$\begin{aligned} & 307: 15 \\ & 4 / 3(1) \\ & 200 \cdot 12 \end{aligned}$	$252: 11,11$
0	80:6;81:22;137:1;152:3;			8
0.0225 (1)	258:7;299:11;327:18	37:1	1:12;329:12	8 (1)
253:19	1500 (1)	21 (3)	4:30 (1)	284:7
0.181 (1)	24:17	254:11,21,22	11:12	80 (2)
253:17	$\begin{aligned} & 1503 \text { (1) } \\ & 1: 20 \\ & \text { 15-minu } \end{aligned}$	$\begin{aligned} & \text { 21st (2) } \\ & 84: 11 ; 85: 6 \\ & \mathbf{2 3 2}(\mathbf{1}) \end{aligned}$	$\begin{aligned} & 40 \text { (4) } \\ & \quad 37: 20 ; 181: 8 ; 199: 7 \text {; } \\ & 272.5 \end{aligned}$	81:16;264:20
1				85 (1)
	11:13,14;279:19	221:5	$\begin{aligned} & 41 \text { (1) } \\ & 255: 16 \end{aligned}$	86 (1)
1 (15)	16th (1)	24-hour (1)		253:12
96:11;119:9;183:6,12;	137:2	252:5	432 (1)	88 (1)
209:11,12;251:11;252:8,	$17 \text { (1) }$	25 (2)	$\begin{aligned} & 293: 16 \\ & \mathbf{4 5 (1)} \end{aligned}$	20-percent (2)
18;255:7,13;257:7,7;	286:20	77:15		88-percent (2)
267:3;307:14	$16: 17 ; 328: 7$	$\begin{array}{\|c\|} \text { 299:6 } \\ \text { 2-year-old (1) } \end{array}$	$\begin{array}{r} 215: 13 \\ \text { 4-hour (1 } \end{array}$	$226: 1,7$
$1.25(2)$	$\begin{aligned} & \text { 16:17;328:7 } \\ & \mathbf{1 8 (1)} \end{aligned}$		252:6	9
	$\begin{aligned} & 62: 20 \\ & 19(\mathbf{1}) \end{aligned}$	$115: 14$ 2-year-olds (1)	4th (1)	9 (2)
11:18;160:16		2-year-olds (1)	137:20	
1:01 (1)$161: 2$	13:22	125:18	$\begin{gathered} \text { 4-way (1) } \\ 316: 1 \end{gathered}$	$\begin{aligned} & 163: 20 ; 256: 21 \\ & \mathbf{9 : 0 0}(\mathbf{2}) \end{aligned}$
	1990 (1)			9:00 (2)
$10(17)$	$\begin{gathered} 77: 22 \\ \text { 1D (1) } \\ 283: 21 \end{gathered}$		5	9:04 (1)
$82: 17 ; 96: 4,6,12,17 ; 97: 4$		3 (11)		1:12
136:5;151:1;163:20;	2	$\begin{aligned} & \text { 96:5;120:8;159:20; } \\ & \text { 209:11,11;252:9,18, } \end{aligned}$	5 (6) 220:14;223:10;267:3,	90 (8) $22: 2: 181: 8: 215: 17$
$\begin{aligned} & 210: 4 ; 226: 8 ; 284: 13 \\ & 293: 18 ; 310: 6 \end{aligned}$	2	$284: 9,13 ; 306: 21 ; 307: 15$	13;284:9;306:21	$252: 9,10,10,11 ; 262: 2$
10:22 (1)	2 (21)	3:05 (1)	50 (9)	900 (2)
88:7	94:7;96:11;97:9,9;	279:20	22:1;81:22;94:9;	81:10;110:22
10:40 (1)	$\begin{aligned} & 124: 15 ; 138: 1,5 ; 206: 20 \\ & \text { 209:11,11;219:8;252:8, } \end{aligned}$	$\begin{array}{\|c} \text { 3:20 (1) } \\ 279: 19 \end{array}$	$\begin{aligned} & \text { 99:17;135:20,21;252:11, } \\ & 12: 286: 17 \end{aligned}$	95 (3)
88:6				139:1;250:8;256:21
100 (11)	18;255:9,13,15;306:21;	30 (5)	500 (1)	97 (1)
81:22;93:1;183:13;	$\begin{aligned} & \text { 307:4;316:10,18;318:19 } \\ & \text { 2-(1) } \\ & 125: 20 \end{aligned}$	$\begin{aligned} & 15: 3 ; 90: 12,20 ; 94: 7 \\ & 134: 22 \end{aligned}$	$302: 22$$\mathbf{5 0 1 c 3}(1)$	139:1
262:1,9,16,20;273:8,8;				
296:12;306:19	125:20	300 (1)	505b2 (1)	A
100-fold (1)	20 (12)	150:10		Aaron (1)
57:13	$1: 11 ; 26: 13 ; 27: 16 ;$ $38 \cdot 7 \cdot 55 \cdot 14 \cdot 77 \cdot 15 \cdot 82 \cdot 17$.	31(1)	266:3	
101 (2)	38:7;55:14;77:15;82:17;	1:19	$\begin{gathered} \text { 5-year-old (2) } \\ 120: 2 ; 284: 15 \end{gathered}$	$63: 11$ AbbVie (1)
10903 (1)	$\begin{aligned} & 272: 22,22 \\ & \mathbf{2 0 0 2}(\mathbf{1}) \end{aligned}$	215:12	-120.2,284.15	87:9
1:18		350 (1)	6	ability (5)
10-year-old (1)115:14	$\begin{array}{r} 135: 8 \\ 2003(1) \end{array}$	$\begin{aligned} & 264: 21 \\ & \mathbf{3 6}(\mathbf{2}) \end{aligned}$		$\begin{aligned} & 33: 1 ; 85: 10 ; 203: 1 ; \\ & 222: 17 ; 224: 16 \end{aligned}$
	$\begin{array}{\|r\|} \hline \mathbf{2 0 0 3}(\mathbf{1}) \\ 21: 22 \end{array}$	$\begin{aligned} & 36(2) \\ & 252: 4 ; 254: 10 \end{aligned}$	6 (4) 37:14;97:7;221:15;	
$\begin{gathered} \text { 10-years (1) } \\ 319: 13 \end{gathered}$	2007 (1)	3A4 (1)	267:3	11:9;16:7;18:20;
11 (1)	292:4	119:21	60 (3)	23:20;27:11;28:12,17;
294:21	2009 (1)	3D (5)	82:4;93:1;290:17	34:13,14,16,19;39:4;
12 (7)	296:11	281:11;282:19,22;	62 (2)	60:13;65:2;122:21;
20:22;151:1;189:9;	2011 (4)	283:22;287:10	293:20;296:22	134:16;168:7;175:2,8,
$254: 1 ; 284: 14 ; 317: 11$	266:11;275:13;	3-month-old (1)	6-week (1)	21;179:7,11;187:5,11;

188:1;191:4,5;195:18;
197:2,4,19;198:1;205:2;
207:1,3,8;210:22;211:1,
3;214:1,5,13;215:9;
222:2;274:8;275:14,17;
288:4,6;316:20;317:5; 328:12
Above (3)
125:19;143:14;253:22
Abrahamsson (1) 299:14
Abraxane (2) 153:1,6
absolutely (5)
44:14;112:7;227:13;
229:10;232:5
absorbed (1)
91:13
absorption (24)
23:4;53:13,20;54:2,
14;77:10,11;81:5;90:8,9, 10;91:15;96:20;97:1; 100:5;107:14;114:4;
115:11;116:17;118:22; 130:1;300:4;314:19; 315:12
abundance (1) 183:13
abuse (1) 221:4
abuse- (3) 42:6;43:2,5
abuse-deterrent (4) 42:9;43:8;58:10;148:4
academia (3) 107:1;247:9,13
academic (4) 10:17;59:9;63:9;75:7
academics (1) 154:21
accept (2)
241:5;289:11
acceptable (6)
30:10;133:18;224:4; 241:19;244:3;246:4
acceptance (3)
237:10;268:7;274:2
accepted (2)
239:16;273:17
access (16)
20:14;21:3,8,18;25:6;
26:20;28:15;56:20;
68:13;72:10;120:16,19; 121:15;218:16;242:10; 295:6
accessed (1)
15:3
accessibility (1) 174:6
accessible (1)
186:13
accommodate (2)
257:11,16
accompanying (1) 45:22
accomplished (1)
189:14
according (2)
256:15;296:13
account (2)
101:15;238:1
accounting (2)
236:7;253:13
accumulated (1) 196:14
accumulating (1) 195:9
accuracy (3) 284:2;285:19;296:1
accurate (3)
237:13;262:1,9
accurately (1) 100:19
acetate (4) 27:3;205:18;206:7; 207:11
achieve (2) 115:22;141:21
achieving (3) 229:16;230:4;290:8
acid (1)
82:12
acid-base (1) 147:18
acids (1) 181:10
acknowledge (3) 137:8;213:4;257:22
acknowledging (1) 108:8
ACPS (2) 165:11;168:22
acronym (1) 175:19
across (24) 23:12;25:8;31:15; 38:2;56:20;58:3,9;61:6; 70:14;71:12;72:10;74:6; 116:20;141:18;142:22; 144:2,2;170:4;187:13; 241:15;255:13;257:19; 316:8,19
Act (1) 290:4
acting (9) 12:4,8,18;13:6;89:8; 92:11;99:15;110:20; 219:13
action (1) 217:7
active (10) 25:10;26:21;32:12; 34:9;104:8;117:8;125:8; 129:10;196:3;198:8
activities (21)
19:3,6;25:1,9;26:6;

28:19;31:3,7;32:19;
33:18;40:14;41:19;
48:17;49:14;51:14;53:2, 22;57:19;58:14;61:6; 324:9
activity (10)
19:21;20:7,8,10;
29:21;30:2;33:7,14;
35:20;53:17
actual (8)
173:4;198:12;251:22;
261:16;277:5,21;
285:13;287:6
actually (84)
48:22;70:5;72:8;73:4, 9,12,18;77:15;82:1; 86:17;93:12;94:4;98:21 102:6,15;116:14; 117:17;119:2;120:19; 123:20;125:14;127:8, 12;128:2,12,13;131:5; 132:9;142:12,16; 157:20;162:4;163:11, 17;166:9;167:11;172:8; 175:17,18;177:1,7; 178:6,21;179:5,7; 181:21;182:19;183:9, 14;184:20;185:10;
189:5;190:1;193:12; 194:19;198:21;200:11, 15;237:6;258:6;262:3; 264:3,4;265:9,19;271:5; 277:14;279:2;280:16; 281:12;282:6;283:14; 285:22;286:11;288:12; 298:13;307:8;315:8; 316:14;317:5;318:10, 16;319:7;326:5
acyclovir (5)
36:8;315:13,19;316:7;
318:20
ad (5)
150:22;151:1,5;309:8; 325:1
add (4)
89:17;159:19;235:22;
281:16
added (1)
262:1
adding (1) 257:7
addition (7)
11:2;18:21;58:22; 194:5;286:19;290:8; 291:3
additional (12)
14:12;75:5;100:13; 138:10;148:1;201:10; 204:18,19;221:20; 286:16;292:19;328:18 additives (3)

105:17;221:18;273:1
address (25)

21:19;46:9;58:18; 65:7,16;143:20;153:11; 156:1,2,11;164:2; 186:16;192:21;193:2; 217:15;221:8;224:19; 235:12;238:4;259:2; 260:15;264:2;266:13; 279:13;292:14
addressed (4)
57:15;149:8;180:8; 220:9
addresses (1) 189:7
addressing (5) 46:6;128:1;222:11; 261:1;278:5
adds (1)
271:13
ADHD (1)
151:14
adhered (1) 163:2
adherence (6) 66:13,17;69:14;70:5, 9;297:6
adherent (1) 260:4
adhering (1) 260:5
adhesion (28)
41:15,18;58:11; 221:10;248:19,22; 249:3;250:6;252:1,6,7, 12,15,20;254:9;256:3, 12,18;257:1,12,15,20; 259:8,14,19;262:20,21, 21
adhesions (2)
221:7;253:16
ADI (1)
273:3
adjourned (1) 329:13
adjust (1) 257:6
ADME (1) 77:9
admin (1) 326:21
ADMINISTRATION (7) 1:1;3:9,16;5:5;54:2; 203:6;269:17
administrative (2) 14:17,21
adolescent (3) 238:13,21;239:14
ads (1) 157:9
adult (9)
116:8,19,20;122:17; 123:5;151:13;234:15; 238:7,19
adults (8)

114:20;115:8;118:11; 121:9;125:20;127:12; 239:8,16
advance (9)
29:7;30:13;35:20;
54:1;85:14;112:17;
292:8,11;310:19
advanced (6)
146:15;153:5;186:5;
189:16,18;268:11
advancements (2)
219:3;267:4
advances (3)
133:21;280:9;311:22
advancing (3)
84:10;151:5,18
advantage (4)
101:2;134:15;183:11;
206:17
advantages (2)
49:7;100:15
adverse (9)
48:8,15,21;75:20;
122:8;124:4;127:9;
195:11,14
advertising (2)
151:17:157:8
advisor (1)
12:22
advisory (1)
165:11
advocate (2)
113:16;122:19
advocates (1)
10:18
affect (10)
41:1;66:19;105:3;
106:8;107:20,21;
109:13;111:13;296:1;
297:4
affected (7)
101:12;106:15,17;
109:17;168:16;281:5;
287:19
affecting (1)
152:20
affects (1)
123:9
affiliated (2)
61:22;63:5
affirmatively (1)
190:16
afternoon (10)
11:14;160:16;161:4,6,
9,14;193:20;205:3;
214:22;289:3
again (75)
32:4;33:11;38:2;
41:22;45:11,15,18;
46:11;47:14;52:1;56:16;
65:13,20;71:13;74:7;
80:4;88:17;97:9,12;
121:18;122:22;135:18;

15	63:10	224:3	7:7,18;29:6,13,14,17;	apparatus (12)
19;153:6;154:2;157:15;	aid (1)	al	0.11:60:12.147•2	81:1,11,18,21;82:1;
164:14;170:16;177:8;	23:7	108:1;291	55:14;164:9;176:19	206:15,16,20;207:7;
179:10,14;185:16;	ai	alternativ	77:14;184:5;186:6,7;	210:2;220:2;310:21
191:2;192:11;193:3	302:12	257:17	87:4	apparent (1)
198:3;200:10;201:11	airflow (8)	alternatives (4)	analytics (8)	198:12
203:19;204:1,3;207:7;	281:7;283:9;285	31:12;32:8;69:	29:5;139:18;143:9,12,	parently (
210:1,13;216:20;218:5;	9,13;287:15,18	256:17	14,20;169:15;189:8	162:12
227:8;230:5;237:11;	airway (7)	although	analyze (3)	appear (4)
241:3;243:7;250:1;	280:12,21;282:19,20;	62:18;68:9;74:16	27:20;34:17;50	41:15;91:20
251:17;252:8;253:13	283:4,5;284:19	82:21;95:9;154:1;250:1;	analyzes (1)	318:3
254:11,22;255:4,6,8,12	airways (5)	262:7;324:18	280	appearance (
256:7;257:22;267:5;	281:2;282:14;284:13;	always (10)	analyzing (3)	81:6;89:22;91:1
268:14;269:20;272:2	286:12,15	94:6;113:	177:20,21,22	92:17;95:22;100
11;279:5,10;305:3;	Ajaz (16)	7:12;118:20;173:	ancillary (1)	ppearing (1)
317:17	3:4;133:	177:21;185:7;272:6;	66:9	28:10
against (7)	145:22;154:9;161:17;	312:19	and/or	appears (1)
100:14;101:1;250	162:3,19;164:8;190:13,	Amendments	219:16;220	74:4
260:16;285:12;307:17;	13,17;210:16,19;263:14	1:3;10:10	249:18;250:6;256:8;	Applause (5)
308:20	Ajaz's (1)	America (1)	259:11	76:10;88:4;133
age (11)	172:18	124:22	ANDA (5)	324:13;329:1
116:15;	akin (1)	American	27:2;34:2;268:13,15;	apple (1)
124:11,13,15,15;125:	175:4	20:16;21:10;22:20	314:14	149:20
240:7,17;241:2;286:2	Al	124:20;216:8	ANDAs	applicability
agencies (1)	2:9;193	Ameri	270:13;273:18;	196:4
63:5	albeit (2)	297:1	293:17;314:12	applicable (1)
agency	55:7;32	Americas	Andre (1)	198:11
158:8;159:2;	alcohol (1)	4:17;263:5,9;264:1	323:17	applicant (3)
217:3;223:21;224:3	101:13	266:7	anima	138:3;140:18
225:4;226:21;227:12	Alfaro (1)	Amidon	95:	applicants (1)
228:12;231:20;258:8	323:7	2:2;76:12,15,16;	announce	27:22
268:17;276:2;290:5;	align (1)	:16;86:1,5,10,20;87:5,	163:18	application (17)
326:19;327:6	:2	6;88:3;104:9;299:18;	announcements	34:5,6;126:18;134:1
genda (10)	ali	308:16	11:7	170:8;171:2;172:4;
13:22;14:5;17:3;28:7	58:13	Amidon's	annual (6)	234:9;238:6;241:6
8,11;41:14;57:2;141:14;	alignment	134:13	72:6;190:21;204:8;	242:1,8,22;244:4;
224:18	58:9,	Amin	216:18;217:6,18	254:11,16;290:20
agent (2)	Allergan	323:6	answered (2)	applications (7)
64:21;19	4:8;102	a	261:4;313:15	24:7;53:1;234:6,8;
agents (4)	allocation	73:19;290	antibiotic	277:3;314:14;319
69:3;75:20;194:8	220:10	amount (9)	127:15	Applied (6)
198:13	all	-3	antic	2:6;163:21;2
ages (6)	15:7;17:	06:3;180:15;182:12;	75:10	269:1;280:4;288:
115:13;	allow (8)	234:13;253:21;324:7	anticipated	applies (1)
238:17;240:20,22;284	66:21;78:5;166:20	amounts (2)	257:20	92:4
aggregation (2)	243:18;270:6;282:17;	186:5;199:20	Antidepressants (1)	apply (6)
206:18;207:1	288:3;294:9	Amy (3)	121:4	14:7;33
ago (14)	allowed	2:8;193:17	anti-epile	254:9;268:18;272
69:13;70:3;77:15,	14:11	analyses (3)	44:10	applying (2)
87:7;101:9;109:5;	allows (5)	9:2;201:22;302:18	antifungal	50:15;314:3
122:12;152:4;299:1	14:13;34:7;163	analysis	155:5	appointed (1)
16;302:1;306:6;314:11	283:18;327:13	-19.29.5	anti-HIV	225:5
agree (3)	alluded (2)	50:10;92:19;100:8	152:1	appraisal (1)
257:13;274:21;318:14	197:8;272	104:12,14;135:2;	anti-hypertensive (1)	95:9
greed (1)	almost (9)	142:16;182:4;197:22;	,	appreciate (9)
272:19	22:7,7;43:20;93	200:2,5,14,15;201:2;	antiviral (2)	61:3;71:19;73
agreeing (1)	95:1;251:19;255:19	214:11;220:22;233:11;	149:2,4	102:22;154:8;194:1
325:16	258:19;263:10	237:22;242:17;296:14,	API (1)	215:1;259:3;260:1
agreement	alone	21	34:9	appreciation (1)
10:20	58:5;29	analytic	APIs (1)	325:4
ahead (1)	along (7)	204:	174:9	appreciative (1)
51:9	78:16,18;91:16	analytical	apologize (1)	325:9
AHRQ (1)	101:10;205:8;215:10;	18:6;23:11;26:6,14;	312:9	apprentice (1)

323:12	62:2;64:12,22;66:3;	aseptic (6)	Association (2)	291:6
approach (35)	69:1,7;70:21;74:3;	220:18;223:11,13;	3:2;131:5	available (62)
32:10;35:13;36:5;	76:19;77:12;111:3,10;	224:1,4;229:1	assume (3)	11:19;14:14;16:21;
38:12;46:18;51:20;	112:7,15,18;133:22;	Asgharian (6)	94:6;128:22;243:7	20:17;21:11;23:14;
129:16;146:13;153:12;	134:2;143:5,6;144:1;	2:5;280:3,5,6;288:12,	assumed (3)	25:16;30:20;31:1;34:1;
162:20;166:1;173:15;	147:7;148:4,17;149:2;	20	236:22;237:8,9	35:11,13;36:11;37:3,13;
183:9;187:4;195:18;	150:14;156:5;159:2;	Ashley (1)	assuming (3)	38:4;43:10;47:2;49:21;
221:13;242:5,6;248:3;	182:22;188:16;211:15;	12:17	14:13;101:6;285	56:12;59:1;60:15;64:21;
249:4;251:8;257:3,5;	213:2;222:4;232:18;	Ashley's	assumption (4)	69:4;73:5;88:12,15;
267:14,17;268:7;	239:21;242:3;251:17;	229:1	90:7,8;94:8;134:10	110:21;111:7;114:1,19;
271:20;272:3;273:12;	263:19;266:14;267:4;	aspect (13)	assurance (1)	120:5;122:22;132:13,
274:4;276:1;278:15,18;	283:4;284:18,22;285:10,	17:16;21:3;26:12	138:12	14;135:3;136:9,10;
293:15;298:18	15;299:10;310:19;	54:5;108:2;138:2	assured	138:3;154:13;162:8,11;
approached (2)	313:10;319:12	154:6;155:16;177:13;	312:17	171:17;186:8;194:21;
56:9;192:15	areas (31)	204:10;254:5;260:2;	ASTM (1)	196:9;216:7,11;240:13;
approaches (17)	20:13;21:17;22:16	322:10	144:8	244:6;261:15;281:13;
29:16;33:2;35:21;	30:6;44:8;50:15;56:3,	aspects (16)	AstraZeneca (3)	286:16,19;287:5,8,13;
36:4;37:22;38:14;65:6;	17;62:9;67:5,21;68:10,	39:20;48:2;133:	239:5;299:13,15	294:11;296:11;303:9;
172:10;188:1;219:8;	20;110:11;120:20	138:20;141:3,10;142:11,	attempt (2)	322:5;328:6
220:3;249:8;250:16;	121:7;124:3;131:17;	12;179:2;223:14;	214:1;304:4	Avenue (3)
256:6;258:22;300:6;	143:1;146:8;147:17;	247:10,12;298:2;311:5;	attempting (1)	1:18;68:21;279:2
302:14	151:7;155:18;227:21;	320:6,7	127:	average (4)
appropriate (8)	229:9,13;230:1;265:13;	aspirate (1)	attempts (1)	81:16;101:1;237:17;
32:14;36:18;55:22	299:6,9;303:20	80:10	183:17	316:2
65:5;87:14;120:6;	arena (2)	assay (10)	attend (1)	avoided (1)
269:22;277:1	201:5;272:21	80:10;198:5,6,6,13,16,	328:13	270:1
appropriation (1)	arguably (1)	$19,21,21 ; 201: 20$	attended (1)	award (1)
231:22	313:10	assays (6)	326:6	20:1
approval (13)	argue (2)	131:21;196:1,4,	attendees (2)	aware (3)
19:13;27:9;34:2;35:3	77:3;304:	198:4,9	10:4;11:10	112:6;159:3;202:10
51:12;52:3;114:18;	argument (6)	assess (9)	attending (2)	away (3)
141:5;147:4;269:3;	83:10;95:17;132:	75:2;233	325:6;328:10	30:6;142:12;303:7
274:19;293:5;294:19	309:7;321:7;322:6	239:11;242:8;243:1;	attention (4)	
approvals (7)	arise (3)	246:8;269:4;316:3	101:5;139:16;289:20;	B
$\begin{aligned} & 23: 22 ; 24: 8 ; 26: 15 \\ & 29: 10,19 ; 34: 22 ; 25 \end{aligned}$	$\begin{array}{r} \text { 65:4;66 } \\ \text { arises (1) } \end{array}$	assess	$\begin{array}{r} 325: 1 \\ \text { attitud } \end{array}$	back (36)
approve (8)	166:1	assessing	46:14	17:15;19:19;20:11;
22:14;27:12;34:14,20	arm (4)	29:1;135:16;202:7	attitudes (1)	45:2;61:9;68:6;69:12;
48:4;57:9;59:18;277:2	95:7;100:11,13;10	221:10;222:5;234:21;	68:5	71:21;88:9;102:10;
approved (13)	around (29)	244:18	attribute (1)	125:22;128:16;132:16;
27:2;43:2,21;45:14;	18:14;31:2	assessment	60:7	140:20;141:11;161:3;
59:16;64:16;112:3;	37:20;51:14;57:12	103:5,18;104:19	attributed (1)	170:16;177:20;184:11;
196:11;202:16,20;	81:16;85:2;96:12;	110:8;112:10;135:12;	291:1	188:18;204:5;206:14;
272:22;293:17;328:3	105:15;125:18;131:16;	136:18;145:7;194:2;	AUC (7)	216:15;224:5,9;228:21;
approximately (13)	154:12;170:18;206:18;	199:18;221:17;232:20;	51:19;52:7;77:6;89:9,	232:3;258:12;266:3,6;
11:12,18;15:3,5;	219:18;226:11;251:11;	235:1,8;239:2;244:18;	11;90:5;116:10	267:10;270:15;276:13;
18:11,19;20:6;26:13;	255:12;258:14;264:14,	246:8;247:6;268:18	audience (4)	277:8;279:22;315:10
72:6;215:12,12;230:22;	14,21;266:13;267:21;	assessments (2)	159:17;167:11;215:9;	background (2)
300:18	270:15;302:22;306:19;	115:16;267:18	325:5	65:20;299:4
April (1)	313:19	assigned (2)	augmented (1)	backlog (1)
30:18	arrive (2)	225:7;226:12	325:1	28:12
Apriso (3)	245:19;248:3	assigning (1)	Australia (1)	bad (4)
93:18;94:15;96:4	art (1)	226:13	36:1	50:6;73:15;102:
aqueous (5)	164:11	Assistance	authority (5)	314:18
33:9;105:6,13,19,22	article (4)	13:14	292:7,9,21;293:	Bahman (3)
arbitrary (3)	104:4;216:4;314:10	associate	295:3	2:5;280:3,5
236:21;237:8,9	315:10	2	authorized (2)	bar (1)
area (70)	articles (1)	associated (8)	48:18;49:1	252:22
21:20;23:12,19;26:20	322:14	113:10;145:8;187:22	auto (1)	barely (2)
28:20;29:7;31:20;33:16;	artificial (3)	190:11;268:22;283:1;	219:13	254:19;255:8
35:9,17;36:7,21;40:9,22;	36:16;87:17,20	300:5;301:12	auto- (1)	Barratt (6)
41:3;42:14,16;43:18;	ASD (1)	Associates (2)	40:2	12:21,21;131:11,15,
47:3;51:7;53:7;54:16;	87:18	2:6;280:4	availability (1)	21;159:16

barrier (1)	15;315:12,14;319:21	best (20)	213:13,15;234:19;	101:16
164:6	beads (3)	23:13;43:22;83:13,15;	243:8;255:21	block (1)
barriers (3)	151:9,9;206:16	85:8,10;136:15;151:13;	bioequivalency (1)	250:2
265:19;267:5;270:12	bear (1)	163:5,6,7;192:7;210:8;	289:22	blocked (1)
bars (3)	153:14	216:11;217:5;243:19;	bioequivalent (10)	28:15
252:22;253:2;285:10	beautiful (1)	252:8;260:18;261:11;	26:10;32:17;45:15;	blood (9)
Barton (9)	161:7	298:17	56:2;95:13;151:4;	91:21;99:10,11;115:6;
2:8;193:17,19,20;	beauty (1)	better (35)	156:17;157:4;243:12,18	151:6,18;152:17;233:9,
202:21;203:12,16,19;	308:8	29:1;31:7;39:1,6;54:5,	bioguidance (1)	10
204:12	become (6)	7;55:9;60:13;64:20;	248:20	blue (4)
base (23)	49:19;60:16;64:21;	70:4,5;72:11;79:19;	bioinequivalence (1)	85:4;252:22;253:3;
82:12;135:3;139:21;	153:21;251:14;277:19	81:2,2;102:15,16;111:6,	321:9	285:10
141:17;142:14,18,21;	becomes (8)	15;138:12;140:15;	biologicals (1)	BOAM (5)
143:18,19;144:6,15;	116:18,22;118:15	141:1;150:3;151:6;	104:1	12:17,17;144:5;223:6;
145:7;153:22;154:6;	120:3;171:16;176:7;	152:16;157:16;176:8;	biomarker (2)	278:14
156:1;158:16;163:22;	250:18;294:11	195:19;207:3;254:2;	276:18;283:12	Bob (1)
164:2;169:21;170:6,17;	becoming (1)	260:17;266:20;271:10;	biomarkers (2)	76:16
186:13;232:2	113:18	278:1;308:5	282:17;287:14	body (1)
based (48)	began (3)	better-developed (1)	biopharm (2)	212:22
38:13;43:21;67:1;	217:4;299:11,16	313:19	134:15;320:9	Boehringer (1)
70:13;78:4,6;82:16;	begin (8)	beverages (1)	biopharmaceutic (3)	87:8
83:22;87:16;92:17;	11:6;16:1;17:10	11:19	313:18;320:18;321:15	book (3)
95:13;97:14;106:5;	19:22;53:22;59:20;	beyond (5)	biopharmaceutical (2)	156:21;166:10;168:6
115:9;122:16;135:12;	196:15;280:1	143:14;261:22;275:1;	318:14;320:6	bootstrap (1)
142:10,16;153:18;	beginning (4)	277:21;278:6	Biopharmaceuticals (1)	242:15
155:7;169:18;173:15;	94:13,13;96:3;196:19	bias (1)	136:3	bootstrapping (1)
179:8;180:19;203:4,5;	begun (3)	59:7	biopharmaceutics (2)	261:10
210:2;216:10;233:1,13;	25:21;45:20;53:21	biases (2)	77:20;314:1	boss (1)
237:7;245:18;247:6;	behalf (3)	48:12;49:3	biorelevant (1)	87:20
249:1;250:9;251:6,22;	62:1;324:19;325:3	big (16)	199:5	both (44)
252:4;264:1;265:10;	behave (4)	21:2;49:5,20;113:16;	biosimilar (1)	10:4;18:9;19:1;20:16;
267:18;274:16;275:6;	212:16;238:22	122:12;149:20;185:15;	136:4	22:5;23:1;43:14;45:16;
277:4;286:3;304:1;	239:14;244:15	192:19;208:14;209:1,5;	biosimilars (1)	47:11,20;52:6;66:7,15;
309:8,22	behavior (5)	227:6,7;286:8;311:11;	136:1	67:21;68:16;69:10;74:8;
baseline (3)	147:16;150:18;	319:12	biostatistics (1)	75:14,19;83:5;86:15;
48:1;101:4;245:21	165:22;243:11;302:7	bigger (4)	170:8	108:18;109:14;112:10;
bases (3)	behaviors (1)	22:4;84:11;208:16;	biowaivers (9)	148:15;159:18;164:19;
123:3;179:5;309:22	68:5	307:14	78:5;79:15;313:21;	201:11,20;225:3;
basic (1)	behind (4)	biggest (4)	314:1,2,3,17;317:14;	254:14;256:12;257:11,
321:20	29:19;58:21;164:10;	59:14;76:17;264:4,22	319:21	20;259:19;260:10;
basically (29)	326:22	billion (2)	Bipin (1)	276:12;277:11;279:3;
37:21;64:2;91:20;	beliefs (1)	21:9,14	242:7	281:13;287:16;300:9;
100:12;110:22;170:21;	68:5	billion-dollar (1)	birth (1)	312:18;327:21
182:13;183:21;210:8;	believes (2)	21:6	286:20	Botox (3)
233:13;236:2;237:11,12,	22:14;249:22	billions (1)	bit (37)	127:7;129:3,11
14,22;238:6,10,13,15;	below (1)	30:22	26:1,16,18;35:8;	bottom (12)
240:5,21;241:12;242:8;	255:17	binding (1)	43:16;54:6;72:15;74:21;	95:22;152:9,16;
246:7;250:7;286:21;	bench (1)	198:22	103:17;105:3;126:2;	153:12;181:22;182:20;
288:14;294:17;325:16	167:21	bioavailability (7)	142:6;144:12;148:3,16;	187:1;199:15;200:11;
basing (1)	beneficial (1)	86:16;101:8,12;	151:12;154:5,9;157:22;	255:2;286:5;316:5
309:10	193:12	146:20;200:16,17	159:12;160:12;161:18;	box (1)
basis (9)	benefit (10)	316:22	163:19;178:5;186:22;	182:22
72:7;117:12;133:12,	23:13;57:11,17;	biocomplex (1)	190:9,13;196:17;206:2;	boy (1)
17;166:17;173:9;	121:18;141:8;158:7;	136:4	224:22;250:21;252:16;	284:14
189:10;204:8;309:22	218:2,11,22;319:9	Bioequivalence (36)	270:10;276:7;298:5;	boys (1)
bath (1)	Benefits (1)	12:5;23:7;24:9;32:15;	316:13;328:8	284:15
110:22	273:11	38:8,16,19;41:18;45:6,	blended (1)	BPCA (1)
battery (1)	Berra (1)	19;50:22;54:11;60:5;	183:20	122:11
196:20	149:14	77:4,7,10;79:5;86:16;	blending (1)	bracket (1)
BCS (15)	Bertil (1)	107:12;115:9,20;134:9;	184:4	268:1
77:14;78:4,5;82:9;	299:14	135:15;140:10,19;	bleomycin-detectable (2)	brain (1)
83:14;99:19;134:18;	besides (3)	162:8;177:19;179:15;	198:5,14	131:15
148:21;149:4;314:7,12,	62:17;221:20;223:1	194:1;199:2;211:4;	blindly (1)	branch (2)

breaks (1) 17:5
breast (1) 153:2
breastfeeding (1) 124:1
breathing (1) 285:3
Brenda (1) 13:13
brief (2) 248:14;312:12
briefly (3) 64:4;250:4;315:16
Brigham (3) 2:22;61:11,21
bring (3) 23:15;137:4;153:13
brings (1) 157:20
broad (9) 25:8;32:18;53:9;58:5; 67:5;147:8;165:22; 227:21;308:3
broad-based (1) 50:8
broaden (2) 33:1;217:5
broader (6) 35:14,17;44:18;89:20; 98:7;232:2
broadly (5) 47:18;57:16;66:9; 69:22;319:15
bronchi (1) 284:19
bronchial (1) 283:3
bronchis (1) 285:15
brought (4) 122:11;263:14; 275:10;276:2
bucket (3) 233:9,9,10
buckets (2) 160:6,13
budget (1) 190:22
buffer (5) 80:11,11,12;81:7;82:5
BUHSE (11) 12:14,14;98:17; 157:20;159:6,9;188:6, 14;190:12,17;224:7
build (6) 18:15;56:21;135:6; 160:13;166:4;233:22
Building (2)
1:19;237:11
built-in (1) 134:9
bulk (1) 304:10
bullet (5) 74:21;75:6;147:17; 153:12;276:5
bullets (1) 147:10
bunch (2) 115:1;155:21
bupropion (2) 148:15;150:10
bupropion/ (1) 150:7
Burgess (6) 2:14;204:22;205:1,2; 213:16;214:17
burst (9) 207:12,14,16;209:2,3, 19;210:11;214:7,8
Business (2) 13:14;62:17
busy (2) 91:3;254:6
Butit's (1) 310:15
buy (2) 56:10,10
Byrn (23)
2:17;103:15;146:2,4, 5;149:18;154:10,14,19; 156:4,19;157:1,5,9,13, 19;158:12;159:8,11,18;
160:5,7,10
Byrn's (1) 166:10

C
C13 (2)
$183: 10,11$
calculate (1)
$283: 10$
calculated (3)
$284: 17 ; 285: 2,4$
calculation (1)
$57: 8$
calculations (2)
$280: 15 ; 307: 9$
call (7)
$32: 10 ; 52: 8,18 ; 53: 9 ;$
$80: 13 ; 267: 16 ; 306: 18$
called (15)
$36: 22 ; 63: 13 ; 87: 17 ;$
$181: 6,7 ; 200: 21 ; 304: 6$,
$10 ; 305: 17,17 ; 306: 8 ;$
$307: 18 ; 309: 6 ; 310: 1 ;$
$314: 1$
calling (2)
$82: 15 ; 83: 19$
calorimetry (1)
$182: 3$
came (11)
$70: 3 ; 101: 9 ; 135: 2 ;$
$140: 7 ; 165: 3 ; 179: 22 ;$
$180: 4 ; 241: 15 ; 270: 15 ;$
$276: 16 ; 277: 8$
Campus (1)
$1: 17$
can (274)
$11: 10 ; 15: 13: 16: 21 ;$

171:15,18;172:17;174:5, 9,15,15,16,17;175:5,7;
176:6;177:13;178:2; 179:20;180:20;181:9, 11;182:8,15;183:1;
184:4,12,13,14,16,21;
185:16;187:1;188:20;
190:8,9,12;191:9;
199:12;200:6;201:1;
202:9;205:13,17;
206:19;207:18;208:4,7;
211:15;212:11,16,19; 213:17;215:10,20;
218:2;220:9;222:1;
224:5,22;227:10;
229:14;230:1;233:2,20, 20,22;234:2,15;235:7, 12,17;237:8;238:4,11; 239:2,13;240:15;241:5, 12,22;242:3,20;243:2, 17,18;245:4,22;246:8, 12;247:8,8,10,21;
257:17;258:5;262:19; 266:4;269:19;270:3;
271:12;272:21;275:13, 18;277:19;279:4;280:1;
282:9,17;283:10,10; 284:1;286:3,10,21;
288:9,14;291:19;293:2; 302:9;303:8;304:15; 305:2;308:8;309:11; 310:5;311:18;313:11, 11;316:5,22;317:2;
322:8,12,13,17;325:19; 328:14,18,20;329:4 cancer (1)

153:2
candidate (1) 196:6
capabilities (1) 312:1
capacity (6)
80:11,11,12;93:9;
160:11;292:10
capsule (1) 315:18
capsules (3) 103:21;316:6,7
captured (2) 163:6,7
capturing (2) 24:19;164:17
CAR (4) 95:21;96:9;97:10;98:2
carbohydrate (1) 201:1
carbonyl (1) 181:15
Cardiac (3) 120:21;121:2,2
cardiovascular (1) 75:9
cards (1)

62:18
care (5)
61:19;66:9;75:17; 193:1,5
careful (3) 73:17;86:1;116:4
carefully (1) 327:20
Carl (1) 77:16
Carol (1) 12:7
cartoon (5) 29:12;105:9,10; 109:12;153:2
cascade (1) 65:9
case (23) 33:11;82:3;90:17; 105:11;149:9;150:7,8; 151:22;152:8;171:12; 180:22;185:6;240:8; 243:21;246:8,10; 253:20;254:8;255:2; 256:21;281:22;287:9; 309:10
cases (18) 32:14;45:16;52:1; 53:5;59:10;83:14;90:16; 122:6;185:6;225:13,20; 228:6;236:11;240:11; 246:9;264:9;269:6; 270:5
castor (1) 105:12
catch (2) 157:5,5
categorical (1) 174:8
categories (19) 20:14;25:7;26:20; 31:2;40:4;52:16;53:21, 22;56:21;57:2,10,13,15; 72:11;141:19;166:19; 169:18;173:16;226:6
categorizing (1) 78:3
category (23) 21:11;28:15;29:22; 30:14,17;31:16;32:2; 33:12,17;35:2,5,11;39:8, 16;40:11,17;58:4,4; 76:18;170:4;173:19; 175:6,7
Catherine (3) 4:19;113:2,4
cause (4) 29:3;165:17;187:22; 281:11
causes (1) 180:3
caution (1) 318:2

```
caveats (1)
    317:21
CD (1)
    156:17
CDER (5)
        12:22;13:14,15;
        216:19;328:3
cell (1)
        206:17
cells (1)
    78:18
cellulose (2)
        317:4,17
Center (11)
        1:19;4:14;10:5;63:9,
        16;77:16;289:1,6,8;
        296:14;328:3
central (1)
        304:10
century (2)
```

 84:11;85:6
 certain (19)
14:19;30:10;101:11;
106:13;155:8;162:10;
167:12;221:13;223:14,
15;243:15;247:2,7,10,
12;311:18;315:2;
318:15;319:8
certainly (19)
71:15;156:13;176:3;
178:1,19;180:7,9,12;
182:15;187:13,18;
189:3;191:3;192:10;
193:5;201:10;204:13;
223:17;303:10
certificate (2)
142:16;189:13
cetera (14)
103:22;144:13;159:5;
188:21;189:1,8;239:2;
244:22;247:9;248:1;
269:10,18;272:15;314:4
CF (4)
132:7;284:8;285:17;
286:1
CFD (3)
30:4;285:2;287:3
CFSAN (2)
265:14;272:19
chain (1)
188:18
challenge (14)
29:12;55:12;65:16;
89:6,14;139:5;143:16,
17;144:3;177:21;
182:20;249:15;282:16;
311:21
challenged (2)
27:16;318:10
challenges (18)
21:17;25:17;37:5;
40:6;48:9;49:11;51:6;
53:17;103:4;138:16;

162:5;182:17;194:1,17
197:10;202:12;213:11; 248:17
challenging (5)
31:6,12;32:5;33:9; 239:22
chance (5)
62:5,5;161:6;278:17; 281:1
change (16)
51:6;61:10;65:10;
66:5;101:8;113:6,6; 122:6,12;131:3,6;
167:14;184:12;212:16; 256:18;294:21
changed (2) 179:9;180:18
changes (23)
38:22;66:7,17;69:9; 79:14,15;81:7;165:16, 17;178:4;184:2,14; 205:11,12,17,19;212:19; 234:4;244:14;268:14; 282:6;295:4,4
changing (7) 25:22;43:16;59:15; 68:9;78:16;110:1;224:1
channel (3)
166:19;167:6;168:7
Chapter (1) 221:5
characteristic (1) 306:14
characteristics (10) 67:11,11;68:19; 107:20;109:15;112:1; 203:3;206:1;211:21; 303:16
characterization (23) 28:5;36:11,12;39:10; 40:8;108:11;109:3,13; 110:3;111:9;147:1; 176:19;177:14;186:6; 196:21;197:2;201:7; 203:21;204:16;211:3; 219:4;220:19,20
characterization- (1) 38:13
characterizations (1) 60:6
characterize (3) 36:10;143:13;182:19
characterized (3) 104:11;187:15;197:20
characterizes (1) 307:12
characterizing (2) 36:4;185:22
chart (2) 252:22;255:4
cheaper (1) 113:22
check (1)

252:13
checked (1) 252:6
checkerboard (1) 302:6
checking (2) 156:21;323:20
chelatable (2) 196:2;198:9
chelate (1) 39:14
chemical (14) 106:7;162:9;167:3,4; 179:1;203:3;211:3; 241:12;266:5;269:14,15, 21;274:16;310:10
chemically (2) 168:13;272:15
chemistry (2) 147:12;320:6
chemotherapeutic (1) 198:16
cherry (1) 118:8
Chetan (6)
4:7;102:18,19;165:4; 211:13,20
chewable (1) 117:20
chief (1)
13:11
child (6)
113:21;114:22;
115:14;116:15;119:4; 122:6
children (33)
113:10;114:6;115:1, 12,13,17;117:22;119:9, 16;120:8;121:1,3,5,14; 123:6,12;127:7;132:17; 150:20,21;238:12,18,22; 239:17;280:13;281:11, 15,22;284:8;286:18; 287:11,12;319:17
China (2) 291:9;292:3
Chinese (1) 291:10
chloride (1) 174:19
choice (2) 145:1;245:8
choose (1) 145:20
chose (3) 196:6;205:14,16
Choudhry (1) 63:16
Christmas (1) 87:21
chronic (1) 282:3
chronically (2)

66:14;69:16
chunk (1)
49:5
cimetidine (5)
315:13,19;316:6,11;
318:20
Cincinnati (1)
168:15
Cindy (4)
12:14;13:3;98:16; 154:6
Cindy's (1) 140:21
circumstance (1) 114:4
circumstances (2) 113:18;270:22
cite (2)
62:3;64:2
cited (5)
63:3;68:3;71:1;75:8; 128:20
claim (2) 49:7;123:2
claimed (1) 157:3
claims (2) 73:8;120:17
clarifications (1)
220:16
clarify (1) 142:6
clarity (3) 141:9;221:22;259:4
class (17)
69:5;78:5,13;83:14; 99:8,19,20;141:18; 148:22;149:4;314:8,12, 13;315:12,14;317:13; 318:21
classes (7)
70:15;71:12;74:7; 75:2,4,18;76:3
classification (6) 77:20;78:3;165:15,16; 169:20;314:2
classify (2) 82:14;155:8
classifying (1) 166:16
clean (1) 303:1
clear (13) 27:20;28:1,12;43:11; 53:3,4;94:12,19;108:22; 117:12;152:11;159:20; 224:3
clearance (4)
116:16;125:6,7; 200:15
clearances (1) 200:19
cleared (1)

119:20
clearly (13)
45:3;83:21;96:1;
97:10;99:12;138:2;
144:14;150:1;177:17;
201:5,19;223:16;291:19
clicking (1)
174:17
client (1)
141:5
clinic (1)
257:1
clinical (36)
32:6, 16;35:9;44:4;
65:10;66:19;69:22;70:6,
11;71:10;73:21;74:6,9,
10,12;75:21;79:18;
98:22;113:14,19;
120:13;121:6,6,22;
133:16;134:6;169:19;
194:5;195:8;219:15,20,
22;233:7,8;239:11;
240:1
clinically (2)
86:9;259:13
clinician (4)
68:4;117:15;202:4,21
clinicians (16)
63:11;66:5,8;68:1;
70:16;117:3;123:13;
130:11,17;132:14,20;
194:15;202:9,17;
283:18;288:3
close (4)
52:12;69:19;202:5;
213:18
closely (6)
46:7;52:1;104:7;
124:5;222:22;266:8
closer (3)
24:22;52:2;54:6
closing (3)
323:2;324:15,21
Cmax (9)
77:6;89:9;90:5;
116:10;199:7;209:3,4;
317:5,18
coached (1) 326:10
coated (1) 151:9
coating (1)
185:10
code (1) 49:8
codeine (1) 180:15
coin (1)
264:11
collaborate (1) 62:6
collaborating (2) 35:21;84:4

collaboration (4)	173:21,22;290:9	233:6;237:14		concerning
8:22;217:2,18;	con	compendi	mplicated (11)	18:9
,				once
aborations (5)	commi	compensate	22,136.12,13,19	46:7,9;58:17;128:14;
:10,12;26:13;63:	165.11	257.8	9:14;181:4;210:18	30:11;222:1
				291:13
aborat	6:6	57:	compone	Concerta (3)
21:19	,		192:16	151:4,9;156
abora	6:15;313:20;315:7,11,	:2;25:16;30:1;32	componen	conclude (2)
27:6;28:22;29:6	;316:8;317:3;320:21;	:12,16;35:6,16;40:10	147.13.156.7	57:5;202:13
47:15;56:9;61:7	322:18			onclude
se	co	co	:19;	329:9
6:1	60:16;119:1	157:7;296:16	95:21;100:6	concludes
ating	269:6	comp	com	323:1
22:1			177-18•181:8	conclusion
ag			99:	53:10;
$3: 15$	communic	65:	99:8,19,20,21;162:12;	241:17;247:14;248
eague	6:9;218:8	c	165:14;175:5;200:18	conclusion
299:15	9;230:2;297:		compounded (4)	317:11
collect (1)	Communicati	co	67:17,18;71:8;101:19	condensed (1)
,	,	2	compounds (4)	166:5
cted	commun	complen	166:12;198:2;199	condition (8)
4:10	46:8		10	22:8;98:9;1
ectively	comm	complem	comp	239:1;243
316:8,19	:18;46:2;13	0:16	23	onditions (13)
ollege (2)	305:		mputation	0:10;75:13
9;193	comp	15,1	280:14;282:2	3:20;84:9
idal	31:22;49:22;	co	computational (2;212:18;243:1
4:13	143:15;164:5;170:	90:20;210:10	283:	304:17,18
colon (4)	192:3;214:11;215:19	302:16	302:13,17	conduct (6)
93:5;94:	224:21;225:9;227:2,22;	co	computer (5)	7:1;246:2
lor (1)	229:4;257:18;262:		306:1	90:18;291:5;2
139:7	264:15,20,21;265:1,2;	153:2;225	19;311:19	conducted (5)
olorad	270:14,20;291:8;295:15	com	mputerized	4:20;45:4;2
2:12;2		296	145:14	290:11;292:15
rblind	59:4;177:1;327	c	co	conducting (2)
253:2	compa	18:3;21:1,	;288	19:21;282:20
	2	25:2,9;26:8,21,	co	Conference (5)
. 20	compa	21,22;27:4,10,14,22;	280:9;281:19	1:19;10:5;11:
	4	28:4,14,20;29:9,10,15,	conazoles (2)	138:17
$29: 15 ; 42$	co	18;32:2;34:20;35:1,18;	5	confidence (39)
159:14;220:7,	39:4	39:8,15;40:18;42:2;	concentration	1:20;22:10,17
255:10;266:9;	$89: 18 ; 90: 3 ; 92: 6,19$	$43: 15 ; 53: 8,14 ; 55: 11,16$	$4: 17 ; 80: 16 ; 93: 16$	$25: 18 ; 43: 7,17 ; 46: 17$
combinations (2)	94:15,21;95:8;98:5	$56: 3 ; 57: 20 ; 58: 6,20,22$	4:5;95:6;98:3;99:1	47:4,13,15;48:2;50:12,
40:19;209:13	99:3,12;115:17;122:	84:16;85:7;103:1,3,12,	;200:1,9;219:12;	14;51:5;56:21;59:2,3,
ombined (1)	198:1;242:4;257:18	13;104:1,3,8,20;107:2,6,	304:1	3;72:11;79:21;99:9;
147:5	287:11;295:11;305:3	9,14;108:15,22;129:11;	concentrations (32:4,13,19;133:19;
ming	307:3,21	17	99:6,	204:13;234:1,2;242:
33:15;62:9;64:7;65:7	compared (10)	139:11,147:6,22	concept (4)	43:22;246:9;250:8;
71:2,19;108:10;159:1	35:14;65:11;92	148:10;152:19;158:20;	153:5;154:20	53:18;255:16;289:
191:7,15;216:3;226:19	96:10;98:2;195:7;206:	162:10,13;173:10;	277:14	291:4,20;297:12
258:11;296	238:19;295:19;308:2	176:3;186:10;194:	concepts (4)	onfident (1)
mment (13)	comparing (5)	196:12;197:19;198:8;	172:14;190:4;2	214:9
16:11,16,19,	36:18;37:2;18	200:8;201:1;209:17,18;	27	nfidential (2)
159:19;192:4;202:16;	203:14;288:7	210:18;212:3;220:13;	conceptual	16:19;17:1
230:20;249:10;262:13;	comparison	236:3;263:15;281:19;	17	confirm (1)
312:12;328:14	34:9;44:1;45:18	289:22;300:6	conce	311:1
omments (15)	89:10;90:6;201:8	complexity (15	20:20	confirmed
10.12,45:22.60:22.61:4,	203:14	108:8,10,16;136:7,9,	$125: 11 ; 128: 10 ; 130: 5$	97:13
20:12;45:22;60:22;61:4;	comparisons (6)	19;139:11,13,14;146:18;	147:18;259:4;278:6;	conflicts (2)
:19;275:6,8,12;	38:17;39:2;41:	$197: 9 ; 202: 10,1$	314:16;318:3;322:11	62:13.289
27:21;328:9,18	$116: 5,9$	271:13;273:19	concerned	confusion (2)
mmitted (3)	compartmental (2)	compliance (2)	113:12;163:10	265:20;268:20

Congress (1)	105:6;256:4	contracts (1)	correctly (3)	covered (7)
290:3	Consortium (1)	80:5	34:18;55:4;210:19	93:10;121:19;147:21;
congressional (1)	277:12	contradictory (2)	correlation (3)	148:19;223:16,16;
137:19	Consta (3)	240:4;272:9	184:11;196:16;219:11	272:16
conjugated (1)	205:14,16;208:2	contrast (1)	correspond (1)	covering (1)
27:15	constant (5)	200:13	303:18	138:19
conjunction (1)	30:13;90:10,11;	control (13)	correspondence (6)	covers (2)
27:18	200:20;250:19	79:11;82:20,21;83:1;	19:9;28:13;265:17;	262:22,22
connected (1)	constituents (3)	85:21;86:6,17;87:2;	274:14;275:7;300:20	CPY2C19 (1)
304:2	215:22;231:6,9	147:22;270:7;289:21;	corresponding (2)	120:2
Connecticut (2)	constitute (1)	290:1;291:17	182:2,4	creams (1)
2:15;204:22	104:6	controlled (8)	corticosteroids (1)	36:8
connecting (1)	constraints (2)	19:9;28:13;116:4;	35:12	create (5)
144:2	64:4;114:22	142:15;148:14;265:17;	cosmetic (1)	110:6;163:22;197:10;
connection (1)	consulting (1)	274:14;275:7	265:15	302:17;325:19
52:12	135:22	controlled-release (1)	cost (12)	created (1)
CONNER (31)	consumer (2)	39:19	24:4;57:11;70:9;	104:22
12:4,4;85:18;86:3,7,	291:4,20	controls (1)	73:11;131:5;137:6;	creates (4)
11,21;101:3;126:2,21;	contacts (1)	156:9	191:9,10;270:7;297:1,7,	152:10,11;170:21;
128:19,22;129:3,6,10,	323:7	controversial (1)	19	308:12
14,19,21;134:3;156:16,	contained (1)	42:14	cost-effectiveness (2)	creating (1)
20;157:2,11,14;203:9,	302:11	convection (2)	122:5,5	265:19
13,17;230:16;231:14;	contains (3)	304:21;305:1	costs (6)	creation (3)
260:20;261:19	17:1;105:5;186:1	convene (1)	114:9;121:18,20;	169:18;222:4;226:22
consensus (1)	contemplated (1)	216:15	132:3;296:7,10	credit (1)
229:8	256:17	conventional (1)	count (1)	139:2
consenting (1)	content (3)	242:5	139:3	criteria (16)
115:3	159:7;190:7;208:14	conversations (1)	counter (1)	114:12;115:22;
consequence (1)	contents (1)	230:9	322:6	236:12;237:10;241:5;
249:7	182:11	convert (1)	counterintuitive (1)	244:2;246:4;247:5,22;
consequently (2)	context (7)	186:12	258:17	250:4,18,19;251:5;
259:15,17	17:18;161:21;245:14;	converted (1)	countries (3)	254:3;255:17;259:21
conservation (1)	267:1;272:8;313:13;	183:21	195:1;291:9;292:2	critical (30)
309:22	314:17	convincing (1)	country (3)	26:11;27:8;34:10;
consider (12)	contingency (1)	162:8	189:1;190:2;264:14	39:11;46:16;51:21;
46:14;123:16;140:16;	66:21	Cook (4)	couple (13)	52:22;53:8;56:3,15;
141:15;216:16;217:13;	continually (1)	12:1,2;230:19;323:2	62:4;64:6;70:3;108:4;	58:15;60:7;70:15;83:3,
221:20;249:22;253:21;	20:4	cooperation (1)	110:14;165:10;168:20;	3,8;106:10;108:14;
258:13;297:13;327:20	continuation (1)	247:13	182:5;273:22;303:20;	110:19;147:1;151:6;
considerable (1)	167:10	coordinate (1)	306:5;314:11;325:1	156:10;169:16;170:5;
185:2	continue (9)	51:14	coupons (13)	205:12;234:3,9;278:18;
consideration (12)	29:4;67:2;74:4;78:19;	coordinated (1)	69:2,9,17;71:10;	289:21;319:6
65:19;67:7;114:11;	88:17;133:10;161:16;	35:19	296:6,8,10,11,15,22;	critically (3)
119:11;121:16;142:4;	216:10;296:7	coordination (2)	297:3,3,5	20:15;56:7;222:7
217:17;218:19;219:21;	continued (2)	266:21;302:18	course (33)	cross- (1)
255:22;258:1,2	96:7;143:16	copay (3)	67:4,7;71:18;72:18,	98:10
considerations (6)	continuing (1)	296:6,10;297:3	18;84:12;85:5;87:11;	crossover (4)
114:21;140:2;145:11;	78:11	co-PI (1)	89:9;91:6,9;95:5,14;	97:7;116:4,21;316:1
249:19;259:1;261:10	Continuous (4)	284:11	98:13;100:20;105:18,	cross-sectional (5)
considered (5)	228:11,20;268:12;	copies (1)	20;108:19;111:15;	283:4;284:18,22;
65:15;104:1;117:10;	278:4	15:1	131:14;149:3;151:11;	285:10,15
118:20;257:4	continuously (1)	coprocessed (2)	166:4,11;174:16;184:8;	crystal (7)
considering (2)	303:3	269:16,18	189:7,12;208:18;	166:18;167:3,5,14,17,
114:5;130:21	contour (1)	copy (4)	300:16;308:7;312:1;	21;168:16
consistency (1)	302:3	127:1;129:17,17,18	314:16	crystalized (1)
222:12	contract (1)	core (4)	courses (2)	152:2
consistent (6)	42:17	63:17;304:1;310:2,4	189:6,10	crystalline (1)
184:20;222:18;	contractile (3)	corner (2)	Court (2)	183:3
271:15;302:7;303:5;	301:7,18;302:2	96:2;105:16	295:13,19	crystallography (4)
305:10	contraction (4)	correcting (1)	cover (3)	174:16,18,19,21
consistently (1)	80:7;301:5;302:5,6	272:9	72:7;138:7;148:6	CT (4)
270:19	contractions (3)	correction (1)	coverage (2)	282:9;284:7;286:17;
consisting (2)	80:7;301:3,3	304:18	14:17;70:18	287:10

CTs (1)	5;128:2,3;145:15;	dear (2)	degrades (1)	$290: 11$
$\begin{aligned} & \text { 282:9 } \\ & \text { cumulative (2) } \end{aligned}$	$\begin{aligned} & \text { 154:15;165:19,22; } \\ & \text { 169:18;171:9,12,20; } \end{aligned}$	215:3;263:9 debate (4)	168:3 degree	$\begin{array}{\|l\|} \hline \text { deputy (5) } \\ 12: 8,12 ; 13: 1,4,7 \end{array}$
252:20;255:3	182:3;184:11;188:16;	25:22;69:16;236:18;	68:8,16;257:1	derivative (1)
curated (1)	196:13,15;197:5;199:3;	247:16	dehydrate (5)	82:21
153:21	203:20;207:21,22;208:1,	debated (1)	167:12,20;168:2,7,17	derived (2)
curing (1)	5,8;213:14;222:16;	232:17	dehydration (1)	144:21;181:5
149:3	233:8,8;234:15;237:15;	decide (3)	167:9	dermal (2)
current (22)	238:7;239:11;240:4;	82:22;83:3;236:14	delaminating (1)	255:8,10
34:21;89:4;190:22;	241:17;242:10;251:22;	decided (1)	220:22	dermatological (2)
221:8;223:13;233:14;	252:2;261:5,13,15,16;	177:12	delamination (1)	25:10;35:7
237:7;245:17,22;	264:2;273:14,16;	decision (12)	221:2	describe (3)
248:22;249:5;250:1,5;	276:22;277:5;281:20;	68:19;85:1,8;123:13;	delay (1)	305:12;313:8;315:16
256:2;257:14;261:20;	284:10;286:16;287:5,8;	176:1;238:3;239:18;	152:6	desferrioxamine (1)
265:5,16;267:6;268:22;	289:9;291:13,18;	274:9,10;275:14;295:14,	delays (2)	198:21
295:9,12	301:22;308:21;310:22;	19	291:6;293:5	design (19)
currently (23)	317:10;318:11;319:7	decision- (1)	delegate (1)	23:8;37:8;45:11,17;
24:18;43:2;64:14,	database (7)	217:20	326:10	115:21;139:17;146:22;
84:2;92:12;97:16;102:7;	172:6;174:1;175:17;	decision-making (1)	delegating (1)	147:14,15;169:7;170:7;
122:21;178:13;190:1,	186:14;286:21;293:13;	139:22	326:5	187:8;234:10;235:8,14;
20;196:9;198:6;202:16;	322:3	decisions (16)	deliberately (1)	243:18;271:18;278:2;
216:11;225:18,19,20;	databases (3)	51:10,17;52:21;60:13;	205:10	316:4
227:19;228:4,14;	73:16;120:17;130:21	70:18;123:15;139:21;	deliver (2)	designed (6)
294:13;317:6	dataset (4)	144:17;147:4;164:14;	107:8;300:10	59:22;94:21;95:14;
curves (2)	55:8;85:14;97:6;253:8	172:15;222:18;234:3;	deliverables (1)	159:4;270:11;311:9
167:22;309:11	datasets (10)	266:17;275:17;319:8	153:13	designing (1)
customers (1)	49:18,20;50:6;68:12;	declaration (1)	delivered (1)	163:15
296:9	73:8;96:13;99:13,15;	103:7	66:9	designs (2)
Cutting (1)	256:4;261:8	deconvolute (3)	delivery (12)	75:12;116:21
144:1	date (3)	100:7,18;207:22	38:2,10;53:10;63:16;	desirable (1)
cyborgs (1)	11:11;217:7;308:7	deconvoluted (2)	78:21;248:20;280:16;	283:16
37:18	dates (1)	208:3,8	281:8;283:8,13;286:22;	desired (1)
cycle (2)	291:16	deconvolution (8)	287:18	74:22
60:17;220:5	Dave (1)	91:19;92:16;95:21;	delve (1)	desktop (2)
cyclodextrin (1)	174:20	100:15,22;101:4;	158:19	283:20;288:5
244:19	David (11)	102:13;209:6	demands (1)	desolvation (1)
CYP2C19 (1)	3:1;4:16;214:19,20;	decreases (1)	139:16	166:13
119:20	223:5,6;226:19;232:7;	81:13	demonstrate (1)	desperately (1)
cystic (2)	263:4,6;278:14	deep (1)	38:7	121:13
282:2,3	Davis (1)	221:22	demonstrated (1)	Despite (1)
	284:11	deeper (1)	195:10	291:21
D	day (6) $13: 19 ; 53: 11 ; 61:$	$26: 18$	$\begin{gathered} \text { demonstration (1) } \\ 248: 18 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { destroy (1) } \\ 281: 1 \end{array}$
daily (1)	$13.19,53.11,61: 9$ 161:7;263:10;325:14	109:2;180:3	denominator (1)	detail (11)
254:10	day-long (2)	define (2)	250:15	82:10;126:3;145:13;
Dale (3)	23:3;232:14	201:19;227:10	departments (1)	172:21;178:5,12;
12:4;87:22;134:3	days (8)	defined (1)	266:10	186:22;235:16,18;
damage (2)	15:3;70:6;101:22;	266:4	depend (3)	242:6;303:8
281:1,6	140:14;168:21;254:11,	definite (1)	145:20;303:15;309:12	detailed (2)
damaged (2)	21,22	255:9	dependent (1)	17:2;27:17
282:14;287:20	DCM (1)	definitely (8)	290:1	Detailing (1)
dashed (1)	206:8	89:12;115:7;116:8;	depending (9)	63:10
251:4	deal (7)	124:18;125:20;184:2,	106:17;108:15;	details (6)
data (104)	76:18;84:19;133:12,	21;211:16	116:15;127:19;166:21;	109:2;224:6;300:5;
29:5;36:2;37:13,20	16;139:4;185:15,16	definition (4)	167:8;172:8;184:15;	303:14;307:18;329:1
43:13;46:2,15;48:6;	dealing (2)	136:6;225:13;226:14;	307:20	detect (3)
$\begin{aligned} & \text { 49:5,7,12,20;58:15,17; } \\ & \text { 59:21;60:12;73:5,7; } \end{aligned}$	$\begin{aligned} & \text { 141:1;182:18 } \\ & \text { deals }(2) \end{aligned}$	$\begin{gathered} 269: 14 \\ \text { defray (1) } \end{gathered}$	$\begin{array}{\|l} \text { depends (9) } \\ 54: 8 ; 136: 9 ; 228: \end{array}$	280:12,22;285:21 detecting (1)
82:4,8;89:14,20;90:1;	171:22;262:15	296:10	258:17;303:13;309:13,	282:15
92:3,22;93:11;97:14,15;	dealt (1)	degradation (2)	14,15;318:4	determine (10)
98:7;99:8;100:3,9,21,21;	145:4	166:14;168:11	deposition (1)	52:15;54:10;109:16;
102:7,10;120:7;121:9;	Deanna (1)	degrade (2)	195:5	110:2;196:4;293:13;
122:16,17,21;123:1,2,4,	308:16	168:8;179:4	depth (1)	294:2;295:8;305:22;

306:1	199:1	$9,10 ; 235: 11 ; 236: 20 ;$	144:3;170:4	68:14;71:9
determined (1)	diabetic (1)	240:20,22;241:1,18	disclose (2)	dispensed (5)
32:13	75:16	243:20;244:7,14;	113:11;194:10	20:21;22:1;24:3;
determines (4)	diagnosed (1)	258:21;263:12;266:5,	disclosure (3)	69:11;119:6
218:9,10,12,14	282:8	10;270:2;276:17;284:4;	62:12;135:20;176:22	dispensing (1)
deterrent (4)	dialogue (1)	286:20;300:13;301:7,8,	discovered (1)	69:10
42:7;43:3,6;221	190:10	15,17,17;302:12;305:4;	306:5	disproportionately
develop (36)	dialogues (1)	306:12,15;307:4,5,6,22;	discoveries (1)	289:18
10:20;11:4;25:2,7;	217:4	311:18;313:22;317:6,	101:10	disruptive (1)
26:7;29:1,6;31:19;32:7;	dialysis (1)	22;320:22;321:1;328:21	discrepancy (1)	112:16
39:6,15;52:1;53:5;56:1;	194:6	differential (3)	159:12	disseminate (1)
57:1;78:12;81:17;82:6;	diameter	82:2;194:3;195:13	discrete (1)	261:15
83:13,17;85:1;134:9;	302:2	differentiation (1)	256:3	dissemination (1)
153:15;188:10;201:22;	Diane (3)	78:17	discriminate (2)	174:10
210:22;214:2;216:17;	2:14;204:21;205:1	differently (4)	211:17;243:19	dissolution (52)
222:2;223:2;224:17,18;	Diane's (1)	48:20;91:9;95:14;	discrimination (2)	30:3;31:8;54:18,21;
278:3;286:3;327:14;	110:15	300:8	243:3,5	55:22;56:5,13;78:13,22;
328:1	differ (3)	difficult (11)	discriminatory (1)	79:8,13,20,22;81:20;
developed (17)	67:19;70:13;11	32:6;33:8;113:19	243:16	82:14,16,18;84:13;
27:18;39:21;41:16;	difference (32)	115:5;116:18;120:15;	Discuss (4)	85:15;90:17,19;91:5,8;
42:6;43:14;87:17;169:7;	78:10;82:13;94:19;	135:11;211:20;219:16,	219:21;232:16;	92:1,9,15;93:17;97:17,
174:21;200:2;206:13;	95:12,18;97:10,11	17;291:22	234:21;243:7	21;98:9;107:15;110:22;
216:15;220:11;224:20;	117:4;127:8,9,19;	difficulty (2)	discussed (7)	115:10;134:19;144:20;
238:9;264:17;284:2;	149:21;151:20;177:9;	118:15;135:8	107:6,19;161:17;	152:13;173:17;177:19;
311:6	184:22;199:21;206:3,3,	diffusion (3)	232:17;262:3;299:19;	179:14;180:16;184:11,
developers (1)	6;207:17;208:9,16,18;	304:16;309:6,7	325:11	18;208:17;220:1;
188:9	209:1,5;238:20;272:20;	dihydrate (5)	discussing (4)	234:10;300:3;301:9;
developing (16)	286:9;304:9;306:22;	181:21;183:19,22;	159:11;161:16,22	310:21;311:10;314:21;
22:22;32:7;38:16;	307:1;313:12	185:4,18	299:20	316:12,14
41:4;60:2;80:19;84:3;	differences (42)	dilemma (1)	discussion (26)	dissolve (4)
87:16;111:15;112:14;	29:2;36:18;113:14;	197:7	57:4,4,5;71:16;125:5;	78:7,8;82:5;152:10
121:2;135:15;162:22;	114:5,18;115:15;118:6,	diligently (1)	137:10,12;152:18;	dissolved (1)
205:9;219:18;302:16	14,22;119:17,19,22;	21:19	219:3;223:11;224:13,15,	105:13
development (71)	122:2;123:8;125:2,10,	diluted (1)	20;225:1;226:16;	dissolving (2)
19:7;23:1,8;26:4,10,	17,21;126:3;127:14;	199:4	236:18;237:21;238:14;	83:15;91:12
12;33:4;38:12,20;40:17;	128:8;130:16;182:16;	diminishes (1)	242:2;244:12;247:16;	distal (1)
51:9,18;52:2,6;53:2;	185:2,3;197:3;199:12;	251:9	276:14,16;277:12;	93:21
54:7,8;56:7,15;57:1,20;	201:18;202:19,22;	dinner (1)	298:16;299:22	distance (2)
60:3,9;77:4;79:12;	203:21;206:2;207:8,17;	189:5	discussions (18)	159:13,15
82:11;112:19;136:18;	208:14,21;211:18;	direct (9)	40:15;133:5,9;219:10,	distill (1)
141:18;144:17;163:8;	301:12,13;313:6,8,10	45:18;54:16;55:5;	14,18,22;220:17;225:10;	173:14
164:3,4;169:12,17;	different (131)	63:8,11;69:5;195:15;	226:10,13;245:18;	distilled (1)
170:4,9,20,20,22;171:1,	26:14;31:1;34:8;35:8;	200:22;329:4	266:16;276:10;277:13,	174:7
4,11,19;172:3,11,16;	36:10;37:2;38:10,10;	direction (6)	21;278:19;279:3	distinction (1)
187:8;192:8;217:6;	39:3,5,5,6,12,20;45:9;	113:7;145:17;172:19;	disease (15)	324:17
219:9;221:17;222:19;	46:18;55:21;61:6;66:20;	214:5,10;264:10	75:9;234:16;280:13,	distinguish (2)
224:11;232:19;233:21;	75:12;77:8,9;80:8;	directly (4)	13,22;281:1;282:1,3,5,7,	123:10;219:17
245:15;264:5,9;266:14;	82:18;84:22;91:8;93:6,	38:1;55:7;190:7;	11,16;283:2;285:21;	distinguished (1)
267:9;268:4,10;269:3,	7,8;95:1,4,10,15,16;	256:19	287:11	10:14
12;270:4;274:18;	96:1;97:7,11;98:19,19;	Director (15)	diseased (7)	distributed (2)
288:10;296:15;319:9;	99:1,8,14,19;101:18,20;	10:7;12:3,5,8,12,14,	281:14;283:5,13;	105:21;218:1
327:17	108:17;109:8,9;114:6;	18;13:2,4,7;77:17;	284:4;286:22;287:1,16	distribution (9)
device (12)	116:22;117:1;118:19;	216:19;289:5;324:14;	diseases (1)	106:18;108:1;111:11;
41:8;98:9;220:7;	119:14;125:4,8,11;	328:3	149:4	254:20;255:4,12;
289:12;300:8,17;	127:16;129:22;145:18;	disadhesion (1)	disintegrate (1)	283:10;285:13;314:11
301:16;305:6,9;306:12,	149:12;150:9,11,12,18;	252:16	78:8	distributions (2)
17;307:4	151:8,18,19;155:17;	disadvantage (1)	disintegration (2)	252:17;253:8
devices (9)	179:20;180:18;181:13;	101:2	82:8;179:14	diverse (1)
11:8;37:18;41:2,5,13;	182:7,9,14,15;185:5;	disappear (1)	disordered (2)	63:2
220:21;292:2,3;311:9	187:5,14;196:1;197:13;	286:14	181:19;185:8	diversity (1)
devote (1)	198:4;202:18,20;204:1;	disappears (3)	disparate (1)	41:13
135:20	205:18;207:4;212:12,	183:21,22;256:7	109:22	dives (1)
DFO (1)	17;227:20;230:1;231:7,	disciplines (2)	Dispense (2)	222:1
Min-U-Script®		A Matter of Record (301) 890-4188		(11) determined - dives

Division (9)
13:3,7,11;61:20;62:2,
15,16;67:5;70:21
DMD (1) 240:17
DME (1) 77:9
doable (1) 176:4
docket (16) 11:3;15:2,19;16:14, 17;60:22;192:6;223:9; 229:7,9;245:7;275:8; 327:22;328:7,14,19
doctor (3) 119:5;130:14;150:21
doctors (5) 119:11;127:20,22; 131:2;168:22
document (3) 164:4;170:22;190:11
documenting (1) 291:17
documents (2) 272:8;291:15
dodge (1) 73:13
dollar (5) 25:15;27:9;30:22; 57:10,15
dollar-impact (1) 21:14
dollars (4) 21:10;231:21,22; 261:1
domain (2) 56:12;304:17
domestic (2) 290:7,10
domestically (1) 201:15
dominant (2) 139:11;202:22
dominating (1) 277:20
done (32) 33:3;36:7,21;38:15; 55:6;68:6;73:10,13; 92:10;109:21;115:22; 116:4;117:17;121:5,6; 122:3;125:13;126:11; 164:20;165:2,3;185:5; 189:17;239:3;247:11; 274:11;275:2;306:19; 309:5,5;311:14;312:4
dosage (35) 23:4;33:2;53:11; 54:13;55:10;77:13; 102:11;103:14;107:3; 108:16,18,19,20;110:18; 112:10;136:7;143:4; 163:15;169:6,8,9; 173:12,13;174:9,9;

175:9,22;176:3;181:3; 186:6,10;187:13,14; 210:18;221:3
dose (11) 40:20;41:11;79:15; 168:10;199:8;203:2,4; 238:18;239:18;280:18; 316:1
dose-dump (1) 150:13
dose-dumped (1) 150:10 dose-finding (1) 200:3
doses (1) 203:7
dosimetry (2) 283:17;288:3
dosing (2)
79:4;287:1
dots (1) 144:2
dotted (1) 197:16
doubling (1) 319:14
dovetail (1) 86:12
down (21) 85:7;86:5;90:21;93:3, 5;100:2;118:13;121:10; 123:6;153:12;161:18; 180:5;185:22;254:2; 256:21;262:17,21; 284:20;316:12;320:10; 322:19
downloaded (1) 320:2
downstream (1) 169:13
dozen (1)
245:4
DR (337)
10:3,7;12:2,4,7,11,14, 17,21;13:1,3,6,13,17; 61:11,16,18;62:3;63:3; 68:3;71:1,17;72:1,2,4,5, 10,14,18,20;73:2,3,4; 74:11,19;75:6;76:6,7,9, 11,16;78:22;80:4;84:17; 85:12,16,18;86:1,3,5,7, 10,11,20,21;87:5;88:2,3, 5,9,21;98:15,17;99:4; 100:5,10;101:3,21; 102:17,20,21;104:9,13; 107:4;108:6;111:21; 112:5,21,22;113:1,5; 116:2;120:14;122:22; 124:8,9,13;125:1,13; 126:2,20,21;127:4; 128:19,21,22;129:2,3,5, 6,9,10,13,14,18,19,20, 21;130:1,19;131:2,7,8,
$11,14,15,20,21 ; 132: 1$, 21;133:2,2,5,11;134:13; 137:19;138:11;142:5,8; 144:5,14;145:22;146:5; 147:21;148:6;149:18; 150:2,5;154:4,5,10,11, 14,15,19;155:13,14,19, 20;156:4,5,16,19,20; 157:1,2,5,6,9,11,13,14, 19,20;158:12;159:6,8,9, 11,16,18;160:2,5,6,7,8, 10,14;161:3,14;170:15, 16;171:3,8,10,12,14,15; 172:7;176:5,9,11,12,13, 17;177:6;188:5,6,13,14; 189:3;190:12,16,17; 191:2,11,12,14;192:1,2, 10;193:14,20;194:11; 202:15,21;203:9,12,13, 16,17,19;204:5,12,20; 205:2;213:10,16;214:15, 17,18,21;216:5;218:19; 223:5,6,19;224:7;225:2; 226:19;227:4,6,7,11,13, 14,15,16,17,18,19;228:2, 3,5,13,15,17,18;229:3, 10,12,17,18,20,22;230:5, 14,15,16;231:12,14,15; 232:6,8,9,12;245:1,2,8, 11,13,14,17;246:14,22; 248:6,7;258:5;259:3,10, 12;260:1,7,20;261:19; 263:3;275:4,6;276:4; 278:12,14;279:15,18,22; 280:6;288:9,12,18,20, 21;289:3;298:1,2,8,9,11, 19,20,21;299:3;310:9, 14,15;311:3;312:5,9; 320:12,20;321:20,22; 322:8,21;324:14,16,20, 22;328:4
draft (9)
27:14;28:3;42:8;
108:5;140:17;144:17, 21;145:5;198:7
Dressman's (1) 238:8
drilling (1)
161:18
drive (7)
53:1;55:9;58:3,18; 60:9,10;192:7
driven (1) 52:8
driver (1) 264:4
drives (3)
40:13;47:10;259:21
driving (4)
57:19;58:15;264:9,16
droplet (3)
106:11;111:14;156:6
DRUG (245)

1:1,3,6;3:9,16;5:5; 10:10;12:13;17:8;18:7, 16,20;19:12;20:19;21:2, 21;22:5;24:7;25:19; 26:15;27:9;34:5,6;38:1, 10;40:13;43:17;44:18; 46:17;47:16,19,21,22; 48:10;49:13;50:11,12; 51:10,12,18;52:3;53:20; 54:1,8,17,22;55:15; 56:21,22;60:20;62:21; 66:1,4,15;67:3,7;69:2,8; 71:10;76:3,20,21,22; 77:8;78:6;80:10,15; 81:5;82:11;83:7,7;89:3, 5,8;90:18;91:2,4,11,12, 14,20,22;92:9,11,12,14, 14;93:16;94:5,12,20; 95:19,20;96:3;97:8,16, 17,18,20,21,22;98:3,12; 100:2;101:11,17;104:10, 10;105:12,18,20;106:3, 18;108:1;110:12;111:6, 11;112:11;114:19; 115:2,18,18;117:6,7,10; 118:18;119:1;122:4,4,7; 128:10;129:11;131:4; 133:10,17;135:6;138:5; 140:13;152:1,2;153:1; 156:6;173:5;174:22; 178:9,11,15,16,20,22; 179:4,12,12,21;188:9, 19;197:3,21;200:7; 203:11;205:21;206:9; 212:6;220:5,6,15; 221:17,19;222:7,19; 226:6;233:16,17,17; 236:6;243:11,12; 245:15;248:19;252:4; 264:5,9,16;265:1,14; 266:2,14;267:9;268:4,9, 10;269:2,12;270:4; 273:12;274:19;276:13; 280:15;281:3,5,7,8; 283:8,13;286:22;287:18, 21;288:11;289:12; 290:19;291:3;293:3,16; 294:7,14,20;295:14; 296:2,7,14;297:9,14,16, 17;300:12;302:10; 305:7,10,13;306:1; 307:10;308:1;312:15; 313:14;314:19;315:12, 18,22;318:3;319:14; 320:9;322:7;324:6; 327:11,16
drug-device (2) 40:18;42:2
drug-drug (1)
234:18
Drugs (110)
10:9,22;12:6,10;18:3; 22:2,6;23:5,9;44:10,11;

46:3;47:7;50:17;51:2, 15;52:7,11,12,19;55:12; 61:13;67:17;68:6,8,17, 22;78:5,13,14;83:12; 94:20;103:1,3,12,21; 104:1,3,20;107:9; 112:12;113:10,15; 114:13;115:16;116:1, 14;120:4,21,21;121:3,8, 21;123:9;126:5;127:14; 130:7;132:6;133:22; 147:19;155:7;162:7,10; 196:9;201:3;205:15; 212:7,14;216:7;219:9; 220:9;231:6;238:15; 265:5;269:22;270:5,8; 288:13,15;290:1,6,15; 291:6,20;292:1,2;293:4, 11;294:10;295:1,9,18; 296:22;297:4,12,18; 303:4;305:14;314:4,8,8, 13;315:13,14;317:22; 318:18,20,21;321:6; 327:15
drug's (1) 178:1
dry (3) 40:19;41:11,12
DSC (2) 182:7,9
DSM (1) 205:18
dubious (1)
324:16
due (9)
70:6;114:21;135:7;
180:13,14;198:12;
264:6;270:11;282:6
Duffy (1) 165:19
duodenal (1)
81:6
duodenum (7) 80:8;87:18;93:4,20; 94:2,17;95:3
during (10)
81:5;140:14;178:3;
179:9;212:11,16;
221:16;257:2;290:20; 292:12
Duxin (6)
5:1;88:18,19,20;
98:15;299:18
dynamic (5)
106:4;280:14;282:21; 283:7;287:15
dynamics (4) 299:9;302:19;305:15, 16
dynamics-type (1) 302:14

GDUFA 2012 REGULATORY SCIENCE INITIATIVES
Part 15 Public Hearing

establishing (2)	78:2;99:9	$106: 22$	$286: 13 ; 314: 7$	$304: 15$
estimate (7)	everybody (7) 60:15;70:17;100:3	$\begin{gathered} \text { exchange (1 } \\ 244: 20 \end{gathered}$	expands 154:9	extemporaneously (1) 101:19
90:2;92:5;98:1;	144:7;161:15;274:20;	exchanges (1)	expansion (1)	extend (4)
241:11,12;283:11	325:13	219:5	314:15	77:11;83:22;84:8;
305:20	everyone (14)	excipient (46)	expect (3)	193:21
estimated (1)	10:4;17:7;22:7;88:9,	142:21;168:18;178:4;	15:13;49:15;51:16	extended (1)
241:22	10;104:22;113:5,8;	179:17;180:10,11,13,17,	expectations (10)	97:3
estimating (2)	161:3;279:22;313:21;	20;181:4;186:16;	219:3,10,14,21;220:1,	extended-release (1)
236:5,9	321:13;325:5;329:6	192:18;244:19;264:3;	17;221:4;223:11;	239:7
estrogens (1)	everywhere (1)	265:2,6;267:6,14,16;	224:14,14	extensive (1)
27:15	323:9	268:8,16,19;269:15;	expected (4)	283:14
et (14)	evidence (5)	270:12,22;271:9,11;	48:15;133:10;235:16;	extensively (2)
103:22;144:13;159:5;	14:7;64:2;132:19	272:2,5,11;273:13;	239:19	322:18;326:10
188:21;189:1,8;239:2;	139:10;140:1	274:18;276:6;277:5,19;	expedite (1)	extent (4)
244:22;247:9;248:1;	evolution (1)	317:2;318:5,6;319:16,	273:17	311:12,12;313:15,1
269:10,18;272:15;314:4	249:11	19;320:4;321:13,14,19,	expensive (7)	external (9)
ethical (1)	evolve (1)	21;322:14	46:20;55:8;79:19;	18:10,21;42:18;61:7;
114:21	51:6	excipient-based (1)	99:7;132:6,8,10	106:5;158:8;324:4;
ethics (1)	evolved (1)	312:13	experience (5)	327:14;328:15
327:5	311:6	excipients (68)	67:1;124:22;130:18;	externally (3)
ethnicity (2)	evolving (4)	30:8;101:13;129:22;	194:18;249:10	43:14;58:8;228:11
124:11,16	154:1,20;155:18;	130:3,5;135:2;142:15,	experiment (2)	extract (1)
ethyl (3)	232:18	15,18,19;143:2,3;	49:2;54:19	166:6
205:18;206:7;207:11	exact (3)	147:14,20;178:1,10,16;	experimental (4)	Extractables (1)
Europe (2)	48:19;272:6;325:7	180:6,12;181:3;186:14,	81:1;241:17;288:7;	221:2
36:1;37:4	exactly (5)	15;221:14;263:11,20;	302:19	extraordinarily (1)
evaluate (2)	92:5;102:5;159:16;	264:1;266:1,4,6;269:7,	experimentally (2)	256:9
56:1;198:3	160:7;189:4	12,13,16,17,18,21;	241:10,21	extraordinary (1)
evaluated (1)	examine (1)	270:1;272:4,13;274:16;	experiments (4)	249:19
200:20	315:17	278:3;312:11;313:11,20,	135:1;152:13;302:17;	extrapolate (2)
evaluating (1)	example (43)	20;314:16,17;315:5,5,6,	308:15	123:4,6
220:4	36:7;90:16;93:12;	7,12,17,20;316:3,8,9,15,	expert (5)	extrapolated (3)
evaluation (11)	111:11;143:21;144:19;	21;317:3,13;318:15;	84:4;145:17;170:10;	318:18,21;321:6
18:2,5;19:13;27:8;	155:15;157:11;162:11;	319:5;320:5,7,15,21;	273:1;283:15	extrapolating (1)
74:22;75:5;115:20;	165:9;170:1,5;173:11,	322:18	expertise (4)	121:9
201:6;221:12,13;267:15	18;174:7;178:19;182:6;	excised (1)	84:22;85:8;136:10;	extremely (6)
evaluations (3)	185:17;186:13;187:15;	36:14	299:10	27:17;30:15;269:7;
60:14;261:9;272:4	197:12;212:4;214:6;	excited (2)	experts (5)	320:1,1;327:19
even (46)	225:17;228:21;241:13,	70:22;71:2	10:14;18:14;23:19;	extremes (1)
20:18;21:15;24:13;	15;243:6;244:19;247:3;	exciting (3)	190:7;276:3	45:13
29:10;34:1,4;57:9;59:4,	252:1;265:22;272:18;	60:19;61:5;62:8	explain (3)	eye (1)
15;78:15;79:16;80:13;	282:2;290:16;295:13;	exclusivity (3)	163:14;170:20;237:15	107:9
$\begin{aligned} & 91: 15 ; 92: 2 ; 102: 15 ; \\ & 110: 19 ; 135: 14 ; 139: 1 ; \end{aligned}$	$302: 15 ; 305: 20 ; 306: 17$; $307 \cdot 7 \cdot 311: 14 \cdot 312 \cdot 21 ;$	117:7;122:10;294:22 exhalation (3)	$\begin{aligned} & \text { exploited (1) } \\ & 199 \cdot 2 \end{aligned}$	F
152:20;156:6;168:2,11;	$321: 2$	$286: 8,11,14$	explore (5)	F
173:1;180:18;181:6;	examples (22)	exhaustive (2)	217:5;261:11;280:21;	facilely (1)
188:12,18;201:8;	23:22;26:16;52:6;	234:8;235:3	281:4;282:18	166:21
206:20;212:7,9,22;	117:14;119:4;128:20;	exist (3)	explored (2)	facilitate (5)
214:6;231:4;232:1;	140:4,4;149:7;155:21;	181:11;202:12;294:1	148:3,5	164:18;229:5;267:18;
234:8;254:16;265:12,	156:16;173:9,14;	existed (1)	exponential (1)	272:3;274:15
13;266:19;269:9;271:8;	228:19;235:3,4,11;	297:1	233:5	facilities (4)
273:2;278:3;300:17;	241:8;243:22;246:8,11;	existing (10)	exposed (1)	180:4;290:5;293:14,
308:2	251:22	64:2;73:8;127:1	196:20	22
event (9)	exceed (1)	164:10;166:8;175:6;	exposure (1)	fact (17)
48:8,15;66:22;122:8;	271:3	264:7;269:9,11,16	276:21	81:12;107:16;132:4;
195:11,14;301:5,6;302:2	exceeded (1)	exists (5)	exposure-response (1)	165:13;167:6,19;
events (10)	296:13	129:14;178:11;	52:11	168:20;181:16;200:10;
48:21;49:10;124:4;	excellence (1)	259:18;274:5;277:5	express (1)	253:11;264:17;266:4;
127:9;189:22;300:14;	323:14	expand (4)	325:4	272:5,19;276:9;302:12;
301:1,7,18;302:4	excellent (4)	154:5;160:2;223:15;	expressed (2)	314:18
eventually (5)	210:3,13;310:14,14	298:5	284:21;285:5	factors (3)
65:15;66:18;76:2;	except (1)	expanded (2)	expression (1)	41:1,21;123:16

faculty (4)
62:20;63:17;190:8; 191:7
failed (2) 180:16;317:5
fails (2) 188:1;253:19
failure (4) 148:2,3;149:5;164:18
failures (1) 156:2
fair (2) 313:16;314:15
fairly (5) 137:15;253:8;257:18; 260:13;284:1
falsifying (1) 291:16
familiar (11) 65:21;101:14;162:14; 181:1;212:4;279:6,6; 315:7;319:6;321:17,18
families (4) 267:16;268:1;272:5, 13
family (10) 132:3;267:17;268:7; 272:3,7,11,16;273:11; 274:3;278:15
famous (2) 150:7;151:22
fan (2) 113:16;121:11
fantastic (1) 139:2
far (12) 70:22;78:12;110:20; 129:7,15;137:8;163:10; 175:10;188:18;203:2; 213:13;262:9
fast (3) 91:20;205:2;284:1
fasted (2) 243:12;315:22
faster (4) 60:3,9,10;208:10
fasting (2) 301:4,13
fat (2) 208:14;233:10
fatty (1) 181:10
favor (1) 72:17
FDA (127) 1:17;10:15;11:21; 14:10,12,16,17;15:7,12; 18:20,22;19:13;21:22; 22:13;26:14;27:6,16,19; 28:22;29:6;34:16;50:14; 58:14;59:2,8;61:6; 62:18;63:4,18;65:14; 66:1;76:18;77:15,21;

80:5;84:19;85:22;86:7; 101:21;102:21;107:1; 108:5;122:11;123:19; 132:9;134:14;135:8; 136:2;137:7,8,14;139:8; 140:14;143:16;159:18; 160:4;164:19;174:6; 175:4;176:6,8,17;180:1; 187:2;189:12;190:14; 191:4,6,13;193:9,21; 213:5;216:15;217:5; 218:7,14;219:6;222:5, 11,17,22;224:17;227:1; 228:9,16;230:1;235:5; 242:7;244:12;246:19; 263:7;265:14;266:9,19; 267:8;268:1;272:8; 273:15,17;274:3; 276:12;277:15;281:17; 287:3;290:3,9,13,16; 291:1,7;292:5,17,22; 293:12,12,22;294:8,18; 295:7;298:16;314:6,10; 315:9;325:3,16;327:13, 20
FDA-2013-N-0402 (1) 16:14
FDA-funded (1) 299:18
FDAMA (1)
122:11
FDA's (10)
14:20;22:5;42:20; 43:5;44:13;59:17; 269:14;272:22;292:9; 293:18
FDASIA (3)
290:4;291:22;292:7
fear (1) 278:8
feasible (2) 71:22;99:5
feat (1) 325:14
February (1) 137:20
fed (6)
41:10;243:14;301:4, 11,13;303:6
Federal (3) 17:2;63:4;329:2
federally (1) 63:5
Fee (4)
1:3;10:10;217:22; 218:21
feed (2)
19:12;40:15
feedback (3) 56:6;278:20,20
feeds (1) 60:16
feel (14)

62:19;103:14;126:15; 191:20;192:21;257:3; 261:4;266:19;274:6,8; 298:13;301:19;311:5; 323:13
Fees (3)
13:11;217:21;277:7
fellows (2)
19:1;42:20
females (1) 284:8
ferrate (3)
197:19;198:7;199:13
ferric (2) 196:11;200:8
Ferrlecit (6) 197:20;199:13;200:7; 203:12,13,15
few (22)
11:6;47:16;50:19; 71:1;97:19;99:21; 100:15;101:9;104:18; 118:17;122:3,11; 138:22;148:9;160:13; 176:20;180:8;213:22; 219:7;224:1;230:16; 254:17
fewer (3) 64:16;293:6;296:11
fibrosis (2)
282:3,3
field (7)
147:20;197:14,22; 232:22;283:15;301:14; 328:12
fields (1) 301:15
fight (1) 117:15
fighting (1) 278:10
figure (5) 150:15;177:13;178:8; 188:15;205:5
figuring (1) 49:3
filing (1) 134:15
fill (2) 234:22;296:9
filling (1) 123:14
film (1) 14:20
final (6) 199:6;200:5;243:6; 280:1;312:6;329:9
finalization (1) 134:18
finalize (1) 139:8
Finally (7) 152:22;170:9;202:3;

221:12;234:1;274:21; 288:6
financial (1)
327:3
find (6)
117:21;120:19;175:5;
240:15;327:15;329:4
finding (3)
68:7;75:1;264:8
findings (4)
30:16;66:20;67:20;
285:12
fine (8)
89:6;90:18,22;101:18; 118:11;167:21,22; 176:10
finish (2) 94:7;273:10
finished (3) 81:8;85:11;92:11
First (59)
11:7;14:2,6;21:22; 27:2;44:10;45:4;50:19; 61:9,10;64:12;77:5; 80:17;90:9,10;91:14,15, 16;93:19;96:4;102:20; 110:11;111:10;114:20; 137:20;141:5,21;
143:11;149:9;154:16; 158:13;161:9;183:17; 187:17;189:17;197:14; 198:4,10;200:3;205:14; 219:3;220:12;235:5; 245:19;246:2;252:13; 261:20;264:2,4;283:9; 284:7,17;289:14; 299:12;304:15;309:8, 21;316:12;317:4
fiscal (2)
220:10;328:1
Fischer (14)
2:21;61:11,15,16,19;
72:1,4,14,20;73:3;75:6;
76:6,9;133:11
fit (5)
57:3;173:19;235:7,20;
236:12
fits (1)
175:6
fitted (1)
236:14
fitting (2)
236:3,5
five (6)
15:7;57:11;221:12;
230:1;235:10;295:18
fivefold (1)
292:4
fixed (1)
293:7
flask (1) 152:9
flasks (1)

152:13
flat (1)
243:4
floating (1)
206:19
flow (12)
36:22;197:14,22;
285:3;301:14;305:4,21;
306:7,9;307:2;309:13,14
flow-through (1) 206:17
fluconazole (1) 238:10
fluid (12) 80:10,14;81:10; 282:21;283:7;287:14; 299:9;302:13;305:15, 16;306:9;310:11
fluids (1) 84:5
focus (19) 15:9;20:15;21:2; 22:15;33:10;89:2;137:5; 143:2;179:16,19;213:3; 218:9;226:11;261:1; 263:19;267:3;299:22; 312:16;314:3
focused (10) 40:7;44:15;50:16; 117:12;135:22;144:1,4; 279:14;293:2;303:20
focuses (2) 133:14;194:3
focusing (3) 26:18;137:10;161:19
folds (1) 231:3
folks (3) 265:15;266:9;313:2
follow (3) 46:10;190:12;278:17
followed (3) 197:15;200:4;246:13
following (5) 74:20;110:11;136:2; 204:17;280:14
follow-on (1) 276:4
follow-up (4)
130:19;223:9;258:10; 316:10
FOOD (14) 1:1;3:9,16;5:5;11:19; 221:18;234:17;240:19, 19,21,21;241:7;272:21; 273:1
forced (1) 251:10
forces (3) 251:15;256:7;260:16
forcing (1) 249:16
foreign (6)

$\begin{aligned} & \text { 290:5,10,22;291:9; } \\ & 292: 2 ; 293: 21 \end{aligned}$	$\begin{aligned} & \text { 155:6,10;158:21;159:4; } \\ & \text { 162:22;194:2,4,12; } \end{aligned}$	Friday (2)	G	$\begin{gathered} \text { 232:19 } \\ \text { generating (3) } \end{gathered}$
forget (1) 195:6,16,21;197:10; \quad Friedman (2) ${ }^{\text {(2) }}$				36:2;246:10,11
148:13	201:11;202:11;204:19;	13:1,	gabapentin (1)	generation (1)
forgot (1)	205:10;208:7,22;209:7,	front (5)	$179: 7$	164:10
247:18	9;210:12,14;212:5;	63:11;103:14;111:5;	Gagne (1)	generations (1)
form (28)	242:21;263:15;264:1,	188:11;291:15	70:2	$284: 20$
102:11;108:16,18,19,	16;267:10;270:11;	fruit (1)	gain (3)	Generic (273)
20;112:10;143:4;152:2;	278:1;313:9;315:18,21;	211:9	104:3;132:11;159:2	$1: 3,6 ; 3: 2 ; 10: 9,10,21$
163:15;169:6,8,9;	for	fulfill (1)	gained (1)	12:6,10,12;17:8;18:3,7,
$173: 12,13 ; 175: 9,22 ;$ $181: 19,22 ; 182: 1 ; 183$	formulation-specific (2)	$10: 19$ full (5)	218:3	16,20;19:12;20:14,17,
$\begin{aligned} & 18 \\ & 15 \end{aligned}$	formulato	fu	gaps (3)	$22: 2,5 ; 23: 5,9 ; 24: 1,7$
186:10;210:18;219:6;	270:22	262:15;273:6	gases (1)	25:6,16,19;26:1,2,15,20;
309:12	formulators (3)	fully (5)	167:16	27:3;28:9;30:1;32:3,5;
formal (1)	263:22;270:17;273:12	104:11;148:2,5	gastric (7)	34:6;35:6,10,16;39:15;
323:1	forth (4)	262:22;286:1	78:9;81:5;91:6;240:5,	40:10;41:7;42:6,9;43:2,
formalized (1)	45:2;142:13;143:4;	function (3)	$7,18 ; 241: 1$	7,9,17,20;44:9,12,18;
274:2	252:18	283:11;286:2;302	gastrointestinal (11)	45:1,1,6,8,12,13,17;46:5,
format (3)	forum (1)	functional (1)	78:18;79:2;81:4,9;	9,12,17,19;47:5,7,10,12,
63:22;64:1;159:10	258:7	179:13	114:7;299:8;300:3,7,15;	16,19,21,22;48:2,7,10,
forming (1)	forward (21)	functionality (1)	303:16;314:21	11,13,18;49:1,13,22;
229:5	17:9;24:20;26:17;	142:17	gather (2)	50:1,7,11,12;51:18;
forms (17)	27:13;28:18;46:6;54:4;	functions (1)	95:21;99:8	52:19;54:8;56:20,21,22;
23:5;33:2;53:12;	57:4;63:21;65:18;67:6;	300:8	gathered (1)	$58: 5 ; 59: 3,4,5,11,13,16$
54:13;55:10;77:13;	69:8,21;100:1;140:3;	fund (1)	122:17	60:20;61:13;64:13,15,
103:14;107:3;110:18	214:14;217:3,14;	53:21	Gaugh (23)	21;65:9,11,19;66:4,6,11,
136:8;174:9;176:3;	222:21;274:12;318:14	fundamental (9)	3:1;214:19,20,2	15;67:3,12,19;68:5,8,17,
181:3;186:6;187:13,14;	found (16)	40:12;104:15;147:9;	223:19;225:2;227:4,7,	22;69:4,5,10;70:1,4,13;
221:3	53:18;94:3;134:19;	158:4;163:12;173:4;	13,15,17;228:2,5,15,18;	71:5,8,10,11;75:2,15,19;
formulas (1)	150:20,21;166:15,18;	188:9;258:14;301:11	229:10,17,20;230:5,15;	76:19;89:18;90:4;92:20;
312:20	167:8;206:22;290:13;	fundamentally (7)	231:12,15;232:8	100:12;113:10,15;
formulated (2)	293:16;294:19;296:21;	117:1;179:10;180:15;	gave (1)	114:13,18;116:1;117:4,
103:22;271:6	304:22;317:10,12	184:6;185:21;187:1,19	311:14	6;118:2,16;122:7,15;
formulating (1)	foundation (12)	funded (11)	GDUFA (40)	123:8,11,17;124:4;
162:19	18:7,16;27:11;29:9;	38:2;47:5;56:11;	10:20;17:13,20;18:17;	125:2;126:4,9,14,14,17;
formulation (75)	34:19;51:8;53:4,20;	77:15;137:7,11;191:18;	$19: 17,19,22 ; 24: 11 ; 27: 2,$	127:10,21;128:5;129:6;
23:7;32:11;36:18;	54:4;57:17;135:11;	247:8,8;277:6;302:1	15;29:20;30:15,20;32:9;	130:13,15;132:4,12,14,
38:9;44:1,17;54:10;	286:22	funding (13)	39:13,22;42:11,18,21;	17;133:22;145:1;153:6;
96:16;97:7;100:21;	foundations (2)	54:15;63:2;137:9;	43:12;46:21;50:19;	$157: 18 ; 158: 4 ; 162: 7$
117:18;118:7,13;125:4;	18:18;42:15	141:16;190:14;195:17;	138:1;177:5;191:16,18;	169:2,3;170:10;177:10,
126:22;135:14;140:9,13,	four (11)	213:4,5;217:22;220:11;	215:2;216:14;217:11;	10;185:15;188:21;
14;141:2;145:3,4;	80:9;111:18;147:17;	244:12;247:11;289:11	230:10;231:19,21;	191:16,19;192:2,8,13,
146:13,18,20,22;147:15;	207:4,5;208:22;209:7,	funds (1)	268:17;289:14;291:22;	22;193:4,10;194:20;
150:11;151:10,19;152:5,	22;220:8;308:1;323:11	191:18	293:9;325:20;327:12;	195:6,12;196:11;197:4;
10,19;156:2;158:16,16;	fourth (4)	further (16)	328:2,5	201:2,12;203:9,15,22;
159:1;170:6;176:2;	17:15;20:5;209:10,15	77:12,18,18;103:2,4;	GE (2)	204:19;214:10;215:4,
177:10,11;178:7;179:4;	fraction (5)	104:17;107:5;110:5;	199:16;200:11	14;216:7;218:2,16;
182:19;183:4,7;184:7;	24:3,15;197:14,22;	112:9,17;201:6,22;	general (7)	219:9;220:5,9,12,15;
189:18;197:8;201:13;	285:6	246:1;285:18;298:16;	$123: 15: 12$	221:4,16;222:6;223:1;
209:10;210:15;211:10,	frame (1)	329:1	137:12;158:14,16;	226:8;231:6;245:14;
10;221:4;233:18;236:6;	134:5	furthest (1)	174:2;290:13	250:3;251:16;252:3;
238:9,21;239:7,7,10,16;	framework (4)	205:8	generalizability (1)	253:1;254:12;255:6;
242:12,13,15;243:11,20;	162:21;163:4;235:7;	future (16)	319:2	256:7;257:18;264:9,15,
244:15,17,21;263:13,20;	288:13	33:16;43:10;49:18,20;	generaliz	16;265:1,5;266:2;267:9;
277:20;317:19	freaks (1)	51:16;57:1;62:10;66:22;	322:7	268:4,9;270:4,8,14;
formulations (59)	118:4	74:5;97:3;148:12;153:7;	generalized (1)	278:6;288:10,14,15;
36:3,9;38:21;39:4;	frequency (2)	159:1;211:1;279:7;	$319: 16$	289:22;290:15,19;291:6,
42:7,10;43:3,6,9;58:10;	69:2;290:9	295:22	generally (9)	20;293:11,16,19;294:7,
97:12;119:14;130:6;	frequent (1)	FY (2)	$44: 22 ; 45: 2 ; 46: 4$	10,13;295:2,9,14,18;
146:10;147:21,22;	$293: 5$ frequently (2)	1:5;18:2	$47: 11 ; 107: 13 ; 139: 12$	296:16,18;297:4,9,12,
$\begin{aligned} & 148: 10,18,22 ; 150: 4,9 \\ & 16 ; 151: 8,13 ; 153: 22 \end{aligned}$	$\begin{array}{r} \text { frequently (2) } \\ 290: 7: 320: 22 \end{array}$		148:5;243:7;285:14	$\begin{aligned} & 17,18 ; 312: 22 ; 324: 6 ; \\ & 327: 11,14,16 \end{aligned}$
16,151:8,13,153:22,			generate (1)	327:11,14,16

Generics (46)	205:5	governing (1)	45:10;51:13;62:1,8,	gut (3)
13:12;24:2;28:15;	glatiramer (1)	22:1	20;64:14;66:12;70:2;	234:18;238:21;306:20
29:10;35:2;42:3;48:18;	27	government (1)	72:15;73:6,14;75:7;	guys (5)
49:1;52:9;57:9;64:16;	gleaned (1)	247:8	84:4;88:22;103:8;113:9;	154:17;172:2;190:20;
65:13,17;67:20;71:5;	194:19	GPhA (18)	125:18;172:9;195:17;	192:5;298:6
74:15;83:6;113:16;	global (10)	3:2;192:18;214:19;	213:6,9;216:16,22;	
114:9;116:6;121:11,12;	194:19;199:16;	215:7,15,19;217:4,10;	225:15;227:10,21;	H
129:15;136:1,4;137:15,	201:14,17;226:4;	224:10;225:4,10;	228:10;231:16;235:5,	
20;139:11;141:22;	237:21;248:12;271:17;	228:14;262:4;264:19;	10;238:8;239:4;266:8;	half (2)
158:14,14;159:21;	305:4;307:2	266:7;274:21;277:13;	277:1;299:5;308:15;	152:3;245:4
162:5;175:7;190:2;	globalized (1)	279:4	312:15	half-life (1)
195:1;215:20;220:12;	138:13	grade (3)	groups (26)	168:20
225:22;249:16;270:10;	globally (1)	271:12;272:20;273:7	59:9,15;75:11;118:19;	half-lives (3)
289:17;291:4;294:17;	194:21	grades (3)	165:6;217:2,9,14;218:6;	116:11,13,22
$312: 18,18$	globules (1)	$271: 11 ; 272: 16 ; 273: 4$	$222: 3 ; 223: 20,22$	Hampshire (1)
generic-to-generic (1)	105:11	graduate (1)	226:11;227:20;228:13,	1:18
45:10	gluconate (5)	310:11	16,19;229:5,6,8;230:6,7,	hand (5)
geometry (2)	196:12;197:19;198:8;	grams (3)	12;266:11;274:22;	146:19,21;184:15;
282:22;287:6	199:14;200:8	272:22,22;273:	298:17	216:13;266:20
GERD (2)	gluteus (1)	grant (2)	group's (1)	handbook (2)
119:5,10	208:13	125:15;137:	68:3	321:13,14
geriatrics (1)	goal (3)	granted (2)	growing (2)	handing (1)
124:2	60:2;296:17;315:17	262:7;292	20:4;24:1	323:12
gets (14)	goals (3)	granting (1)	grows (1)	handle (2)
$76: 21 ; 87: 13 ; 145: 8$	216:14;218:2;268:17	123:19	121:1	160:11;262:7
171:1;173:21,22;179:4;	goes (8)	grants (6)	growth (1)	handled (1)
189:15;190:14;228:21;	29:19;118:2;251:3;	39:9,19;55:15;63:4;	60:19	201:14
$258: 8 ; 266: 14 ; 268: 3$	252:16;262:10;276:18;	$205: 7 ; 244: 12$	guess (9)	hang (1)
324:17	280:18;281:9	granular (1)	73:22;97:1;104:2;	322:17
GI (25)	gold (2)	201:8	132:4;151:1;174:3;	happen (5)
54:16;55:1,6;83:22;	83:9;99:9	granularity (1)	278:7;298:8;319:19	60:5;87:1;115:4;
84:5,14;90:21;91:7,16;	Good (102)	173:20	guidance (55)	180:14;206:19
92:1,10,14;93:3,8,17;	10:3;12:2,7,11,17;	graph (3)	25:2;27:17;28:7,8,8;	happening (8)
95:10,18;96:10;97:16,	13:8,10,13;34:17;50:4;	168:4;250:22,22	31:5,14;33:4;39:13,21;	77:5;79:1;87:10,15,
20;98:3,18;152:18,20;	54:9;74:1;76:6;79:10;	graphic (2)	41:14,15;42:5,6,7,12,22;	22;263:17;265:9;271:5
301:2	85:1;86:22;87:1;89:5;	197:18;199:9	43:11;51:9;52:2;53:1;	happens (9)
giant (1)	90:8;99:4;102:12;	graphically (1)	57:19,21;58:10,19;	23:6;51:18;54:22;
37:15	103:20;104:12;105:9;	252:21	67:21;110:7;111:12;	80:20;173:11;178:3;
girl (1)	107:16,17;110:11;	Great (18)	134:18;139:7;140:6,7,	179:18;184:6;309:15
284:13	111:10;112:1,4,5,6;	1:20;20:19;22:18;	17;144:21;165:3;	happy (5)
girls (1)	113:5,22;114:1;133:5;	61:16;111:4;112:22;	172:18;198:7;204:17;	71:15;188:3;202:13;
284:14	135:18;136:8,14,17,19;	131:7;156:19;172:7;	216:9;220:11;221:8;	223:4;297:21
Gisa (1)	139:14;152:7;157:5,5,	200:13;231:12;258:9;	223:13,17;249:5;250:1;	hard (11)
13:10	19;160:3;161:14;	259:14;272:18;279:9;	256:2;265:5,17,18,22;	70:11;73:20;74:8;
Given (17)	163:11;165:1;176:2;	298:12;318:19;323:21	272:8;274:14;275:8;	78:2;128:12;170:18;
17:3;20:19;22:18;	193:20;205:3;207:8;	greater (7)	314:6;317:7	226:3;229:20;287:19;
61:4;64:4;72:8;119:12;	208:8;209:16;210:1,6,7;	178:5,12;252:9,10;	guidances (36)	323:22;326:3
125:9;143:9;180:1;	211:2,11,16;214:8,11,	253:19;292:7;319:4	19:7;24:9,11,16,17,21;	harm (2)
186:4;233:17;239:1;	12,21;227:11;230:21;	greatest (2)	27:14;28:2,3;30:16,19,	293:4;296:3
245:8;309:16;324:18;	233:19;234:2,13;244:3,	293:1;318:3	22;31:13,19;32:1,7,8;	Harvard (2)
327:5	9;245:20;246:5,9,11;	greatly (3)	33:5,15;39:12;40:17;	61:12,22
gives (4)	247:1,4,4;248:1,4;	215:1;218:22;250:17	41:11;50:20;51:6;58:3;	harvested (1)
43:7;50:3;152:17;	249:22;252:1,14,15;	green (1)	78:4;108:5;109:1;144:8,	180:20
169:9	253:7;256:3;258:16;	16:2	18,18;145:6,10;250:6;	hat (1)
giving (7)	259:8,20;265:10,11;	greeting (1)	259:18;265:16	322:17
13:18;176:18;190:5;	267:19;269:4;271:16;	326:20	guide (3)	hate (1)
193:22;203:7;233:16;	278:12;284:1;289:3;	Greg (2)	26:9;141:4;144:16	161:7
263:8	312:10,13;319:2	87:6;308:16	guidelines (3)	head (5)
glad (2)	good-performing (3)	grey (1)	74:10;246:12;279:13	154:11;155:3,5;
56:11;170:13	253:10;259:6,7	253:3	guides (1)	170:18;248:12
glass (3)	Gordon (7)	ground (1)	143:19	Health (19)
81:12;206:16;220:22	2:2;76:12,15;125:3;	14:6	guise (1)	2:9;4:14;42:13;57:6;
glasses (1)	134:12,13;299:18	group (37)	172:18	62:21;121:20;137:15,

21;141:21;193:18;	heuristics (1)	HOLQUIST (2)		265:19;266:12;268:14,
220:8;283:18;288:4	163:13	2.7.8	hydration	,
289:1,6,7,9;293:1;	Hi (1)	home (1)		19,20
297:10	278:1	62:20	drochlo	IID-related (1)
healthcare (5)	high	hom	140:6	267:7
49:6;63:16;114:9	94:1;104:6;132:3	124:17	hydrodynamic (7)	III (8)
199:17;313:2	139:21;140:18;142	hone (2)	300:2;306:3,5;307:13	78:13;3
healthy (13)	43:1;146:9;220:11	34:4;292:	13;308:4;309:18	15:12,14;317:13
43:21;44:6;	253:7;256:9;260:13	hook (1)	hydrodynamics (4)	318:21
200:1;243:8;281:1	270:3;314:8	37:14	301:12;304:14,19	ileum (5)
283:5;284:3;286:19;	higher (10)	hope (6)	311:4	93:4,22;94:2,19;95:3
287:1,12,16;316:1	75:20;152:17;17	28:10;5	hypothe	ilium (1)
hear (4)	195:5;225:21;238:18;	176:7;217:8;	58:1	80:8
11:9;56:1	255:19;269:9,16;271:1	hoped (1)	hypromellose	illogical (1)
270:19	higher- (1)	66:	272:14,18,21;273:3,5,	169:10
heard (14)	51:2	hopefull	7	illustrate (5)
16:11;110:1	higher-	113:7;127:2		93:12;156:3;249:20;
115:10,11;148:16	51:4	Hospit	I	250:21;251:21
154:7;222:8;263:10	highest	2:22;61:12,2		illustrated (3)
264:12;289:16,22;296:6,	45:13;163	ho	ibuprofen (2)	250:22;252:21;255:4
20	high-imp	93:15	;303	illustrating (2)
Hearing	220:8	hours (12)	idea (18)	252:1;314:11
1:7:10:6,10	highlig	7:14	47:6;51:2;89:17;99:5,	illustrative (1)
17:10;217:12;229:2	103:2,4;180:	7;96:4,5,6,12,17;97:4;	7;102:12;147:18;155:3;	197:12
258:8;326:3;327:19	181:16	252:	161:19;164:13;175:12;	IM (2)
hearings (2)	highli	houseke	178:6;244:8;279:9;	129:5;130:9
14:15;327:1	133:6,21;162:	11:7	280:8,20;281:16;288:16	image (1)
heart (2)	highlighting (1)	HPLC	ideal (2)	280:9
135:16;163	146:17	198:20	99:21;196:	images (2)
earts (1)	highli	HPMC	idealized (1)	282:9;286:
215:4	148:9;165:1	316:11	287:6	imagine (3)
eat (1)	highly (8)	hub (1)	Ideally	94:4,5;302:9
106:7	55:8;75:13;118:9;	174:1	99:12,14;100:10,10	imaging (3)
help (36)	198:17;260:4,5;290:1;	huge (13)	259:16	81:9;281:12,12
15:10;26:7;29:7;31:9,	320:1	20:7;23	ideas (8)	immediate (3)
11;38:21;39:6,14;47:6;	high-resolu	31:14;42:13;48:12;57:6,	:16;126:13;160:8;	66:15;89:5;142:8
49:3;55:9,22;56:1,19;	27:7;29:4;281:12	17;58:12;67:4;160:6;	4:7;230:21;260:22;	immediate- (1)
58:18;60:22;65:7;67:11,	high-strength (1)	313:6;324:7	282:10;298:12	239:9
21;68:19;83:2;85:14;	252:5	human (14)	identical (2)	immediate=release (1)
120:11;144:16;164:17;	hind	36:14;79:19;80:6	129:7;253:17	90:18
217:9;226:17;227:10;	208:1	22;92:10;93:3;97:	identification (1)	immediate-release (4)
232:19;234:15;243:17	hip	198:17;208:5,13;	220:14	24:19;77:12;175:22;
268:17;270:7;291:5;	162:1	212:22;237:17;244:13	identified	239:6
293:2,13	historical	humans	2:4;75:3;125:17	immensely (1)
elped (2)	149:7	180:5	141:1;281:17;293:	27:4
175:15;292	historically (2)	humidity	identify (12)	immunogenicity (4)
helpful (7)	151:12;171:4	212:18	31:7;65:3;68:2	28:21;203:1;212:10,
71:16;225:12;226:18	histories (1)	humor	23:15;125:10;183:14;	15
227:3,16;295:7;313:18	171:4	33:9	184:12;197:2;198:19;	immunosuppressant (1)
helping (1)	histo	hundr	217:18;310:16;316:21	44:11
143:11	148:13;164:4,15,16;	18:11;160:1	identifying (8)	immunosuppressants (1)
helps (3)	170:20,21,22;171:1;	hundreds (3)	22:16;29:2;30:10	125:16
44:17;193:8;226:11	172:4,11,16	69:3;270:16,16	39:11;50:20;55:20;	mact (45)
Herculean (1)	hit (3)	hurdle	68:18;258:16	20:13;21:12,20;22:22;
325:14	146:9;147:12;155:7	17	identity (1)	26:15;42:13;43:1;57:6;
herding-the-	hitting	Hussai	251:3	59:14;65:14;71:4,5,9;
231:12	64:3	3:4;133:3,4,5;13	ignore (3)	73:20;74:2;94:10;
ere's (8)	hoc (1)	142:8;144:14;190:16	134:7;135:13,14	111:16;131:18;139:7,8;
81:20;93:19;151:22	309:8	hydrat	II (5)	180:21;184:17;185:17;
153:10;175:22;302:15;	hold (1)	167.	78:13;148:22;149:4;	186:1;212:19;218:14;
316:3;321:12	206:1	hydrated (1)	152:2;314:12	220:11;234:16,17;
eterogeneity (3)	holding (2)	166:12	IID (14)	244:19;263:20;268:13;
303:12,14,15	214:22;215:5	hydrates (3)	222:13,16;264:13;	288:10;291:20;292:19;

295:8;297:4,7,10,11;	15;270:6;278:2;293:3,	19:16;122:8;195:4,11;	infants (2)	40:20;41:12
314:15;315:11;316:3,16,	10;297:13,19	217:18,19;289:20;	119:10,10	inherent (1)
1	improved (4)	290:16;291:21;292	infer (1)	204:17
impactful (1)	55:15;292:21;303:19;	increasing (6)	55:2	inhibit (2)
245:16	311:7	24:17;67:16;69:2	infiltrate (2)	244:21;318:5
impacts (6)	improvement (4)	139:12;226:2;292:	167:16;188:20	inhibitor (1)
17:17;20:9;29:8;	89:13;251:18;300:1;	increasingly (3)	infinite (1)	234:18
$65: 12 ; 178: 17 ; 185: 4$	319:13	$138: 13 ; 139: 10,16$	304:17	initial (8)
impedance (1)	improvements (1)	incredible (1)	inflates (1)	24:18;57:5;62:6;70:4;
283:6	266:12	327:2	250:17	200:4,14;276:10;294:19
implement (1)	improving (10)	incredibly (3)	influence (1)	initially (2)
$257: 10$	137:5;164:6,7,11;	60:19;61:5;320:21	74:10	69:11;249:12
implementation (1)	177:15;222:13,14,19;	incremental (1)	influences (1)	initiate (2)
58:19	291:3,4	204:14	309:18	276:14;295:3
implemented	impurities (3)	independent (6)	influential (1)	initiated (1)
18:9;65:16;266:19;	28:21;29:2;221:6	162:17;247:11;268:8;	74:8	196:10
272:1;292:18;295:21	in/last (1)	274:18;276:6;277:17	inform (3)	initiative (6)
implementing (2)	143:11	in-depth (1)	69:16;153:19;196:16	217:11;218:15;223:3;
18:8;84:3	inactive (4)	114:2	informal (1)	$224: 12 ; 274: 7,11$
implication (3)	32:12;129:7;271:20;	index (9)	14:7	Initiatives (7)
89:20;97:5;98:	322:3	50:17,21;51:1	informally	1:4;10:11,21;116:3;
implications (1)	inappropriate (2)	52:7;83:12;119:1	56:6	216:18;289:6;328:2
318:15	250:2;264:6	165:14;220:6	information (44)	injectable (4)
implicit (1)	Inc (2)	India (2)	11:1,4;16:20;17:1;	129:1,4,5,19
163:17	2:6;4:11	270:16;291:9	23:16;24:10;27:17;48:1;	injectables (3)
importance (4)	incentive (2)	Indian (2)	50:3,4;64:11;65:14;	39:18;128:20;219:13
69:22;263:11,12;	294:14;298:15	124:20;291:11	70:15;74:22;87:13;	injectors (2)
303:21	incentive-based (1)	indicate (3)	111:16;115:8;120:5,17,	40:22;219:13
important (62)	65:6	16:3,22;68:16	18;121:22;122:1,14;	innovation (7)
20:15;22:9;31:15;	incentives (3)	indicated (1)	126:15;128:3;130:22;	220:3;222:20;265:20;
40:22;43:4;46:16;50:8;	294:3;298:3,7	109:7	132:11;145:14;153:16;	267:7;274:15;278:18;
52:22;53:6;56:7;70:8;	include (11)	indicating (1)	179:11;187:20;211:2;	290:4
73:21;82:22;106:9;	91:21,22;174:14;	300:19	233:20;238:12;240:13;	innovations (1)
108:2;110:4;133:7;	222:10;283:3;284:4;	indication (1)	266:16;268:20;271:21;	123:18
137:13,22;140:2;	292:20;297:3;300:12;	131:1	272:10;289:10;294:11,	innovative (4)
141:10;142:13,20,22;	308:6;314:7	indications (2)	16;297:16;328:14	33:20;123:8;177:9;
143:3;144:12;149:2;	included (4)	114:20;128:8	informative (1)	219:8
152:1;153:1;192:16;	165:7;170:7;174:10;	individual (8)	327:19	innovator (4)
197:18;199:10;201:19;	308:7	100:17;101:1;174:8;	informed (1)	265:1;269:22;270:5;
202:5;210:21;211:22,	includes (6)	191:6;224:21;242:10,	144:16	312:21
22;215:3;216:6,13,20;	32:20;40:19;86:15;	19;305:8	infusion (1)	innovator's (1)
218:21;222:8;231:11;	170:7;269:15;282:19	induction (1)	203:2	104:16
234:12,20;243:6;244:1;	including (4)	195:5	Ingelheim (1)	inpatient (1)
291:17;292:17;293:9;	14:21;288:15;294:3;	industry (61)	87:8	128:18
294:6;295:11,22;297:2,	314:1	$10: 17 ; 13: 14 ; 19: 8$	ingredient (7)	Input (23)
$16 ; 305: 1 ; 307: 19,19$	incomprehensible (1)	$20: 16 ; 22: 5,13 ; 23: 13$	$34: 10 ; 104: 9 ; 117: 8$	1:5;10:16;13:20;14:3;
309:2,18;311:13	84:21	31:18;47:19;53:4;57:18;	125:8;180:5;271:21;	15:10;17:22;18:1;52:21;
importantly (5)	inconclusive (1)	61:1;87:5,10,17;107:2;	322:3	56:17;60:21;217:6,12,
66:17;178:14;198:10;	210:8	122:12;138:13;145:1;	ingredients (7)	17;223:18;224:11;
220:13;289:21	inconsistent (1)	159:19;160:4;171:2;	25:10;26:22;32:12;	226:21;227:2,12;
Imports (1)	272:9	173:3;177:2;185:15	129:8,10;178:1,8	230:18;247:3,5;280:18;
292:2	incorporate (1)	188:22;189:21,22;	ingress (1)	328:15
impossible (1)	158:10	191:15,16,19,192:13;	166:20	inputs (2)
183:5	incorporated (3)	193:1,4,10;215:4,14;	inhalation (15)	18:13;57:3
impressed (1)	140:8;190:21;248:13	216:17;218:2;219:5;	25:11;30:1,7,9,19;	inside (3)
36:19	incorrect (1)	222:17,22;223:1;225:9;	31:8;53:16;56:4,8,14;	182:19;184:7;187:6
impressive (2)	139:21	228:14,16,19;246:19,21;	57:20;142:12;143:4;	insomnia (1)
84:18;137:18	increase (10)	247:9,13;261:8;265:21;	286:7,13	326:8
improve (19)	19:20;47:15;68:21;	266:22;268:17;274:17,	inhaled (1)	inspect (3)
31:7;33:8;89:12;	124:4;171:18;189:1;	22;277:11;278:7;	285:6	290:5;293:14,22
171:18;218:8;229:14	218:16;226:4;292:9;	289:12;298:16	inhaler (1)	inspection (7)
230:1;243:22;244:4;	297:15	industry's (2)	40:19	164:20;289:15;
249:21;260:17;268:10,	increased (10)	217:5;222:16	inhalers (2)	290:14;292:6,9,12,13

inspections (12)	interactive (2)	250:9;252:5;253:18,	199:16	8;269:8;277:20;289:14,
290:9,10,17,19,21;	16:6;175:12	21;255:16,18	investigator (1)	15;307:7;320:14
291:2,5;292:10,21;	interchange (1)	intervals (1)	37:11	issued (1)
293:6;297:15;298:3	202:18	252:6	investigators (1)	294:8
Inspector (2)	interchangeable (1)	intervene (1)	101:18	issues (28)
290:13;291:16	120:7	282:13	investment (6)	28:20;42:1;58:7,20,
inspectors (1)	interdisciplinary (2)	intervention (2)	21:5;34:18;57:7,8,14;	22;71:7;84:19;113:9;
190:6	247:19;248:2	281:3;282:13	327:2	124:19;146:19;147:8,
inspector's (1)	interest (26)	interventions (2)	invitation (3)	16;148:1;155:21;
292:13	17:7;40:2,4;56:13;	67:22;68:20	161:15;205:4;232:13	156:11;158:9,20;
inspects (1)	59:6;62:13;66:3;67:4,6;	interview (1)	inviting (2)	190:10;212:2;220:8,14;
290:7	69:1;103:7;113:8;	216:4	102:21;154:3	261:2;277:22;289:19;
Instead (1)	148:21;229:4;234:14;	intestinal (3)	involve (1)	291:19;292:22;301:18;
271:10	235:15;237:20;277:9;	78:18;80:14;81:6	126:10	314:20
Institute (5)	285:20;287:3,22;	intestine (8)	involved (7)	items (2)
2:18;3:5,12,17;85:4	289:13;316:13,14;	78:17;80:16;81:15,15,	60:19;61:5;140:8;	223:10;247:7
institution (1)	325:9;328:12	17;91:7,9;95:1	240:1;308:4;323:6;	iterative (2)
127:5	interested (14)	intestines (1)	324:3	200:3;224:22
institutional (1)	10:19;16:18;56:16;	307:4	involvement (1)	IV (12)
126:12	66:12;67:17;68:4;74:16,	into (77)	217:20	78:14;100:21;102:16;
instructors (1)	17;75:7;180:10;192:14;	13:20;19:4,12;21:15;	involving (1)	130:8;194:2,4,12;
159:22	193:7;235:17;328:10	23:16;24:7,22;30:16;	220:9	195:20;201:12;202:9;
instrument (2)	interesting (15)	36:5;40:15;41:10;49:8;	iPD (1)	204:10;314:12
. 34:1;109:17	49:2;67:9;68:11;69:7;	52:5,21;53:8;54:11,13;	83:19	IVIVC (16)
instrumentation (1)	149:8;151:2,17;198:22;	56:12,17;57:3;60:16;	IPEC (10)	207:20;209:10,12;
201:9	232:18;239:21;241:15;	62:9,10;80:20;82:10;	4:17;180:9;263:5,9;	210:7,13,22;211:18;
insufficient (1)	242:17;267:11;295:17;	101:15,16;105:19;	264:19;266:7;267:17;	214:1;234:11;239:15,
269:2	313:1	112:13;116:20;147:5;	275:8;277:11;279:3	17;242:1,9,14,18,20
insurance (3)	Interestingly (1)	148:12;149:6;158:19;	IQ (2)	IVIVCs (1)
49:7;120:17;123:2	185:8	163:15;171:20;173:19;	277:11;279:3	214:2
insurers (2)	interests (178:4;179:4,13;183:4;	IR (5)	IVPT (1)
63:7;297:8	231:7	186:11,12;187:7,20;	89:4;92:12;97:20;	38:15
integrate (2)	interface (1)	189:15,17,18,20;190:9,	99:15;100:21	J
integrated (8)	interference (1)	222:2;224:11;226:13;	39:14;194:2,4,12,20;	
36:5;146:13;153:11;	198:12	227:9;229:6,9;230:18;	195:6,6,15,20,20,21;	James (4)
169:13;170:3;172:21;	intermediate (2)	231:3;234:1;235:7;	196:2,6;197:5;198:4,5,9,	2:11;4:4;298:22;299:2
311:13,16	70:10;218:1	251:10,17;263:16;	14;199:1,17,21;200:12,	Janet (2)
integrating (2)	internal (6)	264:5;279:4,10;284:4;	17,22,22;201:12,18,20;	162:1;328:4
141:2;143:21	18:9;19:2;28:22;	300:22;308:6,10;	202:1,10;203:4,5;204:3,	Janki (1)
integration (7)	51:13;58:12;279:3	321:16;328:15	10;220:19	213:8
139:17,20,22;141:9,	internally (5)	intra-manufacturing (1)	irrelevant (1)	Janssen (1)
18;142:2;312:4	43:14;52:18;58:8;	165:21	119:18	299:12
integrity (1)	228:10;275:17	introduce (3)	irritating (1)	January (1)
291:13	internet (1)	11:22;89:22;103:12	260:6	315:11
Intellectually (1)	151:12	introduction (3)	irritation (20)	JECFA (2)
171:17	interoccasion (2)	61:17;172:14;232:12	41:19;248:19,22;	272:18,22
intended (7)	244:11;247:7	intubation (8)	249:4;250:7;251:1,2;	jejunum (8)
108:18,19;162:20;	interplay (1)	55:6;80:3;93:2,14;	254:8,18,19;255:1,3;	80:8;93:4,21,21,21;
175:20;250:1;276:20,21	299:7	. 102:4,5,9,11	256:4,13;257:11,15,21;	94:17,18;95:3
intends (1)	interpretation (1)	inventor (1)	259:11,16,19	Jennifer (1)
22:13	318:12	87:18	irritations (1)	238:8
intention (2)	interpreted (2)	inverse (1)	221:11	Jessica (5)
111:15;161:4	87:3;218:13	306:21	island (2)	323:7;326:2,5,11;
interacting (1)	interpreting (1)	invest (2)	124:19;161:10	329:4
314:22	86:3	245:9;327:5	isolation (1)	Jie (2)
interaction (4)	inter-product (1)	invested (1)	$311: 7$	213:6,8
140:9,14;212:5;	201:7	112:18	issue (24)	$\operatorname{Jim}(3)$
234:18	interrupt (2)	investigate (3)	43:15;70:9;74:5;87:8;	45:5;312:6,8
interactions (9)	11:8;14:8	274:17;275:1;301:19	120:3;126:5;135:17;	job (3)
106:8,14,16;168:18;	inter-species (1)	investigation (2)	157:18;184:8;201:16;	79:10;139:2;325:14
178:15;212:8,11,13;	208:9	146:9;187:22	248:21;257:11;258:3,	Johnson (1)
320:16	interval (6)	investigational (1)	13;259:1;260:14;262:4,	152:2

joined (2)
21:22;162:18
joining (2) 137:2,3
Joint (1) 273:1
Josh (1) 70:2
Journal (2) 296:21;319:22
juice (1) 149:20
Julia (1) 284:11
June (2) 16:17;328:7
justify (4) 131:5;163:14;273:7; 274:5

KA (1)
$90 \cdot 10$

Kalydeco (1) 132:7
Kathleen (2) 5:4;12:2
keep (8) 11:10;14:5;17:4,4; 168:2;216:13;278:10; 292:1
keeping (1) 135:5
Ken (8) 103:15;137:2;138:6; 145:12;161:10,12; 176:11;193:15
Kenneth (2) 3:11;161:13
Kentucky (1) 176:14
Kesselheim (1) 63:12
ketoconazole (2) 238:11;243:10
key (10) 78:20;138:21;153:20; 170:11;215:2;263:21; 265:3;266:17;271:18; 282:13
kg (1) 238:19
kids (2) 284:8;286:19
kilogram (1) 199:8
Kimbell (1) 284:11
kind (21) 46:8;51:17;62:3; 75:10;100:6;101:16; 154:17;171:20;211:9;

227:12;233:10;237:14; 250:19;254:7;256:20; 261:2;264:1;302:7; 306:12;312:4;327:4
kinds (7)
68:11,12;227:2;
261:16,17;300:13;303:8
kinetic (1) 198:22
kinetics (7)
90:9;108:1;115:9;
118:11,12;119:13; 127:19
knew (1) 168:9
Knowing (1) 126:17
knowledge (53)
104:21;106:7;112:3; 120:12;135:3;136:9; 139:21;141:17;142:3,7, 14,18,21;143:7,18,19; 144:6,9,11,15,18;145:7; 146:7,14,14;147:2; 153:21;154:6;156:1; 163:13,22;164:2,14,19; 165:8:166:7;169:21,22; 170:6,16,17;186:13; 188:21;189:2,20;218:3; 233:13,14;240:2; 245:22;262:13;281:17; 311:22
known (6)
166:14;168:8,9,19; 195:20;236:1
knows (6)
60:15;105:1;215:6; 312:15;313:21;321:13
Kortepeter (2) 13:3,3
KR (2) 200:21;201:3
Krista (1)
323:17
\mathbf{L}
lab (6)
27:6;29:6;34:16;55:3; 140:21;206:13
label (4)
122:10;183:10;
294:10,15
labeled (1) 119:9
labeling (6)
183:11;294:7,21; 295:4,6;296:2
labels (7)
295:9,16,17,18;
297:17;319:14,14
labile (17)
168:13,18;195:15,20;

196:2,6;197:5;198:4; 199:1,21;200:12,17,22; 201:18,20;202:1;204:3
laboratories (2) 19:2;27:19
laboratory (1)
184:10
labs (5)
18:22;26:14;39:5,6;
42:20
lack (9)
35:6,16;162:7;180:10;
264:7;291:2;300:19;
315:11;319:7
lacking (1) 223:13
lactose (5)
313:13,13;321:3,3,8
lady (1)
150:22
$\mathbf{l a g}$ (1)
209:19
laid (1) 191:20
lamotrigine (2)
312:21,22
landscape (2)
43:5;53:14
large (29)
20:3,8;21:1;22:19;
24:3;31:15;33:11;35:15; 40:4;48:5;62:17;68:12; 73:8;75:18;128:2; 165:17;181:17;191:10; 215:13;230:21;231:16; 307:8,20;314:13; 315:19;316:7;317:2; 321:3;324:8
largely (2) 203:4;256:5
larger (5)
161:21;168:12;203:1, 7;208:17
largest (2)
29:22;73:20
last (34)
16:15;18:1;47:16;
63:12;65:22;69:20;
74:20;75:6;90:12;92:7; 94:8;97:12;99:17;124:3;
136:5;149:21;170:13;
177:5;185:7;189:5;
212:1;216:5;268:5;
276:13;287:2;296:4,13;
309:3;314:6;319:13;
322:2;323:11;324:17;
326:7
late (2)
94:18;233:21
later (5)
45:6;90:1;94:22;96:7;
180:8
Laughter (5)

73:1;149:17;160:1; 245:10;310:13
law (2)
63:1,14
Lawrence (2) 162:19;277:10
laws (3) 304:3;310:1,2
layer (2) 309:6,7
layers (1) 174:11
lays (1) 72:19
leachables (1) 221:2
lead (4) 19:4;148:11;150:17; 172:15
leaders (1) 325:16
leadership (1) 327:9
leading (7) 18:14;23:15,20;37:22; 57:21;136:3;201:21
lead-ins (1) 176:20
leads (3) 19:22;109:20;176:1
learn (3) 11:2;174:17;178:7
learned (3) 111:6;134:12;179:12
learning (3) 80:15,17;151:6
least (15) 21:9;25:15;164:15; 174:2;196:15;210:6; 211:4,22;215:6;245:3; 247:12;284:20;313:20; 318:2;320:5
leave (4) 15:21;141:20;198:18; 242:11
leaves (1) 167:15
led (2) 23:22;78:2
left (21) 93:19;96:2;149:10; 181:12;183:1;209:7; 213:6,8;242:13,19; 252:2;253:4;254:12; 255:6;284:18;285:4,8, 14;286:6,12;302:8
left-hand (1) 167:19
leg (1) 208:12
lending (1) 163:19
length (1)

169:4
less (13) 119:9;122:4;207:15; 210:4;212:13,14;246:9; 250:11;252:11;270:11; 314:4;320:10;328:8
lesson (1) 148:11
letter (2) 216:14;318:17
letters (3) 291:8,10,13
letting (2) 248:14;326:12
level (19)
94:1;104:6;120:2;
126:12;159:20;168:11;
173:4;193:11;234:18; 242:9;243:1,3;251:13;
271:1,12;273:17;
276:21;277:4;318:2
levels (11)
107:12;151:6,15,19; 152:17;251:10;269:9, 16;273:5,13;321:7
leveraged (1) 73:9
leveraging (1) 281:19
levothyroxine (3)
165:12,13;166:12
Lialda (5)
93:18;94:21,21;95:14;
96:6
libbed (1)
325:1
lies (1)
304:8
lieu (1)
292:8
life (3)

$$
212: 17 ; 220: 5 ; 282: 7
$$

lifespan (1)
312:16
light (4)
15:22;70:2;167:2;
197:15
lighter (1) 253:2
likelihood (1) 122:8
likely (4)
48:13;67:12;138:2; 296:8
Lilly (2) 87:7,8
limit (1) 273:2
limitations (5) 14:19;198:15;201:7; 204:16;221:8
limited (7)
24:4;33:12;37:14;

40:10;55:8;192:6; 222:11
limited- (1) 64:12
line (6)
63:11;78:12;114:22; 197:16;251:2,4
lines (1) 147:11
lining (1) 39:3
link (5) 19:7,14;109:1;110:17; 174:14
Linked (5) 19:4;24:22;49:8; 110:13;195:15
linking (1) 237:6
links (4) 52:5;53:8;54:6,13
Lionberger (90) 3:8;10:3,7;13:16,17; 61:18;62:3;63:3;68:3; 71:1;72:5,10;73:4; 74:11;76:7,11;78:22; 80:4;84:17;85:12;88:2, 5,9;98:15;100:5;102:17, 21;104:13;108:6; 111:21;112:21;113:1; 116:2;120:14;122:22; 124:8;125:1;131:8; 132:21;133:2;142:5; 145:22;154:4;155:20; 160:14;161:3;170:15; 176:11,13;177:6;188:5; 193:14;194:11;202:15; 204:20;213:10;214:15, 18;216:5;218:19;223:5; 227:19;228:3,13,17; 229:3;232:6,9;245:1; 246:14;248:7;263:3; 275:4;279:15,18,22; 288:9,18,21;298:1,19, 21;310:9,15;312:5; 320:12;322:9,21;324:14, 20
Lionberger's (3) 107:4;133:20;137:16
liposomal (1) 39:12
liposomes (2) 25:12;39:9
liquid (1) 81:17
list (16) 10:21;17:21;72:13; 84:16;203:10;215:11; 216:18;217:7;229:22; 230:21;231:4;232:4; 234:5,8;235:3;328:4
Listed (13) 147:17;180:3;195:7;

196:9;197:3,21;198:5; 93:7,8
200:7;203:11;206:9; \quad logic (1)
252:3;271:12;293:17 145:16
listen (3)
10:15;13:19;325:16
listening (3)
16:6;65:21;133:8
listing (2) 232:5;317:1
literally (1) 129:17
literature (18) 100:20;126:22; 144:10,13,14;147:3; 153:3;154:21;166:8; 168:14;195:9;206:13; 208:5,6;234:7;235:4; 306:17;313:19
little (41) 26:1,16,18;35:7; 43:16;54:6;72:15;74:21; 103:17;105:2;109:12; 126:2;142:6;144:11; 148:16;154:9;157:22; 159:12;161:18;163:19, 19;178:5;186:21;190:9, 13;196:17;206:2; 224:22;249:21;250:21; 251:12,18;252:16; 260:17;294:13;309:19; 315:3;316:13;320:10; 325:2;328:8
LIU (1)
167:10
live (5)
10:6;16:5;124:16; 159:14,14
living (2) 164:4;170:21
loading (1) 205:21
lobby (1) 11:20
lobe (1) 285:5
lobes (4) 282:5;283:5;285:14; 287:18
local (6) 92:11;99:15;305:13, 13,19;308:12
local-acting (3) 91:1,4;95:19
locally (2) 89:7;110:19
locally-acting (7) 18:4;55:11,16;97:18; 107:11;110:5;112:11
located (3)
11:16;188:22;293:21
locating (1) 141:16
location (2)
logistics (1) 323:8
long (15)
27:10;37:21;40:6; 57:22;62:19;74:18;94:9; 96:16;161:10;213:12; 219:13;234:5;256:20; 299:13;313:17
long-acting (5) 39:18;40:5;211:8; 213:12;220:17
longer-term (3) 66:16;69:14;70:5
longstanding (2) 27:13;35:8
long-term (2) 76:1;218:2
look (76) 17:9;29:14;31:11; 35:11;36:9;37:18;44:11, 21;45:2,13;48:6,8,10; 49:6,12,14;53:14;58:16; 67:9;79:5;102:10;115:6, 15;116:10,11,21;121:17, 20;123:7,20;124:5; 128:6,6;140:5,16; 143:10;154:12;166:5,8; 167:1;170:19;173:6,16; 178:2,11,19;179:20; 182:5,11;216:14; 222:21;227:10;231:4; 233:12;235:18,19; 236:19;240:12;243:9; 244:6;247:1;253:16,17; 255:14;258:18;274:22; 276:8,18;281:2;282:17; 283:1;285:20;287:17; 298:6;310:18;313:4
look-back (1) 17:16
looked (9)
36:13,15;75:8;118:18;
195:22;197:13;204:2;
208:20;265:13
looking (64)
14:4;17:14;19:18; 20:12;24:15;30:3,5; 33:18;37:2,21;38:15; 39:17,19;40:18;41:19; 45:10,11;47:3;48:17; 49:16;66:8;68:4;75:13; 84:8;111:4;116:9; 118:11,22;122:4;125:15, 16;127:6,13;130:3; 132:3;135:9;136:8; 137:18;138:8;140:20; 142:10,11;145:18; 171:22;177:17;178:10, 22;179:6;181:17;185:6; 208:22;211:4;212:20;

224:16;226:2,5;229:1;
250:7;271:19;285:17;
310:16,20;316:15;327:3
looks (2)
63:14;253:1
Loo-Riegelman (1) 207:21
lose (1) 167:6
loss (1) 168:1
lost (1) 182:13
lot (79)
19:2;24:4,19,20;
27:21;29:18;31:17;
35:18;38:21;41:10;
56:13;58:7;62:22;66:13;
73:7,9;74:3;75:14;86:8;
102:1;111:5;112:18;
115:20;116:2;117:4;
119:10;121:8;123:18; 125:4;128:14;131:2,12; 132:6;140:12;149:15, 18;152:17;157:12; 164:22;178:21;180:14; 186:1,2,3;187:14,16; 188:22;213:7;223:22; 242:2,5;244:7;245:12; 247:20;249:11;263:10, 12;264:12,20;265:8; 266:4,15,16;269:22; 271:4;274:2,20;277:8; 287:7;303:8,12;309:20; 312:10;317:9;319:12; 320:6;321:16;322:2; 323:15
lots (6) 41:13;50:5;58:20; 64:17;114:2;201:18
Lot-to-lot (1) 201:16
Louis (2) 27:19;140:21
love (1)
222:1
low (9) 78:14;168:3,10; 251:10;259:11,16; 260:5;273:5;314:8
low=hanging (1) 211:9
low-dose (1) 219:11
lower (13)
80:12;96:2;168:4; 199:11;226:8;251:14,15, 16,17,20,20;256:22; 297:1
lower- (1) 51:2
lowering (1) 137:6
lowest (1) 45:12
loyalty (1) 296:17
luminal (1) 78:16
lunch (5) 11:15,17;17:6;160:15, 17
lung (24) 280:12,13,15,22;
281:1,6,11,22;282:5,6, 14,20;283:11,13;284:4; 285:1,4;286:2,2,6,10,22;
287:1,12
lungs (11) 281:14,14;282:4,9; 284:3,7;286:18;287:12, 15,16,20
Lupron (1) 132:8

\mathbf{M}
magazine (2) 150:20,22 Magic (2) 152:2,9 magnesium (17) 181:2

magnetic (1) 81:9
magnitude (2) 306:22;307:5
main (8) 11:16;15:11;241:8; 284:18;285:15;303:7; 306:11,22
mainly (5) 18:9;89:2;116:8; 130:11;282:4
maintain (3) 114:8;167:20;273:19
maintaining (1) 24:12
major (5) 138:14;265:2;312:12, 16;313:10
majority (2) 23:5;270:20
makes (6) 59:12;82:12;157:11; 171:7;306:14;324:8
making (20) 48:3;50:13;51:10; 62:7;70:18;86:12,13; 139:20;144:11;171:8; 207:6;217:21;292:6; 294:20;324:4,11;326:3, 8;327:7;328:16

```
male (2)
    116:8;200:1
males (1)
    284:8
malleable (1)
    109:12
manage (1)
    19:5
```

Management (11)
13:12;20:3;142:3;
143:7;146:8,14;169:22;
170:17;221:16;268:6;
271:16
mandated (2)
195:1,9
manner (1)
256:8
manufacture (1)
212:15
manufactured (2)
80:19;215:18
manufacturer (2)
67:10;297:14
manufacturers (17)
63:6;68:1;98:19;
165:20,21;201:9;290:14,
22;291:11;293:11,17,19,
20;294:9,13;295:3;
296:8
Manufacturing (30)
13:2;36:3;39:11;
79:17;104:15;106:10,
13;107:19;135:7,11,12;
150:17;205:11,12;
207:13;211:10,17;
212:12,12;228:11,20;
263:13;268:11,12;
270:6;278:4;289:16,20;
290:2;291:18
Many (48)
20:2;26:10;27:9;
28:20,22;39:12;43:20;
58:21;63:4;64:18;84:22;
94:4;115:3;116:14;
173:19;194:20;201:13;
203:20;224:7;226:6;
230:10;231:9;235:20;
245:3;264:16,22;266:10,
10;267:22;269:6;270:2,
5,10,14,14,17;271:10;
272:12,12;273:4;
291:14;294:22;295:17,
20;319:3;321:4;322:14;
325:8
March (1)
42:8
margin (4)
249:6,8;251:8;256:6
Marilyn (1)
242:7
marker (1)
80:10
market (14)

21:6;25:15;30:22; 67:15;117:7;152:3; 194:19;201:17;225:18, 19,20;294:17,22;296:16
marketed (1) 48:20
marketing (1) 202:5
marketplace (3)
127:3;201:14;202:4
Maryland (4)
1:21;4:5;45:5;312:7
Maryll (1)
12:11
massive (1)
326:7
massively (1)
171:18
match (3) 27:22;60:8;293:18
material (9)
31:9;40:13;106:17; 156:10;179:9;183:6,20; 277:2,3
materials (5) 40:8;62:11;265:13; 269:9,19
mathematical (1) 308:20
mathematics (1) 175:1
matrix (1) 199:5
matter (5) 87:22;175:16;184:9; 321:10;322:19
matters (1) 305:7
maturation (3) 114:5,6;125:22
maturational (1) 119:22
maximize (1) 287:17
maximizing (1) 137:14
maximum (5) 262:18;273:13,16; 306:19,20
maximus (1) 208:13
May (35)
1:11;11:8;14:8,12,18; 15:2;16:13;30:9;31:9, 11;49:9;51:21;55:13; 65:4;75:11;83:11;91:4, 4,11,16;107:15;122:7; 134:8;159:13;168:15; 180:17;189:17;212:13, 16;226:8;249:12; 260:10;272:15;298:13; 328:12
maybe (32)

82:17,18;84:21;94:18; 96:14,16;131:18; 141:12;144:12;160:13; 170:12;173:9;177:22; 178:4;182:8;188:8; 189:7,15,18;191:18; 213:18;225:14;234:15, 16;236:5,8;253:2; 275:18;316:22;320:3; 321:22;322:4
MDI (2)
271:2,2
MDRS (1)
33:21
mean (34)
76:22;83:7;89:15;
90:1;91:2;92:22;94:10; 97:2;103:12;109:5;
115:15;129:1;162:15; 172:12,13;174:16,18,20; 175:14;185:21;228:1; 243:13;249:6;250:9,10, 14,15;251:1,11;253:16; 255:15;262:22;305:5; 326:22
meaningful (2)
111:16;223:2
means (6)
86:18;96:13,14;259:7;
266:1;307:13
meant (6)
69:15;158:11;177:22;
199:18;225:1;306:2
measure (13)
47:18;54:20;55:3,7;
80:6;84:14;92:9;93:15;
196:2,6;219:16;241:21;
311:9
measured (4)
81:10;109:16;241:10;
302:19
measurement (4)
116:10;196:5;201:20; 237:7
measurements (8)
54:16;55:5;79:3;
83:20,22;288:7;303:9,10
measures (1) 85:21
measuring (4)
78:9;80:15;81:4;84:5
mechanics (5)
299:8;304:3;306:9;
310:1,11
mechanism (4)
140:22;146:12;
153:11;278:5
mechanisms (8) 98:20;99:1;123:19; 165:8;196:3;277:7;
305:2;320:18
mechanistic (3)
53:19;242:9;244:18
mechanistically (1) 195:14
med (1)
61:22
media (3) 14:16,18;79:6
median (1) 294:19
Medical (9) 61:12;120:18;121:17; 123:1;126:8;137:5; 289:8,12;292:3
Medicare (1) 297:8
medication (7) 65:19;66:13,16,22; 69:14;75:17;121:15
medications (12) 65:11;66:14;67:12,19; 69:10,15;70:1,7,14;71:8, 11;75:15
Medicine (3) 4:20;121:12;296:21
medicines (3) 132:2;218:17;296:12
meet (9) 17:5;23:17;31:20; 137:15;169:8;250:18; 254:2;268:17;276:11
Meeting (38) 2:1;10:12,16;11:2,9, 11;14:6,13;15:1,4,15; 16:5;17:12,15;23:18; 63:12;138:5,9;177:6; 215:1,5;216:21;232:13; 260:21;276:11;278:18; 280:2;323:4,6;324:1,5, 11;325:11;326:9,16; 327:21;329:9,12
meetings (10) 19:10;25:22;31:21; 38:5;40:3,16;60:21; 147:3;275:11;304:13
member (4) 227:2;262:4;264:20, 21
members (17) 11:21;13:18;14:11; 15:8,19;62:21;191:7; 215:11,12,13;223:8; 224:10,16;231:1,4; 264:20;325:12
members' (1) 226:20
membrane (2) 91:13;150:12
membranes (1) 36:16
memory (1) 156:22
Mensing (1) 295:14
mention (5)

106:9;229:13;231:5; 247:18;296:5
mentioned (24)
25:14;40:20;63:3;
78:22;80:4;104:9;
108:12;111:8;112:19;
125:3;130:20;149:5;
162:4;211:13;226:22;
246:16;260:9;267:22;
286:5;287:19;288:1;
298:2;312:11;320:15
mentioning (1) 154:8
Merck (1)
87:9
mesalamine (1) 140:17
message (3) 215:21;303:7;309:17
messages (1) 133:11
meta-analysis (1) 240:14
metabolism (7) 102:15;208:18,21; 314:22;315:6;322:11,15
metabolized (1) 238:16
Metadate (4) 151:4,5,8;156:17
metered (2) 40:20;41:11
method (36) 32:15;55:22;56:10; 79:8,9,9;83:2;109:14; 111:22;112:2;134:8,11; 144:20;145:3;162:8; 205:19,20;206:11,12,14, 17;207:3,11,13,15,21; 210:3,5,6;211:16; 248:20;256:2,12;257:4, 17;261:21
methodologies (4)
82:18;135:15;219:19; 327:16
methodology (10)
78:13;79:13,22;81:21; 82:6,15,16;84:13;109:7; 221:9
methods (47)
23:11;26:14;27:7,18;
29:13,15,17;31:8;32:21;
36:11;54:7,9;55:10,16;
56:14;62:22;79:6;84:1;
85:20;86:13;109:3,8,13;
110:3,12,17,20,21;
111:9,15;112:4,7,9,15, 20;134:6;135:13,13;
162:9;164:7,9;187:10; 203:14;212:13;219:11;
220:2;229:13
methylphenidate (2)
140:6;148:16
metric (6)
182:4;250:17;253:18, 20;257:9;261:12
metrics (1) 257:14
mic (1) 76:5
micellar (2) 105:8;106:1
micelle (2) 156:7,8
Michael (3) 2:21;61:11,15
Michigan (13) 2:3;5:2;76:13;80:3; 81:3;83:19;88:19;89:1; 92:22;299:17;302:20; 308:16;312:2
microcrystalline (2) 317:4,17
microdialysis (4) 37:1,6,12,18
microparticles (1) 220:18
microperfusions (1) 36:22
microphone (2) 15:17;190:18
microsphere (5) 25:13;39:18;205:9; 207:4;209:17
microspheres (10) 40:1;205:7;206:7,12, 15;207:10;210:7,17; 212:4;213:17
microstructure (3) 32:13;104:14;108:14
microstructures (1) 111:13
middle (4) 93:21;181:20;213:5; 263:2
might (28) 64:10;65:4,7,15; 66:10,21;72:13;117:16; 153:5;155:6;157:17; 191:20;211:21;225:6; 226:15,16,17,18;236:6; 257:5;258:20;269:21; 278:21;279:1;285:20; 302:10;317:22;321:17
Mike (1)
61:19
mild (1) 184:21
milligram (2) 199:7;238:19
milligrams (2) 273:5,8
millimolar (1) 81:22
million (8) 57:12;72:6;191:21;

204:8;230:22;231:19, 21;245:9
millions (1) 297:11
mimic (2)
99:12;102:14
mind (4)
135:5;136:21;177:11; 314:20
miniaturize (1) 111:1
minimally (1) 100:1
minimize (5) 268:19;273:15,18; 281:10;287:21
minimum (3) 97:22;99:16;241:21
mining (1) 169:18
minor (2) 205:11,11
minority (1) 254:17
minus (2) 250:9;255:16
minute (3) 118:6,8;267:11
minutes (8) 15:6,7;81:22;82:4; 90:20;94:7;108:4;310:6
mirror (1) 96:9
misleading (1) 50:7
missed-out (1) 242:21
missing (3) 109:2;142:2,14
mission (2) 216:1,2
mistakes (1) 139:3
misunderstanding (1) 158:4
mix (2) 62:21;188:16
mixed (1) 184:15
mixing (6) 184:16,21;205:20; 206:4;300:9;302:9
mixture (2) 181:21;183:18
mixtures (3)
26:22;28:4,6
mL (2) 81:10;110:22
mLs (1) 81:16
MMC (1) 301:5
MMC3 (1)
$301 \cdot 8$ mobile (1) 11:8
mode (2)
148:4;149:5
model (31)
99:13,14;100:4;
196:16;208:12;234:1; 235:21;238:10;241:5, 11;244:3;245:20,21; 246:3,4;247:4,16; 281:20;283:18,19,21; 284:5;288:3,14;302:15; 304:16;306:20;308:20; 309:6,8;315:14
modeling (39)
23:2,4;26:5;29:16; 30:4;32:20;33:19;36:4; 52:20;53:7,13;60:4; 98:10;123:3;175:14; 233:2;235:7,11;237:13; 244:5;280:17,21;281:4, 11;282:19;283:22;
300:5;303:11,18,21,22; 304:8;308:6,7;309:4,21; 311:5,19;312:1
models (19)
54:1,14;123:5;195:3;
202:1;233:4,6,6,7;236:4; 244:6;247:21;280:19; 281:19;288:6;300:6; 303:22;304:2;310:4
moderate (1) 254:8
modes (2)
148:2;164:18
modifiable (1) 237:4
modification (2)
79:16;238:17
modified (8) 78:14;89:7;91:1;97:8, 16;140:7;244:17;257:15
modified- (2) 89:2;92:13
modified-release (5) 77:13;95:20;96:15; 98:18,20
modify (2) 261:12,13
molecular (3) 166:3;174:21;318:6
molecule (2) 103:21;300:10 molecules (4) 106:2;167:13,16; 300:12
moment (3) 136:1;225:3;244:5
monies (2) 192:4;218:21
monitor (1)
294:14
monitoring (3)
48:4;126:8;294:16
monodispersity (1) 197:17
monographs (1) 320:5
monohydrate (8)
181:21;182:1;183:19, 22;184:22;185:3,19; 313:13
month (3) 67:8;284:13;328:8
months (11) 62:9;64:8;71:2;97:19; 120:8;169:1;212:21; 230:10;284:9,13,14
more (155)
15:21;23:10;24:13; 25:2;26:7,16;32:15; 34:11;42:2;48:13;49:19, 21,21,21,22;51:22;
53:12;55:12;62:19;66:8; 69:22;70:6;72:17;74:21; 78:15;82:2,18;86:9; 96:9;97:3;99:18;100:19; 104:2;109:18;110:15, 19;114:9,10;120:22,22; 123:7;124:5,11;126:3; 128:14,17;130:8; 133:12;134:2;143:3,3,9; 144:12;145:13;148:11; 149:21;153:7;154:5;
156:13,14;157:12;158:1, 20;160:8;161:18;162:6, 13;163:19,20;173:4,10, 20;175:3;176:3,7; 178:14;186:22;189:16; 194:7;201:13,19;202:1; 203:7;204:3;206:7,8; 207:10;208:16;211:1, 21;212:9,13,14;214:10; 217:12,14;224:5,11,19, 22;230:17;231:21; 233:22;234:1,8;242:3; 243:15,21;244:2,10,13, 16;245:4;246:10,16,18, 19;247:3,5;249:13; 250:16,17;254:1,18; 257:5;260:9,9;263:19, 19;264:17;269:19,21; 271:9;292:6;293:2,5; 296:8,15;298:13;300:6; 301:20;305:1;309:20, 21;310:4,21,22;311:4; 312:4,13;316:15; 317:14;321:21;322:4; 325:13
morning (23)
10:3;11:14;12:2,7,11,
17;13:9,10,13;84:18; 113:5;114:3;116:3;
120:14;121:19;123:1; 133:5;135:18;164:1;

204:6;299:19;319:18; 324:2
Morphology-Directed (1) 33:22
Morrichder (1) 174:20
Morris (17)
3:11;103:15;137:2; 138:6;145:12;148:6; 150:5;161:10,13,14;
171:3,10,14;172:7;
176:9,12;191:2
most (42)
19:6;32:14;36:19; 44:16;46:20;52:22; 57:22;65:21;66:17;
67:12;73:21;82:22;
84:21;90:18;101:14; 110:21;124:14,21; 125:14;131:17;181:2; 185:10;194:15,18; 200:12;209:18;215:21; 232:15;244:1;245:15; 255:13;265:1;266:17; 267:20;269:6;272:13; 290:21;291:12;294:2; 295:6;313:20;320:21
mostly (3)
76:17;89:6;119:20
motif (1)
167:13
motility (8)
80:7;81:7;84:5;93:8; 98:12;300:14;301:1; 303:15
motivation (1) 280:20
move (19) 15:20;24:6;26:17; 27:13;30:6;37:16;43:8; 52:2;62:9;103:10; 193:16;211:3,18; 214:14;238:5;246:1; 274:11;288:21;310:3
moved (3) 21:21;50:18;302:22
movement (1) 310:3
moves (1) 224:3
moving (14) 24:20;28:18;49:19; 51:7;61:8;142:12; 199:22;206:10;210:17; 214:4,9;254:6;303:2; 305:9
MRI (6)
81:8;84:1,5;85:17;
98:11,11
much (95)
19:16;22:4;24:21;
32:15;35:17;40:12;51:8, 17,22;53:12,16;55:12;

59:12,12;61:16;62:19; 71:13,18;74:1;76:8; 79:3;80:12;88:2,21; 96:9;98:14;99:22; 100:19;109:18;112:14, 21,22;119:21;122:4,14; 127:12;128:17;130:6; 131:9;132:22;142:5; 145:22;146:5;154:3; 156:14,15;161:15; 168:12;170:15;175:3; 176:11;178:12;188:5; 193:15;204:20;206:1,7; 207:12;208:10,10; 214:16;218:4;225:21; 232:7;240:1;243:5; 246:14;248:7;249:13; 269:8;271:10;274:4; 279:16;288:19;298:19; 299:3;300:16;301:10; 304:2;310:5,10;312:5; 315:4;316:14;318:11; 319:15;320:11,12; 322:16,21;324:12,19; 325:22;326:13;329:7
Mudie (1)
308:17
multi-billion (4)
25:15;27:9;57:10,14
multi-phase (1) 105:4
multiple (12) 57:14;107:9;138:19; 144:2;202:16;229:4; 233:3;235:4;244:6; 271:11;273:15;275:10
multiple-path (2) 283:17;288:3
multiplicity (1) 196:1
multi-source (1) 65:11
multi-tens (1) 30:21
multitude (1) 104:7
multivariate (1) 29:5
multi-year (1) 20:2
mundane (1) 172:13
Munson (10) 3:15;155:14;176:14, 16,17;188:13;189:3; 191:12;192:1,10
muscular (1) 127:7
must (2) 269:3;292:14
Mylan (6) 4:11;248:9,12,16; 249:11,22
myself (2)
$87: 6 ; 299: 4$
mystery (1)
$54: 21$

\mathbf{N}

naltrexone (3) 210:10,14;212:6
name (6)
10:6;61:18;135:18;
157:15;289:4;296:7
nanomaterials (2) 25:12;39:9
nanoparticle (3) 147:20;148:20;196:22
nanoparticles (2) 156:15;194:14
nano-sized (1) 39:14
nanotherapy (1) 219:4
narrow (9)
50:16,21;51:11,15; 52:6;83:11;119:1; 165:14;220:6
nasal (5) 25:12;33:17;40:21; 53:16;141:5
National (8)
2:18;3:5,12,17;4:14; 63:9;288:22;289:6
Native (1)
124:20
natural (6) 26:22;28:5;49:2; 180:18,20;183:13
naturally (1) 181:4
natural-source (1) 27:15
nature (3) 106:18;172:22;185:12
NBCD (1) 103:8
NBCDs (1) 104:6
NCE-1 (1) 220:12
NDA (2) 134:17;157:14
NDAs (1) 157:3
NDC (1) 49:8
near (4) 43:13;215:3;263:9; 279:7
nearing (1) 22:2
nearly (4)
67:8;252:14;291:11; 292:4
necessarily (13)
126:10;226:8;228:10; 231:20;241:2;243:13; 248:15;262:12,14; 265:10;268:3;300:19; 305:5
necessary (4)
110:6;139:18;142:1; 275:18
necessity (1)
170:8
need (110)
25:1;55:5;77:6,11;
79:5,13,19;80:21;82:10,
14;83:2,12;84:12,13;
85:1,3,5,22;92:7,9,13,
18;98:4;99:19;100:1,6; 102:9,11;104:21;
106:12;109:3;112:16; 114:10;115:2,3,6,15; 120:19;121:15,17,19; 122:15;123:21;132:18; 133:11;134:1;138:10, 15;141:9,13;146:16; 150:3,3;153:7;162:6; 169:7;187:3;192:8;
201:6,10,13;202:2;
205:5;213:2,14;219:20; 230:12;235:22;237:2, 18;238:1,4;240:12; 241:18;243:21;244:1,3, 8,10,16;245:19;246:3, 16,18;247:3,5,12;248:2; 256:11;257:15;261:3,4; 263:14,18;266:20;
267:14;268:8;273:15; 274:21;279:13;283:11; 308:5,6;310:22;311:13; 312:16,19;318:13; 319:4;321:21
needed (26)
30:11;51:22;62:14; 83:21;113:17,17; 121:13;201:5;220:16, 20;264:8;266:18;267:4, 15,17;268:15;274:6,8, 10;275:16,20,22;279:12, 12;285:18;294:1
Needless (1)
324:22
needs (24)
61:1;69:19;73:17;
77:4;137:15;142:3;
188:8,17;246:7,10;
261:16;274:1;283:15;
301:19;305:20;309:8,20,
21;310:3;311:16;312:3;
318:1;324:6;329:1
negative (1)
46:13
negligible (1) 107:12
negotiations (2)

138:1;230:10
neonatal (5) 115:12;124:15; 127:17;130:4,7
Neoral (5) 148:20;149:9,10; 152:8,15
nephrology-trained (1) 194:5
net (2)
57:11;185:1
network (1) 163:4
neutral (1) 82:12
New (48) 1:18;20:1;26:14;34:5, 21;36:2;37:17,22;38:12, 13;41:15;46:15;51:12, 13;52:3;62:8;85:14; 104:21;126:6,6,18;
137:3;138:5;158:22; 164:13;213:14;222:4; 226:22;227:1;264:8,11; 265:14;266:5;269:11,13, 15,17,20;274:16;276:13; 281:5;292:21;293:4; 294:10,15;296:20; 304:22;327:15
newborn (1) 119:10
newer (1) 187:10
next (34) 15:20;65:8,18;76:11; 77:19;84:3;85:13;88:18; 97:19;102:17;113:1; 118:7;133:2;134:16; 135:1;146:1;148:9; 176:13;193:16;204:21; 211:12;214:18;231:3; 232:9;248:8;263:4; 270:9;280:3;283:12; 284:3;288:21;298:21; 310:18;311:2
nice (5) 62:5;168:14;235:6; 320:4;329:8
nicely (1) 194:11
night (1) 189:6
NIH (2) 170:7;284:10
Nikunjkumar (3)
4:1;232:10,11
nine (1)
39:19
NIPTE (26)
2:19;3:6,13,18;42:17; 133:3,13;134:5;135:19, 21;136:22;137:10; 138:18;146:3,12,15;

153:13,21;160:11;
161:11,16;172:9;
176:15;179:6;190:14;
192:15
NIPTE's (1)
172:1
Niteesh (1)
63:15
NMR (5)
155:15;181:13; 182:21;184:12;187:16
nobody (2) 139:2;278:7
nodding (1) 190:17
Nods (1) 190:16
nonbiological (4) 103:1,12;104:3,20
nondimensional (1) 307:10
none (1) 30:21
non-GPhA (1) 231:5
non-hydrodynamic (1) 307:15
noninferiority (11) 248:18;249:1,6,8; 250:20;251:5;256:1,12; 257:14;260:2;261:21
non-inferiority (1) 221:10
non-invasive (2) 84:1;98:11
nonlinear (1) 256:3
non-optimized (2) 267:9;271:7
non-oral (3) 53:10,13,15
non-problematic (1) 317:12
non-profit (1) 137:1
non-sterile (1) 221:3
non-transferring-bound (1) 195:19
noon (1) 11:18
normal (2) 48:14;255:21
normalization (1) 48:16
normally (1) 287:20
notable (1) 139:16
Notably (5) 195:13;198:4,13,15; 199:9
notation (1)

197:18	253:11,13,14;261:17;	135:3,7;143:22;144:9;	16;155:7;156:16;157:3,	ontogenies (1)
note (7)	291:14	148:2;188:22;231:7;	7,15,17;159:21;162:3;	238:14
64:8;73:3;199:10,15,	observe (1)	309:12;321:16;322:19	165:12;167:9;169:2;	ontogeny (1)
19;200:10;257:2	149:15	Oftentimes (3)	172:11;173:4,11;174:2,	119:22
noted (1)	observed (2)	48:10;49:8;177:22	20;177:12,16;179:5,5,	ontological (1)
198:9	255:1;257:	OGD (18)	18;180:3,22;181:2,19,	175:14
Notice (5)	obtain (2)	12:3;19:4,21;51:14;	20;182:1,6,7,9,10,17;	ontology (2)
17:2;208:10;300:16	55:8;100:8	193:21;216:8;248:20;	183:17;184:19;185:9,	175:21;176:1
303:12;329:3	obtained (5)	252:7;256:2;257:13,17;	13;189:4,11,19;190:4;	opaque (1)
noticed (2)	36:8;181:14;233:9	258:14;265:5;266:10,	191:3;192:10;193:1;	152:14
111:12;287:2	284:7;318:17	22;276:13;326:16;	203:9;204:5,9;205:6;	open (7)
noting (1)	obviate (1)	327:20	207:9,16;209:5,8,15,17;	16:17;28:17;36:22;
293:19	202:2	OGD's (1)	210:18;211:11,13;	154:21,22;167:15;328:
novel (13)	obvious	249:1	213:10;215:1;216:21;	Opening (2)
35:4;37:12;266:1,4;	305:4	OIG (2)	217:12;222:4;223:10;	13:16;194:12
268:8;269:13,15;270:1;	obviously (26)	292:5;293:16	228:7,12;229:21;233:9,	opens (1)
274:15,18;276:6;	74:17;83:7;105:15	oil (10)	9,10;234:9,12;235:5;	143:15
280:21;282:18	108:17;109:21;114:21;	105:5,10,12,12,13,22;	240:5;242:3,12,13,19;	operate (1)
NSF (1)	122:20;125:22;130:17;	106:11,14,16;156:6	245:5;249:10,10;252:1,	251:12
302:1	144:9;147:5,11;197:1;	ointments (3)	5,9,11;254:16;256:17;	operation (1)
NSF-funded (1)	208:6;209:2,5;211:1;	33:1,13;55:21	260:10;261:12,19;	165:4
174:3	230:17;231:3;235:22;	old (9)	262:22;266:20;268:5;	Operations (2)
NTI (2)	237:4;239:22;300:7;	101:21;119:9;120:8;	275:11;284:14;299:6;	12:9;189:8
168:9;169:1	301:14;310:5;311:3	125:21;148:22;156:12;	301:21;303:19;304:15,	ophthalmic (30)
number (49)	occasion (1)	284:9,13;286:20	20,20,21,21,22;305:2,16,	25:11;32:4,9,19,22,22;
16:14;20:3,8;21:	244:14	older (2)	17,20;307:7,13;311:11,	33:1,4,5,13;53:15;55:20;
24:10;35:15,17;40:3	occasional	127:17;	14,18;312:20,21;317:18;	103:6,19;106:21;107:2,
51:20;58:12;72:13;	42:11	omega-3 (1)	319:19;321:7,11;324:17	5,7;108:3,6,8,22;110:6,
75:18;82:17;96:11,11,	occur (7)	28:6	one- (1)	9,18;112:2,7;211:14,15,
15,22;98:5;100:15,18;	147:13,19;178:15;	omepraz	250:7	19
115:5;141:11;185:5;	184:3;212:11;289:19;	119:6	one-day (2)	ophthalmics (1)
198:3;204:9;219:8;	313:11	Omeprazo	189:7,12	219:12
220:14;221:12,15;	occurred (1)	119:8	one-on-one (2)	opinion (5)
223:10;241:7,22;245:5;	195:10	Once (21)	173:22;224:2	163:6;320:20;321:5,
267:3,13;291:10;296:12,	occurring (3)	43:6;67:8;82:22;	ones (14)	10;322:19
18;304:7;305:17,18;	67:8;124:6;212:20	89:19;94:3;98:6;169:10;	72:16;73:20;75:2	opinions (2)
307:6,6,9,12,18,21;	occurs (1)	179:4,10,13;185:16	101:14;103:16;130:10;	231:10;248:16
324:8;325:8	60:8	189:16;191:2;192:11;	147:8,11;156:12;	opioid (1)
numbers (7)	OCP (1)	193:3;224:20;225:7;	173:10;187:16;209:3;	42:9
24:15;215:16;256:9;	51:14	226:12;245:20;273:16;	318:1;326:20	opportunities (11)
305:22,22;307:3,14	off (6)	328:3	one's (1)	33:11;70:20;72:3;
nutrients (1)	11:7;76:5;182:13;	oncology (1)	57:16	116:2;180:2;190:5;
300:12	183:18;323:12;324:20	121:8	one-sided (1)	216:21;217:1,16;219:2,4
nutshell (1)	offense (1)	OND (1)	255:22	opportunity (17)
308:10	175:20	51:14	one-time (1)	16:15;61:17;71:
	O	(113)		,
0	64:1	11:13,14;21:5,8;24:8,	ongoing (11)	141:4;176:18;191:13
	Office (35)	14;26:20;33:20;34:15;	18:11;62:4;97:20	193:22;232:1;263:8;
Oak (1)	10:8,8;12:5,5,9,9,12,	36:19;37:5;43:17;57:9,	133:17;162:5;236:18;	280:7;281:3;289:4;
1:17	14,15,18,19,21;13:2,4,8,	12,22;58:1;64:6;67:9;	247:16;257:22;285:16;	297:20
obesity (1)	15;19:4,5;62:5;64:9;	68:10;69:20;71:21;	313:14;320:9	opposite (1)
121:1	67:4;70:22;71:14;116:1;	72:13,21;73:3,17;77:22;	Only (19)	130:14
object (1)	125:15;133:22;134:16;	80:5;81:8,20;85:13,13,	14:10;34:9;64:21;	OPS (1)
304:5	290:12;323:16,16,19,22;	16;89:16,16,21;92:13;	85:13,16;91:12;123:22;	266:21
objective (3)	324:3,14;326:15	93:11;96:8,15,20;	130:15;143:2;177:9,15;	optimal (1)
141:21;282:18;289:9	officer (2)	100:16;102:3;110:2;	178:9;183:12;196:10;	201:20
objectives (1)	10:13;14:1	117:11;118:4,5,6;	230:21;266:12;273:21;	optimize (1)
279:11	offices (3)	125:13,14;127:5;129:3;	308:22;310:5	200:4
observable (1)	19:1;62:19;325:19	130:14;131:3,11;132:7,	onsite (4)	optimum (1)
254:19	official (2)	8,12;133:10;136:6;	190:8;292:13,13;	270:11
observational (2)	248:16;291:1	138:4,13;142:1,22;	293:2	option (1)
73:16;195:8	often (13)	143:5;144:1;146:7,8,18;	onto (1)	297:1
observations (5)	68:14;69:3;98:19;	150:8,19,20,21;153:9,	31:18	oral (45)

16	49:4;56:10;58:20;5	93	241:4,	213:5;256:14;299:9
54:13,13;55:10;76:	64:14;65:4;70:3;72:19;		06:18	ties (2)
77:12,13;78:20,21	73:5;77:22;80:11;118:4;	194:21;290	parameters (16)	16:18;328:
79:21;82:8;84:12;90:17;	135:2;143:12;150:15;	overview	109:18;110:1;140:19;	partitioned (1)
92:18;95:7;98:2,3;	155:3,5;156:8;157:9;	14:2;17:1	50:17;235:21;236:1,	105:19
100:7,11,12,14;101:3,5,	162:12;165:3;166:11;	o	1:9,19,22;246:21;	partitioning (1)
6,11,17,19,22;102:5,13;	175:5;177:13;178:8;	117:22;1	260:11;283:6;285:11;	283:4
114:4;118:3;129:21;	185:7;187:2;188:16	4:12;183:10;	305:12,	partner (1)
130:7;143:2;151:9;	191:21;205:5;206:5;	28:16;231:9;247	parcel (1)	59:9
173:12;175:22;181:3	207:9;211:20;215:21;	269:14;290:19;320:20	134:7	artnerin
221:19;315:12;316:2	218:19;225:9;231:19;	owner (1)	on	18:13
ange (1)	232:5;233:15;242:12,13,	177	57:	partnersh
156:21	20;245:9;252:17;253:9,	ox		171:21
OrBiTo (1)	9;254:14;256:15;260:3;	166:14;195:	15:3;128:	parts (1)
247:18	261:5;263:17;270:14;	oxidati		268:1
order (18)	272:14;273:11;276:16;	168:8	3:20	pass (2)
14:5;25:	306:4;308:22;314:6;	oxygen	parity (1)	255:17,2
90:9,10;91:14,15,17;	322:1;325:9;326:20	168	290:8	passed (1)
126:6;181:7;190:19;	tcome (1)		Part (36)	290:3
209:10;223:2;267:18	165:18		1:7;10:10,	passes (1)
298:9;300	o		6;	9:
ordered (2)	5:3;45:3;55:	Pacific	7:22;51:4;60:20;96:7;	password
15:2;117	62:22;65:10;66:19;70:6,		03:9;109:6;134:7	174:6
orde	,11,12;71:6,11;73:21;	pack	139:11;144:15;146:11;	past (11)
127:20	74:2,6,9;75:16,21;124:6;	167:13	165:4;168:1;169:20;	28:16;3
de	128:6;19	package	0:11;172:16,20;173	59:11;202:9;224:1;
119:5;30	outline (1)	79:12;283	,18;174:7;227:5;	230:6,10;275:2;294:2
organ (1)	103:	packin	258:7;277:18;284:10;	PAT (4)
107:9	outlined	167:13	299:17;304:8;314:13;	79:16;165:2,3;172:18
orga	6:3;13	Pai	27:18	patch (3)
137:1;180:9;278	outlining	; 19	partial (4)	52:5;25
Organizations (2)	322:9	02:21;203:12,16,19;	:19	patches (1)
46:4,13	out-of-cla	204:12	177:1	260:4
organize (1)	9:18	pair	particip	Patel (10)
323:4	ou	253:	$14: 8,9$	4:1;168:14;232:10,11,
organi	8:13;203	palatability	participation (3)	2;245:8,13,17;246:22;
	outreach (1)	31.2	7:8;227:21;329	248:6
organ		palmi	p	path (2)
161:20;162:16	outside	181:9	:3;31:9;33:21;34:9;	42:8;278:18
orientation (1)	16	panel	9:7,8,16,1	pathway (10)
62:15	outstand	10:14;11:21;13:18	110:2;149:12,19;150:1,	27:20;28:1,9,
origi	91:1	14:10;15:8,14,19,21	5;152:12;153:4;156:9;	30:21;34:21;43:1,6,11;
28:8	oval (1)	95:8;110:10;111:19;	7:13;206:1,2;305:19,	167:15
original	118:5	00:6,11;214:22;215:6;	21;306:2,7;309:15	pathways (2)
152:	over (28)	252:2;258:13;285:8;		29:9;107:14
ORISE	11:6;14:6;47:1	325:3,1	2:10,22:303:3;	atient (45)
42:20	57:11;64:14;65:2	panelist	2:10,22:303:3:305:8,	10.18.41.
orthogonal (3)	68:9;74:17;79:11;83:5;	15:16	14	47:7;54:19;66:16;68:4,
139:18;143:12;169:15	182:8;200:16;215:17;	paper (7)	particular (30)	16,18;70:12;76:20;84:9;
OTC (1)	224:1;249:12;252:13,16,	64:13;145:8;155:9	$0: 17 ; 34: 8 ; 87: 8$	86:18;93:1,13;114:16;
26	10,20,22;264:20,	240:17;291:18;317:21;	4:11;130:4;144:	115:7,19;116:11;
others	21;265:2;286:17	321:17	180:22;183:2;185:6;	117:21;123:10;125:9;
63:7,19;73:7,14;	312:16;323:2	paper	190:11;227:1;229:9	26:1;127:16;128:4,10,
103:	ov	16:2	236:16	15,16;130:12;139:9;
otherwise (3)	53.5,146.11,218	papers (5)	260:21;267:2;271:9;	165:18;168:21;218:16;
14:20;173:5	253:9;257:8;31	$45: 21 ; 153:$	273:7;281:22;287:9;	$238: 13 ; 243: 9 ; 283: 20 ;$
$\begin{aligned} & \text { otics (1) } \\ & 219: 12 \end{aligned}$	overcom 267.5	$17 ; 303: 21$	301:21;303:11;304:3;	$288: 5 ; 289: 17 ; 293: 3$
$219: 12$	267:5	paperwork 292.16	317:15,18;318:1,22;	$294: 8 ; 296: 5 ; 297: 5,11,15$
223:20	$\begin{gathered} \text { over-diss } \\ 134: 21 \end{gathered}$	paradigm	partic	66:18
out (68)	over-emphasizing (1)	235:14	(12)	patients (33)
18:12;1	36:15	parameter	120:15;121:13;127:5	25:20;43:1
33:15,20;37:20;47:20;	overnight (1)	89:18;236:6,9,13,14;	132:2;167:16;175:6;	45:16,17;47:11,20;68:7;

70:4,16;75:14,18;84:6;	298:14	90	139:22	197
	pe	pe	pH	96:21-197.1.201
116:7;117:13;118:		109:14;240:1	80:11;81:7;93	:22;
121:10;125:18;127:3	penetrati	2:11;249:17;251:12;	pharm/tox (1)	210:21;211:21;214:11
17;132:18;151:14	77:17	54:1;256:8;260:11,16	272	physically (1)
239:14;289:10;294:18;	Penn (1)	performance (28)	Pharmaceutical (19)	327:21
295:5;296:3,18;297:7	299:5	107:17;108:1,20	2:18;3:2,5,12,17;	physician (4)
patients' (1)	pentahy	10:13;111:17;	12:15,19,20;22:20	47:8;61:19
69:14	66:1	146:19;147:16;177:16;	3:15;26:12;104:	physicians (2)
pattern	Pen	185:22;186:1;205:13;	33:14,15;177:2;	47:12,20
255:12	93:18,22;95:9;9	222:6;251:10,15,18;	215:14;302:22;313:3	physics (2)
patterns	people	52:2,8,14;254:5;	319:22	304:7;310
49:15;65:	11:9;15:9;22:12;	6:14,19;258:16	Pharmaceu	physics-ba
202:7	35:22;36:1;37:15,	59:20;263:21;268:10;	299:12	303:22
pay	41:2;43:7;44:22;46:11;	270:5;271:10	pharmaceutics	hysiological
101:4	48:11,21;50:13;56:6,9;	performed (2)	115:10;299:12	82:2,5;237:7;23
payers (2)	58:16,16;59:19;64:17;	242:15,16	armacist (3)	281:18;310:2
70:16;217:11	65:21;87:1;151:18;	performing	133:13;194:6;	physiologically
PBPK (24)	154:19;159:3;164:21;	150:4;249:14	pharmacists (1)	233:1
53:9;9	191:6;192:18,22;193:9,	performs (3)	123:14	physiology
233:1,1,12,12;234:6	9;228:4,14;232:21;	246:6;249:3;259	pharmacodyn	233:14,15;236:4
235:7;236:19;237:1,12;	240:8;241:10;244:7	perhaps (14)	35:13;52:14	10,19;237:2,5,17;238:2,
238:10;239:3;242:2,4;	266:9;270:20;271:6;	59:15;89:10;	Pharmacoeconomics (2)	20;240:3,9;244:14
243:22;244:4,7;245:12;	273:6;274:8;283:15;	92:1;96:6;97:1;99:18;	61:21;62:17	281:21;299:7;311
300:5;303:11;309:5	05:15;312:10;323:3,20,	100:22;102:1;151:14;	Pharmacoepidemiology (2)	PI (1)
PCC (1)	21;324:3;328:11	200:10;258:22;310:7;	61:20;62:16	284:11
197:11	peptid	319:13	pharmacogenomics (1)	pick (2)
PCORI	28:14;210	p	19	54:9;167
63:18	peptides (4)	0:20;29	pharmacok	picked (1)
PD (1)	26:22;58:11;212	periods (1)	233:2,3	235:2
243:1	220:19		pharmacokineticist (1)	picking (1)
PD/PK (1)	per (7)	p	318:10	263:22
280:17	7:8;193:4;199:8	301:2;302:2;303:1	pharmacokinetics	picture (5)
PDPK (1)	217:16;238:19;252	permeability (3)	90:7	36:17;152:7
280:18	254:22	241:13;314:9;316	pharmac	302:8
PE (1)	perceived	permeation (4)	165:15	pictures
210:3	64:7	6:13;38:17;3	pharmacology (2)	37:19;39:22
Peck (1)	perceives	:18	113:14;120:13	piece (4)
77:16	202:22	permissi	pharmacometrics (2)	64:2;93:11;204:2,15
Peclet (2)	perc	88:14	52.9,19	pieces (7)
305:18;307:	20:2	permissi	armaco	29:14;3
pediatric (36)	81:22;134:21,22;135	88:15	318:7	38:15;143
113:13;114:11,14,	21;139:1;181:8,9;183:6,	permitte	Pharmacovigilance (1)	203:21
116:9;117:1,13;118:8,	12,13;210:4;215:17;	14:19	13:4	Pinheiro (4)
14,17;119:3,18;120:1;	226:9;250:8;252:10,10,	persis	Pharm	13:6,6;130:19;131
121:10,12,21;122:9,10,	12;253:12,14;254:1;	65	:9;4:5;126:11	pipe (1)
13,16,20;123:22;127:11;	5:19;262:1,2,9,16,20,	persist	128:16;137:4;193:18	85:7
132:5,15;146:10;	21;290:17;293:18,20;	313:17	pharmaHUB (4)	PK (23)
150:19;234:14,16;	296:22	persistenc	155:1;174:1,13	$30 \cdot 4 \cdot 3$
238:7;239:10,12,20,21	pe	69:15	17	42:11;45:2,7;51:2
240:20;319:11	168:12;262:19;	person (5)	phase (8)	52:13;54:20;55:3;77:8;
pediatric-friendly (1)	perceptible (1)	-11.242	05:5,6,14,19,22	107:12;115:6;200:2,4,5,
117:18		32	138:5;166:6;209:1	4;213:12;241:13
pediatrics (10)	perception (3)	personal	phases (4)	243:2,2;280:18
84:7;113:13,	46:3;130:16;	$320 \cdot 20$	105:21;106	PK/PD (2)
116:13,20;122:3	perceptions (4)	personally (2)	209:19	52:9,20
126:16;148:1;240:1;	47:7,8;138:22;139:9	61:3;287:2	phosphate (1)	PKDM (1)
263:14	Perez (4)	perspective (12)	81:22	248:12
pegylated (1)	13:10,10;246	44:5;59:21;60:18	physical (3)	place (5)
199:17	248:5	113:20,20,21;124	178:17;179:	154:16;2
penalties	perfect (2)	退:15;191:5,8;211:11;	physical- (2)	300:14;301:1,10
4:4	171:7;310:11	263:16	203:2;211:2	places (1)
penalty (1)	perfectly (1)	pertaining (1)	physical-chemical (12)	31:6

plan (4)
11:5;76:6;133:12; 190:21
planning (3) 13:21;66:22;133:16
plans (1) 217:7
plants (3) 289:16;290:7;291:8
plasma (11) 92:16,17;95:6,9,11,13, 15,17;96:10;97:8;100:9
plateau (1) 20:6
platform (4) 236:19;237:3,18; 327:12
platforms (1) 236:20
play (2) 147:5;321:16
please (9) 11:7;15:15;186:20,20; 280:1;328:13,18,22; 329:2
pleased (2) 205:4;209:21
PLG (1) 212:5
Pliva (1) 295:14
plot (2) 301:21;302:3
plotted (3) 285:8,11;302:3
plotting (1) 307:17
plus (1) 86:16
pm (7) 1:12;11:18;160:16,17; 161:2;279:20;329:12
point (45) 19:15;33:20;43:13; 44:2,13;59:17;64:19; 65:2;66:18;69:12;73:6, 15;81:20;84:11;93:12; 124:3;129:19,19;134:3; 135:6;137:9,13;146:10; 157:19;169:1;176:10; 206:5;207:9;217:9; 224:15;230:7,11;232:3; 234:20;250:12;253:6; 255:11;256:10;267:12; 270:9;305:18;306:11; 309:16;315:2;319:2
pointed (3) 156:8;166:11;211:20
pointing (2) 73:22;260:3
points (13) 97:12;137:18;147:17; 182:5,14;218:18;

221:20;230:17;232:16; 247:2,2;265:4;313:6
policies (11)
65:15;67:22;104:21; 265:5,16;266:13;267:7; 269:1;286:3;295:12; 297:10
Policy (11)
12:13,18;14:16;58:19; 63:1;69:1,16;248:16; 270:21;289:6,14
policymakers (1) 289:11
Polli (7) 4:4;45:5;312:6,8,9; 320:20;321:22
polydispersity (1) 197:14
polymer (2)
106:16;244:21
polymers (4)
105:7,16;268:2; 272:14
polymorphism (2) 178:20,22
pool (1) 192:6
poorly (2) 107:8;315:8
POPE (1) 175:19
popularity (1) 104:4
populate (3) 154:16;163:4,4
population (37) 35:14;45:19;114:14, 17;115:7,12,19;116:19, 21;117:22;118:9;119:3; 120:16;121:22;122:15; 123:10,22;124:17,19,20; 126:1;127:11,16,18; 128:15;130:4;132:5,15; 194:7,8;234:16;237:18; 238:22;239:19;242:9, 19;243:9
populations (7) 84:7;116:12;120:1,22; 121:14;125:12;130:8
porosity (4) 206:6;212:17;213:1, 19
porous (3) 206:7;207:10,15
port (1) 233:15
PORTAL (1) 63:13
portfolio (5) 25:8;32:18;63:2; 214:13;327:3
portion (1)
141:16
posaconazole (1) 243:10
posed (1)
328:21
posing (1) 292:22
position (2) 46:15;188:15
possibility (4)
59:14;96:21;101:7; 212:14
possible (17) 20:17;27:5;73:15; 88:13,16;107:13; 164:16;196:4;199:2; 218:5;243:19;260:18; 280:8;287:17;304:2; 317:22;324:9
possibly (3) 201:22;203:22;318:5
post (1) 88:14
post-approval (2) 38:22;79:15
post-docs (1) 174:21
post-doctoral (1) 19:1
posted (3) 24:18;103:10;328:5
posting (1) 30:18
post-market (2) 18:2;26:2
potency (1) 165:17
potential (14) 32:16;38:12;48:12; 62:13;71:6;72:2;74:5; 204:7;212:9;221:1; 242:3;263:2;286:1; 297:18
potentially (15) 48:6;156:9;164:12; 165:17;180:20;187:14; 188:8,14;189:1;196:15; 197:4;199:1;213:14; 249:18;261:9
powder (3) 40:19;41:11,12
power (1) 233:19
powerful (2) 155:15;301:8
powering (2)
249:19;256:10
PPIs (2)
119:12,20
PQRI (1)
109:6
practical (1) 198:14
practically (3)

104:22;183:5;249:17 practice (8) 135:22;136:5;244:9; 246:11;247:4;248:4; 267:20,20
practices (12)
136:14,15,16,17,19; 139:13,15;244:4; 245:20;246:5;248:1; 271:17
pre-ANDA (6) 31:21;40:3,15;138:1, 2,4
preapproval (6) 290:16,18;291:2,5; 292:10;293:6
pre-approval (1) 219:9
precede (1) 166:13
precipitation (6) 91:12;92:1;102:2; 152:18,20;244:22
pre-competitive (1) 171:20
predict (19) 23:6;60:4;67:12; 68:19;86:14;169:13; 179:7;195:19;197:5; 209:10,11,11,14,22; 214:6;242:14,18,20; 247:21
predicted (1) 199:7
predicting (2) 86:22;241:6
prediction (7) 107:18;209:16;210:2, 3;214:8;241:14;246:6
predictive (11) 79:8;82:15,19;83:17; 84:13;85:15,20;98:8; 202:1;233:19;235:22
predictors (6) 64:20;71:4,6,9;77:6,7
predominant (2) 204:14;255:12
Predominately (2) 255:7;256:15
prefer (1) 47:12
pre-GDUFA (1) 18:19
pregnant (1) 124:1
preliminary (5) 92:3,21;97:14;284:6, 16
premise (3) 165:6;219:18;321:20
pre-NDA (2) 19:10;23:17
preparation (1)

38:3
prepare (2) 17:21;278:2
prepared (3) 49:22;163:18;229:7
preparing (1) 310:17
preponderance (1) 255:5
pre-prioritized (1) 258:2
prescribe (1) 157:17
prescribed (1) 118:1
prescriber (5) 68:15,18;86:19; 289:17;297:12
prescribers (2) 66:5;68:7
prescribing (3) 66:8;69:9;297:4
prescription (3) 126:7,9;296:12
prescriptions (6) 20:21;22:1;24:3; 68:13;69:11;296:9
present (16) 15:6;25:21;71:14; 87:21;89:16,19;102:21; 148:9;183:6,12,13,15; 192:3,12;232:13;280:7
presentation (34) 14:1;15:12;16:1,10; 21:16;61:15;71:19; 74:20;76:15;88:20; 102:19;113:4;124:10; 133:3;137:17;146:4,12; 161:13;176:16;179:22; 193:19;205:1;214:20; 232:11;248:10,14; 263:6;278:15;280:5; 289:2;299:2;311:4; 312:8;319:10
presentations (13) 10:15;13:20;14:8,22; 17:11;88:11;103:3; 114:3;138:19;158:2; 186:4;325:11,17
presented (10) 72:6;108:7;187:17; 190:13;201:17;213:7; 217:8;274:3,4;277:1
presenter (3) 14:11,12,14
presenters (4) 72:9;325:5,17;328:17
presenting (6) 62:1;71:20;85:20; 88:22;205:8;282:2
presents (2) 15:7;260:11
president (1)

19	16	product (166)	79:21;84:16,17;85:5,7;	290:13;322:2
presi	pro	20:14;21:8;23:1,1,18;	89:11;90:18;98:18,21;	progress
10:13;14:10	68:10;260:1	25:6;26:10,19;27:4,9,16;	111:6;112:3;126:14;	137:17
pressure (1)	probable (1)	30:14;31:2,15;32:2,19;	129:21;137:11;149:1,3,	progression (1)
80:7		33:12,17;34:14;35:5	4;151:3;153:6;157:15;	282:12
pretty (14)	probably (40)	37:3,3,9;38:20;39:8,10,	162:22;194:13,16,18,20,	project (13)
89:5;90:8;	21:6,9,15;25:	15;40:4,10,17;41:7;	22;195:7,12;196:8,20;	24:12;35:22;164:16;
148:19;151:17;184:17;	29:22;55:14;56:18;72:7;	45:7;48:11,15,19,20;	202:3,6,10,17;207:5;	166:2;167:11;171:11;
188:18;195:4;214:8;	78:6;85:17;105:1;	49:9;54:6,10,19,22,22;	212:3,21;213:11,22;	195:22;196:18;225:8;
215:21;226:3;274:4;	107:16;110:15;111	55:13;56:1,3,15,20;	214:3;215:18;217:16;	226:15;247:19,19;
283:14;327:1	126:19;128:14;146:16;	57:13;58:4,6;60:8,8,9;	219:12;220:5,6,7,12,12,	299:19
Prevacid (1)	153:22;156:13;178:14;	72:10;76:14,18,20,21,	13,15,19,21;221:5,7,11,	projections (1)
119:5	181:2;201:5;205:4;	22;77:1;78:10,21;79:12,	19;222:7;225:16,17,19,	239:13
prevalent	208:10,15;223:7;239:2;	12;80:18,19;81:21;82:8,	21;226:5,7;251:9;	projects (19)
75:13	240:11,22;243:16;	11;83:1,5,6,8;84:10;	253:10;254:14;257:18;	20:1,1,2,3;26:11;30:4;
prevent (3)	255:20;287:4;312:13,	85:3,9;89:3,5,8;91:3,4;	259:6,7,8;271:7;288:11;	33:19;58:2;62:4;71:1;
21:17;124	22;315:4;316:12;	92:11,12,14;93:6;94:20;	312:17;321:4;327:11	179:6;217:22;218:4,10,
previous (4)	318:13;319:15;321	97:16,18,20;9	product-specific (4)	11,13;232:2;261
237:12;245:3;295	14	100:2;104:10,16;112:2;	24:9;26:3;30:19;	275:1
27:18	p		134:20	promote (2)
primarily	65:7;91:1;97:1,1,2	126:18;127:2;134:10,	professiona	287:4;297:17
42:10;301:5	129:14;148:10;188:2;	11;139:17;141:6,18;	0:18	promoting (1)
primary (5)	212:10;248:22;249:13;	149:11;152:14,16;	profession	222:20
61:19;219:	259:18;260:12;261:7;	153:8;155:21;163:2	283:19;288:4	promptly (1)
10;301:1	263:1,2;277:18;282:15	164:12;170:3;171:19	Professor (9)	257:17
principally	problems (8)	177:9,10,15,20,22;	76:12;88:18;113:	propagating (3)
78:6	67:14;173:17;206:	178:12,16,22;179:12,21;	146:1;161:10;193:17;	301:2,6;302:4
principle (2)	19;257:9;260:3;291:15;	186:2;187:6;192:8	204:21;298:22;312:6	propensity (1)
161:20;162	293:7	199:15,16,17;200:11;	professors (2)	179:3
principles (8)	procedur	205:13;206:9;209:17;	111:4;189:	properties (6)
163:1,13,16	14:16	211:5,6;214:12;219:14;	profile (15)	104:11;177:19
271:18;309:9,21;310:1	proceed	221:17;232:19;233:16,	52:13;92:16,18;95:9,	178:18;179:8;210:21
printed (2)	166:7	18;234:3,4,22;236:9;	11,13,15,18;96:10;97:9;	213:21
62:11,14	procee	249:2,17,22;251:13,16;	57:16;168:1;208:1;	property (3)
prior (8)	14:17,21	252:21;253:1,12	209:20;243:4	179:13;213:20;236:16
19:19;1	process (52)	256:19;257:16;259:12,	profiles (12)	proportion (1)
164:14;233:20;295:13,	17:21;19:9	21;260:18;267:10;	45:7;51:22;5	253:7
19;296	79:17;80:2;81:3,19	294:20;295:6;312	:3;194:4;195:12,14;	proportional (2)
priorities (9)	83:18;104:15;106:10,	21;313:14	197:9;200:1,9;203:6;	249:6;251:6
17:22;18:2;131:17;	13;138:2,2;139:17,22;	production (2)	204	proportionately (1)
217:19;231:10,18;	143:11;169:12;170:2;	154:22;292:1	profs (1)	256:22
258:6;275:1;328:4	178:3;184:4;186:19,21;	productive (3)	60:10	proposal (5)
prioritization (5)	190:3;193:9,13;200:3;	17:9;64:22;327:	program (57)	92:8;97:15;102
138:9;141:17;227:14;	204:1;217:6,21;225:11;	productivity (1)	11:11;14:3;1	172:1;277:15
231:1,2	268:9,13,16;269:4;	270:7	7:8;18:7,16;19:1	proposals (2)
prioritize (5)	270:12;271:15,22;	products (176)	20:4,5,13,20;21:4;22:5;	170:11;279:8
72:12;142:22;231:8;	274:19,20;276:7,19	18:3,4;20:17,21;21:	25:4;29:20;36:20;39:17;	propose (3)
258:9;272:4	277:17;279:5,5,7;290:2;	6,11,18;22:10,14,20;	46:22;47:19,22;50:9;	77:19;79:7;91:18
prioritized (3)	295:5;301:10;302:9,16;	23:9,11;24:1,16,19;25:2,	51:9;52:17;54:4;57:11,	proposed (7)
32:1;258:12;292:14	305:13;322:8	11,11,11,12,13,15;26:8,	17;60:20;63:13;88:17;	146:15;155:13
prioritizing (2)	processes (7)	21;27:1,12,14,21,22;	136:4;140:3;153:20;	280:20;294:9;295:2,21
220:10;245:6	23:16;27:10;80:1	28:5,6,9,20;29:11,18;	175:18;189:21;191:17,	proposing (4)
priority (9)	107:20;146:21;178:3;	30:1,8,9,20;31:4,8,19;	21;194:3;217:11;	56:19;82:9;281:16;
72:13;132:1	180:4	32:4,5,17;34:20;35:1,7,	218:15;223:3;225:7,8;	282:10
142:9;204:9;232:3;	processing (8)	10,15,16,17,18,21;39:13,	230:18;231:6;299:18,	proprietary (4)
245:6;246:2;273:22	168:16;179:9;220	14,19,20,21;40:14,16;	21;302:1;310:18;323:1;	87:11;171:13,20;
private (2)	223:11,13;224:2,4;321:2	41:4,5;42:2,4,21;43:8,	324:6;325:20;327:2,9,	172:5
87:11;297:8	produce (1)	20;44:5;47:12;48:4,7,18,	10,12;328:15,16	prospective (1)
privilege (1)	24:13	22;50:7,15,20;51:4,21;	programs (6)	59:22
323:21	produced	53:5,8,15,16;55:17,19,	63:8;158:1,10;170:	prospectively (1)
proactively	33:5	20;56:2,4,8,14;57:20;	222:2;232:2	65:3
:3	producing (1)	59:13,16,18;64:13;	progress (5)	protect (1)
probabilistic (2)	22:10	76:17;77:8;78:1,7,15;	36:6;133:20;134:1;	$296: 3$

protocols (2)	45:21;47:9;104:4;	12;213:19,20	299:4	207:18
39:6;84:3	109:6;126:21;166:16;	Q6 (1)	quickly (4)	rather (10)
proton (1)	173:3;240:16;275:9;	163:1	103:11;136:21,22;	101:1;230:21;237:13;
234:17	315:10;318:9;319:21	Q8 (2)	164:	243:1;257:6;287:6;
prove (1)	Pujara (11)	163:16,20	Quite (25)	292:11,15;299:4;311:18
60:1	4:7;102:18,19,20;	QbD (8)	46:12;86:8;101:9;	ratio (2)
provide (25)	112:5,22;147:21;150:2;	79:16;162:17,21,21;	106:6;119:12;131:12;	200:15;251:6
13:20;27:19;32:10	155:13;156:5;165:4	163:5,10;235:2;264:12	148:3;149:8;151:1,12;	rationale (1)
48:1;52:21;55:7;56:20,	pull (1)	QbF (1)	160:11;178:21;181:17;	163:12
22;58:15;65:13;67:21;	128:3	278:8	184:16;185:11;193:12;	rats (1)
70:15;74:21;111:16;	pulling (2)	QbI (2)	198:20;199:19;230:16;	200:1
132:3,19;140:18;	128:2;230:8	264:13,13	232:17;233:19;234:13;	raw (1)
186:21;189:9,12;	pump (1)	QbR (8)	237:20;239:22;241:15	31:9
227:11;229:6;257:17;	234:17	150:6,14;161:19;	quote (4)	rDNA (2)
327:1;328:13	pumps (1)	162:15,17,19;163:9;	149:14;162:1;210:16;	28:8;58:11
provided (4)	37:15	264:12	318:16	reach (2)
$\begin{aligned} & 28: 1 ; 218: 22 ; 221: 21 ; \\ & 237: 17 \end{aligned}$	$\begin{gathered} \text { purchase (1) } \\ 11: 19 \end{gathered}$	$\begin{array}{r} \text { QC (5) } \\ 79: 9 ; \end{array}$	\mathbf{R}	96:18;225:9
providers (2)	Purdue (3)	187:20		302:5
289:10;313:2	146:2;174:2;175:20	QSAR (2)	R\&D (1)	reaching (3)
provides (4)	pure (1)	241:11,16	70:6	20:6,20;47:20
42:8;59:21;177:2;	304:16	quadrupled (1)	R01 (1)	reactions (2)
289:9	purported	291:12	286:20	147:13,19
providing (5)	152:16	qualification (10)	rabbit (5)	read (3)
22:6,6;31:14;50:19;	purpose (3)	236:12;241:4;244:2;	207:21;208:1,2,11,12	62:12;103:8;215:10
132:13	10:15;15:11;242:1	246:3;247:4,22;268:9;	rabbits (2)	read-across (1)
provisions (1)	purposes (2)	274:19;276:6,19	207:20;208:1	267:14
291:22	107:18;112:19	qualifications (1)	Rackley (13)	readily (1)
provocative	pursue (2)	220:1	$4: 10 ; 248: 8,10,11,12$	215:21
325:18	78:11;279:2	qualified (2)	258:11;259:9,11,13;	ready (1)
proximal (1)	pursuing (1)	245:19;247:1	260:5,8;261:5;262:11	208:17
93:20	262:8	qualify (1)	radius (1)	real (12)
psychoactive (1)	push (1)	277:3	304:11	58:17;96:10;103:7;
120:21	254:4	qualitatively (2)	rainy (1)	164:6;203:13;218:4;
Public (46)	pushes (1)	317:7,19	329:8	269:5,6;298:12;311:7,8,
$1: 5,7 ; 10: 12,16 ; 11: 2$	31:17	Quality (47)	raise (3)	21
14:15,17,20;17:9,15;	put (30)	12:16,19,20;13:2;	28:20;58:17;319:1	realistic (1)
$20: 16 ; 21: 10 ; 22: 20 ; 28: 8,$	$54: 11 ; 63: 21 ; 65: 18$	$79: 11 ; 82: 20,21 ; 83: 1,5$	raised (3)	303:4
$11 ; 38: 5 ; 42: 13 ; 56: 12$	$67: 6 ; 69: 7,21 ; 73: 5 ; 80: 5$	$85: 21 ; 86: 6,16 ; 87: 1$	$69: 12 ; 235: 13 ; 291: 13$	realistically (1)
57:6,18;59:12;60:21;	20;93:2;100:2;161:20;	114:8;137:6;138:12,14;	Raman (1)	75:10
61:2;87:12,13;88:1;	167:21;174:15;175:5;	142:1;163:2;169:19,20;	33:22	realize (2)
100:3;137:15,21;	176:10,22;183:4;	221:15;222:6,14,19;	range (15)	223:7;230:1
138:22;141:21;174:3,	186:12;188:15;206:15;	234:10;235:8,13;	25:8;70:14;71:12;	really (118)
10;215:1,5,9;216:8,10,	218:19;235:6,16;	263:20;264:13;268:10;	74:6;75:1;84:18;124:11,	15:9;17:14,16,18;
20;217:12;220:8;234:7;	263:16;273:2;276:11;	270:4;271:18;278:2,8;	13,15;125:21;179:20;	18:17;19:6;22:22;23:20;
$\begin{aligned} & 262: 13 ; 289: 5 ; 293: 1 \text {; } \\ & 326: 3 \end{aligned}$	$309: 21 ; 314: 6 ; 321: 7$	289:19,21;290:1;291:3,	181:10;226:9;257:19; 308:3	$\begin{aligned} & 25: 22 ; 26: 7 ; 28: 1 ; 29: 20 ; \\ & 31 \cdot 17 \cdot 33 \cdot 1 \cdot 38 \cdot 21 \cdot 40 \cdot 7 \end{aligned}$
public/private (1)	$57: 16 ; 294: 18$	$297: 14 ; 312: 15,17$	rapidly (3)	$43: 22 ; 44: 15,17 ; 46: 1,6$
$171: 21$	putting (3)	313:14;320:9	78:7,8;83:15	20;48:5;49:4;50:8,18;
publication (9)	36:16;86:7;267:1	quantify (2)	rare (1)	52:8;54:20;55:4,9;
38:3;46:10;167:18;		$286: 1 ; 302: 13$	178:21	59:14,21;60:22;61:3;
$\begin{aligned} & 235: 6,9 ; 238: 8 ; 239: 3,5 ; \\ & 240: 6 \end{aligned}$	Q	$\begin{array}{\|c} \text { quantitatively (2) } \\ 317: 8,20 \end{array}$	$\begin{array}{\|l\|} \hline \boldsymbol{r a t} \\ 199: 5,19 ; 301: 22 \end{array}$	$\begin{aligned} & 70: 11 ; 71: 19 ; 73: 22 \\ & 77: 17 ; 79: 1,2 ; 80: 18 \end{aligned}$
publications (3)	Q1 (2)	quantities (5)	rate (25)	85:3,22;86:21,22;90:19;
144:10;153:17;235:20	108:13;142:11	186:15;315:19;316:7;	69:9;78:11;87:21;	92:6,8,13;93:10;95:12;
publicly (7)	Q1/Q2 (3)	317:3;321:4	90:1,9,10;91:20;92:17;	100:16,18;102:11,22;
16:21;47:2;56:11;	30:7;205:9;207:6	quasi-elastic (1)	95:22;100:6;200:21;	123:21;125:3;133:21;
58:22;60:15;171:16;	Q2 (2)	197:15	285:3,9;303:3,5;305:9;	135:3,6;137:15;138:15;
328:6	108:13;142:1	question-based (3)	306:1,8,18;307:10,15;	140:1;141:15,20;143:6;
publish (4)	Q3 (13)	148:6;153:19;163:3	308:2,13;309:13,13	146:7;151:21;161:20;
45:20;97:19;102:8;	$32: 10 ; 33: 2,10 ; 34: 10$	Quick (7)	rated (1)	162:18;163:9;169:17;
173:6	$35: 20 ; 36: 7 ; 38: 10$	62:15;64:8;73:3;	156:20	170:5;175:12;177:11,
published (12)	104:13;108:13;142:11,	103:7;130:19;152:22;	rates (1)	13;184:5,9;186:5,9,10,

16;187:3;192:8;193:22;	reconstruct (1)	reflective (1)	relate (1)	relied (1)
194:11;195:18;198:11;	29:17	82:6	147:9	144:9
202:5;206:5;209:16;	reconstruction (8)	refresh (1)	related (29)	relief (1)
210:1,1,3,11,20;211:2,2;	280:11;282:20,22;	92:8	28:13,21;42:1;67:16;	317:9
213:18;214:4;247:17;	284:12,19;286:6;287:10,	regard (9)	104:7;125:22;150:6,9;	relies (1)
258:11,13;261:11;	12	314:12;315:4;317:7;	151:14;153:14;154:17;	42:10
262:13,15;263:17,21;	reconstructions (2)	319:16;320:5,7,8;321:8,	158:20;195:12;220:15;	relists (1)
265:6,12;266:18;269:7;	284:16;285:19	15	228:16;240:7;245:12;	70:19
274:1;298:17;320:16;	reconvene (3)	regarding (4)	261:2;265:6,18;268:5;	relying (1)
321:10;323:11;326:17	88:6;160:16;279:19	65:14;68:5;218:8;	272:4;274:3,15;292:19;	115:8
realm (3)	record (2)	268:20	296:5;297:3;298:7;	remain (2)
116:9;215:2;298:14	14:20;292:10	regardless	306:6	290:15;328:7
rearranged (1)	records (4)	272:7	relates (7)	remaining (2)
250:13	49:6;120:18;123:2;	regards (6)	74:15;204:10;253:22;	20:22;111:18
reason (4)	292:8	113:19;117:13;120:2;	256:19,21,22;258:15	remains (1)
128:9;131:1;273:2;	red (5)	130:3;222:12;322:3	relationship (6)	14:14
286:12	16:2;197:16;209:8	region (4)	52:12;240:15,17,19;	Remarks (5)
reasonably-sized (1)	251:4;285:10	91:8;94:22;124:21	299:14,20	13:16;194:12;323:2;
38:6	redefine (2)	181:15	relative (9)	324:15,21
reasoning (1)	226:11,17	register (4)	191:9;200:18,19;	remember (8)
78:12	redox (2)	16:9;17:2;293:12;	249:18;251:12;255:19;	15:15;77:7;108:3;
reasons (3)	196:2;198:8	329:3	261:16;305:21;306:7	137:13;164:22;175:18;
44:2;105:18;135:9	reduce (13)	registering (1)	relatively (9)	177:5;192:11
reassuring (1)	100:16;114:8;136:18;	294:4	57:7;73:10;75:20;	reminder (1)
46:13	139:14;268:20;273:19;	registration (3)	164:3;166:21;168:2;	139:6
recall (2)	281:8;282:11;291:6;	293:13;294:3;298:	184:20;211:9;238:18	reminds (1)
14:12;319:18	293:3,5;296:17;297:19	registry (2)	release (88)	149:14
recalls (6)	reduced (2)	293:18,21	26:8;32:21;36:15;	repeat (2)
67:7;71:6;139:1;	195:11;316:19	regulate (1)	39:10;40:13;54:7,9;	98:22;230:18
180:13;289:18;293:6	reducing (1)	85:5	55:9,14,15,19;78:15;	repeated (1)
recap (1)	280:17	regulated	89:3,5,7;91:2,8,22;	177:7
203:19	reduction (2)	69:17	92:14,15;93:16;94:12,	repeating (1)
received (1)	121:17;180:2	regulating (1)	13,16,17;95:2,2,10,19;	115:16
56:5	redundant (1)	244:5	96:3,5,5,6,7,10,19,19,22;	replace (1)
recent (12)	268:19	Regulation (3)	97:2,3,8,11,16,17,22;	219:19
23:22;42:21;108:5;	reevaluation (1)	63:14;138:11;327:17	98:20;99:1;100:21;	replicate (3)
111:11;137:19;235:9;	257:4	regulations (1)	110:12;111:22;112:1,4;	37:8;38:8;44:22
238:8;280:8;287:3;	refer (2)	22:11	148:14;195:15;196:7;	reply (1)
291:7;296:13;303:20	91:14;329:2	regulationsgov (1)	197:6;199:20;200:12,17,	319:1
recently (4)	reference (32)	16:13	20,22;201:18;202:1;	report (5)
104:2;147:2;241:16;	28:9;37:3,9;42:3;	regulators (4)	204:3;206:10;207:12,14,	48:21;163:8;164:3;
287:7	107:4;166:10;195:7;	70:17;247:5,14;	16;208:1;209:2,4,15,20;	290:12;292:5
recess (3)	196:9;197:3,21;200:7;	267:21	210:6,12;211:16;214:7,	reported (2)
88:7;160:17;279:20	203:10;206:9;237:2;	Regulatory (69)	8;239:10;302:10;303:5;	66:1;206:12
recognition (2)	250:10,14,15;251:1,4,	1:4;10:11,21;11:4;	305:7,10,13;306:1;	reporting (1)
103:20;318:8	11,13,14;252:3;253:5,	12:9;13:20;14:2;16:12;	307:10,15;308:13	$48: 12$
recognize (2)	14;254:13;255:7,20;	17:14,20;18:12,21;	released (4)	reports (2)
31:4;324:10	256:6;316:2;317:20;	19:11,18,20;20:13;21:3;	42:8;90:19;94:1;96:17	48:8;127:21
recognized (1)	318:22	24:6,22;25:4;34:19;	releasing (5)	repository (1)
57:22	referenced (2)	36:20;42:1,18;43:12;	92:10;94:18,22;303:4;	145:15
recognizing (1)	198:7;320:2	46:21;57:7;61:13;63:15;	$308: 1$	represent (10)
269:20	references (2)	65:2,5;67:22;76:13;	relevance (1)	93:16;135:19;191:15;
recommend (3)	107:3;235:17	85:4;88:12;138:11;	134:6	192:13;197:16;199:18;
144:20;241:20;245:6	referencing (1)	141:14;191:17;194:21;	relevant (17)	215:11;236:10;264:22;
recommendation (4)	224:19	216:3,12,18;217:10,19;	38:1;64:9;82:8;86:9,	300:17
258:3;277:2;287:9;	referred (1)	218:15;222:18;223:3;	13,15;113:8;114:16;	representation (2)
292:18	84:17	224:12,18;227:20;	194:1,9;201:2;219:22;	283:22;304:4
recommendations (7)	referring (1)	230:18;231:16;238:5;	260:4;261:16;305:6,11;	representative (1)
220:16;223:8;224:8;	262:15	247:3,11;260:20;274:7;	311:11	99:20
229:6;297:21;300:1;	reflect (1)	276:2;292:19;293:9;	reliability (3)	Representatives (1)
328:20	259:20	294:6;296:4;297:2;	146:19;197:11;222:17	14:18
recommended (2)	reflected (1)	$310: 18 ; 317: 9 ; 325: 20$	reliably (1)	represented (4)
$249: 2 ; 292: 5$	216:9	327:12;328:1,5	197:2	201:12;215:14,19;
Min-U-Script®		A Matter of Record (301) 890-4188		(32) realm - represented

$309: 12$	261:1,4;280:4,8;289:1,7,	267:8	200:11;203:16;204:17;	$325: 20 ; 328: 16$
representing (8)	8,14;292:20;293:10;	results (21)	209:8;214:15;229:10;	robustness (1)
79:22;133:3;146:2;	294:1;295:8;297:9,13;	18:1;19:11;24:7;	231:14,18;232:6;236:8;	110:3
161:11;176:15;214:19;	299:6,21;310:18;311:2;	37:10;38:5;45:20;50:7;	237:16;248:21;252:3;	ROI (1)
252:22;263:5	312:14;319:5;321:21;	64:10;101:20;109:9;	253:5;254:12;255:6;	327:4
represents (10)	323:16;326:15	152:14;206:21;216:11;	260:7;279:15;284:18;	role (5)
21:9;88:22;137:3;	researcher (1)	218:3,12;256:4;284:6;	285:5,11,14;286:7;	30:3;33:18;121:11;
181:19,20;182:1,21;	61:20	285:7;287:21;318:17;	288:18;298:11,11;	150:5;262:2
183:1;200:21;253:10	researchers (1)	321:6	299:20;302:21;303:18;	roles (2)
reproduce (1)	49:21	retire (1)	310:7,9,15;320:22;	61:10;63:18
104:16	residence (1)	76:4	322:2,22	Room (11)
reproducibility (1)	107:13	retrospective (1)	rigor (1)	1:20,20;11:17;64:17;
197:11	resistant (2)	50:6	290:11	104:22;134:16;162:14;
reproducible (3)	281:7;283:5	return (4)	rigorous (1)	249:21;251:18;260:17;
32:16;37:7,9	resolution (1)	21:4;57:8,13;327:2	297:14	323:8
Request (8)	207:4	review (31)	ripe (1)	$\boldsymbol{r o o t}(2)$
1:5;10:12;141:15;	resolve (2)	23:2,9,16;26:4;27:10;	111:3	187:21;259:1
222:10;224:13;225:1;	207:1;278:9	31:11;41:4;42:1;60:3,	rise (1)	Roster (1)
230:20;292:8	resonance (1)	11;64:14;134:17;148:7;	296:7	2:1
requested (1)	81:9	153:19;163:3;164:19;	risk (16)	rotating (1)
290:19	Resource (1)	193:8,13;216:9,19;	29:3;51:2;139:20;	189:10
requests (2)	63:9	265:6;267:6,15;268:16;	180:2;220:22;221:16,	roughly (2)
226:21;290:21	resources (13)	270:12;271:22;272:5;	18;268:6,18;269:5,6;	189:9;254:15
require (3)	19:17;20:8;29:20;	273:18;277:16,17;293:2	271:16;293:1,3;294:15,	round (2)
32:5;249:19;256:9	47:1;73:7,8;267:8;	reviewed (1)	18	35:22;118:3
required (5)	273:18;278:1;280:9;	171:5	risk-based (5)	route (1)
294:15;295:16;298:9;	291:2,21;292:6	reviewer (1)	51:1;52:20;265:7,9;	273:13
300:10;305:12	respect (11)	222:12	293:14	routes (4)
requirement (4)	104:19;106:20;107:7;	reviewers (6)	risks (2)	53:10,13;54:2;269:17
30:7;140:9;249:16;	108:21;110:7,18;164:9;	170:11;172:20;	75:20;313:5	routine (1)
293:11	202:15;224:15;255:22;	186:19;188:7;190:6;	risky (1)	99:6
requirements (2)	278:15	290:20	314:4	RTR (4)
10:20;143:15	respiratory (1)	reviewing (2)	Risperdal (4)	265:17,22;274:13;
requires (9)	285:3	46:14;292:15	205:14,16;208:2;	275:7
46:22;120:12,13;	responding (1)	reviews (5)	209:8	rule (5)
163:8,10;164:14;	31:22	53:2;265:11;268:19;	risperidone (3)	95:22;294:9,12;295:2,
198:17;247:17;290:5	response (6)	273:16;292:11	208:19,20;212:6	21
Research (131)	52:10;66:6;137:14;	revise (1)	ritonavir (2)	rules (3)
1:6;2:6;4:14;10:8	169:19;221:22;243:4	272:8	151:22;152:1	14:6,7;145:15
11:11;12:15;17:22;	responses (7)	revision (1)	RLD (19)	run (6)
18:10,11;19:5,6,12;	15:19;19:8;34:17;	274:13	81:21;143:13;144:22;	11:11;283:19;284:1;
20:10;22:15,16;25:1,7;	52:14;257:16,20;262:16	Reynolds (2)	201:2;203:10,22;207:5;	288:4;326:3;327:8
26:11;28:19;30:2,5,13,	responsibility (3)	305:17,22	208:3,4,6;209:22;214:6;	running (1)
16;31:7;32:18;33:7,10,	22:4,19;31:18	rheology (1)	249:7,18;256:13;	324:5
14,18;35:20;40:14,22;	responsible (2)	36:12	257:20;259:21;260:16;	runs (4)
41:18;42:12,18,19,21;	295:15;323:10	Rick (1)	262:16	63:13,16;326:9,17
47:6,22;48:17;49:14;	rest (5)	13:1	RLDs (10)	Rupp (8)
50:9,16;52:18;53:22;	169:14;179:16;213:9;	rid (1)	58:11;157:3,7;195:13;	4:13;288:22;289:2,3,
54:12,15;57:19;58:2,14;	215:9;246:12	100:17	202:20;249:13;256:14;	5;298:8,11,20
61:6;62:21,22;64:6,10,	resting (1)	right (90)	257:19;260:10,15	Russ (4)
19;66:2,13;67:18;68:2,	285:3	10:3;31:1;38:20;57:8;	Rob (15)	4:10;248:8,10,11
11;69:7;70:20,21;72:2;	restrict (1)	59:6;60:4,6,12,12;72:20;	71:17;72:5;131:11;	Ruth (4)
73:6,10,11,16;75:11;	164:5	76:7,9;81:1;86:7;90:11;	133:20;137:16;161:14,	12:21;131:10;160:3;
76:14,20,20;77:1;84:10;	restricted (1)	92:13;102:1,10,16;	16;162:19;191:20;	171:22
$85: 4 ; 109: 21 ; 110: 10$	$174: 6$ restricts	$112: 8 ; 125: 6,15 ; 127: 6 ;$ $131 \cdot 8 \cdot 132 \cdot 21 \cdot 134 \cdot 11$	$\begin{aligned} & \text { 214:21;232:12;325:18; } \\ & 326: 19: 327: 1.9 \end{aligned}$	S
$125: 14 ; 138: 9 ; 142: 10$	164:11	$16 ; 140: 11 ; 141: 7,7,22$	Robert (3)	S
146:13;153:18;162:6;	restrooms (1)	22,22;143:8,8,18,20;	3:8;10:7;13:16	sabbatical (2)
170:3;173:3,3;191:17,	11:15	148:7,7;152:7;154:2,10;	Rob's (4)	77:22;134:14
17;194:3;213:6;216:12;	result (7)	157:6;160:7,14;167:5;	230:6;239:4;326:1,14	safe (2)
232:18;239:21;244:17;	185:1;256:5;281:10;	168:4;170:22;172:7;	robust (9)	216:6;269:7
246:10,17,18,19,20;	293:6,8;294:16;295:5	174:13;176:5;178:13;	104:15;109:3;110:7;	safety (38)
247:7;248:2;260:21,22;	resulting (1)	188:11;191:11;193:14;	111:8;214:2,10;230:7;	46:12;62:22;67:3,13,

$14,19,22 ; 71: 7,7 ; 74: 5$	79:15	268:18	174:4	54:3
107:22,22;146:20;	scan (2)	Sciences (4)	seeing (6)	erves (1)
195:13;203:6;221:13,	182:2;284	2:9;63:17;274:7	85:6;108:13;127:11	250:2
18;222:5;264:3;265:6,	scans (5)	319:22	241:1;249:11,13	services (2)
11;267:6;268:16;269:8;	286:17,18;287:6,10,13	scientific (40)	seek (1)	62:21;177:2
270:12;272:20;276:22;	scarce (1)	18:7,15,18;21:17;	10:16	session (7)
277:5,19;278:6;290:3;	240:3	25:17,21;27:5,11;28:16;	seeking (2)	11:15;65:22;160:16;
294:8,14,16;295:3;	scared (1)	29:9;31:3;34:22;42:15;	224:11;258	161:4,10;267:2;280:2
296:2;297:11,15	5:2	4:2;52:14;53:3,1	seem (3)	set (14)
safety-related (1)	scattering	54:3;57:16;59:2;77:4;	67:1;108:7;185:11	14:3;53:9;64:3;83:1,4;
294:21	197:15	85:1;114:2;145:7,7,11;	seemed (1)	87:12;115:21;235:10;
saline (2)	scenario (5)	147:3;151:16;153:15;	198:19	245:21;246:3;274:22;
199:4,11	153:18;288:	163:11;172:20;173:8;	seems (9)	276:14;277:16;323:7
salt (1)	305:11;311:17,	219:2,5;220:3,15;	40:3;96:12;128:19	setback (1)
158:17	scenarios (2)	224:17,18;240:14;289:9	158:3;188:7,17;254:4;	140:7
same (42)	153:17;234:22	scientifically (3)	14:14;320:10	sets (3)
32:12,13;64:1;77:8,8,	scene (1)	110:7;183:8;237:5	segmental (2)	46:15;48:5;50:3
8,9;117:2,8;118:12;	326:22	scientists (6)	301:3;302:	setting (2)
120:9;121:4;135:10;	scenes (1)	18:14;23:15;27:6;	segments (1)	219:21;234:10
149:20;162:2,2;168:4,	58:21	313:3;323:19;326:20	302:11	settings (2)
11;169:20;173:12,19;	schedule	scope (3)	seldom (1)	142:19;203:8
182:13;193:11;204:5;	17:5,6	23:12;218:10;222:10	122:16	sevelamer (1)
238:21;239:1;242:6;	scheduled (1)	score (20)	select (3)	28:4
245:2;251:13;254:11;	14:1	249:7;250:9,10,14,15;	31:9;38:20;124:3	seven (3)
268:3;271:11;272:6,17;	schedulin	251:11,20,20;252:7,15;	self-evident (1)	39:9;72:2;204:7
273:16;281:8;285:1;	323:8	253:13;255:2;256:15,20,	101:22	Seventy (1)
313:12;317:7,19;318:6;	schema	22;258:19;259:15,17;	seminal (1)	134:20
320:3	227:14	260:19;262:18	166:10	several (17)
sameness (1)	Schoneker (10)	scores (19)	semisolid (1)	44:8;53:22;62:1;63:8,
162:10	4:16;263:4,6,7;275	249:2,4;251:14;	36:3	22;66:2;68:6;73:7;
sample (10)	10;276:9;278:13,22	252:18,19,20;253:7,15;	send (5)	85:20;109:5;188:6
80:9;93:7,13,15;	279:17	254:8,15,22;255:1,5,7,	16:21;174:15;229:8	191:14;192:20;206:14;
183:16;206:11,19,21	School (6)	10,11,15;259:20;262:17	275:8;328:19	229:13,13;304:12
207:2;210:4	4:5,20;61:12,22	scoring (3)	sense (16)	severity (1)
samples (2)	137:2,3	221:9;249:2;257	19:16;25:5	282:11
115:6;181:14	schools (2)	scrap (1)	131:16;138:5;144:7;	Sh (1)
sampling (2)	137:1,5	291:18	157:12;171:7;172:13;	304:6
109:15;200:4	Science (78)	scrips (1)	202:19;271:4;273:9;	shape (2)
Sandoz (2)	1:4;10:11,21;11:5;	123:14	280:17;285:8;310:11;	52:13;139:7
136:3;143:1	12:22,22;13:21;14:3;	se (2)	320:14	shaped (2)
save (1)	16:12;17:14,21;18:13,	193:4;217:1	sensitive (3)	138:22;289:18
274:20	21;19:11,18,21;20:13;	search (1)	32:15;44:16;96:9	share (8)
savings (1)	21:3;23:21;24:7,22;	175:8	sensitivity (1)	134:5;136:6,21;140:1,
21:10	25:4;29:19;34:19;36:20;	searchable (2)	237:21	5;165:8;197:12;297:20
saw (5)	40:13;42:18;43:12;	175:4;176:8	sent (3)	Sharing (3)
47:15;110:15;187:13	46:22;53:12;57:7;59:	seat (1)	275:11;291:7,10	146:14;164:18;226:20
200:13;327:3	61:13;63:15;77:10;	61:10	Sentinel (1)	sharp (2)
saying (12)	78:20;79:10;88:12;	seats (1)	63:18	52:11;96:5
85:21;86:12;118:12;	112:17;140:15;141:2,	280:1	separate (9)	shear (8)
148:13;157:16;162:16;	14;146:18;172:15;	second (12)	79:10;157:2,3,6;	106:7;304:20,22
171:5;175:11;210:19;	193:18;216:3,11,12,18	21:20;25:18;46:11	206:12,20,22;207:3	306:8,18;309:10,12,13
228:15;260:2;322:7	217:11,19;218:15;	149:10;158:15;173:	210:5	sheer (1)
scale (12)	223:3;224:12;227:20;	189:18;236:17;244:1;	separated	138:3
18:18;21:12;95:1;	237:16;263:13,13,19;	259:5;304:17;317:1	162:20	shelf (1)
249:2;252:7,7;255:9;	267:19;269:4;271:17;	second- (1)	sequence (1)	212:17
256:3,18;257:6;259:2;	274:4,8;275:16,20;	226	317:15	Shen (1)
261:12	279:11,12;292:20;	secondary (1)	series (3)	213:7
scales (5)	293:9;294:6;296:4;	209:20	189:6;307:8;316:20	Sherwin (20)
221:9;255:1;256:16;	297:2;310:18;325:20;	seconds (2)	serious (1)	4:19
258:14,18	327:12;328:1,5	111:18;306:21	119:11	124:13;125:13;126:20;
scale-up (2)	science- (2)	section (1)	serum (3)	127:4;128:21;129:2,5,9,
20:7;79:14	265:7,8	174:5	195:19;199:5,19	$13,18,20 ; 130: 1 ; 131: 2,$
scaling (1)	science-based (1)	secure (1)	serve (1)	$14,20 ; 132: 1$

Sherwood (2)	183:12	simulations (4)	108:5;138:18;141:12;	101:19
304:6;307:9	signaled (1)	261:10;303:8;306:16,	146:17,17;148:8;	solve (1)
shift (2)	158:6	20	153:10;170:13,19;	188:2
106:5;254:2	significance (1)	sincerely (1)	174:14;204:5;205:22;	solvents (1)
shifted (1)	46:1	73:15	215:16,17;225:22;	205:18
209:4	significant (35)	single (4)	226:22;229:12,17,18,22;	somehow (1)
shifts (1)	21:16;25:3;27:5;30:2;	64:18,22;201:12	245:3;259:5;287:2;	278:9
254:20	31:2,21;32:21;33:3,10,	203:2	309:3	someone (2)
short (4)	14,15;35:6,19;36:6;	single- (3)	slides (13)	180:1;322:6
107:14;189:6,12;	39:17;40:2,9;41:22;	64:12;65:16;315:22	63:22;96:8;97:13,13;	sometimes (7)
218:1	42:5,19;44:8;46:22;	single-source (4)	103:9;104:18;148:9;	44:4;117:21;236:20;
shortage (1)	48:9;49:4,11;54:12;	65:9,13;71:4;74:1	216:22;254:6;261:20;	240:3;241:8;260:19;
66:11	56:6;58:1;133:21;141:8;	sink (2)	264:18;323:18;328:22	265:12
shortages (14)	144:4;184:17;207:16;	304:17,18	slight (5)	somewhat (4)
65:19;66:1,4,7,15;	238:17;265:20	sit (1)	113:6,6;199:12;	129:11;155:6,21;
67:1;69:13;71:5;74:2,	significantly (1)	325:16	205:19;207:17	258:17
15;133:10,17;135:7,9	50:18	site (3)	slots (1)	son (1)
shortly (1)	Silver (1)	77:11;254:11;318:8	14:1	118:4
117:14	1:21	sites (6)	slow (2)	soon (6)
show (29)	Simcyp (2)	80:8,9;281:5,9,9;	99:7;282:12	38:4;41:15;51:1
37:8;38:9,11;44:15;	4:2;232:10	287:22	slowed (1)	88:12,16;318:9
45:3;89:14;90:1;92:2,7,	similar (25)	sits (1)	316:12	sooner (1)
21;93:11;95:9;96:12;	41:6;45:9,11,16;	54:17	slower (1)	28:11
105:10;108:11;109:22;	51:19,22;90:20;97:9;	sitting (4)	303:2	sorbitol (2)
143:13;162:11;168:1;	110:1;152:8,15;155:6;	111:4;309:16;325:13,	Small (12)	101:10;135:1
180:11;182:8;207:8;	184:13;200:9;201:3;	21	13:14;57:7;91:7,9;	sorry (12)
213:13;220:20;234:19;	204:4;205:21;206:9;	situation (23)	94:17;103:21;152:12;	77:9;79:8;131:1,10;
250:14;285:13;307:9;	254:7;255:11,15;	22:18;65:4;133:18;	160:12;165:13,16;	152:7;175:17;176:4;
323:13	272:15;285:14;317:8,20	148:20;254:7;258:20;	167:15;205:16	228:15,22;229:17;
showed (6)	similarities (1)	271:14;277:6;278:9;	smaller (3)	246:15;304:20
97:12;109:11;156:12;	208:9	295:9,12;300:21;303:6;	51:20;301:6,10	sort (33)
170:5;189:2;327:1	similarity (11)	306:13,14,15;307:2;	smiling (1)	51:1;64:10;65:4;
showing (9)	29:17;103:5,18;	308:1,2,3;310:22;311:7,	72:15	75:12;135:2;158:3;
70:3;162:9;165:22;	104:19;110:8;117:12;	8	smoothly (3)	166:10;168:5;170:1;
181:15;208:4;285:7;	143:13;149:21;220:20;	situations (2)	326:4,9,18	173:2;174:11;181:10;
301:22;302:21;304:4	313:8;318:7	65:6;311:10	so-called (2)	240:15;244:8;245:9;
shown (6)	Similarly (2)	$\boldsymbol{s i x}(3)$	314:4,7	246:3,17;247:13;261:11,
38:6;181:12;182:22;	65:8;162:9	65:22;221:21;235:11	societies (2)	13;278:6;298:14;311:2;
195:4;210:5,13	Simone (1)	size (19)	10:18;74:12	313:5;314:22;316:16;
shows (9)	13:6	18:19;30:3;34:9;	sodium (6)	318:13;320:3;321:9,19;
37:5;46:1;167:5;	simple (9)	36:12;106:11;109:7,8,	174:19;196:11;	322:4,11,12
172:21;251:5;286:6,7;	78:1;90:6,7;129:16;	16;110:2;111:14;	197:19;198:7;199:13;	sorts (3)
307:19;309:3	136:13,15;162:12;	149:12,19;150:1,5;	200:8	73:5;310:6;313:22
shrunk (1)	257:10;263:14	152:12;156:9;197:13;	sold (2)	sought (2)
286:10	simpler (1)	206:1,2	215:18;290:6	196:14;198:3
side (25)	283:17	sizes (1)	solid (8)	sound (2)
50:12;85:19;114:11;	simplification (1)	34:8	23:4;53:11;54:12;	163:11;222:18
117:1;119:18;123:5;	90:15	sizing (1)	55:10;109:9,19;147:12;	sounds (2)
128:13,18;138:6;148:14,	simplified (1)	33:21	175:22	158:7;169:10
20;150:19;155:11;	284:1	skeptical (2)	solid- (2)	source (9)
156:14;167:19;253:4,5;	simplistic (1)	46:5;59:11	181:12;187:15	27:1;28:6;58:11;
254:12,12;265:14;	257:5	skepticism (2)	solubility (3)	64:13,18,22;65:17;
276:13;281:10;287:21; 320.49	simply (8)	68:8,17	78:14;304:9;314:8	185:13;321:11
320:4,9	70:19;94:7;140:4;	skin (3)	soluble (1)	sources (2)
sided (1)	144:19;156:18;179:17;	36:14;37:13;38:2	107:8	11:3;28:14
250:8	184:13;257:5	skip (3)	solution (27)	space (17)
sideline (1)	simulated (2)	141:10;153:9;169:14	90:21;91:13;92:18;	31:22;32:19;33:4;
69:20	80:13;303:1	sky (1)	95:7;98:2;99:22;100:7,	35:3;45:14;58:6;70:17;
sieving (2)	simulation (13)	85:4	11,13,14;101:3,5,7,11,	75:3;158:8;162:6;
205:20;206:3	26:6;29:16;32:20;	slide (35)	17,22;102:5,8,12,12,13;	171:22;187:8;196:22;
sign (2)	53:7;60:4;123:3;235:12;	62:12;69:12;70:19;	117:19;152:11,14;	202:8;249:20;251:12;
11:10;323:14	237:19;243:17;303:4;	71:21;74:1;88:11;91:3,	185:4;240:12;257:10	255:18
signal (1)	308:8,19,20	3;92:7;95:10;106:22;	solutions (1)	spaces (1)

75:16	181:13;182:21;	9;89:2,4,12;99:6,9;	115:16	268:5;294:2
span (1)	215:13;224:4;256:13;	03:11;304:21;309:4;	steady- (1)	strategy (3)
256:13	257:19;262:16	326:21	285:2	137:14;160:12;303:22
spasticity (1)	speculation (2)	standardized (2)	stearate (19)	strawberry (1)
127:7	191:19;192:12	116:1;271:20	181:1,6,7,8,9,14,20,	118:7
speak (11)	speed (3)	Standards (20)	22;182:18,22;183:2,10,	streamline (2)
14:1;16:8;	268:9;305:21;306:7	10:8;18:5;19:5,1	15;184:3,7,14;185:13;	269:3;271:21
75:11;193:3;213:	spend (4)	26:3;45:15;50:14,22	316:11,18	streamlined (1)
224:16;232:15;248:17;	103:17;108:4;146:16;	51:3,7;52:16;87:12;	step (10)	267:18
263:8;289:4	178:21	88:1;141:17;144:7;	46:6;77:19;110:1	stress (1)
speaker (27)	spending	216:8;222:19;323:16;	111:10;189:17,18;	195:5
15:5,6,20,21;17:3	13:19;277:22	326:16;327:5	197:22;224:9;283:14;	stringent (1)
61:9,11;76:5,11;88:18;	spent (3)	standing (1)	284:3	250:18
102:18;113:1;133:2;	112:14;140:12;192:5	103:14	Stephanie (1)	striped (1)
146:1;161:9;176:13;	spillover (1)	standpoint (6)	284:11	302:5
193:16;204:21;214:18;	66:10	08:10;178:7;192:	Stephen (3)	strong (20)
232:9;248:8;263:4,11;	spin (1)	218:7;272:17;313:1	2:17;146:1,4	18:6,15;19:14;20:15;
280:3;288:22;298:21;	308:11	stands (1)	steps (1)	22:9,15;27:10;29:8;
312:6	spinning	304:6	204:1	38:11;42:14;44:2;51:4;
speakers (10)	308:12	stark (1)	sterile (1)	52:17;53:19;57:16;
13:22;14:22;15:18,22	sponsor (1)	139:6	221:3	59:22;60:11;240:18;
16:4;88:13;176:20;	225:8	start (25)	Steve (4)	243:3;247:17
191:15;197:7;319:4	sponsors	11:22;17:12;69:19	103:15;161:17;166:9;	stronger (4)
speaking (3)	216:10	75:22;94:18;133:7	173:10	40:12;51:8;59:12;
15:17;45:6;259:13	spray (1)	145:19;160:12,13;	Steve's (1)	201:22
spec (1)	1:6	161:4;162:1,16;166:3;	168:6	strongest (1)
86:17	sprays (1)	170:1;174:17;184:5;	stifling (1)	44:16
special (2)	40:21	188:11,18;202:3;	267:	strongly (5)
84:7;147:18	Spring (1)	223:19;233:20;257:6,7;	still (30)	16:18;54:8;294:12;
specific (38)	1:21	263:22;282:4	16:10;20:22;21:16	311:5;328:9
26:16;49:9;50:10;	square (2)	started (6)	23:4;24:4;27:21;28:19;	structural (5)
55:13;58:4;63:8;67:10;	118:3,4	30:20;77:14;183:18	31:6;35:15;89:9,13,13;	91:6;93:9;150:1;
75:4;89:17,21;98:6;	squeezed	230:5,8;276:10	105:1;109:2;122:14;	151:20;166:17
115:21;125:10;131:3;	251:17	starting (6)	130:10;148:4;158:3;	structurally (2)
144:16;145:3;146:8;	SR (1)	104:3;123:20;210:20;	161:19;170:17;201:5;	150:8;151:8
149:6;173:9;174:22;	97:9	235:2;250:16;254:14	213:22;214:8;229:20;	structure (22)
190:10;192:17;216:2;	St (2)	starts (2)	262:7,8;263:2;266:18;	147:11,15;150:12,16;
217:16;218:18;220:14;	27:19;140:2	225:8;282	319:15;328:8	153:4,5;155:7;158:21;
224:8;226:5;229:6,15;	stability (11)	state (11)	Stodart (7)	159:5;166:4,5,22;167:1,
$230: 3 ; 267: 5 ; 275: 1,6$	146:20;148:2;179:1,6,	147:12;164:11	13:13,13;124:9	3,5,14,17;168:16;175:8;
$277: 4 ; 283: 19 ; 288: 5,17$	8;197:9;199:11,19;	181:13;187:16;285:3;	229:12,18,22;230:14	241:13;286:2;318:6
specifically (10)	212:2;228:6;314:21	299:5;301:4,4,11,13;	stomach (12)	structures (5)
32:8;44:10;92:4;	stabilizing (2)	303:6	78:8;80:8;81:13	104:7;105:8;106
145:9;147:10;150:15;	105:7,16	stated (1)	87:18;91:5;93:3,19,20;	151:19;166:18
266:1;298:12;320:15,16	stable (3)	105:11	94:1,6,16;95:3	structure's (1)
specification (2)	20:6;169:2;199:20	statement (4)	stop (7)	167:4
180:17;234:11	staff (7)	59:13;156:17;216:1,2	16:2;96:6;98:13;	struggle (1)
specifications (6)	291:1;323:15,18	states (3)	111:19;145:2;154:2;	143:22
86:8;169:8,9;173:17;	324:8;325:19;326:14,15	115:16;215:19;290:6	275:3	stuck (2)
219:22;221:1	staff's	statins (2)	stops (3)	37:16;177:11
specificity (1)	292:1	70:4;75	96:12;231:20;294:1	students (3)
163:20	stage (5)	statistical (6)	storage (1)	90:12,13;167:10
specifics (2)	14:3;64:3;65:8	39:1;92:19;221	212:17	studied (10)
127:13;227:8	233:21,	248:18;250:5;258:22	story (1)	76:3;119:7,187:18;
specified (2)	stages (4)	statistically (1)	262:6	196:3,8;201:13;315:8;
261:20;273:3	66:21;280:12,22	98:4	straight (1)	317:3,15;321:8
specifying (1)	284:4	status (1)	155:12	studies (76)
163:19	stakeholders (10)	245:17	strange (2)	23:7;25:20;30:4,11;
specs (1)	10:17,19;18:1;58:12;	stay (3)	103:14;185	31:13;32:6;33:9,19;
169:6	215:2;216:17;217:4;	94:5;271:8,12	strategic (1)	35:9;36:14;37:6;38:8,
Spectroscopy (2)	223:1;313:7;327:14	stays (1)	190:21	19;40:6;41:8,18,19
33:22;187:16	standard (17)	93:13	strategies (5)	42:11;43:19,21;44:11,
spectrum (7)	51:1;79:4;83:2,4,6,7,8,	steady (1)	155:15;159:1;221:15;	14,20,22;46:6,8,21;47:1;

50:6;54:11;55:6;59:5,	submit (9)	131:13;246:18;318:19	312:17;324:4;325:2;	systemic (1)
22;68:6;78:19;97:20;	15:18;16:13,19;	suggestion (1)	326:8,17	107:12
98:18;116:5;118:17,21;	07:21;108:15;110:10;	319:20	surface (3)	systems (6)
120:15;121:7;122:3,9,	111:5;192:6;245:7	suggestions (10)	300:11,11;306:	40:21;41:16,20;107:6;
13,18;124:18;127:6;	submitted (3)	62:7;63:21;126:16	surfactant (6)	136:17;248:20
131:13,22;155:2;195:8;	134:17;261:6;266:15	131:12;216:16;218:20;	105:15;106:1,14,16;	
213:12;217:22;218:4,9,	subpopulation (1)	229:15;230:3;245:4,12	152:9;207:2	T
10,12;219:15,20;240:2;			surfacta	
261:18;273:6;274:10;	subsequently (1)	69:21;252:19;254:22	105:7	table (1)
279:12;281:13;282:21;	196:5	summaries (1)	surge (2)	24:5
283:8;284:16;285:2;	substance (4)	144:18	24:18;58:3	tablet (2)
287:3,15;315:3,15;	129:12;178:16,20	summarize (3)	surprise (1)	118:3,3
316:20;317:16	79:12	85:20;243:21;319	94:3	tablets (1)
study (61)	substances (3)	summarizes (1)	surprising (1)	103:21
32:17;36:21;37:2,5,8;	101:11;174:22;178:	321:11	94:11	tackle (1)
38:1,7;45:4,9,17;46:11;	substitutability (5)	summarizing (1)	Surprisingly (2)	211:12
60:5,12;65:1;70:2,8;	44:19;46:19;47:4,11	133:8	79:2;96:11	tacrolimus (3)
75:8;76:2;89:7;90:5;	21	summary	Surveillance (4)	45:18;125:16;130:13
93:2;95:6;98:11,11;	substitutable (4)	70:19;122:19;141:12;	13:5,8;26:2;202:6	tail (1)
99:6;115:21;151:16,17;	22:12;41:7;59:19	145:6;148:8;153:10;	survey (1)	253:9
183:7;196:10;201:10;	158:6	255:14;297:9	313:1	takeaway (1)
204:18;210:10;213:15;	substitute (1)	Sun (8)	surveying (1)	133:8
225:5,13;226:2,10;	59:16	1;88:18,20,21;99:4;	75:1	take-home (1)
243:18;254:10;255:13;	substituted (1)	100:10;101:21;299:18	surveys (1)	309:17
257:2;280:15;283:8,9,	48:7	SUPAC (1)	131:19	talk (57)
12;284:10;286:21,22;	substitutes	79:14	Susan (2)	20:9;23:21;25:6,9,19;
287:13,15;296:14;	117:10	superimposable (2)	276:11;279:1	26:1,5,16;43:16;56:17;
309:18;315:4;316:1,10,	substitution (44)	45:8;200:10	suspension (3)	61:13;76:17,19;77:1;
12,15,18;318:17;322:14	21:21;25:19;26:1,2	superior (4)	34:7;117:20;119	98:17;103:11,13;104:13,
studying (1)	43:17;44:12;45:10;46:5,	249:17;251:19;254:4;	suspensions (7)	13;105:2;107:5;110:16;
196:1	9,12,17;47:5,16;48:3,10;	256:8	32:22;33:6,13;34:12;	113:7,9;117:3;125:1;
study's (1)	49:1,9,13,14;50:2,11,13;	supervisor (1)	55:21;194:14;211:8	133:20;145:13;147:9;
254:20	56:22;59:3,5,11;69:6;	12:1	sustain (1)	150:6;155:14,20;158:9;
subclasses (2)	72:11;117:2,4,5,5,6,6,9;	supplied (1)	22:16	168:22;176:18;179:17;
82:9,16	123:11;124:4;125:11;	19:18	Sweden (1)	186:14;187:17;190:7;
subclassification (1)	126:4,5,10,14;133:19;	suppliers (1)	299:15	191:6,9,13;193:22;
77:19	204:13	31:10	switch (8)	212:1;224:22;225:10;
subgroups (1)	substitutions (4)	supplying	114:15;118:15;120:4;	228:7;233:3;239:20;
227:22	44:9;46:14;123:9;	271:20	123:16,17;128:7,7,9	263:18,18;264:12,17;
sub-issues (1)	158:17	support (23)	switchable (1)	265:8;269:10;276:1;
310:6	success (4)	27:7;29:20;30:12	157:4	289:15
subject (13)	20:19;24:2;297:6;	31:3;34:2,5,22;42:12,19;	switched (2)	talked (18)
14:15,19;80:21,22	327:8	$43: 12 ; 46: 21 ; 52: 17,20$	48:13;253:	$38: 4 ; 69: 13 ; 73: 4$
100:17;140:8,13;	successful (5)	$54: 12 ; 59: 3 ; 118: 18$	switches (5)	$111: 14 ; 147: 1 ; 188: 6$
175:15;198:17;219:15;	30:15;127:2;165:5;	170:6,10;213:14;269:2;	120:12;122:16	189:5;192:17;218:5;
242:21;281:19;285:9	324:1,11	294:12;295:8;326:21	158:17;195:2,10	222:3;270:16,17;277:9,
subject-1 (1)	sucrose (2)	supported (3)	switching (7)	15;298:3;312:11;316:4;
$\begin{array}{r} 286: 5 \\ \text { subjiect- } \end{array}$	194:20;195:6 sudden (1)	35:3;63:10;273:13 supporting (1)	$\begin{aligned} & 25: 20 ; 43: 19 ; 114: 13 \\ & 120: 6 ; 131: 1 ; 203: 5 \end{aligned}$	$324: 2$ lking (28)
$\begin{gathered} \text { subject-2 } \\ 286: 5 \end{gathered}$	sudden 118:2	$\begin{array}{\|c} \text { supportin } \\ 30: 5 \end{array}$	$\begin{aligned} & \text { 120:6;131: } \\ & \text { 296:18 } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { talking (28) } \\ 21: 7,12 ; 28: 5 ; 74: 11 ; \end{array}$
subjected (2)	suffers (1)	supportive (1)	symbol (1)	76:13;103:15;118:10;
315:15,22	256:2	217:10	304:6	141:6;147:6;150:2;
subjects (15)	suffice (1)	supports (4)	symptoms (1)	158:14;162:3;164:9;
38:7;43:21;44:7;80:6	169:15	18:22;19:1;59:8;177:8	282:12	165:9;169:4,21;172:9;
243:8;252:4,14;254:10,	sufficient (2)	Supreme (2)	system (11)	174:11;177:3;190:20;
15,17,18;255:13;256:10;	111:2;240:2	295:13,19	78:3;105:4,17;114:7;	222:15;228:6;264:15;
285:18;286:4	sufficiently (1)	sure (24)	145:14,17;148:22	267:13;275:12;279:8;
submission (4)	144:16	48:3;50:13;55:4;	153:22;174:1;175:21;	280:11;283:21
16:22;34:17;238:5;	sugars (1)	72:14;80:13;142:8	233:15	talks (5)
271:21	101:13	154:14,19;156:4,21	systematic (1)	110:14;134:5;180:8;
submissions (4)	suggest (3)	171:8;224:2;225:2;	$195: 18$	265:18;319:19
11:3;159:3;222:14;	64:7;158:1;313:5	226:14;227:12;241:18;	System-based (1)	talk's (1)
327:22	suggesting (3)	261:6;275:22;288:20;	314:2	102:22

tandem (1)	74:18;76:22;91:18;	63:14;128:16	256:11	together (14)
195:22	104:2,2;264:11;304:16,	therapy (2)	Thushi (5)	36:16;93:10;137:4;
target (5)	17,19	204:11;297:6	323:6;324:19;326:4,7;	138:15;143:22;155:9;
79:18,20;107:10;	terms (22)	Therefore (5)	329:4	186:12;230:8,9,13;
145:2;281:5	17:19;21:8;62:12	142:18;163:16;172:4;	Thushi's (1)	235:6;276:12;308:15;
targeted (4)	69:10;73:11;95:18	174:3;217:13	323:10	321:7
145:9;153:16;160:8;	111:13,21;140:9;142:9;	thermogram (2)	tie (1)	to-last (1)
224:8	143:2;185:2,4;188:10;	182:7,9	279:10	226:22
targets (4)	192:17;218:1;224:9;	thermographic (1)	tied (1)	told (2)
65:5;79:16;155:8;	238:18;254:4;281:18;	182:4	320:10	271:6;279:1
282:4	314:19;322:9	thesis (1)	tier (4)	tolerability (2)
tasks (1)	test (28)	168:14	158:13,15,19;175:13	107:22;112:10
292:14	26:9;43:22;44:16;	thickness (2)	tiers (1)	tons (1)
taste (1)	55:2,14;83:9,13,15,16,	309:6,7	158:12	146:16
118:6	17;99:14;107:15;	thinking (19)	ties (1)	took (2)
tastes (2)	114:20;162:8;203:14;	41:10;65:8;69:12,13,	204:12	150:21;324:20
118:7,8	250:5,8,9;251:1,3,9,15;	22;70:1,8;77:21;133:16;	tighten (1)	toolkit (2)
taught (2)	253:1,4,12,22;316:6,6	138:1;140:13;145:2;	83:11	227:6,7
103:16;310:10	tested (3)	154:17;158:12,15;	tighter (3)	tools (25)
teach (3)	119:15;121:3;132:17	159:9;190:5;298:6;	50:21;51:3;52:16	18:6;23:1,3,6,10,14;
90:12,13;169:6	testified (1)	319:20	timeliness (1)	26:4,7;29:1,7;52:5;54:5;
teachable (1)	63:12	third (15)	296:1	56:22;60:2,4,11,14;
172:5	testify (1)	22:22;54:5;64:15;	Timely (2)	72:12;222:5;226:22;
team (4)	276:3	158:19;170:19;175:13;	220:11;291:	227:1,3;264:7,8;327:15
216:3;218:19;308:17;	testimony (2)	182:10;186:18;220:3;	timer (1)	$\boldsymbol{t o p}(14)$
312:3	137:20;162:2	239:5;241:6;254:15;	15:22	74:13;95:8;131:18;
technical (3)	Testing (15)	276:5;296:4;304:19	times (15)	152:12;181:19;182:3,6,
219:2;267:4;277:21	12:15;36:7;42:20;	though (7)	18:19;85:20;200:5;	7,8;200:6;207:22;
technique (4)	44:6;187:21;203:18;	100:11;160:3;173:1,1;	219:7;222:9;235:20;	242:16;262:2;286:5
184:5;197:20;198:16;	206:11;221:1;249:1;	181:6;258:19;271:8	245:3;250:10;271:11;	topic (14)
281:4	256:12;257:14;260:3;	thought (7)	272:12;275:10;304:12;	25:18;65:18;67:5;
techniques (7)	291:17;312:19;314:4	45:12;66:2;102:9;	307:15,16;308:2	70:11;110:16;113:6;
84:9;186:7;187:5	tests (7)	143:10;150:8;172:2;	tiny (3)	140:1;145:20;192:20;
196:21;268:12;280:21;	36:14,15,17;38:18;	185:9	94:16;95:2,2	194:9;232:15;260:21;
282:19	39:7;55:19;56:2	thoughts (4)	tissue (1)	263:8;325:10
technologies (6)	TGA (1)	136:22;144:5;278:17;	195:5	topical (8)
34:22;112:17;228:8,9,	182:14	298:5	tissues (2)	25:10;35:7,12,15;
20;280:10	Thanks (22)	thousand (1)	107:10;112:12	36:21;53:16;55:19;
Technology (15)	61:17;71:13;145:22;	65:22	title (1)	143:3
2:19;3:6,13,18;33:21;	154:2;159:6;160:14;	thousands (1)	146:11	topics (11)
34:4;35:4;37:17;72:1;	161:14,15;170:15;	305:8	titles (1)	69:20;84:16,17;
87:19;93:1;133:14,15;	176:11;188:5;193:14,	three (28)	62:19	138:20;179:18;189:8;
150:11,13	21;204:20;278:14;	19:19;64:16;74:14;	titrate (1)	192:17;193:5;228:3,17,
teed (1)	279:17;288:18;310:9;	87:7;97:11;158:12;	168:21	229:3
194:11	312:5;320:12;322:21;	172:9;174:11;175:1;	Tmax (2)	total (5)
telling (1)	326:1	176:20;181:13;198:10;	209:3,4	81:15,16;253:11;
191:7	theme (1)	209:9,19;210:12,13;	today (47)	284:21;285:6
tells (1)	161:21	222:8;242:20;252:11;	10:13,16;11:12;13:22;	Totality (2)
83:16	themes (1)	280:14;284:15,20;	14:22;17:9;20:9,18;	139:10;141:12
temperature (1)	161:17	299:16;308:1;315:18;	25:9;45:6;56:16;77:5,	totally (2)
168:3	therapeutic (32)	316:6,6;326:7	18;85:18;108:7;110:15;	241:17;305:4
tend (6)	18:4;50:17,21;51:11,	three-step (1)	133:6;138:8;158:3;	touch (4)
125:19;143:1;144:1;	15;52:7;69:5;70:14;	200:2	177:8;180:8;186:4;	23:10;250:4;266:17;
241:10;267:16;303:22	71:12;74:7;75:2,4;	threw (1)	187:17;189:2;197:8;	285:17
tends (1)	83:11;114:15;115:18;	107:	213:7;222:9;232:15,16;	touches (3)
87:11	117:5,9,10;118:17;	thrilled (1)	234:21;248:14;263:9;	55:18;74:8;278:7
tenet (1)	119:1;120:6,12;123:11,	326:11	264:5,11;266:17;269:1;	touching (1)
216:13	16;124:3;126:4;128:9;	throughout (5)	289:4,16;296:5,6,20;	26:11
tenfold (1)	139:15;158:5;165:14;	220:5;261:7;263:10;	297:21;319:10;325:5;	TOUFANIAN (3)
19:20	220:4,6	265:11,20	326:4;327:8,21	12:11,12;74:19
tenure (1)	therapeutically (3)	throwing (1)	today's (4)	toward (3)
136:2	119:6;120:9;155:4	69:19	232:13;304:12;	24:6;49:19;51:7
term (9)	Therapeutics (2)	Thus (1)	325:11;329:9	towards (6)

29:9;43:8;132:12;	$239: 17$	$310: 3 ; 312: 12$	257:16;270:1;291:19;	$121: 14$
				und
tox (1)	5;238	;5	314:19	24:17
273:14	Translational (2)	56:10;64:19;80:3;81:19;	typical	understood (3)
toxicity (1)	12:22;190:3	116:19;117:19;118:21;	83:20;196:20;242:12	210:19;225:14;309:19
194:4	transparency (7)	129:16;131:15;150:15;	Typically (11)	undesired (1)
toxicological (1)	217:20;218:7,8;	153:11;154:11;173:18;	112:8,20;116:7,20	281:9
272:17	229:14,18;230:2;273:12	180:11;184:10;185:12;	130:8;194:22;206:11;	unfortunate (1)
toxicologists (1)	transparent (1)	192:21;193:2;233:16;	233:4;235:13;281:9;	175:19
276:12	144:12	287:4;301:19;312:2	309:4	Unfortunately (3)
toxicology (8)	transplant (1)	tube (2)		139:4;264:6;266:15
265:10;267:15;268:2	45:17	80:5;93:	U	unfulfilled (1)
19;271:17;272:6;273:6,	transplants	(1)		290:21
16	121:7	296:14	U01 (1)	UNIDENTIFIED (1)
trace (1)	transport	turn (2)	:7	76:5
143:15	300:9	11:7;323	ubiquitous (1)	unique (6)
traceable	transport	turns (4)	194:8	49:2;55:7;59:
237:6	314:22;318:4;322:	80:11;162:12;306:	Uhl (50)	194:16;197:10;202
tract (20)	transporters (2)	308:22	5:4;12:1,2,2,3;71:17;	unit (2)
55:1,6;78:	315:5;320:17	twice (1)	72:2,5,18;73:2;154:5,11,	165:3;189:8
81:10;90:21;91:16;92:1,	transporter's (1)	307:14	15;155:19;157:6;160:2,	United (2)
10,14;93:3,17;152:18,	318:7	two (68)	6,8;170:16;171:8,12,15;	215:19;290:6
21;299:8;300:3,7,15;	treat (2)	32:8;34:8;37:2;48:5	176:5;191:11,14;192:2;	universally (1)
301:2;303:16	119:12;233:17	50:15;52:16,22;64:6;	204:5;226:19;227:6,11,	195:4
Tracy (4)	treated (2)	69:12;89:16;94:20;96:8,	14,16,18;245:2,11,14;	universities (1)
4:13;288:22;289:2,4	22:8;75:14	14,22;97:12;100:18;	258:5;259:3,10,12;	225:5
trade (1)	treating (1)	101:18;102:3;131:18;	260:1,7;275:6;276:4;	University (22)
191:16	123:1	132:13,149:13,19,22;	278:12;298:2,9;321:20;	2:3,12,15;4:5,20;5:2;
tradition (1)	treatment	150:9,16;151:3,7;	324:16,22	45:4;76:12;88:19;89:1;
101:6	66:6;70:18;75:17,19	152:12;153:20;157:2,3,	Ultimately (1)	113:2;146:2;161:11;
traditional	168:5;174:8;281:3;	6,14;160:6;172:8;	202:8	176:14;204:22;298:22;
107:15	282:10;286:3;297:6	174:11;180:2;189:11;	Um-hmm (4)	299:5,17;302:20;
traffic (1)	tree (2)	201:3;207:10;209:1;	128:21;129:2,5,	308:16;312:2,7
151:12	176:1;284:19	214:2,5,6,7;222:8;	unanticipated (1)	unknowingly (1)
train (1)	trees (1)	228:18;235:2;238:15;	121:20	236:9
326:12	280:12	242:11;251:21;252:11;	unaware (1)	unknown (5)
training	tremendou	285:11,15,17,22;286:4,	203:4	200:18;241:3;242:14
133:13;153:20;158:1,	148:21;151:11;199:20	17;292:17;299:16;	uncertain (3)	18,19
8,9,10,13;159:7,10,17;	tremendously (4)	304:19;306:21;312:20;	236:1,5;241:3	unknowns (1)
165:2,2,4;170:9;172:11,	132:8,10;149:2,12	313:9;315:14,15;317:4;	uncertainty (5)	271:13
12,17;173:22;190:19;	trials (3)	318:1	236:7,10;238:1	unless (3)
323:12;326:5	98:22;120:13;121:6	two-minute (2)	280:17;313:17	34:15;87:20;295:10
transcribed (2)	tried (12)	16:3;69:18	uncomplicated (1)	Unlike (1)
15:1,16	25:7;156	two-phase (1)	101:7	129:21
transcript (1)	221:21;238:11;239:17,	210:11	under (32)	unrelated (1)
15:2	18;240:16;242:4,8,13,22	type (38)	10:20;14:15;18:17	276:5
transdermal (6)	trihydrate (5)	28:14;34:20,21;37:1,	20:3;24:11;26:20;27:2,	unsafe (1)
40:21;41:16,20;221:7,	183:19,21;18	22;41:19;45:11,16;46:2,	14;30:10;32:9;38:3;	293:4
11;248:19	true (10)	20;55:13;59:21;84:15;	39:13,21;45:14;46:21;	unstable (2)
transdisciplinary (1)	70:11;9	101:17;108:16;131:13;	50:18;64:14;75:19;79:4;	22:18;197:21
153:18	101:21;102:1;156:18;	150:2;156:2;158:10;	82:8;83:20;124:15;	untested (1)
transformation (1)	191:2;245:11;304:8;	171:21;190:19;211:5;	167:12;172:18;221:12;	234:21
41:17	326:19	213:19;233:6;235:8;	223:10;239:1;270:21;	unusual (2)
transit (8)	try (32)	239:2;240:21;242:11;	271:8,12;274:11;328:2	49:16;299:4
81:6;91:10;92:2	15:9;19:6,13,14	243:17;255:21;266:6;	undergoes (1)	UO1 (1)
98:12;102:14;314:21;	29:13,17;55:2;57:2;	269:21;280:16;300:5;	238:16	195:17
316:16;322:10	99:3;111:1;123:20;	301:6;303:11,22;317:10	underlie (1)	up (75)
transition (1)	146:6,9;147:9,12;	types (25)	172	11:10;18:18;27:22;
63:20	161:20;164:2;178:14;	27:20;34:8;38:17;	underlying (2)	28:17;37:15;39:3;46:10;
translate (10)	179:1;188:15;195:19;	41:7;47:1;48:21;50:2,	90:7;233:13	65:7;69:21;71:21;74:20;
171:19;178:6;179:13	233:15,22;237:15;	10;57:2;75:12;142:7;	underpinning (1)	101:20;114:22;137:3;
186:18;187:20;189:15,	250:21;266:12;273:10;	174:8;175:9;189:21;	319:8	139:5;157:21;160:13;
20;234:15;238:12;	278:19;279:7;282:11;	221:14;233:4;244:6;	underserved (1)	167:6;168:17;171:6;

174:15;176:22;180:16; 182:3;187:10;188:11; 189:13;190:12;191:15; 192:3;194:11;201:4; 204:18;207:8;217:8; 223:21;228:9,12;235:2, 10;242:7;245:21;246:3, 13,21;247:14;253:2,3; 260:15;263:14;268:9; 269:12;272:21;273:10; 274:22;275:11;276:15; 277:4,17,20;278:17;
280:14;292:1,12;298:12, 13;304:12;306:18; 310:7;314:13;323:7,13; 325:13,15,21
update (4)
111:12;294:10,15;
295:16
updated (5) 256:11;295:10,11,18, 20
updates (1) 294:8
updating (2) 222:12;295:15
upon (8) 178:17;179:8;180:19; 184:15,17;185:17; 223:15;237:11
upper (5) 167:22;250:8;253:18; 255:15;282:5
uptake (4) 225:21;297:17; 303:13;318:4
up-to-date (1) 295:6
urge (2) 139:12;297:13
usage (1) 202:7
use (102) 15:16;26:9;27:6;41:2, 9,21;67:16;68:22;69:8; 70:13;71:5,10,11;73:22; 74:2;76:22;80:22;81:11; 82:1;86:2;89:9,11;90:5, 6;91:19,20;94:8;97:7; 98:5;99:11;100:3,20; 101:3;106:13;108:18; 112:8,20;114:9;121:21; 122:21;123:4;129:1; 130:13,15,15;132:14,18; 142:19;143:12;145:1; 163:5;164:13;177:14; 184:4;192:7;194:15; 197:5;198:11;202:9; 210:4;214:5;215:18; 222:5;233:20;234:2; 237:1,16;238:5,21; 240:10;241:10,14; 244:7;256:3,20;258:15,

15;264:6;265:18;266:1; 268:11;269:4,19;270:3, 22;271:9,10;272:2,8; 273:13,17;274:15; 276:20;277:4;281:4; 282:9;283:11;287:10; 292:5,7;296:8;319:16
used (60) 30:9;34:2,4,5;35:10; 38:18,19,22;44:5;54:1; 64:1;68:21;69:2;105:12; 107:8;109:18;118:4; 120:22;121:4;126:20; 127:15;130:5;132:7,7; 138:12;168:22;181:3,3; 188:16;196:22;198:15; 201:9;205:18;206:11; 207:21;208:12;209:9,14, 22;217:21;224:10; 233:4;234:6;235:12; 237:3;241:16,16;
244:21;261:9;265:11; 266:14;267:21,22; 269:7;276:1;309:5; 320:21;321:3;322:18; 327:16
useful (7)
47:17;64:11;65:13; 79:14;223:12;233:7; 285:22
User (9)
1:3;10:10;13:11; 194:8;217:21,22;
218:21;237:3;277:7
uses (5)
19:13;22:21;90:7;
269:11;293:12
using (31)
23:13;34:21;37:8; 48:9;101:18;121:2,8,10; 130:8;134:10;143:9; 148:22;186:6;187:15; 207:2;231:21;233:21; 239:3;248:20;249:1; 258:21;261:21;269:8; 278:17;287:5,6;292:12; 293:14;302:13,17;314:3
USP (10)
80:12;81:11,20;82:1; 144:8,22;206:20;210:2; 221:5;307:4
USP-2 (1)
306:17
usually (6)
86:14;105:13;114:20; 117:19;122:17;326:7
Utah (4)
4:20;113:3;124:16,16
utilization (7)
65:10;225:16,17,18;
226:1,3,4
utilize (2)
195:1;279:7

utilized (2) $218: 13 ; 226: 7$
\mathbf{V}

180:18 ventilation (2) 280:15;285:1 venue (3) 275:13,19,19
versa (2) 169:3;311:20
version (2) 118:2;295:10
versions (8) 28:10;39:15;42:9; 43:2,7,9;45:18;296:19
versus (12) 45:12;70:13;71:11; 115:14;120:2;127:20; 158:5;185:18;195:12; 263:15;303:17;309:14

vetting (1)

 87:14via (1) 261:9
vial (2) 149:10,11
vials (4) 149:13,22;152:12; 221:1
vice (2) 169:3;311:20
videos (1) 312:10
videotape (1) 14:20
view (10) 43:5;44:2,13;59:17; 64:19;65:2;66:18; 154:22;256:10;313:6
viewing (1) 10:5
views (2) 40:16;248:15
vinaigrette (1) 106:12
violations (2) 291:8,11
virtually (1) 129:7
virtue (1) 318:5
visible (1) 144:6
vitally (1) 113:17
vitro (75) 26:7,8;32:21;33:19; 36:13,15;38:17;39:7,10; 42:11;54:7,9,18;55:9,14, 18,19;56:2;60:6;78:5; 79:7,20;80:18;81:18; 85:14;86:13,13;99:2,13; 100:4;107:15;110:12; 111:22;112:1,4,6,15; 139:18;177:18;196:4,5, 13,16;198:11,20;199:3;

200:13;201:11,21;204:2, 18;206:10;210:6; 211:16;212:2;219:11, 19;300:4,8,17,20;
301:16;303:10,17;305:3, 5;306:15;307:1,21;
308:1,14;309:14;
310:20;311:9;314:3
vitro-in (1)
110:16
vitro-relevant (1) 309:1
vivo (70)
30:11;33:19;36:2,21; 38:1,12;54:21;78:9,21; 79:8,22;82:7,7,15;83:9, 13,16,19;84:12;85:14; 92:9,14;98:8;107:17; 109:1;110:13,16;
111:17;112:8,20;
139:19;196:7,13,16;
199:21,22;200:12;
201:11,21;202:2;204:3, 18;207:19;208:1,20; 209:14;212:2,20; 219:10;300:20;302:18, 18;303:6,9;305:3,6,10, 11;306:13,14;307:1,22; 308:2,3;309:14;311:1, 17,17,20;315:11
vivo- (2)
309:1;311:10
voice (2)
138:13;142:1
volume (5)
81:16,17;138:4; 200:15;208:17
volumes (3)
81:10;200:19;301:9
volunteer (1) 115:1
volunteers (1) 316:1
vulnerable (3) 124:12,14;143:16

\mathbf{W}
waiver (1)
$213: 15$
walk (4)
$37: 19 ; 171: 15 ; 196: 17 ;$
$205: 2$
wall (1)
$303: 13$
wants (1)
$117: 17$
warehouse (1)
$128: 3$
warning (5)
$16: 3 ; 69: 18 ; 291: 7,10$,
12
washing (1)

GDUFA 2012 REGULATORY SCIENCE INITIATIVES Part 15 Public Hearing

197:22	10:4,9;61:14;88:9,19;	who've (1)	274:17;275:19;280:16;	
Washington (1)	161:3,11;223:9,17;	70:21	285:16,18;301:20;	X
72:22	230:15;279:22;280:4	wider (1)	305:1;308:22;323:4,21,	
wasting (1)	well-articulated (1)	70:14	22;324:2;325:13,19;	axis (1)
267:8	137:16	willing (2)	326	251
watching (2)	Wellbutrin (3)	72:21;323:22	worked (7)	XL (1)
149:16,19	148:15;150:7,10	window (2)	44:7;46:7;106:2	150:9
water (8)	well-controlled (1)	165:14;281:	194:6;211:7;271:2	XR (2)
81:12;96:18;149:10,	104:14	wings (1)	$308: 17$	239:11,16
$\begin{aligned} & 11 ; 166: 20 ; \\ & 182: 11,12 \end{aligned}$	$219: 19$	wish (3)	$\begin{array}{\|c} \text { workers (1) } \\ 326: 22 \end{array}$	Y
water-soluble	well-established	16:20;134:5;	working (47)	
105:17	53:12	withdra	21:18;28:22;31:22;	Y-axis (1)
wave (1) $303 \cdot 1$	well-known (3)	152:5	36:1;51:13;62:8;77:21;	251:1
303:1	148:19;199:11;320:7	within (43)	87:5;103:8;130:7;	year (27)
wave-type	well-performing (1)	69:4;90:20;105:22;	132:12;166:6;167:10;	$20: 1,5 ; 21: 10 ; 24: 11$
301:3	256:14	114:5,19;115:6,17,19;	173:5;184:10;190:1;	$12,13 ; 28: 11 ; 30: 22$
way (47)	well-received (1)	116:1,13;117:1,9;	202:8;205:15;210:9,15;	57:11;63:13;72:8;78:1;
16:8;24:8;25:3;46:18;	320:1	118:14;119:2;121:13;	216:16,21;217:1,9,14;	84:4;85:13;119:9;152:3,
47:18;50:3;79:19;80:12;	well-recognized (1)	122:15;123:9;124:1,18,	218:6;222:3,21;223:20,	6;191:22;216:5;220:10;
93:3;94:2;96:4;99:6,7;	107:1	21;125:22;127:5,9,11,	22;225:8;227:9,20;	9:7;276:13;296:13
100:14;106:15;109:15;	well-validated (1)	15,17,19;128:14;130:4,	228:10,19;230:6,7,12;	14:6;315:9;322:2;
120:19;127:1;128:1;	308:18	6;132:4,5,15;162:21;	231:16;266:8,8,11;	328:1
136:8;141:1;151:20;	weren't (3)	165:21;172:9;265:14;	274:22;299:11,16;	yearly (1)
156:20;157:4;158:22,	35:2;317:5;	267:17;279:3;281:18;	315:9;323:17	$17: 21$
22;167:13;173:6;	what's (40)	300:14;302:11;314:6	works (6)	years (43)
177:14;187:18;188:20;	36:22;49:4;54:20,21	without (16)	34:16;89:5;90:22;	19:19;27:16;47:17
204:14;224:21,22;	55:5,21;60:5,7;62:12;	21:1;25:16;27:5,10;	245:21;308:21;323:14	50:19;57:12;62:9;64:8;
243:19;246:17;258:18;	79:1,18;80:18;82:22;	34:18;42:21;43:11,13;	workshop (3)	5:22;68:7;70:3;71:3;
259:18;260:11;265:12;	86:22;102:5;106:9;	117:7;122:9;137:10;	23:3;53:11;232:14	77:15,16;90:12;94:4,9;
277:21;282:8;283:17;	144:12,22;145:16;	139:20;168:6;190:10;	workshops (1)	101:9;109:5;
298:17;309:4;311:22;	159:9;174:19;179:3;	209:3;278:5	219:6	$22: 12 ; 136: 5 ; 152: 4$
318:13	181:12;231:10,11;	women (2)	world (14)	75:1;194:7;202:9
ways (19)	263:17,21;264:15;271:1,	124:1,2	18:14;35:22;36:9;	$206: 14 ; 212: 22 ; 224: 1$
33:8;38:16;39:1;50:5;	3,5;272:11;276:1;304:6,	Women's (3)	82:13;85:2;126:22;	$230: 6 ; 249: 11 ; 284: 9$
145:18;178:2;179:20;	9;309:5;317:6;322:1,4,6	2:22;61:12,21	264:15,22;265:2,11;	$286: 20 ; 291: 7 ; 294: 21 ;$
192:20;258:21;263:12;	whenever (1)	Woodcock (4)	267:21;270:15;276:2;	$295: 19 ; 299: 6,11,16$
266:5;270:2;281:5;	176:7	137:19;138:11;162:2;	309:5	$302: 1 ; 306: 6 ; 314: 11 ;$
287:17;315:6,8;319:5,6,	whereas (7)	28:4	world-class (1)	$323: 11 ; 326: 7$
7	101:18;150:10;	word (2)	276:3	year's (2)
wealth (1)	207:14;208:13;209:3;	172:13;324:18	world's (1)	18:1;177:5
261:5	302:5;306:19	words (6)	84:4	yellow (1)
wearable (1)	Whereupon (4)	138:11;173:8;179:3;	worse (1)	$16: 3$
37:17	88:7;160:17;279:20;	187:9;189:16;324:18	124:6	Yesterday (9)
web (1)	329:12	wore (2)	worth (1)	23:3;53:11;85:18;
174:15	wherever (1)	252:4;254	293:19	$114: 3 ; 232: 14,22$
web-based (1)	20:17	work (74)	worthy (1)	$237: 21 ; 245: 18 ; 304: 12$
153:22	whicheve	18:22;24:21;27:5,21;	262:8	Yogi (1)
webcast (7)	125:9	29:4;38:15;47:9;52:1;	wrap (2)	149:14
10:6;16:5,6,7;325:7,8;	White (6)	$62: 2,6 ; 63: 1,3 ; 70: 21,22$	$131: 15 ; 154: 11$	oung (3)
$328: 11$	1:17;145:8	72:16;89:6;90:16,17;	wrapping (2)	$116: 7 ; 119: 16 ; 150: 22$
webpage (2)	155:2,9,17	99:2;113:13:117:3;	170:18;201:4	younger (5)
88:12;328:5	whole (10)	124:16;128:12;132:5;	write (2)	$120: 22 ; 121: 5,5$
website (4)	17:16;79:11;81:3;	133:20;134:1;135:20;	131:3;304:15	$125: 18 ; 127: 15$
15:3;155:1;175:4;	112:18;114:22;147:20;	136:3,14,15,17,20;	writing (1)	Yu (1)
176:8	158:14;179:20;283:22;	139:15;140:20;145:21;	126:6	277:10
week (1)	288:16	148:4;151:13,20;	written (6)	
270:15	wholeheartedly (1)	$158: 21 ; 159: 4 ; 166: 16$	$16: 22 ; 68: 13,14,15$	Z
weekend (1)	327:6	172:19,22;187:13;	$71: 9 ; 259: 19$	
329:8	who's (1)	191:4;198:12,20;199:3;	wrong (4)	ro (27)
weeks (2)	70:17	202:2;205:5,8;207:19;	87:4;90:14;188:16;	95:2;97:17;249:4,4,9;
87:7;212:21	whose (1)	211:14;213:7;225:11;	264:10	$250: 11,16 ; 251: 8 ; 252: 8$
Welcome (12)	57:11	231:17;232:2,4;258:20;		
Min-U-Script®		A Matter of Record (301) 890-4188		(41) Washington - zero

| 254:16;256:6,15;257:6;
 258:15,20;259:15,17,20;
 262:17,21
 zeros (1)
 256:5
 Zuk (1)
 276:11 | | | |
| :---: | :---: | :---: | :---: | :---: |

