Suboptimal Immunosuppression and the Impact on Long Term Graft Loss

Rita R. Alloway, PharmD, FCCP
Research Professor of Medicine
Director, Transplant Clinical Research
University of Cincinnati
Disclosures

I have financial relationships within the last 12 months with:

Clinical Research Grants
 – Novartis, Astellas, Veloxis, Takeda, Onyx, GSK, Prolong, Bristol-Myers Squibb, Chimerix, Sanofi, and FDA

Advisory Board
 – Veloxis, Astellas, Sanofi, Amgen

Speakers Bureau
 – Sanofi

This presentation does not include discussion of off-label or investigational use of any drugs
Objectives

• Discuss causes and effects of suboptimal immunosuppression (IS) on graft/patient outcomes
 – Iatrogenic IS reductions
 – Non-adherence with prescribed regimen

• Evaluate alternative surrogate clinical endpoints
 – Drug toxicity
 – Tacrolimus variability

• Identify strategies to improve non adherence
Choosing an IS regimen

• Immunologic Factors
 – HLA mismatches, PRA, DSA, race

• Donor Factors
 – Kidney Donor Profile Index (KDPI), ischemic injury

• Patient Comorbidities
 – Viral serologies, malignancy and infectious histories

• Side Effect Profile
 – NODAT, renal, GI, metabolic toxicities

• Personal Experience
IS Regimens after Kidney Transplant

USRDS 2013 annual report, USRDS 2014 annual report-no change
Observations

• Most common IS regimen after kidney transplant:
 – NOT changed over past 10 years
 – NOT labeled for use in kidney transplant
 – Little individualization of IS at 1 year with other agents

• T-cell depleting induction:
 – Anti-thymocyte globulin or alemtuzumab

• 1/3 of patients are steroid-free initially and at 1 year

• Lack of FDA approval of most common regimen:
 – Phase 3 studies: non-inferior design with a regimen used in <25% kidney transplant recipients
 – ↑ Phase 4 costs for testing against standard of care
Iatrogenic IS Minimization: Why?

• Current regimens are suboptimal in promoting long-term graft AND patient survival

• Current challenges
 – Metabolic/cardiovascular complications
 • Corticosteroid withdrawal regimens
 – Calcineurin-inhibitor (CNI) toxicities (nephrotoxicity, etc)
 • Calcineurin inhibitor minimization regimens
 • Calcineurin inhibitor avoidance/conversion regimens
 – Long-term impact of IS (cancer, infection)
 • Overall IS minimization
 • No marker of overall IS
CNI Nephrotoxicity Avoidance Trials

A. Prevalence (%) of various types of rejection over years after transplantation.

B. Cumulative prevalence of CNI nephrotoxicity (%).

CNI Minimization
- SYMPHONY
- ASSET
- OPTICEPT

CNI Elimination
- CAESAR
- ORION
- CENTRAL
- CONVERT
- ZEUS
- Spare the Nephron
- HERAKLES

CNI Avoidance
- SYMPHONY
- ORION
- BENEFIT
- BENEFIT-EXT
CNI Nephrotoxicity Avoidance Trials

CNI Minimization
- SYMPHONY
- ASSET
- OPTICEPT

CNI Elimination
- CAESAR
- ORION
- CENTRAL
- CONVERT
- ZEUS
- Spare the Nephron
- HERAKLES

CNI Avoidance
- SYMPHONY
- ORION
- BENEFIT
- BENEFIT-EXT

CNI Nephrotoxicity Avoidance Trials

• Effective and safe in some patients

• Effect on renal function
 – Earlier conversion optimal
 – Late CNI withdrawal benefits debatable
 – Clinical benefits of small incremental improvements questioned
 – Agents with larger incremental improvements difficult to obtain

• High discontinuation rates

• ↑ donor-specific antibody production?
 – Impact and late graft loss unknown
Iatrogenic IS Minimization: Thoughts

- Tacrolimus, mycophenolate, and steroids excellent short term outcomes with current endpoints
- Inability to individualize IS minimization
- Lack of mechanistic approach to treat rejection
- Lower limit thresholds of minimization are unknown, and currently present only after damage i.e. rejection or donor specific antibody
Iatrogenic IS Minimization due to Toxicity

DRUG TOXICITY

ON TARGET EFFECTS
are exaggerations of desired pharmacologic action

OFF TARGET EFFECTS
occur when drug interacts with unintended targets

<table>
<thead>
<tr>
<th>On target toxicity</th>
<th>Drug</th>
<th>Off target toxicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>diabetes, infections</td>
<td>Tacrolimus</td>
<td>vasoreactive nephrotoxicity(both)?</td>
</tr>
<tr>
<td>leukopenia, GI toxicity</td>
<td>Mycophenolate</td>
<td></td>
</tr>
<tr>
<td>anemia, infections</td>
<td>Sirolimus</td>
<td>hypercholesterolemia?</td>
</tr>
<tr>
<td>PTLD</td>
<td>Belatacept</td>
<td>None</td>
</tr>
</tbody>
</table>

Limited options to minimize toxicity when toxicity is an “on target” effect
Toxicity as a Clinical Endpoint

• IS toxicity:
 – Encourages IS minimization?
 – Impacts non-adherence

• Can toxicity be reliably quantitated?

• Can toxicities be differentiated from
 – Comorbid conditions
 – Overall immunosuppressive regimen

• Toxicity as a CLINICAL ENDPOINT
 – A characteristic or variable that reflects how a patient feels, functions, or survives
Patient-Driven IS Minimization: Non-Adherence

Five Dimensions of Adherence

- Health system/HCT-factors
- Social/economic factors
- Condition-related factors
- Therapy-related factors
- Patient-related factors
Patient-Driven IS Minimization: Non-Adherence

Younger Patient
Male Gender
Non Caucasian
Non US resident
Poor social support
Poor transportation
Literacy

Health system/ HCT-factors
Social/economic factors
Condition-related factors
Therapy-related factors
Patient-related factors
Patient-Driven IS Minimization: Non-Adherence

Transplantation 2007:83:858-873
American College of Preventative Medicine
Patient-Driven IS Minimization: Non-Adherence

History of non-adherence
- Adolescence
- Psychologic disorder (depression)
- Cognitive impairment
- Substance abuse
- Negative beliefs in medication
Patient-Driven IS Minimization: Non-Adherence

High Symptom Distress
Development of NODAT
Increased time post transplant
Patient-Driven IS Minimization: Non-Adherence

Medication costs
Poor access to medication
Poor aftercare planning
Poor physician-patient relationship
Poor physician communication

Five Dimensions of Adherence
Patient-Driven IS Minimization: Non-Adherence

- Medication costs
- Poor access to medication
- Poor aftercare planning
- Poor physician-patient relationship
- Poor physician communication

High Symptom Distress
Development of NODAT
Increased time post transplant

Health system/HCT-factors
Social/economic factors
Condition-related factors
Therapy-related factors
Patient-related factors

History of non-adherence
Adolescence
Psychologic disorder (depression)
Cognitive impairment
Substance abuse
Negative beliefs in medication

Younger Patient
Male Gender
Non-Caucasian
Non-US resident
Poor social support
Poor transportation
Literacy

Complex Medical Regimens
Higher Medication Toxicity
Lack of medication education
No pillbox/reminder system
Patient-Driven IS Minimization: Non-Adherence

- Medication costs
- Poor access to medication
- Poor aftercare planning
- Poor physician-patient relationship
- Poor physician communication

- High Symptom Distress
- Development of NODAT
- Increased time post transplant

- Programmatic changes

- Younger Patient
- Male Gender
- Non-Caucasian
- Non-US resident
- Poor social support
- Poor transportation
- Literacy

- Complex Medical Regimens
- Higher Medication Toxicity
- Lack of medication education
- No pillbox/reminder system

- History of non-adherence
 - Adolescence
 - Psychologic disorder (depression)
 - Cognitive impairment
 - Substance abuse
 - Negative beliefs in medication
Patient-Driven IS Minimization: Non-Adherence

- Medication costs
- Poor access to medication
- Poor aftercare planning
- Poor physician-patient relationship
- Poor physician communication

- High Symptom Distress
- Development of NODAT
- Increased time post transplant

- Programmatic changes

- Younger Patient
- Male Gender
- Non-Caucasian
- Non-US resident
- Poor social support
- Poor transportation
- Literacy

- Complex Medical Regimens
- Higher Medication Toxicity
- Lack of medication education
- No pillbox/reminder system

- Industry changes

- History of non-adherence
- Adolescence
- Psychologic disorder (depression)
- Cognitive impairment
- Substance abuse
- Negative beliefs in medication
Causes of Kidney Allograft Failure
Antibody Mediated Rejection and Non-adherence
Non-Adherence vs IF/TA

<table>
<thead>
<tr>
<th></th>
<th>Non-Adherence</th>
<th>IF/TA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incidence at one year post transplant</td>
<td>25%</td>
<td>13%</td>
</tr>
<tr>
<td>Poorly understood condition</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Multifactorial causes</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>No specific treatment</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Odds of Graft Failure</td>
<td>7 fold increase</td>
<td>4 fold increase</td>
</tr>
<tr>
<td>Recognized as a major challenge facing transplant</td>
<td>???</td>
<td>✓</td>
</tr>
</tbody>
</table>
Non-Adherence vs IF/TA

<table>
<thead>
<tr>
<th></th>
<th>Non-Adherence</th>
<th>IF/TA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incidence at one year post transplant</td>
<td>25%</td>
<td>25%</td>
</tr>
<tr>
<td>Poorly understood condition</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Multifactorial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odds of Graft Failure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recognized as major challenge</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Could something as obvious as adherence be the intervention that statistically improves long-term post transplant outcomes?
Non-Adherence vs IF/TA

<table>
<thead>
<tr>
<th></th>
<th>Non-Adherence</th>
<th>IF/TA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incidence at one year post transplant</td>
<td>25%</td>
<td>25%</td>
</tr>
<tr>
<td>Poorly understood condition</td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>Multifactorial causes</td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>Odds of Graft Failure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recognized as a major challenge</td>
<td></td>
<td>✔</td>
</tr>
</tbody>
</table>

Could something as obvious as adherence be the intervention that statistically improves long-term post transplant outcomes?

How can we quantify it?
Association of Non-Adherence at 1 yr and Outcomes
Impact of Non-Adherence on Outcomes

Synergistic effect of class II epitope mismatch with non-adherence

Tacrolimus Variability: Impact on Graft Failure

- BPAR, GL, BPCAN, doubling Scr

Graft survival vs BPAR
P=0.003

Graft survival vs variability
P=0.003
Tacrolimus Variability: Impact on Graft Failure

- Tacrolimus level variability calculated based upon trough levels at 6-12 months post transplant (MMF trough level variability was not correlated)
- Groups assigned based upon median of 14.9%
 - High variability: Mean variability 25.2%
 - Low variability: Mean variability 9.6%
- Variability did not predict 1yr BPAR

<table>
<thead>
<tr>
<th>Variability</th>
<th>Control</th>
<th>Graft Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>52.5%</td>
<td>29.4%</td>
</tr>
<tr>
<td>High</td>
<td>47.5%</td>
<td>70.6%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Covariant</th>
<th>Univariate p value (HR)</th>
<th>Multivariate p value (HR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tac variability</td>
<td>0.001 (4.237)</td>
<td>0.003 (3.125)</td>
</tr>
<tr>
<td>BPAR 1yr</td>
<td>0.006 (3.567)</td>
<td>0.003 (3.390)</td>
</tr>
<tr>
<td>Recipient Age (adults)</td>
<td>0.018 (1.030)</td>
<td>0.005 (1.031)</td>
</tr>
</tbody>
</table>
Tacrolimus Variability: Impact on Late Outcomes

Composite endpoint
Late acute rejection (>1yr), or TG and total GL

Composite endpoint
Late acute rejection (>1yr), or TG and total GL (excluding death with function)

- Tacrolimus variability assessed only during stable doses >1year post txp
- Tac SD thresholds tested included breaks at 1.5, 2, 2.5, and 3. HR ↑ 27% for a each 1 unit Tac SD, respectively
- No significant changes when adjusted for age, sex, eGFR or AR at 1 year
Tacrolimus Variability as a Clinical Endpoint

• Tacrolimus variability is a predictor of poor outcomes regardless the cause
 – Nonadherence, drug interactions, etc

• Can tacrolimus variability be reliably quantitated?
 – Two extensive analysis methods recently reported

• Tacrolimus variability as a CLINICAL ENDPOINT
 – SURROGATE ENDPOINT
 • is expected to predict clinical benefit based upon epidemiologic, therapeutic, pathophysiologic or other scientific evidence
 – BIOLOGIC MARKER (biomarker)
 • A characteristic that is objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention
Strategies to Impact Non-Adherence

• Simplify dosing regimens
 – Decrease frequency of administration
 • Once daily regimen – TAC, AZA, Pred with inferior efficacy
 • Once daily tacrolimus – Astagraf® and Envarsus®
 – Lower variability of tacrolimus after conversion from Prograf to Astagraf
 » Wu et al, Transplantation 2011; 92: 648-652
 – Improved adherence to tacrolimus once daily formulation: RCT using electronic monitoring
 – Economic Implications of Non-adherence and AMR with once daily TAC
 » Muduma et al, Journal of Medical Economics, 2015, 1-10

• Observed administration
 – Belatacept monthly infusions

• Develop novel agents with adherence component
Strategies to Impact Non-Adherence

- Electronic Medication Monitors (MEMS) predict patterns of early medication adherence
 - Tested with MMF, sirolimus and azathioprine in 195 kidney transplant recipients
 - Adherence between month 1-2 predicted adherence for 6mo (73%) and 12mo (92%)
 - Non-adherent patients more frequent, earlier AR and death censored graft loss
 - During month 1-3 – Adherence QID 84%, BID 91%, and QD 94%
Strategies to Impact Non-Adherence

- Ingestible Sensor for Measuring Medication Adherence
 - Tested in with ECMPS in kidney transplants with a 99.3% detection rate
 - Proteus Digital Health Feedback System-first FDA approved device, June 2015

Goals for Clinicians

• Implement formalized adherence programs
• Combined novel monitoring systems with patient specific interventions to improve adherence
Goals for Industry and FDA

• Expand utilization of FDA guidance in transplant registration trials
• Explore toxicity as a clinical endpoint
• Explore tacrolimus variability as a surrogate endpoint or biomarker
• Consider patient enrichment strategies based upon non-adherence risk factors
• Explore single Phase 3 study for approval
• Reward development of adherence-enhancing strategies
Conclusion

• Non-adherence is underestimated
• Improvements in adherence would impact ALL causes of graft loss
• Consider adherence enhancing strategies throughout transplant pharmaceutical development phases

*Prendergast and Gaston CJSAN 2010 Jul 5 (7) 1305-1311.