Apadaz[™] (immediate-release benzhydrocodone with acetaminophen) for the Treatment of Acute Pain

May 5, 2016 KemPharm, Inc.

Joint Meeting of the Anesthetic and Analgesic Drug Products Advisory Committee and the Drug Safety and Risk Management Advisory Committee

Introduction

Travis Mickle, Ph.D.

Co-Founder and Chief Executive Officer KemPharm, Inc.

Apadaz is a Fixed-Dose IR Hydrocodone Combination Product

- Apadaz is composed of:
 - Benzhydrocodone HCI [KP201] (6.67 mg)
 - Prodrug: hydrocodone + benzoic acid
 - Equivalent to 7.5 mg hydrocodone bitartrate
 - Acetaminophen [APAP] (325 mg)
- Taken every 4-6 hours

Abuse-Deterrent Features of Apadaz Imparted Using a Novel Approach

- Historical approaches to deter abuse:
 - Agonist/antagonist
 - Aversive agents
 - Physical/chemical barriers
- Apadaz is a prodrug that imparts abusedeterrence at molecular level
 - No impact of crushing or grinding on release profile
 - Abuse-deterrence does not affect analgesia

Apadaz Imparts Abuse-Deterrent Properties as Prodrug of Hydrocodone

- Intact prodrug is inert
- Ligand is naturallyoccurring in berries

 Active hydrocodone cleaved from ligand through natural processes in GI tract

Summary of Clinical Pharmacology

- Bioequivalent to reference drugs to meet requirement of 505(b)(2) pathway
- Bioequivalent to Norco
- No clinically significant food effect
- No systemic exposure to prodrug when taken orally

Similar Incidence of AEs for Both Products

	Apadaz (N=161)	Norco (N=141)
Nausea	21%	26%
Somnolence	21%	21%
Pruritus	14%	15%
Vomiting	14%	11%
Constipation	12%	14%
Dizziness	8%	6%
Headache	3%	3%
Hypotension	3%	0%
Flatulence	1%	1%

AEs with incidence ≥1% (Pooled from Studies 102, 104, S01)

Apadaz Offers Protections Against Non-Oral Routes of Abuse

Route of Abuse	Summary of Findings with Apadaz		
Oral	Drug Liking similar to Norco, as expected		
Intranasal	Lower hydrocodone exposure and lower Drug Liking compared to Norco at early time points; increased nasal adverse effects		
Intravenous	Cannot be efficiently extracted for IV injection; prodrug converts slowly to hydrocodone in blood		
Smoking / Vaporizing	No release of hydrocodone		

Agenda

Clinical Perspective	Jeffrey Gudin, M.D. Director Pain Management and Palliative Care Englewood Hospital and Medical Center	
Development Overview and Tampering Studies	Travis Mickle, Ph.D. Co-Founder and Chief Executive Officer KemPharm, Inc.	
Clinical Abuse-Deterrence Studies	Lynn Webster, M.D. Vice President, Scientific Affairs PRA Health Sciences	
Post-Market Surveillance Future Studies	Travis Mickle, Ph.D.	
Benefit-Risk Profile	Jeffrey Gudin, M.D.	

CO-10

Additional Experts

Epidemiology	Simon Budman, Ph.D. Founder and Chief Strategy Officer Inflexxion, Inc.	
	Theresa Cassidy, M.P.H.	
	Vice President, Health Analytics	
	Inflexxion, Inc.	

Clinical Perspective

Jeffrey Gudin, M.D.

Director, Pain Management and Palliative Care Englewood Hospital and Medical Center

Clinical Instructor, Anesthesiology Icahn School of Medicine, Mt. Sinai

The NEW ENGLAND JOURNAL of MEDICINE

SPECIAL REPORT

A Proactive Response to Prescription Opioid Abuse

Robert M. Califf, M.D., Janet Woodcock, M.D., and Stephen Ostroff, M.D.

We at the Food and Drug Administration (FDA) continue to be deeply concerned about the growing epidemic of opioid abuse, addiction, and overdose — an epidemic directly related to the increasingly widespread misuse of powerful opioid pain medications.

The NEW ENGLAND TOURNAL OF MEDICINE SPECIAL REPORT

A Proactive Response to Prescription Opioid Abuse

Robert M. Califf, M.D., Janet Woodcock, M.D., and Stephen Ostroff, M.D.

We at the Food and Drug Administration (FDA) of deaths due to prescr continue to be deeply concerned about the grow- un acceptable. This pest month, our sister agency, ing epidemic of opioid abuse, addiction, and over- the C dose - an epidemic directly related to the increas- (CDC), estimated that in 2014 there were almost ingly widespread misuse of powerful opioid pain 19,000 overdose deaths in the United States assuring that the drugs used by the U.S. public personal communication). are both effective and safe, we are committed to working in partnership with other government safety, efficacy, and quality of drugs is an esagencies, health care providers, the medical sential part of the FDA's mission, it is appropriproducts industry and, most important, patients ate to examine the agency's actions in coping and their families to deal proactively with this with the public health crisis of opioid misuse. As unfolding public health crisis, which has already FDA leaders and as physicians, we believe that profoundly affected individuals, families, and these efforts must be founded on two complecommunities throughout our country. We will mentary principles: that the United States must do so while also safeguarding appropriate access deal aggressively with opioid misuse and addicto vitally important pain medications for the tion, and at the same time, that it must protect patients who need them (Table 1).

BACKGROUND

Over the course of a given year, approximately guences of opioid use compels us to comprehen-100 million people in the United States suffer sively review our portfolio of activities, reassess from pain. Some 9 million to 12 million of them our strategy, and take aggressive actions when have chronic or persistent pain, while the re- there is good reason to believe that doing so will mainder have short-term pain from injuries, ill-make a positive difference. nesses, or medical procedures. All of them should We are launching this renewed effort in the benefit from skillful and appropriate pain man- context of a broad national campaign that inagement, which may include the judicious use of cludes a major initiative led by the Department opioid medicines in conjunction with other of Health and Human Services (HHS)⁶ designed methods of treatment or in circumstances in to attack the problem from every angle. The which nonaddictive therapies are insufficient to number of annual opioid prescriptions written control pain

As physicians, we have treated both the in- number of adults in the population⁷; given these tense suffering caused by acute pain and chron-numbers, simply reinforcing opioid related acic pain with all its exhausting and debilitating tivities that are within the FDA's traditional consequences. But we have also witnessed the regulatory scope will not suffice to stem the devastating results of opioid misuse and abuse, tide. Instead, we must work more closely with such as the addiction of patients who have been key federal agencies (including many within prescribed opioids for pain treatment and increas- HHS), the clinical and prescriber communities, ingly, diversion to people for whom the prescrip- and other stakeholders to ensure that all availtion was not written. Many Americans are now able effective tools are brought to bear on this addicted to prescription opioids, and the number epidemic and that the evidence base for proper

ters for Disease Control and Prevention tions. As the federal agency charged with sociated with prescription opioids (Radd R, CDC:

Because protecting the public by ensuring the the well-being of people experiencing the devastating effects of acute or chronic pain. It is a difficult balancing act, but we believe that the continuing escalation of the negative conse-

in the United States is now roughly equal to the

N ENGL | MED NEMO

The New England Journal of Medicine Downloaded from nejm.org on February 9, 2016. For personal use only. No other uses without permission. Copyright © 2016 Massachusetts Medical Society. All rights reserved.

All Opioid Products with Abuse-Deterrent Labeling are Extended-Release/Long-Acting

- Six approved ER/LA opioids with abuse-deterrent labeling:
 - OxyContin (oxycodone)
 - Targiniq (oxycodone and naloxone)
 - Embeda (morphine sulfate and naloxone)
 - Hysingla ER (hydrocodone)
 - Morphabond (morphine sulfate)
 - Xtampza ER (oxycodone)
- Abuse-deterrent properties can lower, but not eliminate ability to abuse opioid

Currently No Approved IR Opioid with Abuse-Deterrent Labeling

- No IR opioids labeled for abuse-deterrence
- Hydrocodone IR combination products:
 - 90 million dispensed prescriptions in 2015
 - Most commonly prescribed analgesic
 - Often the first opioid abused
- Unmet need to prevent escalation and progression of opioid abuse

Goal: Prevention of Progression from Oral Route to More Dangerous Routes of Administration

- Abusers progress to more dangerous routes as:
 - Opioid tolerance develops
 - Cost to maintain abuse patterns increases

Surveillance Data Offer Window into Scope and Relevant Routes of Abuse

- Surveillance data are collected from drug abuse treatment centers
- Drug abuse surveillance is useful for understanding opioid abuse:
 - Extent of abuse
 - Routes of administration

Hydrocodone IR Combination Products Are Commonly Abused

Prevalence of Abuse of Hydrocodone IR Combination Products by Route and Age

CO-18

ASI-MV Database (Jan 12 – Jun 15; N=9,064) CHAT Database (Jan 12 – Jun 15; N=468)

Hydrocodone IR Combinations are Often the First Opioid Abused by Young People

Development Overview

Travis Mickle, Ph.D.

Co-Founder and Chief Executive Officer KemPharm, Inc.

Apadaz Abuse-Deterrence Program Followed FDA Guidance

Rationale for Tampering Studies

- As IR product, purpose of extraction is to remove acetaminophen and isolate hydrocodone to:
 - Reduce liver toxicity at high oral doses
 - Reduce insufflation volume
 - Prepare for injection
 - Prepare for freebasing/smoking

Abuse-deterrent Products Increase Time and Effort It Takes To Extract Active Product

- Goal of abuse-deterrent formulation
 - Make manipulation more difficult and less attractive to abusers
 - Increase time
 - Increase effort

Extraction with Common Ingestible Solvents

5 Common Ingestible Solvents Evaluated up to 24 hours

Category 1

Extraction of Hydrocodone from Apadaz Was **Ineffective with Common Ingestible Solvents**

Category 1

Extraction with Advanced Solvents

14 Advanced, Non-ingestible Solvents Evaluated up to 24 hours

Category 1

Extraction of Hydrocodone from Apadaz Was Ineffective with Advanced Solvents

Category 1

Extraction with Advanced Buffers

7 Advanced Buffers of varying pH Evaluated up to 24 hours

Category 1

Extraction of Hydrocodone from Apadaz Was Inefficient with Advanced Buffers

Category 1

CO-30

CO-31

Extraction of Hydrocodone with Heat and Continuous Agitation

20 solvents evaluated up to 24 hours

Category 1

Extraction at Various Temperatures and Continuous Agitation Did Not Yield Abusable Hydrocodone

Solvent	Max % Hydro- codone Extracted	Time at Maximum Extraction	Solvent	Maximum % Hydro- codone Extracted	Time at Maximum Extraction
А	0%	-	N*	0%	-
В	0%	-	O*	0%	-
С	0%	-	R*	0%	-
D	0%	-	T**	0%	-
E	0%	-	U**	0%	-
F*	0%	-	V**	0%	-
G*	0%	-	W**	61%	24 hours
J*	0%	-	X**	60%	4 hours
K*	0%	-	Y**	63%	6 hours
L*	0%	-	Z**	46%	24 hours

Category 1

*Advanced non-ingestible solvents **Advanced buffers

Hydrolysis

Covalent bond between benzoic acid and hydrocodone has to be broken to release hydrocodone from Apadaz prodrug

Category 1

Hydrolysis is Not a Feasible Way for Abusers to Tamper with Apadaz

- Fewer than 20% of samples tested released
 >50% of hydrocodone
 - Hydrolysis occurred only under specific conditions related to pH, with temperature modifications, over extended time
- Additional steps required to obtain abusable hydrocodone

CO-35

Route-Specific Manipulations

Injection Smoking

Category 1

IV Preparation was Less Efficient for Apadaz Than Norco; Syringability is Feasible

- Of 164 conditions tested:
 - 39 conditions yielded >70% hydrocodone from Norco
 - 1 condition yielded >70% benzhydrocodone from Apadaz
- Syringeability is feasible for both products
 - Only inactive prodrug can be extracted from Apadaz, and is less efficient than Norco

Common Extraction Method to Prepare IV Formulations is Inefficient for Apadaz

Cloudy Mock IV Preparations Due to Undissolved Excipients and Acetaminophen

Apadaz

Norco

81774-1p -HwB0.6a Exp: 10 -Aug-15 Store: GXP1869 Ref

Why Would an Abuser Inject?

- Bypass first-pass metabolism
 - Cocaine and heroin
- Injection gets opioid into brain more quickly
- Faster exposures, faster highs

In Vitro Study: Stability of Apadaz in Whole Human Blood

CO-40

Category 1

CO-41

Smoking Simulation Study

Category 1

Apadaz Did Not Release Hydrocodone in Smoking Simulation Study

- Freebasing Apadaz was not possible
- Vaporizing or smoking Apadaz or benzhydrocodone at any temperature did not produce any hydrocodone

Summary of Findings from Category 1 Evaluations of Apadaz

- Common ingestible solvents not effective in extracting Apadaz
- Harsh chemicals and heat typically required over 4-24 hours for moderate hydrocodone extraction
- Preparing Apadaz for IV injection was inefficient, and prodrug converts slowly in blood
- Smoking/freebasing Apadaz tablets not effective

CO-44

Clinical Abuse-Deterrence Studies

Lynn Webster, M.D. Vice President, Scientific Affairs PRA Health Sciences

Apadaz Abuse-Deterrence Program Followed FDA Guidance

Health Consequences of Intranasal Abuse of Hydrocodone Combination Products

- Nasal/facial pain
- Nasal obstruction
- Necrosis of nasal passages & soft palate
- Fungal rhinosinusitis
- Septal and palatal perforation

<u>Nasal Septal Injury from IN</u> Hydrocodone-Acetaminophen Abuse

Predebridement

CO-46

Postdebridement

Yewell et al. *Ann Otol Rhinol Laryngol* Volser et al. *Int Forum Allergy Rhinol* 2014;4:839-44. Images: Alexander et al. *Laryngoscope* 2012;122:2378-81.

Why Does an Abuser Snort Opioids?

- Snorting gets opioids into circulation faster
 - Circumvents first-pass metabolism
 - Provides greater exposures and faster highs

How Do Abusers Snort Hydrocodone Combination Products?

- 1. Without manipulation (Study A02)
- 2. After removing APAP, using "Common Tampering Method" (Study A03)
 - Reduces snorting volume
 - Reduces potential for liver toxicity

Drug Liking E_{max} is a Relevant Primary Endpoint to Evaluate Abuse-Deterrent ER Opioids

- Primary endpoint: difference in maximum
 Drug Liking (E_{max})¹
 - Calculated as the average of every subject's maximum liking, regardless of time it occurred
- Evaluates manipulated AD ER vs. non-AD IR product at high dose
- Lower E_{max} expected if AD ER product does not dose dump

Rationale of Drug Liking E_{max} Harder to Apply to Abuse-Deterrent IR Opioids

- Differences between IR and ER in opioid quantity and timeframe of proper opioid delivery
 - ER products release <u>more opioid</u> slowly
 - IR products release <u>less opioid</u> quickly
- Time course of Drug Liking, particularly at early time points, may be more relevant than E_{max}
- Drug Liking E_{max} does not account for time

CO-51

Abuse Quotient

Moorman-Li et al. *P T* 2012;7:412-8.

Rate of Rise in Drug Levels Evaluated Using Abuse Quotient

Abuse Quotient Simulation

Study A02: Intranasal Human Abuse Potential

Apadaz vs. Norco

Part A: Dose selection (2 tablets selected as largest volume that produced reliable Drug Liking scores)

Part B: Bioavailability and Drug Liking

Snorting Apadaz Does Not Accelerate Exposure to Hydrocodone

Category 2

Study A02: Intranasal HAP Study

Apadaz Has Lower Abuse Quotient Than Norco When Snorted

Category 2

Study A02: Intranasal HAP Study (N=42)

No Difference in Drug Liking E_{max} in Study A02

	Intranasal (2 Tablets)	
Drug Liking	Apadaz	Norco
E _{max} , mean	75.9	79.0
P-value	0.28	

Category 3

Study A02: Intranasal HAP Study (N=42)

Snorting Apadaz Does Not Increase Drug Liking at Early Time Points

Category 3

Study A02: Intranasal HAP Study (N=42)

Apadaz Associated with Lower Ease of Insufflation

Ease of Insufflation Score 0=Very Easy 100 = Very Difficult

Variable	Mean (SD)		Difference
	Apadaz	Norco	(P-value)
Ease of Insufflation (0-100 scale)	57 (36)	43 (33)	14 (p = 0.01)

Category 3

Study A02: Intranasal HAP Study (N=42)

Apadaz Associated with More Adverse Nasal Effects When Snorted

Nasal Effect Assessment Score 0=None 1=Mild 2=Moderate 3=Severe

	Mean (SD)		Difference
Variable	Apadaz	Norco	(P-value)
Burning	1.6 (1.0)	0.7 (0.7)	-1.0 (<0.001)
Pain	1.0 (1.0)	0.5 (0.8)	-0.5 (<0.001)
Blow	1.5 (0.9)	1.0 (0.9)	-0.5 (<0.001)
Irritate	1.5 (1.0)	0.7 (0.7)	-0.8 (<0.001)
Congestion	1.5 (1.0)	1.0 (0.8)	-0.5 (<0.001)
Discharge	1.4 (1.0)	0.8 (0.9)	-0.7 (<0.001)

Category 3

Study A02: Intranasal HAP Study (N=42)

Apadaz Associated with Higher Frequency of Nasal-Related Adverse Events

Adverse Event	Apadaz Intranasal (N=44)	Norco Intranasal (N=43)
Respiratory, thoracic and mediastinal disorders	66%	21%
Nasal discomfort	36%	5%
Nasal congestion	16%	5%
Rhinorrhea	16%	9%
Throat irritation	14%	7%
Dry throat	2%	0%
Oropharyngeal pain	2%	2%
Upper-airway cough syndrome	0%	2%

Category 3

Study A02: Intranasal HAP Study (N=42)

Study A03: Intranasal Bioavailability Study with Abuse Potential Assessments

Benzhydrocodone vs. Hydrocodone Bitartrate

 Subjects administered equivalent amounts of the API found in 2 tablets

Study A03: Intranasal Bioavailability Study with Abuse Potential Assessments

- No drug discrimination phase
- Lack of enrichment made it less likely to find differences in Drug Liking

Common Extraction Method Applied to Reduce Bulk for Snorting Is Inefficient for Apadaz

- Practical Extraction results:
 - >80% of APAP removed for both products
 - 68% yield of hydrocodone from Norco
 - 36% yield of benzhydrocodone from Apadaz
- Study A03 assumptions (assumes best case):
 - 100% of APAP removed
 - 100% yield of hydrocodone and benzhydrocodone

Intranasal Administration of Apadaz Prodrug Leads to Lower HC Release

5-Fold Lower Abuse Quotient With Snorted Apadaz Prodrug

Category 2

Study A03: Intranasal Study of APIs (N=24)

Differences Observed in Drug Liking E_{max} with APIs

	Intran	Intranasal	
Drug Liking	Benzhydrocodone	Hydrocodone Bitartrate	
E _{max} , mean	67.4	73.2	
P-value	0.00)4	

Study A03: Intranasal Study of APIs (N=51)

Differences in Drug Liking with APIs Over Time Mirrored PK Findings in Study A03

Snorting Apadaz Prodrug Associated with Lower Ease of Insufflation than Hydrocodone API

	Mean (SD)		
Variable	Benzhydrocodone	Hydrocodone Bitartrate	Difference (P-value)
Ease of Insufflation	79 (20)	66 (26)	13 (p = 0.004)

Summary of Findings from Intranasal Clinical Abuse Potential Studies of Apadaz

- With Apadaz, abusers do not achieve the rapid highs they seek from snorting
- Snorting with APAP (A02)
 - Unlike Norco, Apadaz produced nearly identical profiles for PK and Drug Liking compared to oral
- Snorting without APAP (A03)
 - Most common tampering method to remove APAP is half as efficient with Apadaz
 - Even at equimolar doses, benzhydrocodone produced lower hydrocodone exposure and Drug Liking
- Apadaz was harder to snort than Norco, with or without APAP

Post-Market Surveillance Future Studies

Travis Mickle, Ph.D.

Co-Founder and Chief Executive Officer KemPharm, Inc.

Epidemiologic Approach to Post-Market Surveillance and Evaluation of Abuse Profile

- Epidemiologic program evaluating abuse and routes of abuse
- Continued market surveillance
 - Specific for Apadaz
 - Generally related to entire opioid market

Several Sources of Post-Marketing Data

- Continuation of current market surveillance similar to pre-approval approach
- NAVIPPRO database
 - ASI-MV[®] Network (adults)
 - CHAT[®] (adolescents)
 - WIS[®]: Internet Monitoring
- Additional sources as needed for support

Surveillance Monitoring and Epidemiological Studies to Monitor Use and Abuse of Apadaz

- Surveillance monitoring for abuse
 - Initial abuse expected to be low
 - Monitoring tools to provide early assessment of abuse potential
- Post-market epidemiological studies
 - Primary study assessing rates and routes of abuse
 - Supportive study to monitor and assess discussion among recreational drug abusers

Benefit-Risk Profile

Jeffrey Gudin, M.D.

Director, Pain Management and Palliative Care Englewood Hospital and Medical Center

Clinical Instructor, Anesthesiology Icahn School of Medicine, Mt. Sinai

Epidemiologic Data Illustrate the Need for Abuse-Deterrent Hydrocodone IR Combination

Apadaz: First Abuse-Deterrent Hydrocodone IR Combination Product

CO-77

Physical/ Chemical Manipulations	 Prodrug: No impact of physical tampering on release Prodrug is very difficult to chemically manipulate
Smoking	Apadaz cannot be smoked/vaporized to release HC
IV injection	 Extraction for injection is inefficient and expensive Slow conversion of inactive prodrug to HC in blood
Intranasal	 <u>When Crushed and Snorted:</u> Abusers don't get more rapid exposure or faster highs No advantage over oral administration More nasal AEs, harder to snort <u>When Crushed, APAP Extracted, and Snorted:</u> Extraction yields ½ as much API compared to Norco Lower exposures and Drug Liking vs. Norco API Harder to snort

Apadaz Bioequivalent to Hydrocodone IR Combination Products; No Additional Risk

CO-78

- Similar hydrocodone, hydromorphone and acetaminophen exposures to currently marketed products when taken as intended
- No clinically significant effect of food
- Safety of Apadaz in patients would be similar to existing products
 - No systemic exposure to prodrug
 - Ligand (benzoic acid) is naturally-occurring in berries

CO-80

Apadaz[™] (immediate-release benzhydrocodone with acetaminophen) for the Treatment of Acute Pain

May 5, 2016 KemPharm, Inc.

Joint Meeting of the Anesthetic and Analgesic Drug Products Advisory Committee and the Drug Safety and Risk Management Advisory Committee

CO-81

Backup Slides Shown

Drug Liking Study A02

		Intra	nasal			0	ral	
	Ара	daz	No	rco	Ара	daz	No	rco
Parameter	Mean	SD	Mean	SD	Mean	SD	Mean	SD
AUE _{0-0.5}	30.2	6.3	36.1	8.9	30.8	3.9	28.2	4.6
P-value		<0.0	0001			0.1	244	
AUE ₀₋₁	63.5	12.6	72.6	16.4	63.7	11.7	62.3	11.6
P-value		<0.0	0001			0.4	689	
AUE ₀₋₂	129.8	26.6	141.8	30.3	131.7	26.3	131.9	25.1
P-value		0.0	079			0.9	896	
AUE ₀₋₄	249.6	53.3	262.3	51.8	249.5	47.5	251.5	41.2
P-value		0.1	219			0.8	270	
AUE ₀₋₈	467.0	83.2	477.0	77.6	456.2	70.2	459.6	71.9
P-value		0.4	112			0.7	'991	
AUE ₀₋₂₄	1294	187.0	1281	198.6	1264	83.1	1263	127.2
P-value		0.5	847			0.9	610	

Earlier Exposure to Abuse of Hydrocodone IR Combination Products Associated with Non-Oral Routes of Abuse

Figure 25: Mean Drug Liking in First Two Hours of Study A02

BF-26

Lower Early HC Exposure with Apadaz with Intranasal Administration

IN-8

Significantly Lower Drug Liking for Intranasal Administration of Apadaz vs. Norco at Early Time Points

Enzyme Hydrolysis Study of Benzhydrocodone

Enzyme	%-Release of Hydrocodone After 2 Hours
α-Chymotrypsin	0%
Amylase	0%
Bromelain	0%
Esterases	100%
Papain	0%
Pepsin	0%
Protease	0%
Trypsin	0%
Commercial Digestive Enzyme Cocktail	0%

Data Not Reviewed by FDA

EX-15

Coefficient of Variation for PK Parameters for All PK Studies with Therapeutic Doses

PK-10

Study	Drug	C _{max}	AUC _{last}
101	KP201 (1x5 mg)	29.97	24.6
101	KP201 (2x5 mg)	26.04	25.6
101	Norco (10 mg)	31.55	26.43
102	Apadaz	24.63	25.67
102	Norco	25.24	26.36
103	Apadaz (Day 1)	24.77	24.8
103	Apadaz (Day 4)	23.49	27.42
104	Apadaz (fasted)	25.24	28.98
104	Apadaz (fed)	22.49	21.38
104	Norco (fed)	36.49	22.38
105	Apadaz	21.02	25.79
105	Vicoprofen	18.11	20.02
106	Apadaz	28.33	24.61

Extraction of Hydrocodone from Apadaz Was Ineffective with Ingestible Solvents

Category 1

EX-11

Hydrocodone Exposures at Supratherapeutic Doses Similar Between Products

OR-16

Benzoic Acid Is Safe for Injection

- Ammonul[®] (sodium phenylacetate and sodium benzoate [BzONa]) for acute hyperammonemia in adult and pediatric patients (250 mg/kg of BzONa in loading phase)
- Used as preservative in some drug injections (e.g., Diazepam Injection, USP)

Benzoic Acid in Benzhydrocodone

- 27.7% of benzhydrocodone mass is benzoic acid
- 1.85 mg of benzoic acid per tablet
- Naturally occurs in berries and some fruits
- 1 cup of cranberries contains about 50 mg benzoic acid¹
- Used as preservative in fruit juice, soda, salad dressing, etc.
- 75–100% of oral doses up to 160 mg/kg excreted as hippuric acid within 6 hours⁽²⁾
- Estimated intake of benzoic acid in U.S.²
 - Average consumer: 161 mg/day/day
 - High consumers: 511 mg

1. Clague JA, Fellers CR. Relation of Benzoic Acid Content and Other Constituents of Cranberries to Keeping Quality. Plant Physiol. 1934;9(3):631-636.

2. Concise International Chemical Assessment Document (CICADS 26, 2000): Benzoic Acid and Sodium Benzoate

Intranasal Administration of Apadaz Prodrug Leads to Lower HC Release

Clarification of Sponsor Solvent X and FDA Solvent G

Sponsor Solvent X

- Advanced buffer
- 4 hours under stress conditions to extract 60% hydrocodone
- Stress +/- 4 hours reduced percent extracted
- Turned black in color
- FDA banned as food additive

FDA Solvent G

- Advanced laboratory equipment required to maintain stress temperature
- 3 hours under stress condition #2 required for effective hydrolysis