CT-P13 (Infliximab Biosimilar)

Arthritis Advisory Committee

February 9, 2016 CELLTRION, Inc.

Introduction

Elizabeth Pollitt, PhD

Vice President Head of CMC for Regulatory Affairs CELLTRION, Inc.

Agenda

Introduction	Elizabeth Pollitt, PhD		
Structural and Functional Studies	Vice President Head of CMC for Regulatory Affairs		
Non-Clinical Studies	CELLTRION, Inc.		
Clinical Review Pharmacology, Immunology, Efficacy and Safety	Alex Kudrin, MD, PhD, MBA Vice President Head of Clinical Development		
Totality of Evidence	CELLTRION, Inc.		
Use of CT-P13 in IBD	Peter Lakatos, MD Associate Professor Head of Gastroenterology/Hepatology Semmelweis University		
Clinical Perspective	Vibeke Strand, MD, MACR, FACP Adjunct Clinical Professor Division of Immunology/Rheumatology Stanford University		

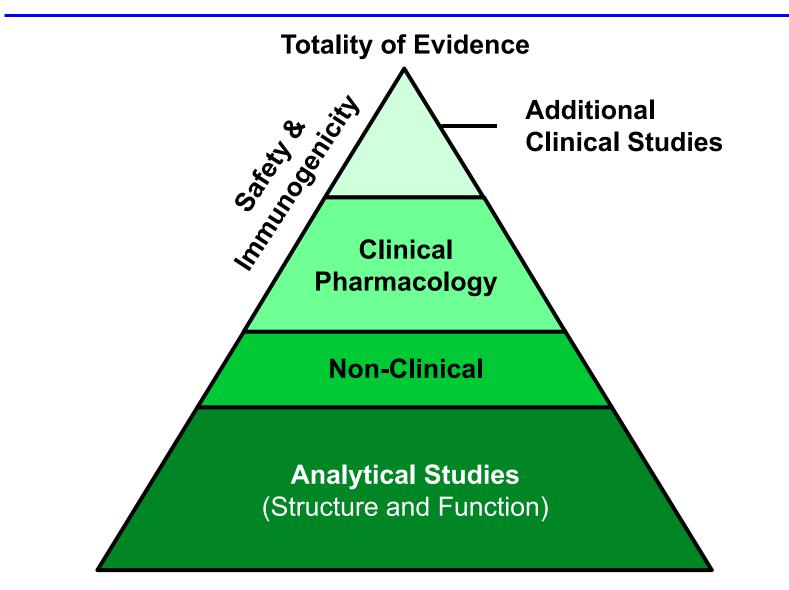
External Responders

Shomron Ben-Horin, MD

Associate Professor of Medicine Director of IBD Service, Gastroenterology Sheba Medical Center & Tel-Aviv University Tel-Aviv, Israel

• Stephen B. Hanauer, MD, FACG

Professor of Medicine Gastroenterology and Hepatology Northwestern Feinberg School of Medicine Medical Director, Digestive Health Center Chicago, IL, USA


Michael McGuckin, PhD

Professor & Deputy Director Mater Research Institute University of Queensland, Australia Falk Nimmerjahn, PhD Professor of Genetics & Immunology University of Erlangen-Nuremberg Erlangen, Germany

• Kevin Winthrop, MD, MPH

Associate Professor Divisions of Infectious Diseases Public Health and Preventive Medicine Oregon Health and Science University Portland, OR, USA

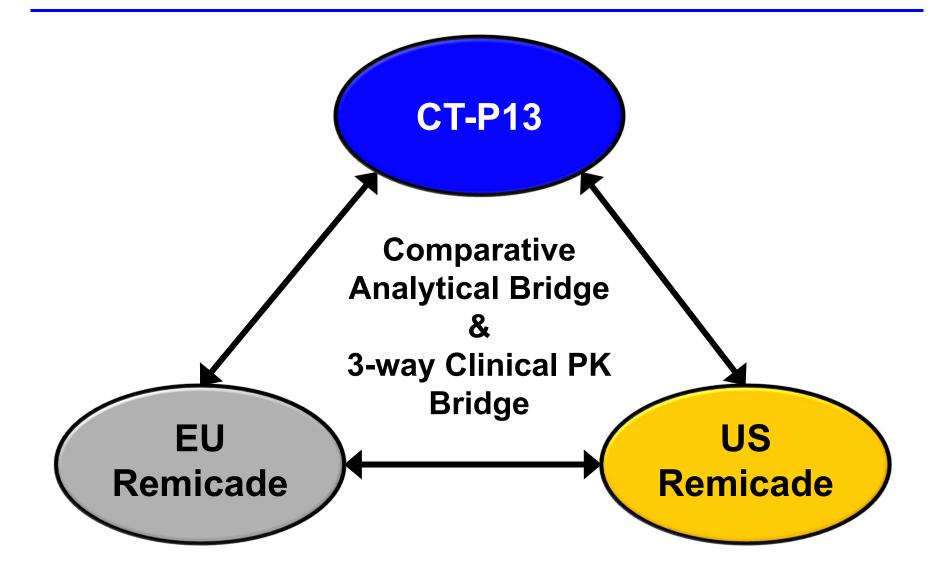
Stepwise Path to Demonstrate Biosimilarity and Address Residual Uncertainty

CT-P13 Development Program Fulfills Regulatory Requirements

Requirement	CT-P13 BLA Fulfillment of Requirement
Reference Product	US Remicade [®] (infliximab)
Analytical Data	Demonstrated highly similar structure and function
Non-Clinical Studies	Confirmed similar pharmacology and toxicology
Clinical Studies	Compared PK/PD, immunogenicity, efficacy, safety
Mechanism of Action	Principally mediated by binding and neutralization of soluble and transmembrane $TNF\alpha$
Conditions of Use	Same as reference product ¹
Route of Administration, Dosage Form & Strength	Same as reference product
Fulfillment of "Biosimilar" Definition	High structural and functional similarity with no clinically meaningful differences
Fulfillment of Bridging Criteria	3-way analytical data 3-way PK similarity data

¹ Not seeking interchangeability

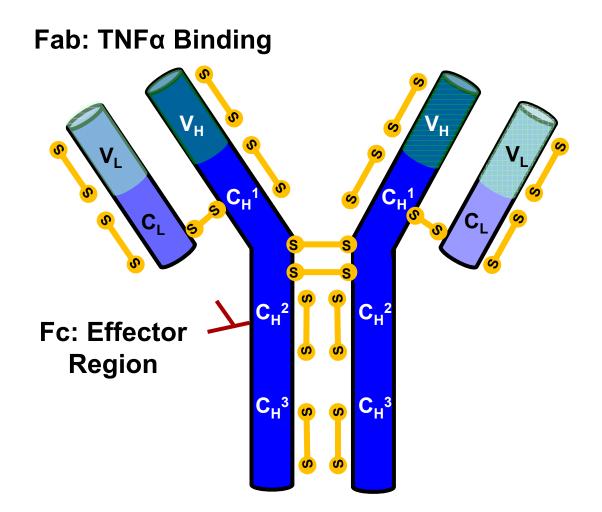
Totality of Data Support Extrapolation Across All Indications


Biosimilar Guidance ¹	Scientific Justification	
MoA for Each Indication	 Consistent pathogenesis across indications Common MoA across indications Comparative structural and functional assays support biosimilarity and comparable MoA 	
PK and Bio-distribution	 Well-characterized linear PK across clinical	
Across Indications	indications as studied in 3 distinct populations	
Immunogenicity in	 Similar immunogenicity and immunogenicity-	
Different Populations	related safety in studied populations	
Expected Toxicities in	 Well-characterized Remicade^{®2} safety profile	
Indicated Population	across indications Similar safety in sensitive populations	
Other Factors that May Affect Safety or Efficacy	(none determined)	

¹Adapted from FDA Guidance for Industry: Scientific Considerations in Demonstrating Biosimilarity to a Reference Product (2015) ² Throughout the remainder of this presentation, symbols indicating proprietary names (®, TM) are not displayed. The appearance of product names without these symbols does not imply that these names are not protected.

CT-P13 Global Data Package Supportive of Biosimilarity

Requirement	Relevant CT-P13 Studies	Remicade Source	Indication
Analytical Data	 Structural and physicochemical tests Functional and biological assays 	EU	All
МоА	 Extensive analysis of MoA 	EU	All
Non-Clinical	 Cross-reactivity, PK and toxicology studies 	EU	n/a
PK/PD	 Repeat dose PK/PD assessments 	EU	AS, RA
Immunogenicity	 Cross-immune reactivity ADA data in CD patients Repeat dose PK assessment 	US/EU US/EU EU	IBD IBD AS, RA
Clinical Safety and Efficacy	 Repeat dose efficacy and safety studies 	EU	RA


Scientific Bridge to US Remicade

Remicade is a TNFα Inhibitor Used in US for 18 Years

- Therapeutic effect mediated by TNFα blockade
- Structure and function well-understood
- Well-characterized, linear PK
- Established efficacy and safety profile
- Experience in > 4.2 million patients
- Clinical guidelines support use in all indications

Structure of Remicade (Infliximab) is Well-Characterized

CT-P13 Proposed Indications, Dosing & Administration Identical to Remicade

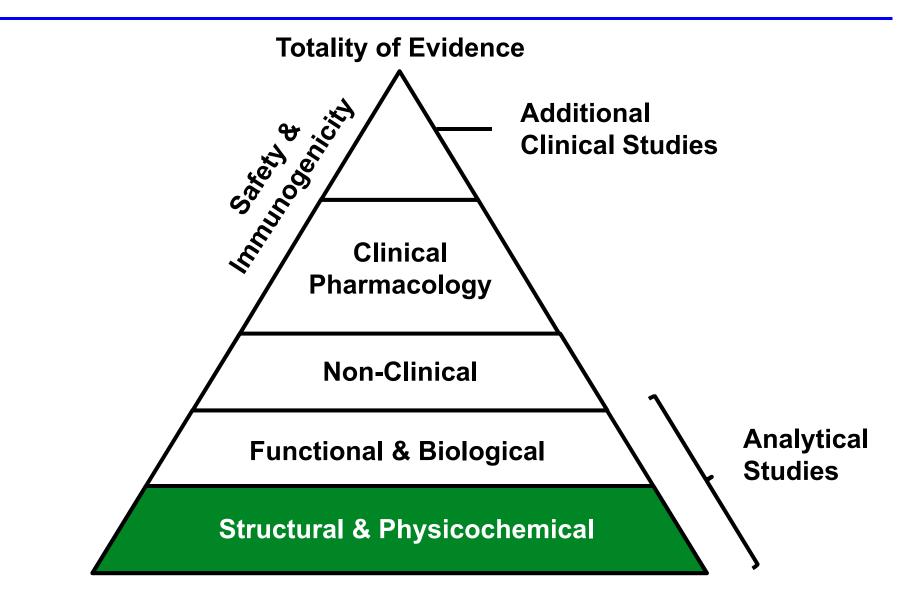
	Indication Regime		Dosage & Administration	
	Rheumatoid Arthritis (RA)	In combination with methotrexate (moderately to severely active disease)	3 mg/kg at Week 0, 2, 6 → q8wk (up to 10 mg/kg or q4wk)	
Ankylosing Spondylitis (AS)		Active disease	5 mg/kg at Week 0, 2, 6 → q6wk	
	Psoriatic Arthritis (PsA)	Option for combination with methotrexate	5 mg/kg at Week 0, 2, 6	
X	Plaque Psoriasis (Ps)	Chronic severe	→ q8wk	
Crohn's Disease (CD) Ulcerative Colitis (UC)		Adult and pediatric patients (moderately to severely active disease and	5 mg/kg at Week 0, 2, 6 → q8wk (up to 10 mg/kg q8wk)	
		inadequate response to conventional therapy)	5 mg/kg at Week 0, 2, 6 → q8wk	

Infliximab Binding and Neutralization of $sTNF\alpha$ and $tmTNF\alpha$

CT-P13 Analytical Studies

Structural and Physicochemical Functional and Biological

Biosimilarity Studies Conducted Comparing CT-P13, EU, US Remicade


- Analytic biosimilarity studies (3-way)
 - CT-P13 vs. US Remicade
 - EU Remicade vs. US Remicade

Statistical Analysis Recommended by FDA for Analytical Similarity

Quality Attribute	Test ¹	Limits
Most Relevant to Primary MoA or PK	Equivalence test: 90% CI of mean difference	± 1.5σ _R
Less Relevant to Primary MoA or PK	≥ 90% lots within quality range	± 3SD
Qualitative Test	Presentation of raw/ graphical data	Visual

¹ Tsong *et al.*, 2015.

Structural & Physicochemical Biosimilarity Studies

Analysis of Quality Attributes Using Orthogonal Analytical Methods

- Primary Structure
- Higher Order
 Structure
- Protein Content

- Purity/Impurity
- Charge Variants
- Glycosylation

Analytical Methods in Structural and Physicochemical Biosimilarity Studies

Primary Structure

- Peptide Mapping (HPLC)
- Peptide Mapping (LC-MS)
 - Deamidation HC Asn57, HC Asn318, HC Asn364, HC Asn387, LC Asn41
 - Oxidation HC Met255
 - C-terminal variant HC Lys450
- Intact Mass (LC-MS)
 - Light chain
 - Heavy chain K0 G0, G0F, G1F, G2F
 - Heavy chain K1 G0F, G1F, G2F
- Amino Acid Analysis/Molar Absorptivity
 - Aspartic acid, Glutamic acid, Serine, Histidine, Glycine, Threonine, Arginine, Alanine, Tyrosine, Valine, Methionine, Phenylalanine, Isoleucine, Leucine, Lysine, Proline, Molar Absorptivity, Extinction Coefficient
- N-terminal Sequencing
 - Heavy chain
 - Light chain
- C-terminal Sequencing
 - Heavy chain
 - Light chain

Higher Order Structure

- FTIR
 - Amide I
 - Amide II
 - A
- B
- C
- DSC
 - Transition 1
 - Transition 2
 - Transition 3
- CD
- Free Thiol Analysis
- Disulfide Bond
 - H3-H12: 22-98
 - H15-H16: 147-203
 - H20-L19: 223-214
 - H21-H21: 229-229/232-232
 - H23-H29: 264-324
 - H37-H42: 370-428
 - L2-L7: 23-88
 - L10-L17: 134-194
- Antibody Array

<u>Content</u>

Protein Concentration (UV₂₈₀)

Glycosylation

- HPAEC-PAD
 - G0F, Man5, G0, G1F, G2F, SA1, SA2
- NP-UPLC
 - G0F-GN, G0, G0F, MAN5, G1F-GN, G1, G1F, G1F', G2, G2F, G1-GN+NGNA, G1F-GN+NGNA, G1F+NGNA, G1F'+NGNA, G2+NGNA, G2F+NGNA, G2F+2NGNA, Unknown species
- N-linked Glycan Analysis
 - Man5, G0F-GlcNAc. G0, G0F, G1F, G2F, G1F1NeuGc, G2F1NeuGc
- Sialic Acid Analysis
- Monosaccharide Analysis
 - Fuc, GlcNAc, Gal, Man
- Glycation (LC-ES-MS)
 - Light chain
 - Heavy chain

Purity/Impurity

- SEC-HPLC
 - Monomer
 - Dimer
- SEC-MALS
 - Monomer
 - Dimer
 - Monomer (MW)
 - Dimer (MW)
- AUC
 - Monomer
 - Higher species
- Non-reduced/Reduced CE-SDS

CC-19

- Intact IgG (NR)
- H+L (R)
- Non-glycosylated HC (R)
- Sub-visible particles (MFI & HIAC)
- Charge Variants
- IEF
- IEC-HPLC
 - Peak 1, Peak 2, Peak 3, Peak 4, Peak 5, Peak 6

Excipients

- pH
- Polysorbate 80
- Sucrose

CC-20

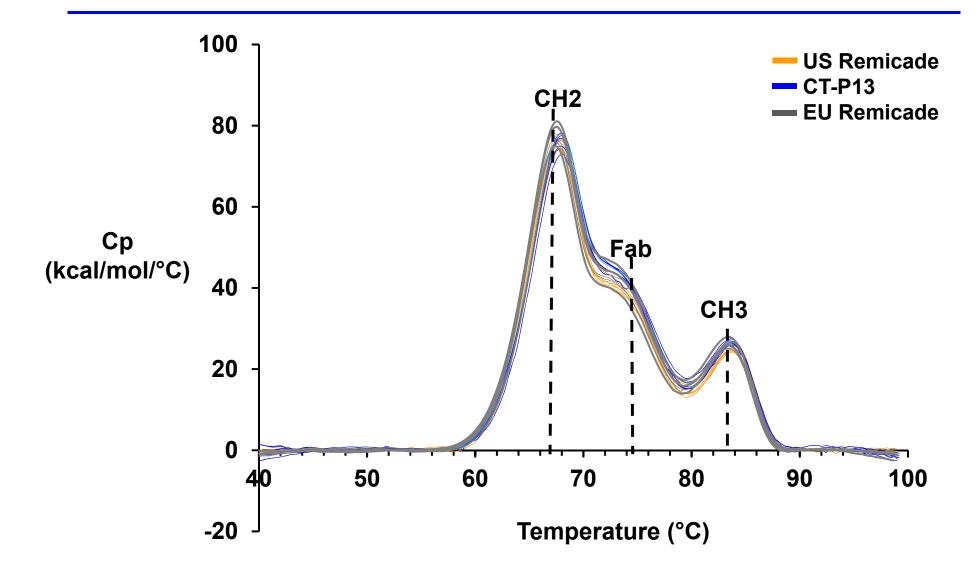
Conclusion of Statistical Analysis of Structure: EU vs. US Remicade

Attribute	Clinical Relevance	Test	EU vs. US Bridge (High Similarity)
		Peptide Mapping (HPLC)	Yes
		Peptide Mapping with LC-MS	No ¹
Primary	Efficacy, Safety,	Intact Mass (Reduced) (LC-MS)	Yes
Structure	Immunogenicity	Amino Acid Analysis	Yes
Structure	minunogementy	Extinction Coefficient	Yes
		N-terminal Sequencing	Yes
		C-terminal Sequencing	Yes
		Fourier Transform Infrared Spectroscopy (FTIR)	Yes
		Differential Scanning Calorimetry (DSC)	Yes
ligher Order	Efficacy &	Circular Dichroism (CD)	Yes
Structure	Immunogenicity	Free Thiol Analysis	Yes
		Disulfide Bond	Yes
		Antibody Array	Yes
Content	Efficacy (PK)	Protein Concentration (UV ₂₈₀)	Yes
		Size-exclusion Chromatography (SEC)-HPLC	Yes
	Efficacy &	Size-exclusion Chromatography (SEC)-MALS	Yes
Purity/	Immunogenicity	Analytical Ultracentrifugation (AUC)	Yes
Impurity	U J	Sub-visible Particles (MFI & HIAC)	Yes
	Efficacy	Non-reduced Capillary Electrophoresis (CE)-SDS	Yes
	Enicacy	Reduced Capillary Electrophoresis (CE)-SDS	Yes
Charge	Efficacy	Isoelectric Focusing (IEF)	Yes
Variants	Efficacy	Ion Exchange Chromatography (IEC)-HPLC	No ²
		High Performance Anion Exchange Chromatography (HPAEC-PAD)	Yes
		Normal Phase-Ultra Performance Liquid Chromatography (NP-UPLC)	Yes
Glyco-	Immunogenicity	N-linked Glycan Analysis	No ³
sylation	minunogenicity	Sialic Acid Analysis	Yes
	-	Monosaccharide Analysis	Yes
		Glycation	Yes
Excipients	Efficacy, Safety, Immunogenicity	pH, Polysorbate 80, Sucrose	Yes

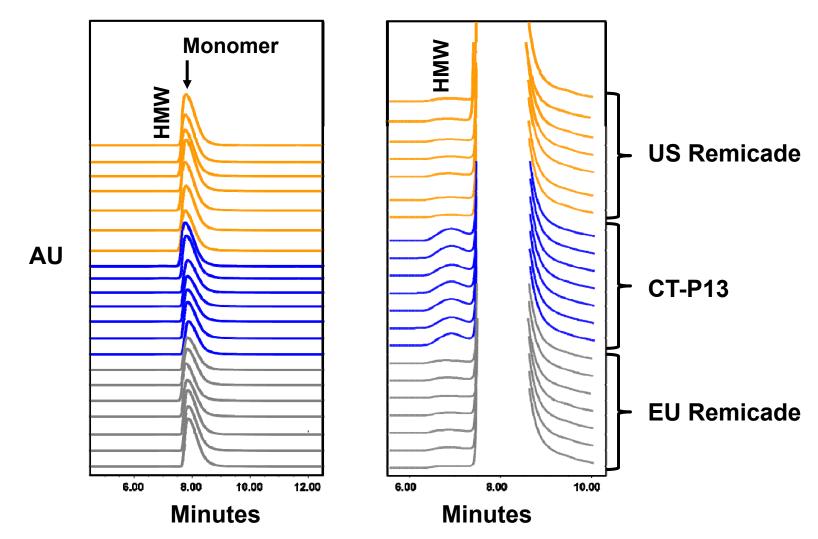
Yes: within quality range; ¹ 88% - C-terminal lysine; ² 70% - Peak 3 & 6, 80% - Peak 5; ³ 88% - G0 & G1F1NeuGc

Conclusion of Statistical Analysis of Structure: CT-P13 vs. US Remicade

Attribute	Clinical Relevance	Test	CT-P13 vs. US (High Similarity)
		Peptide Mapping (HPLC)	Yes
		Peptide Mapping with LC-MS	Yes
Primary	Efficacy, Safety,	Intact Mass (Reduced) (LC-MS)	Yes
Structure	Immunogenicity	Amino Acid Analysis	Yes
Structure	minunogenicity	Extinction Coefficient	Yes
		N-terminal Sequencing	Yes
		C-terminal Sequencing	Yes
		Fourier Transform Infrared Spectroscopy (FTIR)	Yes
		Differential Scanning Calorimetry (DSC)	Yes
ligher Order	Efficacy &	Circular Dichroism (CD)	Yes
Structure	Immunogenicity	Free Thiol Analysis	Yes
		Disulfide Bond	Yes
		Antibody Array	Yes
Content	Efficacy (PK)	Protein Concentration (UV ₂₈₀)	Yes
		Size-exclusion Chromatography (SEC)-HPLC	No ¹
	Efficacy &	Size-exclusion Chromatography (SEC)-MALS	No ¹
Purity/	Immunogenicity	Analytical Ultracentrifugation (AUC)	Yes
Impurity		Sub-visible Particles (MFI & HIAC)	Yes
		Non-reduced Capillary Electrophoresis (CE)-SDS	No ¹
	Efficacy	Reduced Capillary Electrophoresis (CE)-SDS	Yes
Charge		Isoelectric Focusing (IEF)	Yes
Variants	Efficacy	Ion Exchange Chromatography (IEC)-HPLC	No ²
		High Performance Anion Exchange Chromatography (HPAEC-PAD)	No ³
		Normal Phase-Ultra Performance Liquid Chromatography (NP-UPLC)	No ⁴
Glyco-	Immunogonicity	N-linked Glycan Analysis	No ⁵
sylation	Immunogenicity	Sialic Acid Analysis	Yes
		Monosaccharide Analysis	Yes
		Glycation	No ⁶
Excipients	Efficacy, Safety, Immunogenicity	pH, Polysorbate 80, Sucrose	Yes

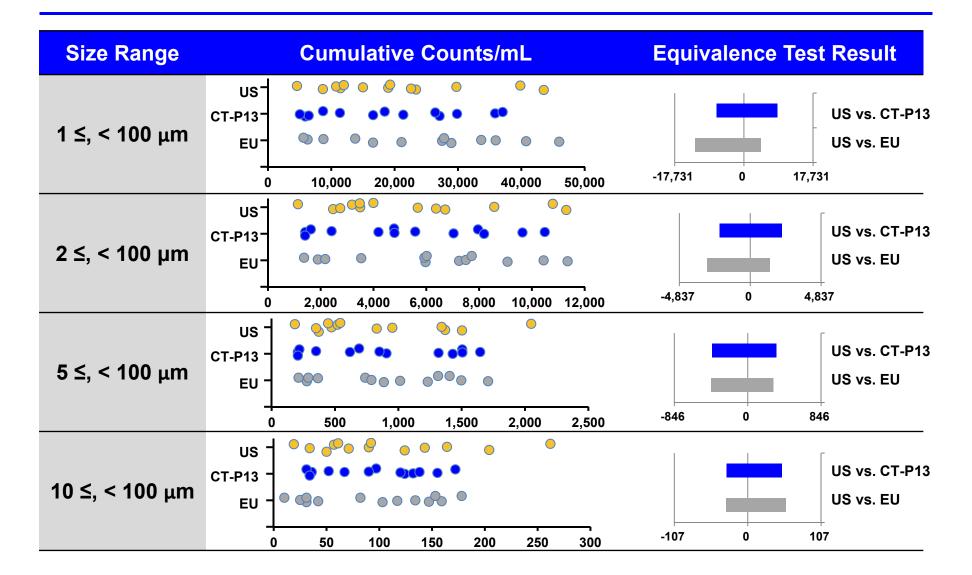

Yes: within quality range; ¹ 0%; ² 40% - Peak 1, 0% - Peak 4; ³ 9% - G0; ⁴ 0% - G0, G1F&G1FGN, 4% - G1F'+NGNA, 87% - G1&G2F+NGNA, 39% - G2F+2NGNA; ⁵ 0% - G0, G1F1NGNA & G2F1NGNA; ⁶ 0% LC, 0% HC

Primary Structure: Peptide Mapping by HPLC¹

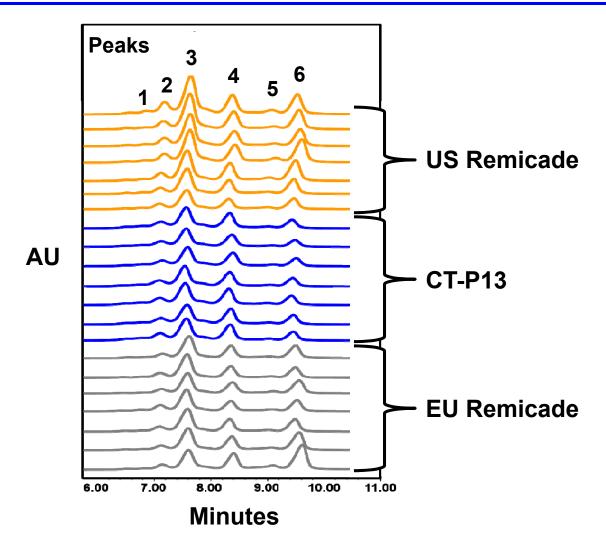


¹ High-Performance Liquid Chromatography

Higher Order Structure: Differential Scanning Calorimetry (DSC)

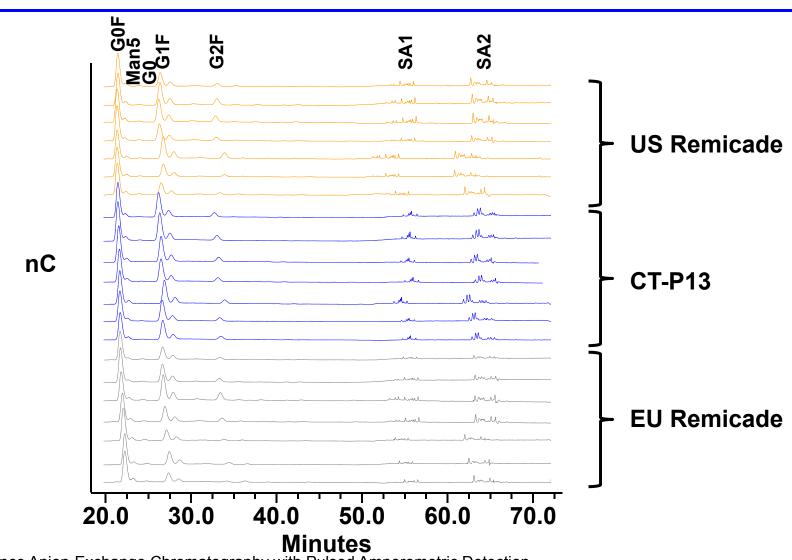


Purity/Impurity: SEC-HPLC¹



¹ Size Exclusion Chromatography with High Performance Liquid Chromatography

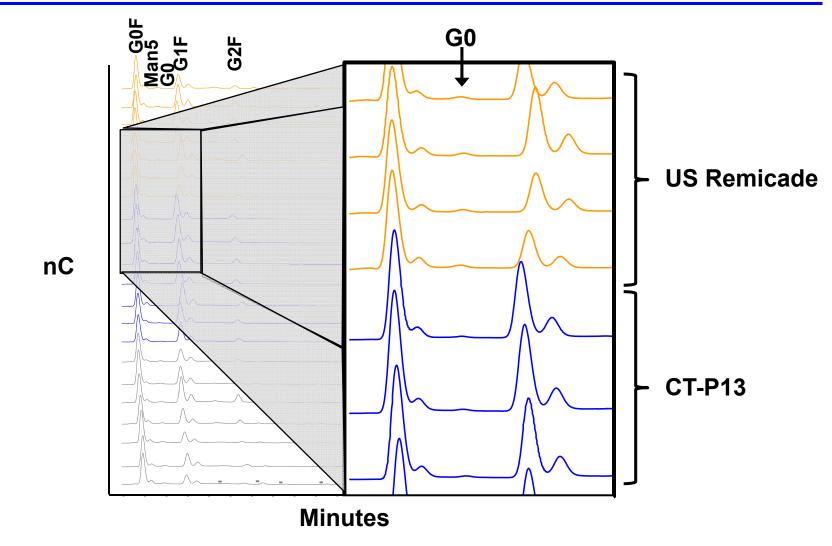
Sub-Visible Particles in Small Size Ranges by MFI



6 Charge Variant Peaks: IEC-HPLC¹



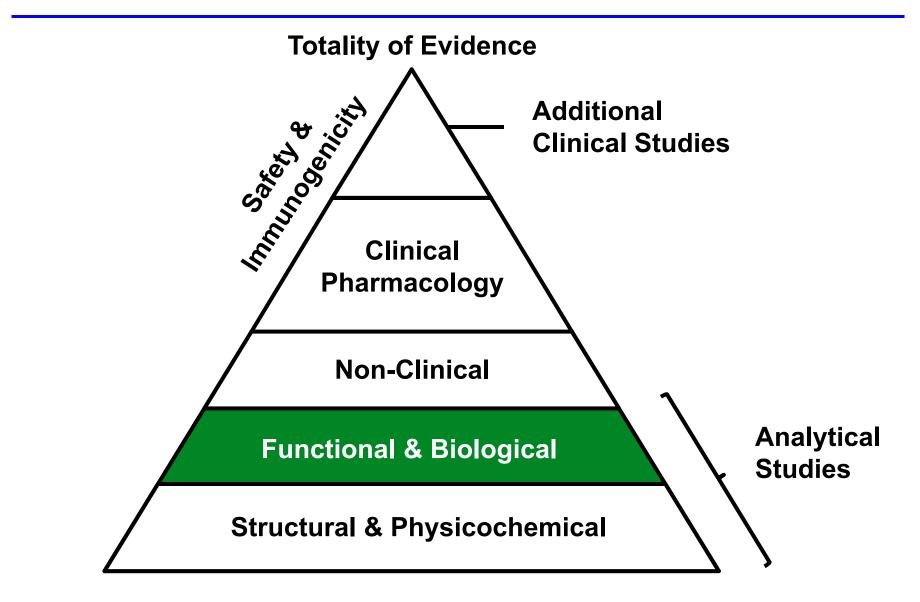
Glycosylation: Oligosaccharide Profiling by HPAEC-PAD¹



¹ High Performance Anion-Exchange Chromatography with Pulsed Amperometric Detection

Glycosylation: Oligosaccharide Profiling by HPAEC-PAD¹

Glycosylation: Oligosaccharide Profiling by HPAEC-PAD¹



¹ High Performance Anion-Exchange Chromatography with Pulsed Amperometric Detection

Residual Uncertainties Identified from Structural Analyses

Characteristic	Potential Impact	Studies to Address Uncertainty	
Intact IgG (H2L2)	Biologic function	 Functional assays to compare biological activity 	
Charge Variants (C-terminal lysine)	Biologic function	 In vitro and in vivo tests Functional assays to compare biological activity 	
G0 Content	Biologic function	 Functional assays to compare biological activity 	
Glycation	Biologic function	 Functional assays to compare biological activity 	
High Molecular Weight Forms	Immunogenicity	 Assessment of immunogenicity in clinical studies 	

Functional and Biological Assays

Biological Activities in Similarity Studies

Fab Region

Binding sTNFα Binding tmTNFα Reverse signaling

Fab & Fc Binding

Mixed lymphocyte reaction Inhibition of T cell proliferation ADCC

Effector Region (Fc)

Binding to Fc receptors Binding to NK cells C1q & CDC

Primary MoA for TNFα Inhibitors: Binding & Neutralization of sTNFα and tmTNFα

	Infliximab (Remicade)	Adalimumab (Humira)	Golimumab (Simponi)	Etanercept (Enbrel)	Certolizumab (Cimzia)
Structure ¹	Murine FV Human Fcy1	Human FV Human Fcy1	Human Human Fcy1	Human TNFR2 Human Fcy1	Humanized FV (murine CDRs) PEG
US Indications	RA, AS, PsA, Ps, CD, UC	RA, AS, JIA, PsA, Ps, CD, UC	RA, PsA, AS, UC	RA, AS, JIA, PsA, Ps	RA, AS, PsA, CD
sTNFα Binding Affinity (KD) pM	44 ² (25 - 63)	127 ² (99 - 154)	18 ² (9 - 27)	11² (10 - 13)	90 ³
sTNFα Neutralization Potency ⁴	✓	✓	✓	✓	✓
tmTNFα Binding⁵	$\checkmark \checkmark \checkmark$	$\checkmark \checkmark \checkmark$	√√√ 6	$\checkmark \checkmark$	$\checkmark \checkmark \checkmark$

These products are licensed TNFa inhibitors. JIA: Juvenile idiopathic arthritis

¹ Adapted from Astrakhantseva et al., (2014); ² Shealy et al., (2010); ³ Nesbitt et al., 2009; ⁴ Proposed MoA in USPI and/or EPAR

⁵ Tracey et al., (2008); ⁶ Ueda et al., (2013)

In Vitro Activities of TNFα Inhibitors

	Infliximab (Remicade)	Adalimumab (Humira)	Golimumab (Simponi)	Etanercept (Enbrel)	Certolizumab (Cimzia)
US Indications	RA, AS, PsA, Ps, CD, UC	RA, AS, JIA, PsA, Ps, CD, UC	RA, PsA, AS, UC	RA, AS, JIA, PsA, Ps	RA, AS, PsA, CD
Apoptosis by Blocking tmTNF-TNFR2 ¹	$\checkmark\checkmark\checkmark$	$\checkmark \checkmark \checkmark$	No data	No activity	$\checkmark\checkmark\checkmark$
Cytokine Suppression ²	$\checkmark\checkmark\checkmark$	$\checkmark\checkmark\checkmark$	No data	✓	$\checkmark\checkmark\checkmark$
Apoptosis ²	$\checkmark \checkmark \checkmark$	$\checkmark\checkmark\checkmark$	√√ √ ³	✓	No activity
CDC ²	$\checkmark \checkmark \checkmark$	$\checkmark \checkmark \checkmark$	√√ √3	✓	No activity
ADCC ²	$\checkmark \checkmark \checkmark$	$\checkmark \checkmark \checkmark$	√√√ 3,4	✓	No activity

These products are licensed $TNF\alpha$ inhibitors.

¹Atreya et al., (2011); ² Mediated by binding tmTNFα (Tracey et al., 2008); ³ Ueda et al., (2013); ⁴ CELLTRION data

Conducted > 20 Tests to Compare CT-P13 and EU vs. US Remicade

Binding to $sTNF\alpha$

In Vitro TNFα

- Neutralization
 TNFα Binding Affinity (ELISA)
- Cytokine Suppression (Caco-2)

Binding to $\text{tmTNF}\alpha$

- Cell Based Binding Affinity
- Inhibition of Cytokine Release by Reverse Signaling
- Induction of Apoptosis by Reverse Signaling
- Induction of Regulatory Macrophages
- Suppression of T Cell Proliferation by Regulatory Macrophages
- Wound Healing by Regulatory Macrophages

C1q Binding & CDC

- C1q Binding Affinity
- CDC

Binding to Fc Receptors

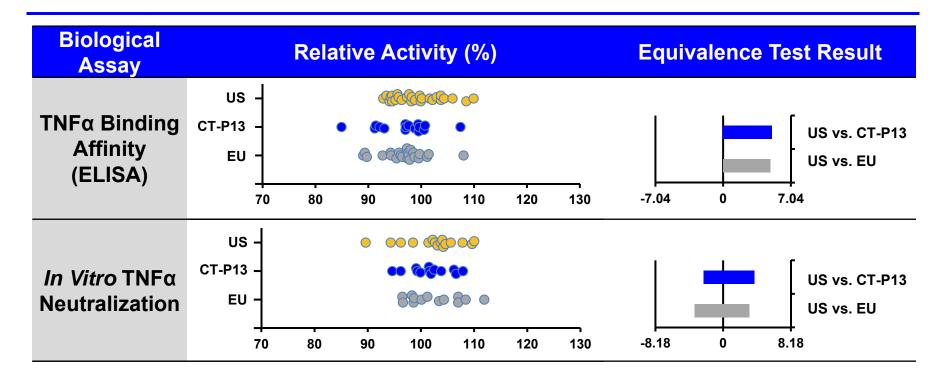
- FcRn
- FcγRIIIa (V Type)
- FcγRIIIa (F Type)
- FcγRIIIb
- FcγRIIa
- FcγRIIb
- FcγRI
- Ex Vivo Binding in 1% BSA with NK Cells
- Ex Vivo Binding in 50% Serum with NK Cells

tmTNFα & Fc Binding

- ADCC using PBMC
- ADCC using NK Cells
- ADCC using LPSstimulated Monocytes and NK Cells
- Expression Level of tmTNFα on Monocytes/ Macrophages from IBD Patients

Conclusion of Statistical Analysis of Biologic Activities: EU vs. US Remicade

Activity	Assay	EU vs. US (High Similarity)
	In Vitro TNFα Neutralization	Within EM
Binding to sTNFα	TNFα Binding Affinity (ELISA)	Within EM
	Cytokine Suppression (Caco-2)	Within EM ¹
	Cell Based Binding Affinity	Within EM
	Inhibition of Cytokine Release by Reverse Signaling	Within EM ¹
Binding to tmTNFa	Induction of Apoptosis by Reverse Signaling	Yes ¹
	Induction of Regulatory Macrophages	Yes ¹
	Suppression of T Cell Proliferation by Regulatory Macrophages	Yes ¹
	Wound Healing by Regulatory Macrophages	Yes
FcRn Binding	FcRn Binding Affinity (SPR)	Within EM
C1q Binding &	C1q Binding Affinity (ELISA)	Yes
CDC Activity	CDC	Yes
	FcγRIIIa V Type Binding Affinity (SPR)	Yes
	FcγRIIIa F Type Binding Affinity (SPR)	Yes
	FcγRIIIb Binding Affinity (SPR)	Yes
Eo Dinding	FcγRIIa Binding Affinity (SPR)	Yes
Fc Binding	FcγRIIb Binding Affinity (SPR)	Yes
	FcγRI Binding Affinity (ELISA)	Yes
	Ex Vivo Binding in 1% BSA with NK cells	Yes ¹
	Ex Vivo Binding in 50% serum with NK Cells	Yes ¹
tmTNF & Fc	ADCC using PBMC (Healthy Donor)	Yes
	ADCC using NK Cells (Healthy Donor)	Yes ¹
Binding	ADCC using LPS-stimulated Monocytes and NK Cells (Healthy Donor)	Yes (No activity)

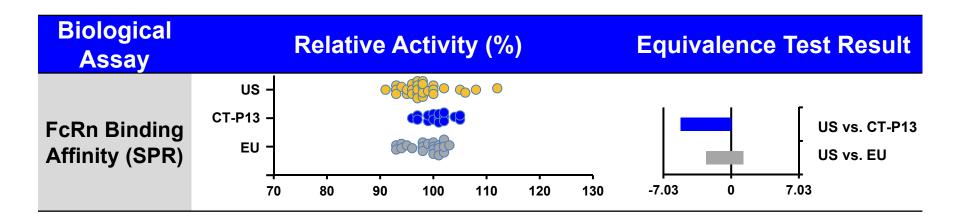

Conclusion of Statistical Analysis of Biologic Activities: CT-P13 vs. US Remicade

Activity	Assay	CT-P13 vs. US (High Similarity)
	In Vitro TNFα Neutralization	Within EM
Binding to sTNFα	TNFα Binding Affinity (ELISA)	Within EM
	Cytokine Suppression (Caco-2)	Within EM ¹
	Cell Based Binding Affinity	Within EM
	Inhibition of Cytokine Release by Reverse Signaling	Within EM ¹
Binding to tmTNFa	Induction of Apoptosis by Reverse Signaling	Yes ¹
	Induction of Regulatory Macrophages	Yes ¹
	Suppression of T Cell Proliferation by Regulatory Macrophages	Yes ¹
	Wound Healing by Regulatory Macrophages	Yes
FcRn Binding	FcRn Binding Affinity (SPR)	Within EM
C1q Binding &	C1q Binding Affinity (ELISA)	Yes
CDC Activity	CDC	Yes
	FcγRIIIa V Type Binding Affinity (SPR)	No
	FcyRIIIa F Type Binding Affinity (SPR)	No
	FcγRIIIb Binding Affinity (SPR)	Yes
Eo Dinding	FcγRIIa Binding Affinity (SPR)	Yes
Fc Binding	FcγRIIb Binding Affinity (SPR)	Yes
	FcγRI Binding Affinity (ELISA)	Yes
	Ex Vivo Binding in 1% BSA with NK cells	No ¹
	Ex Vivo Binding in 50% serum with NK Cells	Yes ¹
	ADCC using PBMC (Healthy Donor)	Yes
tmTNF & Fc	ADCC using NK Cells (Healthy Donor)	Yes ¹
Binding	ADCC using LPS-stimulated Monocytes and NK Cells (Healthy Donor)	Yes (No activity)
	ADCC using LPMC and NK Cells (IBD patient)	Yes (No activity)

Yes: within quality range EM: Equivalence margin

¹Tested at multiple concentrations. Results shown for combined concentrations.

Equivalent sTNFα Binding and Neutralization


Equivalent sTNFα Neutralization

Biological Assay	Relative Activity (%)	Equivalence Test Result
Cytokine Suppression (Caco-2, 10 µg/mL)	US - CT-P13 - EU - 50 60 70 80 90 100 110 120 130 140 150	-6.82 0 6.82
Cytokine Suppression (Caco-2, 2 µg/mL)	US - CT-P13 - EU - 50 60 70 80 90 100 110 120 130 140 150	-8.25 0 8.25
Cytokine Suppression (Caco-2, 0.4 µg/mL)	US - CT-P13 - EU - 50 60 70 80 90 100 110 120 130 140 150	-6.61 0 6.61

Equivalent tmTNFα Binding and Signaling

Biological Assay	Relative Activity (%)	Equivalence Test Result
Cell Based Binding Affinity	US - CT-P13	-10.5 0 10.5
Inhibition of Cytokine Release by Reverse Signaling (5.3 µg/mL)	US - CT-P13 - EU - 50 70 90 110 130 150	-26.51 0 26.51
Inhibition of Cytokine Release by Reverse Signaling (2.4 μg/mL)	US - CT-P13 - EU - 50 70 90 110 130 150	US vs. CT-P13 US vs. EU -13.57 0 13.57
Inhibition of Cytokine Release by Reverse Signaling (1.1 μg/mL)	US - CT-P13 - EU - 50 70 90 110 130 150	US vs. CT-P13 US vs. EU -6.88 0 6.88

Equivalent FcRn Binding

Binding FcyRIIIa

Biological Assay Relative Activity (%)			
FcγRIIIa V type Binding Affinity (SPR)	US - EU - T-P13 - EU - T0 80 90 100 110 120 130 140	 150	
FcγRIIIa F type Binding Affinity (SPR)	US - EU - T-P13 - EU - T0 80 90 100 110 120 130 140	150	

tmTNFα-Expressing Jurkat and NK ADCC Activity (Relative Potency)

ADCC Analysis	Relative Potency (%)							
8 ng/mL	US - CT-P13 - EU -		• • • • • • • • • • • • • • • • • • •					
	70	80	90 100 110 120 130 140 150 160 170					
4 ng/mL	US - CT-P13 - EU -	•						
	70	80	90 100 110 120 130 140 150 160 170					
2 ng/mL	US - CT-P13 - EU -	•						
	70	80	90 100 110 120 130 140 150 160 170					

CC-43

High Similarity in ADCC Activity

ADCC Analysis			Re	lative	e Act	ivity	(%)			
tmTNFα-Expressing Jurkat and PBMC	US - CT-P13 - EU - 60	70		90	•••• •••• ••••	•••	•	130	140	
LPS-Stimulated Monocytes and NK	US CT-P13 EU 70	80	90		lo ac			130	140	150

Residual Uncertainties Resolved

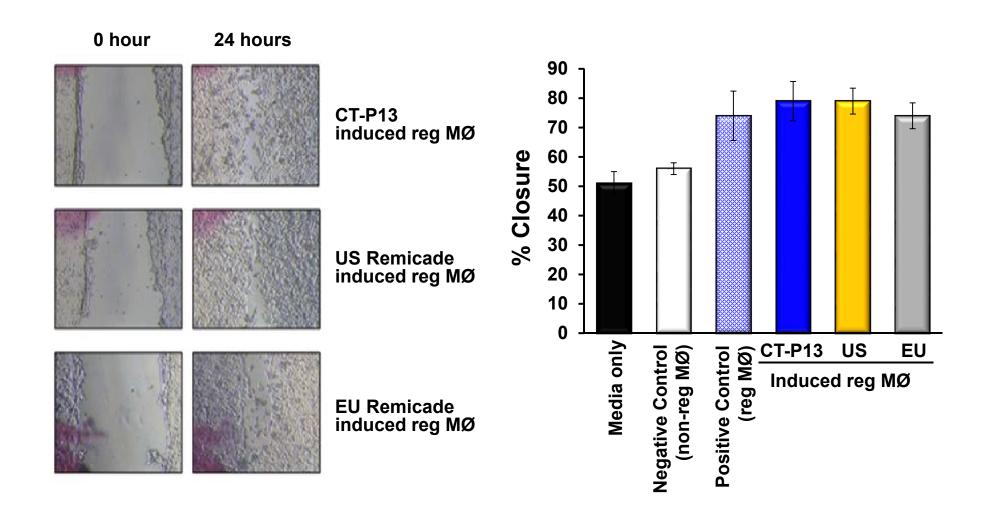
Characteristic	Potential Impact	Conclusions
Intact IgG (H2L2)	Biologic function	 Theoretically translates to 1.5% difference in TNFα binding No impact on biological activities
Charge Variants (C-terminal lysine)	Biologic function	 Removed rapidly in serum and <i>in</i> vivo
Glycation	Biologic function	 Located outside of TNF binding and FcγRIIIa binding regions No impact on biological activities
G0 Content	Biologic function	 FcγRIIIa binding affinity No impact on binding to NK cells in presence of serum No impact on ADCC
High Molecular Weight Forms	Immunogenicity	Addressed in clinical studies

Similarity of Biological Activities Support Extrapolation to IBD Indications

Biological Assay	Target	Cells	Similarity CT-P13 vs. US Remicade	EU vs. US Remicade Bridge
Cytokine Suppression (Caco-2) ¹	sTNFα	Caco-2	Within EM	Within EM
Cell Based Binding Affinity	tmTNFα	tmTNFα Jurkat cells	Within EM	Within EM
Inhibition of Cytokine Release by Reverse Signaling ¹	tmTNFα	PBMC	Within EM	Within EM
Induction of Apoptosis by Reverse Signaling ¹	tmTNFα	tmTNFα Jurkat cells	High	High
Induction of Regulatory Macrophages ¹	tmTNFα- macrophage	Mixed lymphocytes	High	High
Suppression of T Cell Proliferation by Regulatory Macrophages ¹	tmTNFα- macrophage	Mixed lymphocytes	87%	High
Wound Healing by Regulatory Macrophages ²	tmTNFα- macrophage	HCT 116 & regulatory macrophages	High	High
	tmTNFα of monocytes- FcγRIIIa of NK cell	LPS stimulated monocytes & NK cells	High (No activity)	High (No activity)
	tmTNFα of LPMC- FcγRIIIa of NK cell	IBD patient- derived LPMC & NK cells	High (No activity)	-

High: ≥ 90% within QR; EM: Equivalence margin

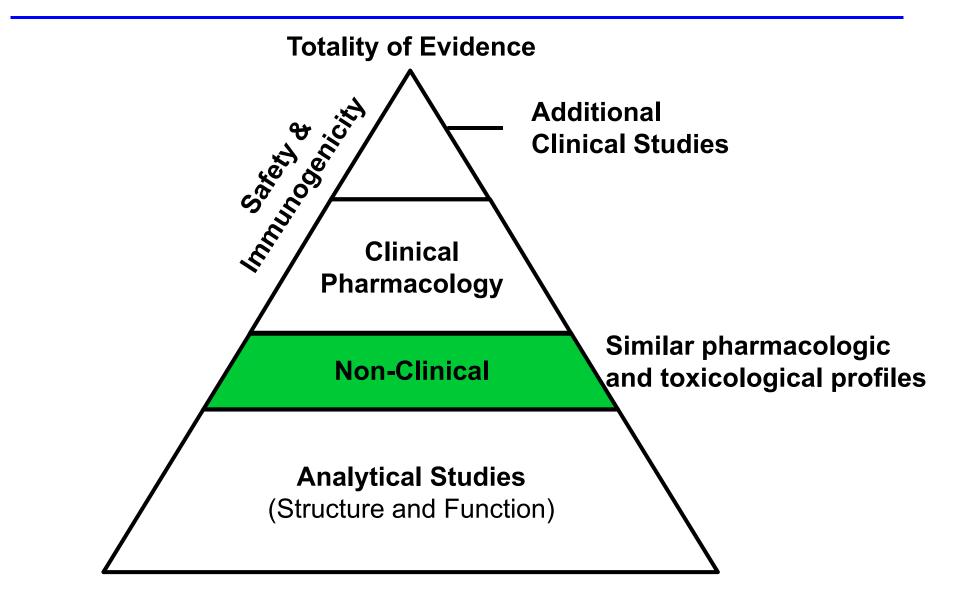
¹ Tested at multiple concentrations. Results shown for combined concentrations; ² Visual comparison


High Similarity in tmTNF or tmTNF-Fc Induced Effects

Biological Assay	Relative Activity (%)				
Induction of Apoptosis by Reverse Signaling ¹	US - CT-P13 - EU - 70	80 90 100 110 120 130			
Suppression of T Cell Proliferation by Regulatory Macrophages ²	US - CT-P13 - EU - 50	70 90 110 130 150 170			
Biological Assay	Induced	d Macrophages from Total PBMC (%)			
Induction of Regulatory Macrophages (0.625 µg/mL) ²	US - CT-P13 - EU - 0				

¹ QR was ± 3SD of US Remicade lots.

² QR was ± 2SD of US Remicade lots.


Induces Comparable Wound Healing in Colorectal Cells in Scratch Model

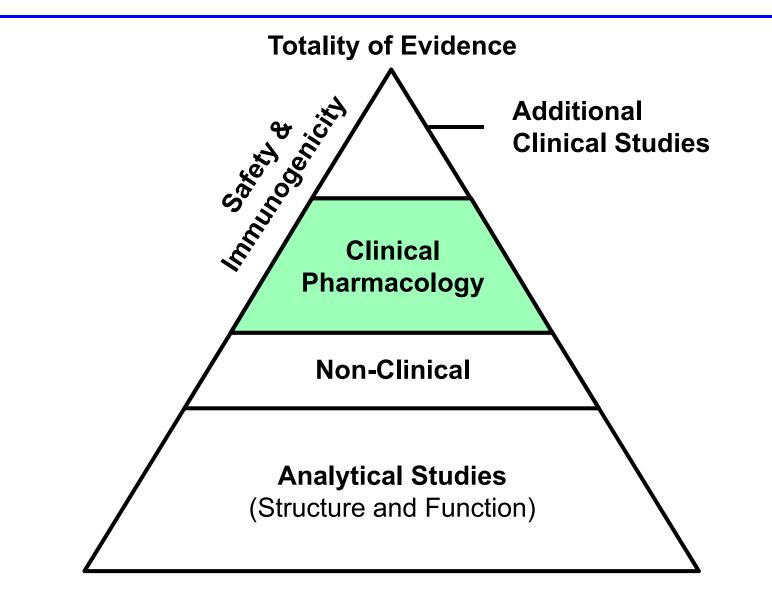
CT-P13 Highly Similar to Remicade and Supports Extrapolation

- High similarity in structural and physicochemical analyses
- High similarity in functional and biological analyses
- EU Remicade data relevant for US Remicade
- Extrapolation is supported by high similarity and mechanism of action
- Totality of evidence supports that products can be expected to perform like Remicade in all indications for which Remicade is licensed

Non-Clinical Profile of CT-P13 Similar to EU Remicade

Clinical Development

Alex Kudrin, MD, PhD, MBA


Vice President Head of Clinical Development CELLTRION, Inc.

Key CT-P13 Clinical Studies

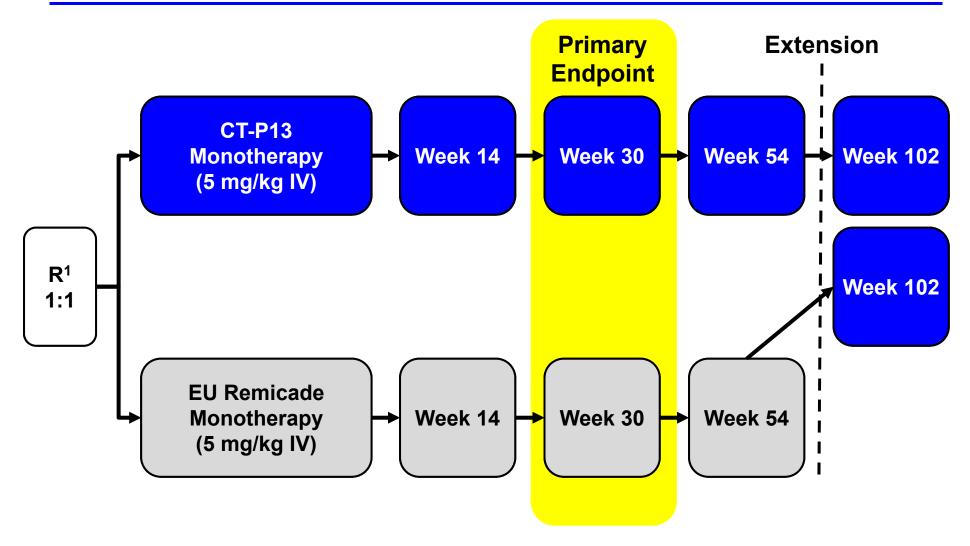
	AS Study RA Study (N = 250) (N = 606)		3-way PK (N = 213)	
Subjects	AS patients ¹	RA patients ²	Healthy subjects	
Dosing	ng 5 mg/kg at 3 mg/kg at wk 0, 2, 6 \rightarrow q8wk wk 0, 2, 6 \rightarrow q8wk		Single dose, 5 mg/kg	
Combination Treatment	None	MTX	None	
Remicade Reference	EU	EU	US & EU	
Primary Endpoints	AUC _τ C _{max,SS}	ACR20	AUC _{last} AUC _{inf} C _{max}	

¹1984 modified NY classification, ²1987 ACR classification

Clinical Pharmacokinetics Studies

Studied in Sensitive Populations

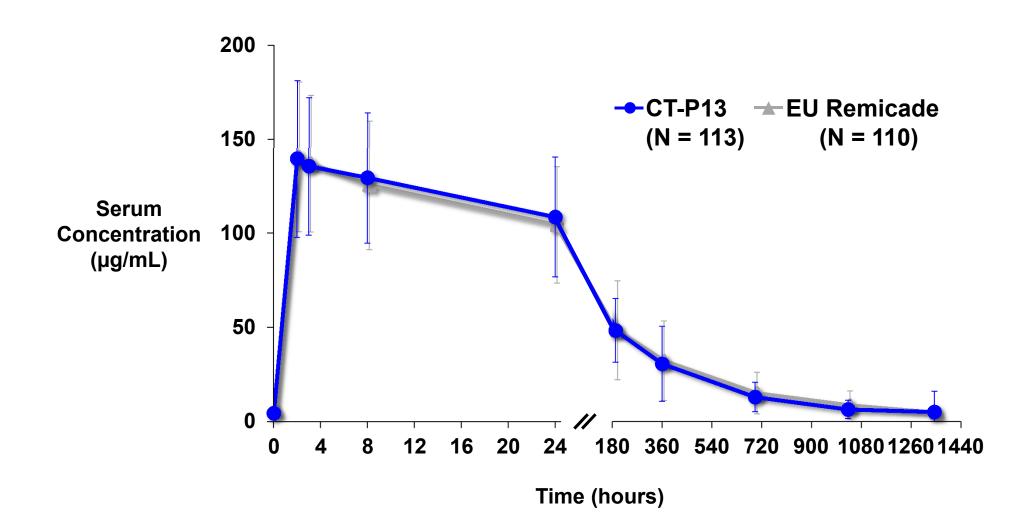
- Healthy subjects, immunocompetent
- Ankylosing spondylitis (AS)
 - No background immunosuppression
 - 5 mg/kg dose representative of non-RA indications
- Rheumatoid arthritis (RA)
 - Extensive clinical PK and safety experience with Remicade
 - More immunogenic 3 mg/kg dose
 - Similar comorbidities as PsA and Ps


PK Measurements in Key CT-P13 Clinical Studies

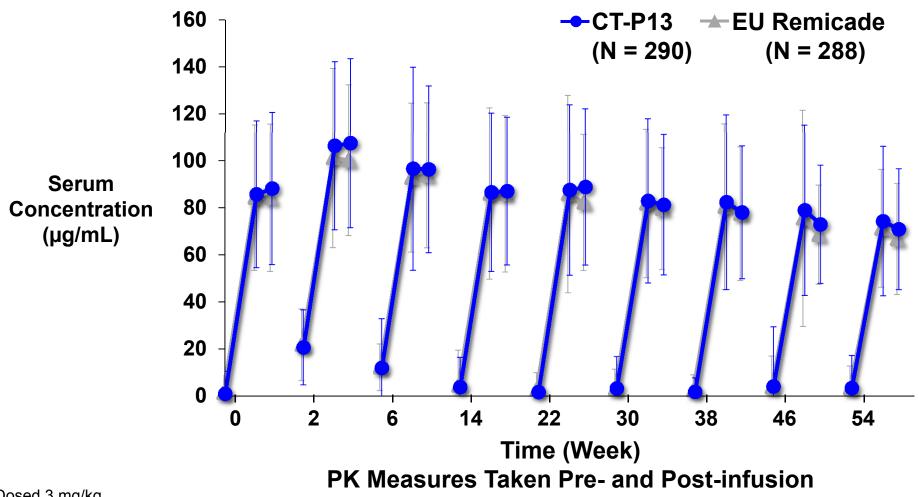
	AS Study (N = 250)	RA Study (N = 606)	3-way PK Study (N = 213)
PK Measurements ¹	AUC _τ C _{max,SS}	C _{max} C _{min}	AUC _{inf} AUC _{last} C _{max}
Timing of PK Assessment	Baseline Week 2 Week 6 q8w → Week 54	Baseline Week 2 Week 6 q8w → Week 54	Baseline through Week 8

Pre-Defined PK Similarity Margin of 80% - 125%

- Linear and well-characterized PK across all indications with doses up to 20 mg/kg
- Broad therapeutic index
- Lack of prominent drug-drug interactions
- Comparable safety profile across indications and wide range of plasma concentrations

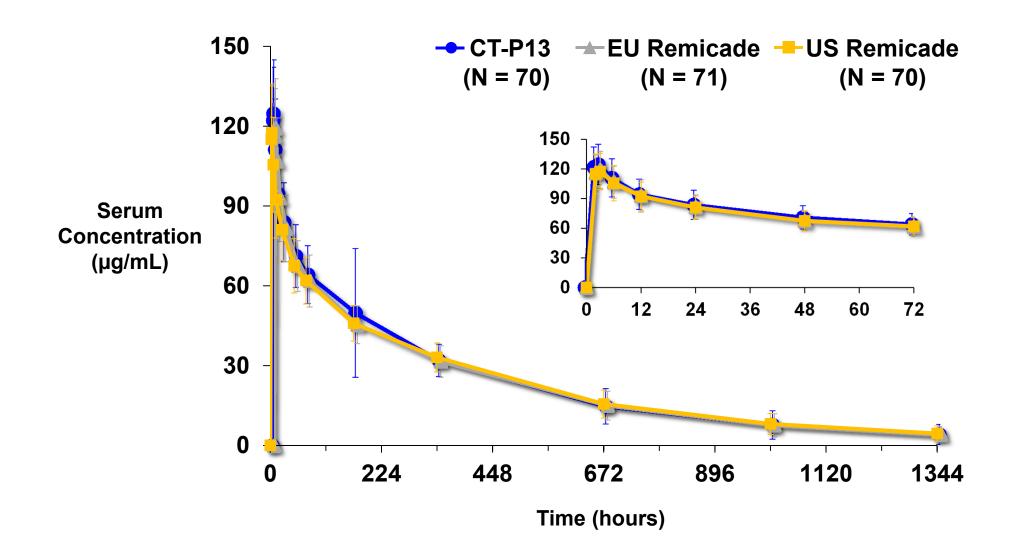

Overview of AS Study Design with Extension

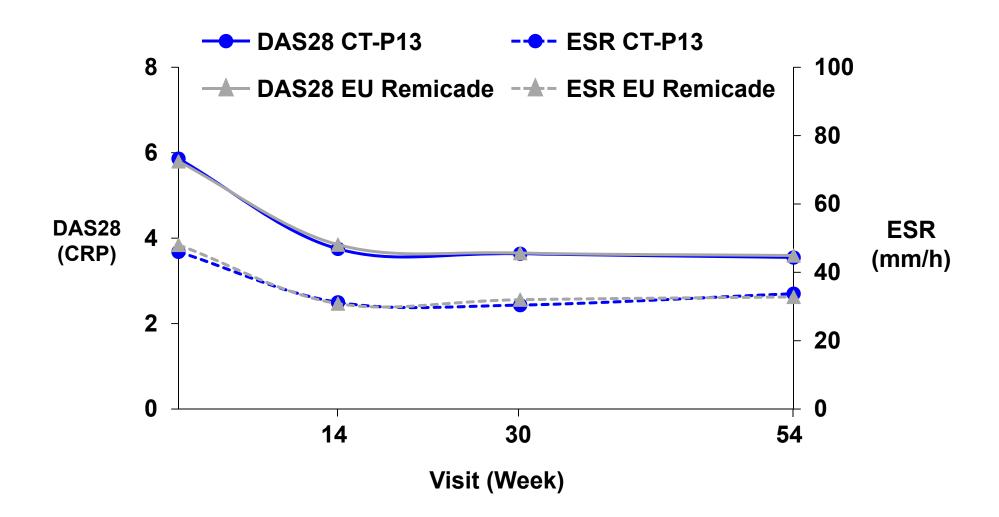
¹ Randomization and stratification by region and BASDAI


CC-57

AS Study: Similar PK to Remicade between Week 22 and Week 30

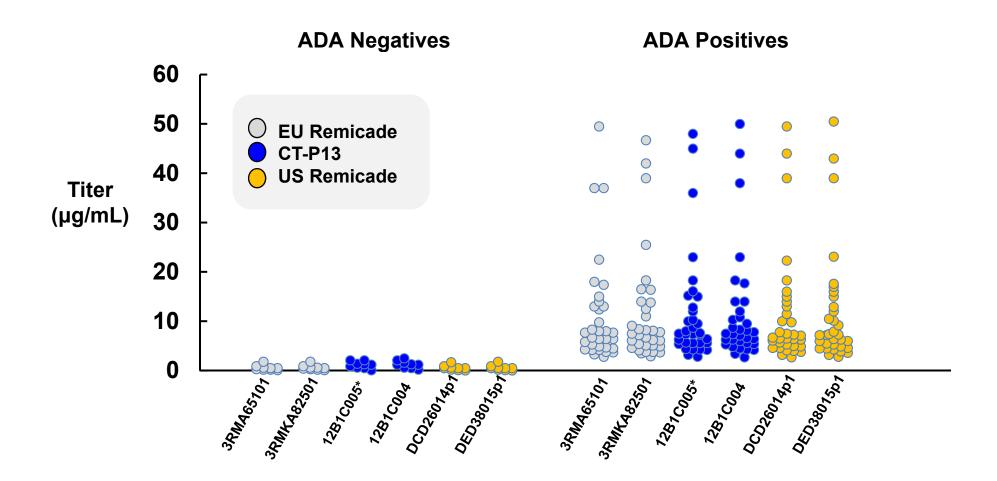
CC-58


RA Study: Similar Concentration-Dependent PK by Infusion


Dosed 3 mg/kg.

PK was collected at 3 time points: 1) pre-dose, 2) the end of infusion, and 3)1 h after the end of infusion

Single-Dose 3-Way PK Study Showed Similar PK over 8 Weeks



Evaluation of ESR and DAS28 (CRP) Response in RA Study

CC-61

In vitro Evaluation of Cross-Reactivity with Sera from IBD Patients

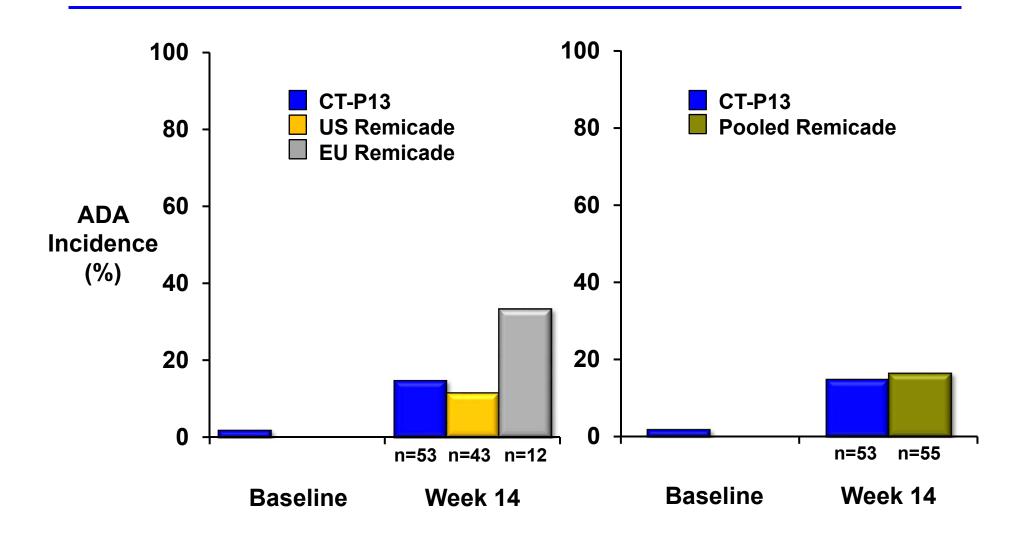
*CT-P13 lot 12B1C005 was not used in the 3-way PK Study but was included in this study to show consistency between CT-P13 lots.

Similar Immunogenicity Profile between CT-P13 and Remicade in RA and AS Studies

Patients with		Study MTX)	AS Study (Monotherapy)		
Positive Antibody Test	CT-P13 (N = 302)	EU Remicade (N = 300)	CT-P13 (N = 128)	EU Remicade (N = 122)	
Week 14	23%	23%	9%	11%	
Week 30	40%	41%	25%	20%	
Week 54	41%	36%	20%	23%	

Similar titer levels for ADA and NAb shown through 54 weeks

Consistent Immunogenicity Profile Observed in Extension Studies

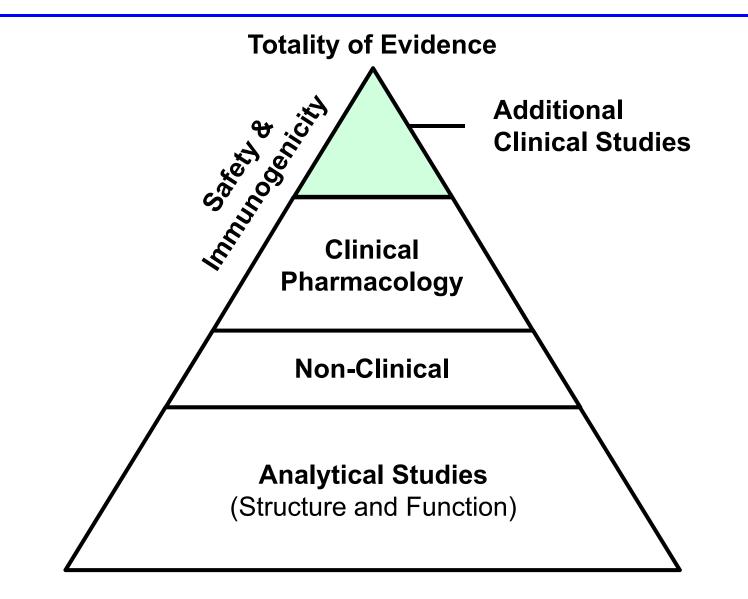

Patients with	RA Extension (+MTX)		AS Extension (Monotherapy)	
Positive Antibody Test	Maintained (N = 159)	Switched (N = 143)	Maintained (N = 90)	Switched (N = 84)
Week 78	45%	46%	23%	30%
Week 102	40%	45%	23%	27%

Immunogenicity profile remains stable following single transition

Infusion-Related Reactions and Anaphylaxis Support Consistent Immunogenicity Profile

	RA Study (+MTX)		AS Study (Monotherapy)				
Anti-drug Antibody Status	CT-P13 (N = 302)	EU Remicade (N = 300)	CT-P13 (N = 128)	EU Remicade (N = 122)			
% Reporting Infusion-related AEs							
Antibody Positive	13.6%	21.3%	13.6%	28.2%			
Antibody Negative	5.3%	5.9%	6.0%	4.8%			
% Reporting Anaphylaxis (Sampson Criteria ¹)							
Antibody Positive	2.4%	1.2%	2.3%	7.7%			
Antibody Negative	1.5%	1.5%	0	0			

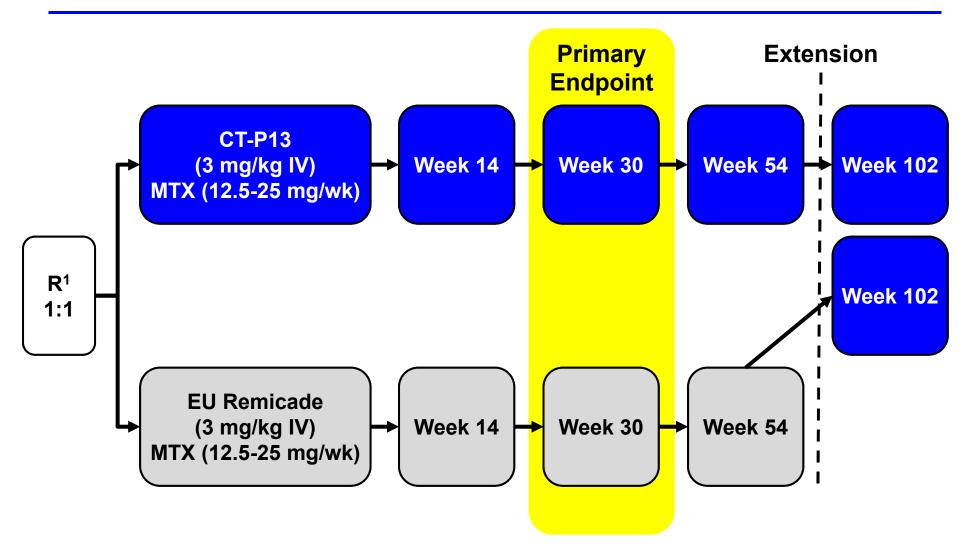
Similar Immunogenicity between CT-P13 and Remicade in Post-Approval CD Study¹



¹ Interim analysis

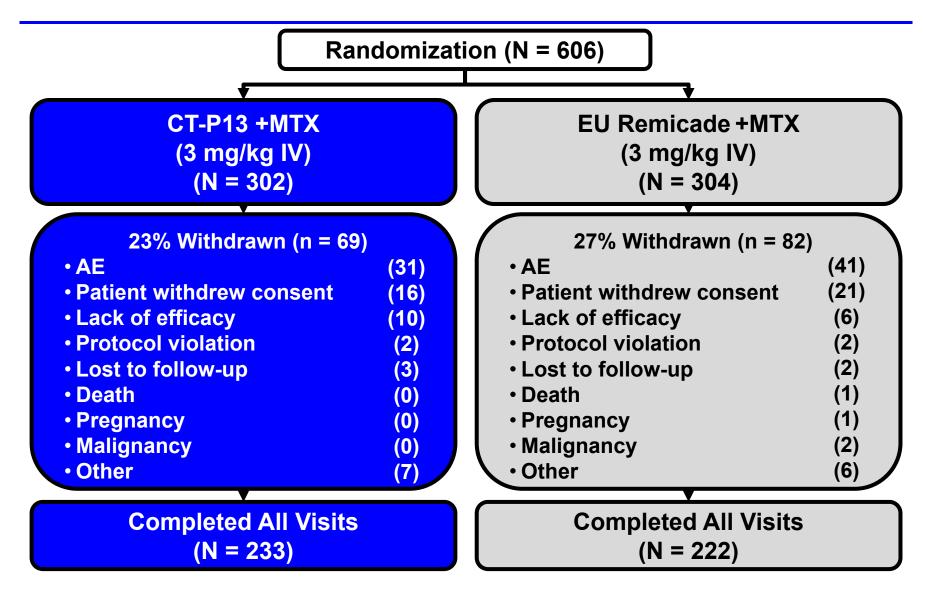
Evidence for Similar Immunogenicity Profile between CT-P13 and Remicade

- Systematic evaluation using validated state-of-art methods
- Similar proportion of patients developing ADAs to CT-P13 and Remicade in AS, RA, and CD
- Similar impact of ADA on PK and efficacy
- Similar incidence of infusion-related reactions and anaphylaxis


Clinical Efficacy in Rheumatoid Arthritis

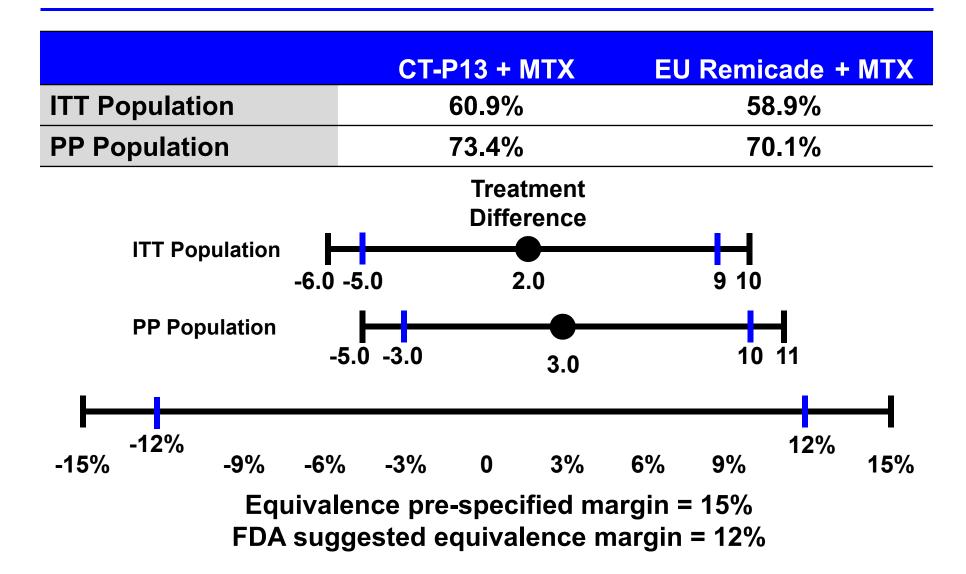
Rationale for CT-P13 RA Study

- Designed in line with scientific input from EMA
- Most studied and sensitive indication
- Broad, dose-dependent historical data
- ACR20 used as validated endpoint for equivalence
- Lower and potentially more immunogenic
 3 mg/kg dose


Overview of RA Study Design

RA Study Statistical Design

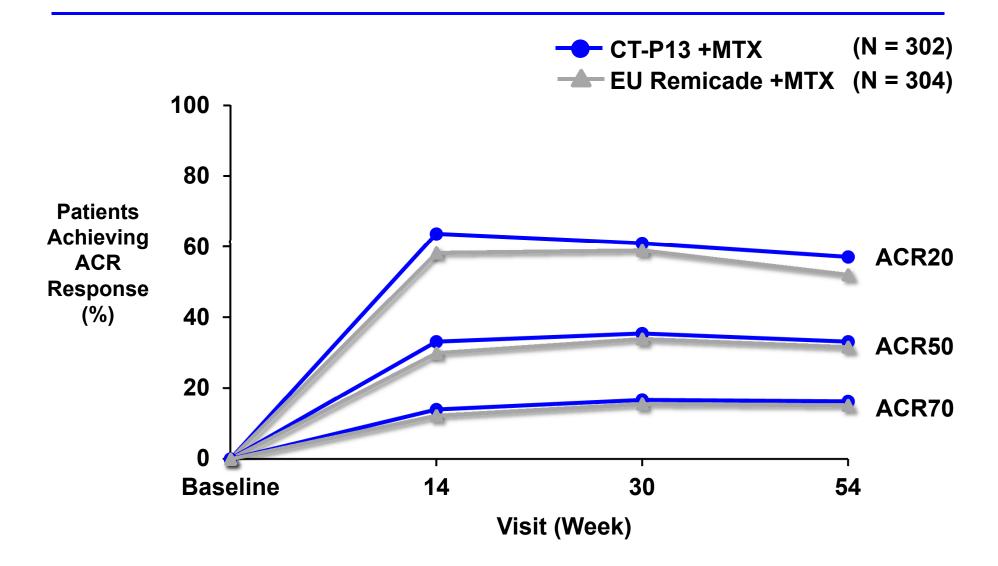
- Pre-specified ACR20 equivalence margin = 15%
 - Based on absolute treatment differences from historical Remicade RA studies¹
 - Power 80%, 95% CI
- FDA suggested margin derived from metaanalysis (RCTs) using CI approach
 - Resulting equivalence margin = 12%
 - Power 83%, 90% CI


RA Study Disposition

RA Study: Baseline Characteristics

Category		CT-P13 +MTX (N = 302)	EU Remicade +MTX (N = 304)
Age (years)	Mean (SD)	49.0 (12.2)	48.6 (11.5)
Gender	Female	81%	84%
	Caucasian	73%	73%
Race	Black	1%	0.3%
	Asian	11%	12%
	Other	15%	15%
BMI (kg/m ²)	Mean (SD)	26.5 (5.3)	26.3 (5.3)
Serum CRP	≤ 2 mg/dL	54%	55%
Concentration	> 2 mg/dL	46%	45%
MTX Therapy	< 1 year	51%	50%
	1 to < 3 years	33%	31%
(Duration)	≥ 3 years	17%	20%

Therapeutic Equivalence of ACR20 at Week 30 Established between CT-P13 and Remicade



ACR20 Results Align with Historical Remicade Data in MTX-IR¹ RA Patients

		ACR20		Response Rate
Reference	Group	n/N		(95% CI)
ATTRACT	Infliximab	43/86		0.50 (0.39, 0.61)
(1999) – Wk 30	Placebo	18/88		0.20 (0.13, 0.30)
Westhovens <i>et al</i> .,	Infliximab	209/360	----	0.58 (0.53, 0.63)
(2006) – Wk 22	Placebo	87/361	₽ ○ −	0.24 (0.20, 0.29)
Schiff <i>et al</i> .,	Infliximab	97/165		0.59 (0.51, 0.66)
(2008) – Wk 28	Placebo	46/110		0.42 (0.32, 0.52
Zhang e <i>t al.,</i>	Infliximab	66/87		0.76 (0.65, 0.84)
(2006) – Wk 18	Placebo	42/86		0.49 (0.38, 0.60)
Abe <i>et al</i> .,	Infliximab	30/49		0.61 (0.46, 0.75)
(2006) – Wk 14	Placebo	11/47		0.23 (0.12, 0.38)
RA	EU Remicade	179/304	 -	0.59 (0.53, 0.64)
Study - Wk 30	CT-P13	184/302	⊷_ •	0.61 (0.55, 0.66)
Incomplete responders		- 0	0.5	1

CC-75

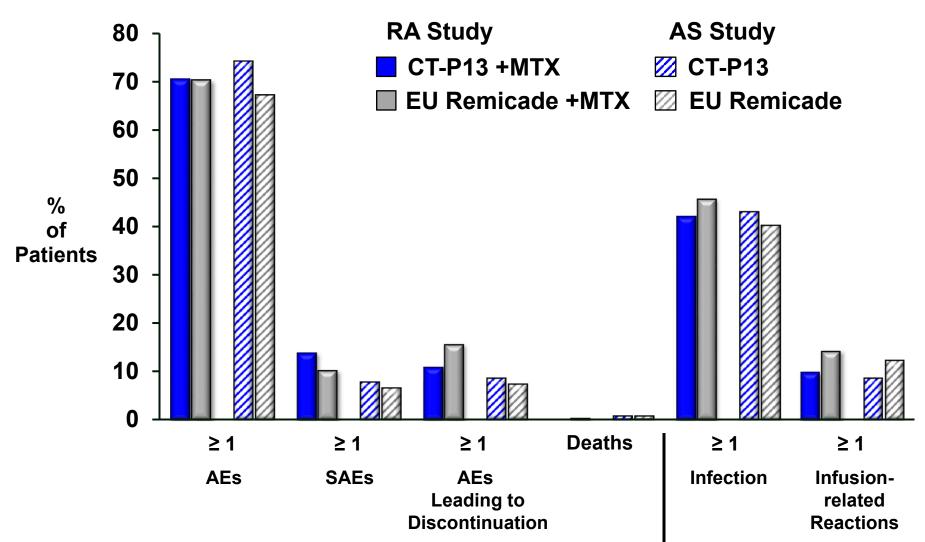
RA Study Demonstrated Similar ACR Response over 54 Weeks

CC-76

Clinical Safety

Remicade Safety Profile Background

- FDA Guidance (2015)
 - "Biosimilar products...can rely on certain existing scientific knowledge about safety... of the reference product to support licensure"¹
- > 4.2 million patients exposed to Remicade
- Relatively well-understood and communicated risks
- Comparable AE profile across approved indications²


Safety Database Supports Biosimilar Application

- ~1,000 treated with either CT-P13 or Remicade
 - > 800 treated with \geq 1 dose of CT-P13

	Exposure to CT-P13		
	≥ 6 Months	≥ 1 Year	≥ 2 Years
AS Study	117	109	84
AS Extension Study ¹	79	76	-
RA Study	257	237	141
RA Extension Study ¹	136	128	-
Pilot RA Study	14	13	5
Russia RA Study	6	6	-
Japan RA Study	44	42	-
Total	653	611	230

¹ Single-way transition from Remicade

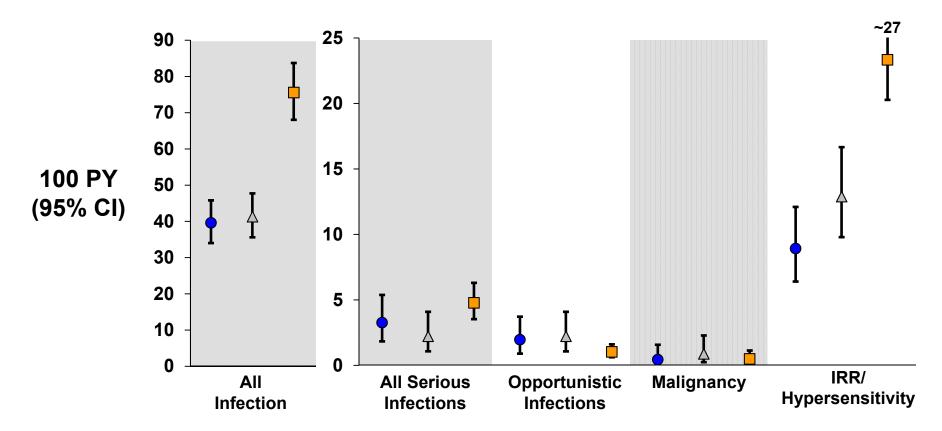
Safety Overview – RA and AS Studies

Deaths

Study	Treatment Group	Days on Therapy	Cause of Death ¹	Related to Treatment
RA (N = 602)	EU Remicade (+MTX)	379	Sudden Death	No
RA Extension (N = 302)	СТ-Р13 (+МТХ)	578	Appendectomy Complication	No
AS	EU Remicade (Monotherapy)	246	Car Accident	No
(N = 250)	CT-P13 (Monotherapy)	423	Car Accident	No

¹As reported by investigator

RA and AS AEs Leading to Discontinuation

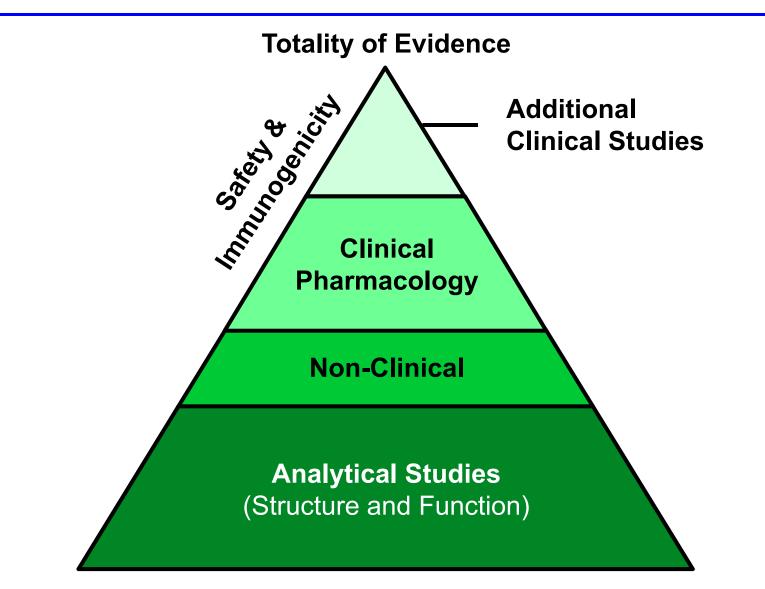

AE Leading to Permanent Study	RA Study (+MTX)		AS Study (Monotherapy)	
Treatment Discontinuation	CT-P13 EU Remicade (N = 302) (N = 300)		CT-P13 (N = 128)	EU Remicade (N = 122)
Any AE	10.9%	15.7%	8.6%	7.4%
IRR	4.6%	5.7%	0.8%	4.1%
Infection	3.0%	6.0%	2.3%	0.8%

Overall AEs: RA and AS Studies (Preferred Term ≥ 3%)

	RA and AS Studies	
	CT-P13	EU Remicade
Preferred Term	(N = 430)	(N = 422)
Upper Respiratory Tract Infection	19.3%	16.1%
Latent Tuberculosis	8.8%	7.6%
Alanine Aminotransferase Increased	7.9%	8.5%
Urinary Tract Infection	6.3%	5.7%
Headache	5.6%	7.1%
Aspartate Aminotransferase Increased	5.1%	5.2%
Lower Respiratory Tract Infection	4.4%	5.7%
Hypertension	4.4%	2.6%
Anemia	3.7%	4.3%
Rheumatoid Arthritis	3.7%	2.6%
Diarrhea	3.5%	2.4%
Influenza	3.0%	2.6%
Rash	2.8%	3.8%
Infusion-related Reaction	2.3%	3.6%
Drug Hypersensitivity	1.9%	3.3%
Pyrexia	1.6%	3.8%
Herpes Virus Infection	1.4%	3.6%

Incidence Rate of AESI in RA and AS Studies

OCT-P13 △ EU Remicade ■ Historical RCT Data



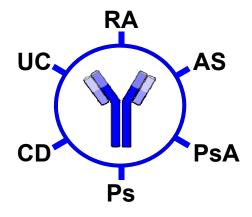
Abe *et al.*, (2006); Braun *et al.*, (2002); Breban *et al.*, (2008); Giardina *et al.*, (2010); Lipsky *et al.*, (2000); Maini *et al.*, (1999); Marzo-Ortega *et al.*, (2005); Quinn *et al.*, (2005); Remicade RMP (2015); Schiff *et al.*, (2008); St. Clair *et al.*, (2004); Van Der Heijde *et al.*, (2005); Westhovens *et al.*, (2006) RA 3.1, AS 1.1

Similar Safety Profile as Remicade

- High similarity in structure and function predicts similar clinical safety
- No clinically meaningful differences in relation to overall safety and immunogenicity
- Similar impact of immunogenicity on PK, efficacy and safety across all studies

Totality of Evidence Supports Biosimilarity

Biological Assays Support Extrapolation to All Indications


Activity	Assay	CT-P13 vs. US (High Similarity)
	In Vitro TNFα Neutralization	\checkmark
Binding to $sTNF\alpha$	TNFα Binding Affinity (ELISA)	\checkmark
	Cytokine Suppression (Caco-2)	✓
	Cell Based Binding Affinity	✓
	Inhibition of Cytokine Release by Reverse Signaling	✓
Rinding to tmTNEg	Induction of Apoptosis by Reverse Signaling	✓
Binding to tmTNFα	Induction of Regulatory Macrophages	✓
	Suppression of T Cell Proliferation by Regulatory Macrophages	✓
	Wound Healing by Regulatory Macrophages	✓
FcRn Binding	FcRn Binding Affinity (SPR)	√
C1q Binding &	C1q Binding Affinity (ELISA)	✓
CDC Activity	CDC	\checkmark
	FcγRIIIb Binding Affinity (SPR)	\checkmark
	FcγRIIa Binding Affinity (SPR)	\checkmark
Fc Binding	FcγRIIb Binding Affinity (SPR)	\checkmark
	FcγRI Binding Affinity (ELISA)	\checkmark
	Ex Vivo Binding in 50% Serum with NK Cells	\checkmark
	ADCC using PBMC (Healthy Donor)	\checkmark
tmTNF & Fc	ADCC using NK Cells (Healthy Donor)	✓
Binding	ADCC using LPS-stimulated Monocytes and NK Cells (Healthy Donor)	✓
	ADCC using LPMC and NK Cells (IBD patient)	✓

Common MoA, PK and Safety Supports Extrapolation

- 1. Known and potential MoA
 - ✓ CT-P13 and US Remicade are highly similar for all MoAs involving Fab- and Fc-regions
- 2.PK across conditions of use
 - Remicade has well-characterized, linear and predictable PK across all indications
 - ✓ CT-P13 and US Remicade have highly similar PK

- 3. Similar immunogenicity and comparable safety
 - Remicade has comparable immunogenicity and safety profile across all indications
 - ✓ CT-P13 and US Remicade have similar immunogenicity in AS, RA and CD. Comparable safety in AS and RA

Extrapolation to PsA, Ps, CD and UC

CT-P13 Use in Patients with Inflammatory Bowel Disease: Post-Marketing Clinical Studies and Real-World Experience

Peter Lakatos, MD, PhD, FEBG

- Associate Professor
- Head of Gastroenterology
- Semmelweis University, Budapest, Hungary

Experience with CT-P13 in IBD

- Real-world clinical data from studies and cohorts in Korea and several European countries
- Prospective nationwide observational study from Hungary
- Data submitted to FDA

Practicing Gastroenterologist for > 15 Years Treating CD and UC Patients

- Conducted clinical studies and registries at national level
- European Crohn's and Colitis Organization
 - Head of Epidemiology Committee
 - Member of Educational Committee
 - National Representative of Hungary
- Founded Hungarian IBD Study Group

Disclosures

- Speaker and/or advisory board member
 - AbbVie, EGIS, Falk Pharma GmbH, Ferring, Genetech, Kyowa Hakko Kirin Pharma, Mitsubishi Tanabe Pharma Corporation, MSD, Otsuka, Pharmacosmos, Pfizer, Roche and Takeda
- Unrestricted research grants
 - AbbVie, MSD and Pfizer
- No financial stake in CELLTRION or Pfizer

Hungarian IBD Study is Prospective, Uncontrolled Observational Study¹

- Nationwide, open-label, observational multi-center study enrolling unselected and consecutive patients
- Initiated May 2014 following Hungarian launch
 - EU approval for all infliximab indications
- New patients
 - Infliximab naive
 - Patients who previously responded to Remicade with drug holiday for ≥ 12 months
- Evaluations: Week 14, and every 3 months
- Planned investigational period \geq 54 weeks

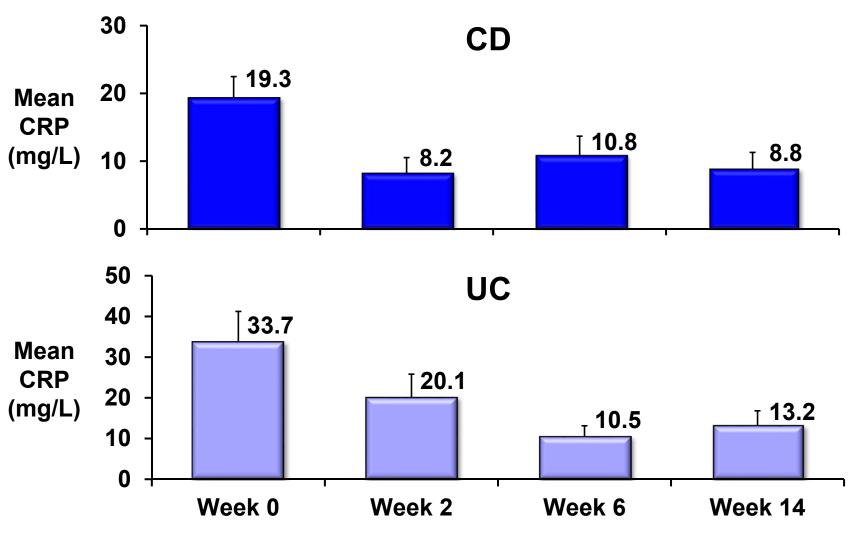
Baseline Characteristics

	CD (N = 126)	UC (N = 84)
Male/Female	56 / 70	47 / 37
Age at Onset, Median (IQR)	24 (19-35) yrs	27 (22-37) yrs
Duration, Median (IQR)	6 (3-11) yrs	4 (2-12) yrs
Baseline Activity, Median (IQR)	CDAI: 324 (310-353) n = 93 PDAI: 10 (IQR: 9-11) n = 33	MAYO: 9 (IQR: 8-11) pMAYO: 7 (IQR: 5-9)
Location (L1/L2/L3/L4/all L4) ¹	17% / 40% / 42% / 2% / 9%	-
Extent of Colitis (E1/E2/E3) ¹	-	7% / 36% / 57%
Behavior (B1/B2/B3) ¹	58% / 22% / 20%	-
Perianal	33%	-
Previous Surgery	26%	-

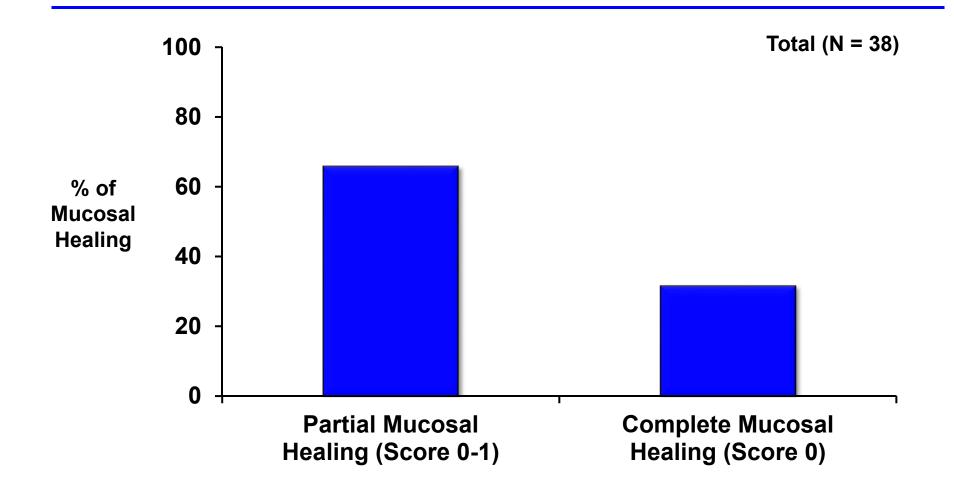
¹L1: Ileal, L2: Colonic, L3: Ileocolon, L4: Upper GI, E1: Proctitis, E2: Left-sided colitis,

E3: Extensive colitis, B1: Inflammatory, B2: Stenotic, B3: Penetrating

Prior and Concomitant Use of Anti-Inflammatory and Immunomodulatory Agents


	CD (N = 126)	UC (N = 84)
Prior Treatments		
5ASA (Local UC)	85%	92% (52%)
Steroids	82%	92%
AZA	87%	77%
CSA	-	10%
TNFα (IFX/ADA)	26% (22% / 4%)	19% (11% / 6%)
Concomitant Immunomodula	tors	
Steroids	48%	64%
AZA	63%	57%

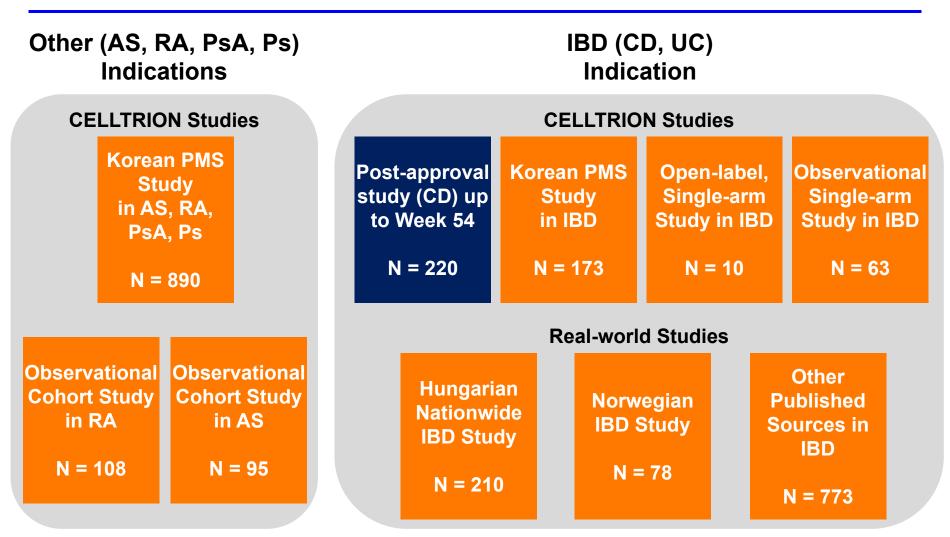
Early Clinical Response and Remission with CT-P13



Response: CD = CDAI \triangle > 70 points or fistula drainage \triangle > 50%, UC = pMAYO \triangle > 3 Remission: CD = CDAI < 150 or no fistula drainage reported, UC = pMAYO < 3

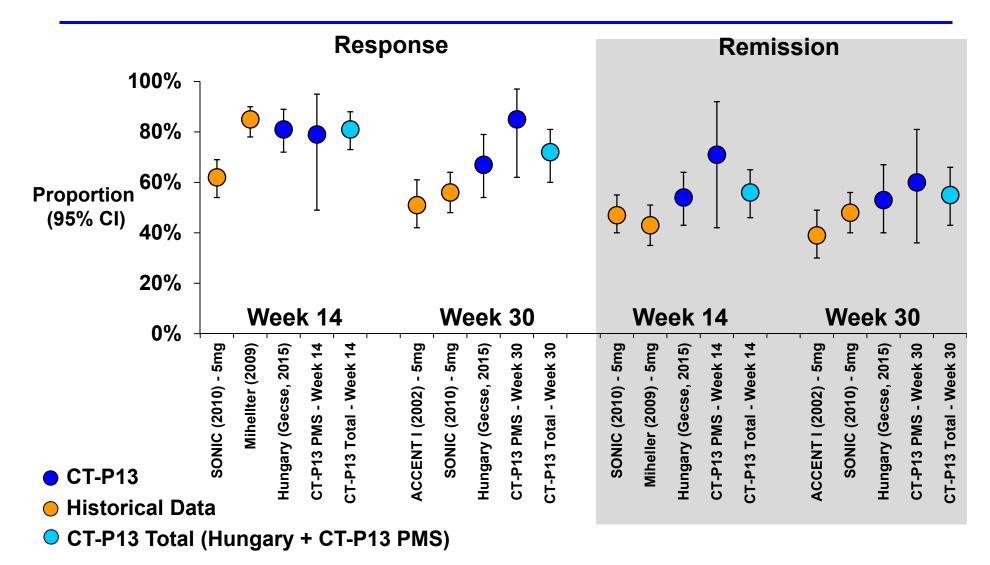
Early Biomarker Response in IBD

Early Mucosal Healing in UC by Week 14

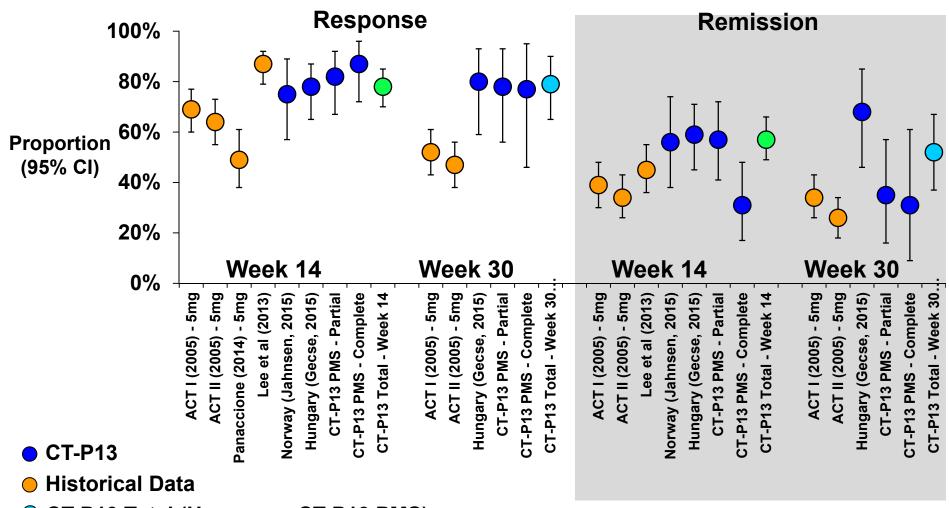


Compared to baseline; Molnar *et al.*, 2015 UEGW P1605 Mucosal healing was defined as Mayo endoscopic subscore of 0 or 1. Complete mucosal healing was defied as Mayo endoscopic subscore of 0.

Early ADA Positivity in IBD Patients Treated with CT-P13


	Infliximab Naive	Previous Infliximab Exposure	Total
_	Number of Patients with ADA Positivity (%		
Total IBD Patients			
Baseline	5/130 (4%)	10/37 (27%)	15/167 (9%)
Week 14	15/80 (19%)	8/23 (35%)	23/103 (22%)
CD Patients			
Baseline	3/75 (4%)	6/24 (24%)	9/99 (9%)
Week 14	8/48 (17%)	5/13 (39%)	13/61 (21%)
UC Patients			
Baseline	2/55 (4%)	4/13 (31%)	6/68 (9%)
Week 14	7/32 (22%)	3/10 (30%)	10/42 (24%)

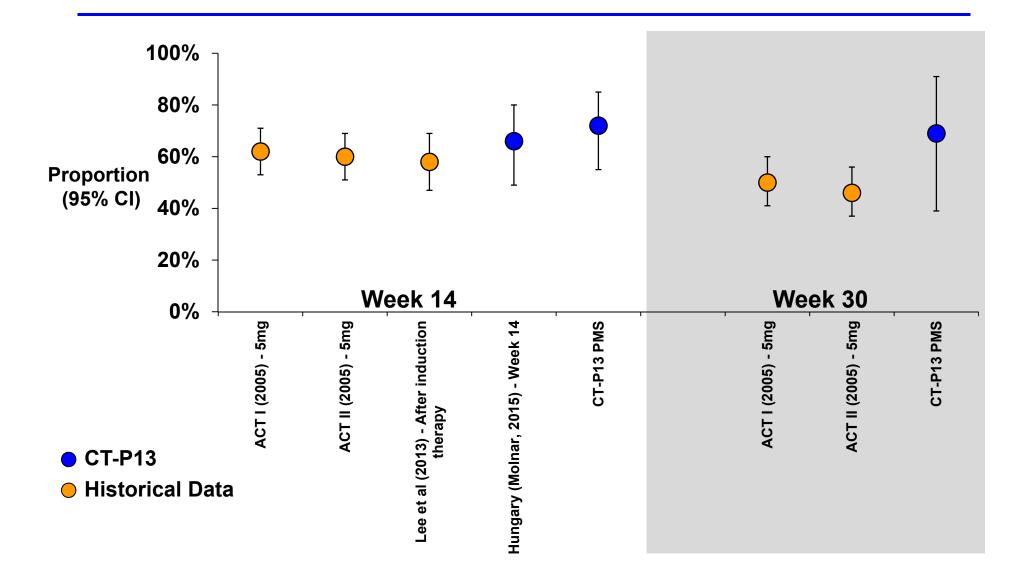
CT-P13 Post-Approval Studies


Blue: Controlled study (CT-P13, EU Remicade and US Remicade) Orange: Post-marketing study (CT-P13 and other anti-TNFs cohorts)

Comparison of Clinical Response/ Remission with Historical CD Data

CC-101

Comparison of Clinical Response/ Remission with Historical UC Data



CT-P13 Total (Hungary + CT-P13 PMS)

CT-P13 Total (Hungary + Norway + CT-P13 PMS [Partial])

CC-102

Comparison of Mucosal Healing with Historical Data in UC Patients

Post-Marketing Data Support CT-P13 Effective in IBD

- Response, remission and mucosal healing rates consistent with those reported with Remicade
 - EU and South Korean cohorts
- Drug trough and ADA levels in Hungary consistent with Remicade use in IBD
- Data collected to date suggest CT-P13 is biosimilar to Remicade in CD and UC patients

Totality of Evidence of CT-P13: Clinical Perspective

Vibeke Strand, MD, MACR, FACP

Adjunct Clinical Professor Division of Immunology / Rheumatology Stanford University

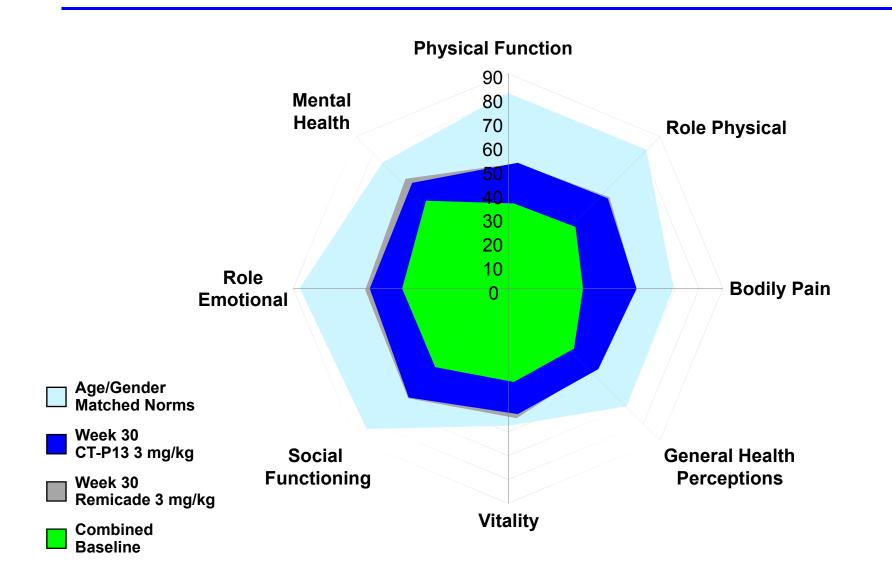
Disclosures

Consultant, Clinical and Scientific Advisory Boards

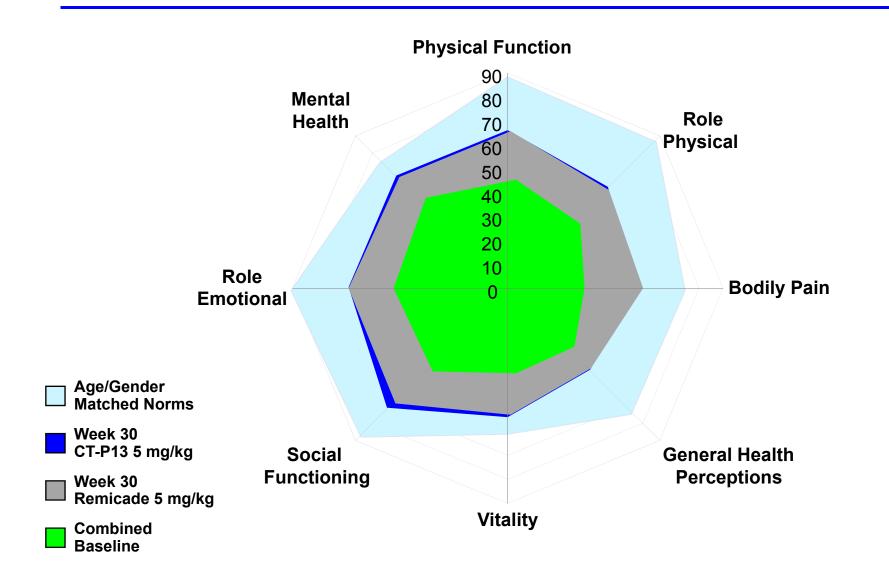
AbbVie Amgen Anthera AstraZeneca BiogenIdec BMS CELLTRION Corrona Crescendo EMDSerono Genentech/Roche GSK Incyte Janssen Lilly Novartis

Pfizer Regeneron Sandoz Sanofi Takeda UCB

I hold no stock or options


Emergence of Biosimilars is an Important Next Step

- Increased access to effective, expensive therapies
- Lowered cost to society of chronic debilitating diseases
- Filgrastim allowed broader use of effective doses to prevent febrile neutropenia
- Confident in biosimilarity pathway
- Does not require large randomized controlled trials
- Small residual differences can be assessed in context of variability of currently available biologic therapies


How I Evaluate this Biosimilar

- Equivalent structural and functional characteristics to originator
- Similar efficacy, immunogenicity and comparable safety profiles

SF-36 Domain Scores: CT-P13 vs. Remicade vs. Age/Gender Norms – BL and Week 30 (RA Study)

SF-36 Domain Scores: CT-P13 vs. Remicade vs. Age/Gender Norms – BL and Week 30 (AS Study)

How I Evaluate this Biosimilar

- Equivalent structural and functional characteristics to originator
- Similar efficacy, immunogenicity and comparable safety profiles
- Clinical performance is aligned with reference product

Extrapolation Scientifically Justified across All Indications

- Extrapolation further supported by real-world use in other countries
- Anti-TNF agents of different structures are effective/approved in Ps/PsA
 - Inhibition of sTNF and tmTNF primary MoA of infliximab
- Comparable immunogenicity profile between Ps/PsA and RA
- Comparable use of MTX and other immunomodulatory therapies across RA and PsA

Totality of Evidence Demonstrates Favorable CT-P13 Biosimilar Profile

- CT-P13 demonstrated to be highly similar to reference product
 - Structure and function
 - Efficacy, immunogenicity and comparable safety
- Supports licensure as a biosimilar to Remicade
- Supports extrapolation to all other clinical indications
- Approval would improve access and reduce costs

CC-114

CT-P13 (Infliximab Biosimilar)

Arthritis Advisory Committee

February 9, 2016 CELLTRION, Inc. **Backup Slides Shown**

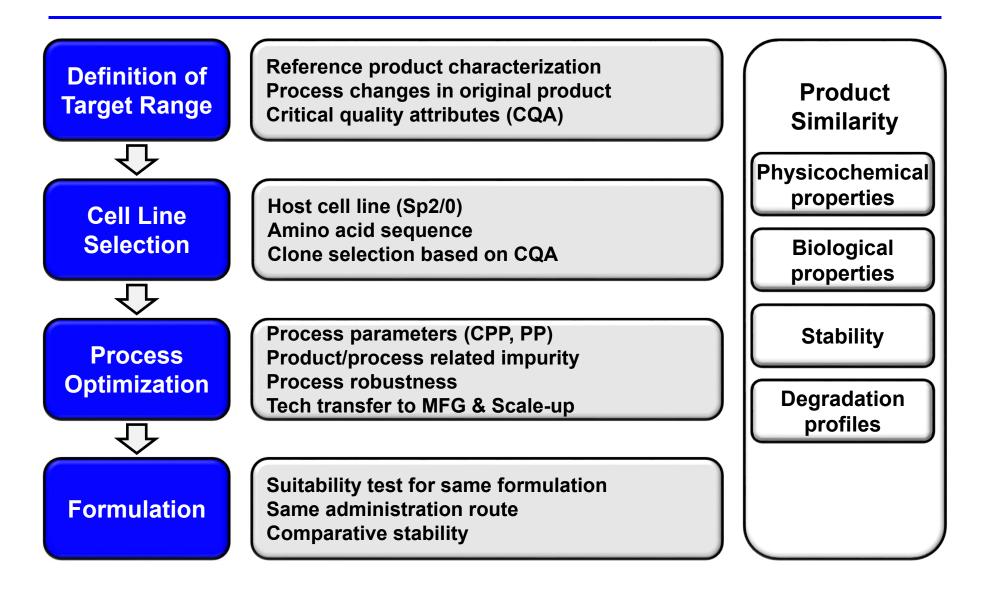
RA Study Comparison with Historical Data

	PLANETRA Study	ATTRACT Study ¹ (1999)	Westhovens <i>et al</i> ., (2006)
ACR20 Rate	60.9% at Wk30	50% at Wk30	58% at Wk22
Dosing Schedule	3 mg/ł	kg, Week 0, 2, 6, then every 8	weeks
MTX ²	12.5 – 25 mg/wk (Med 15 [n.r.]; Mean 15.6 ± 3.1) 10 – 35 mg/wk (Med 15 [12.5,17.5])		n.r. – 25 mg/wk (Med 15 [10,18])
Inclusion Criteria	 ≥ 6 tender joints ≥ 6 swollen joints plus any two of: 1) morning stiffness ≥ 45 min 2) ESR > 28 mm/hr and CRP > 2 mg/dL 	 ≥ 6 tender joints ≥ 6 swollen joints plus any two of: 1) morning stiffness ≥ 45 min 2) ESR > 28 mm/hr and CRP > 2 mg/dL 	≥ 6 swollen joints and ≥ 6 tender joints
Tender Joints ²	25.6 ± 13.9 22.0 [n.r.]	32 ± 18 32 [16,46]	22 [15,31]
Swollen Joints ²	16 2 + 8 7		15 [11,21]
CRP (mg/dL) ²	1.9 ± 2.5 1.1 [n.r.]	3.9 ± 3.4 3.1 [1.3,5.3]	1.6 [1,3]
Steroid	66.2%	63%	59.2%

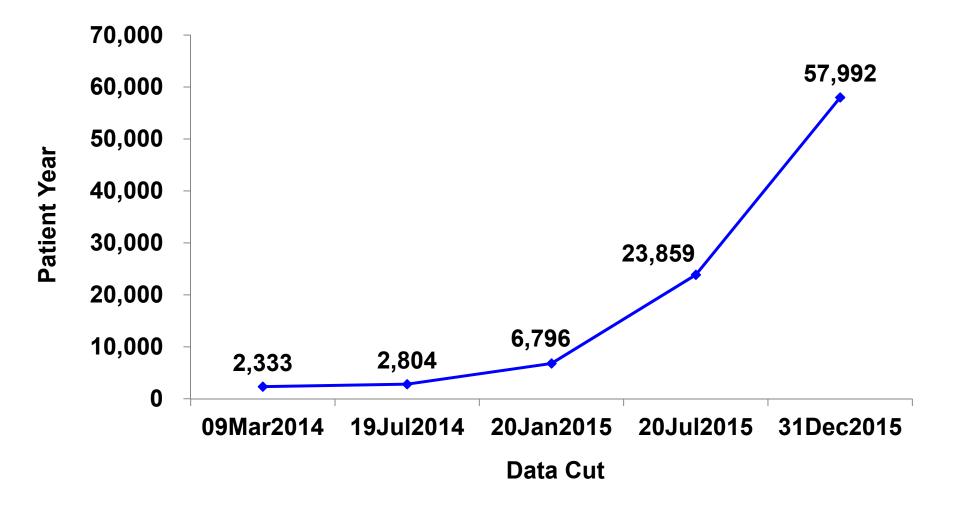
n.r: Not reported.¹ Maini et al., (1999), Matthews et al., (1999), ² (mean ± SD) OR (Med [IQR])

RA Study Comparison with Historical Data

	PLANETRA Study	Zhang <i>et al</i> ., (2006) ³	Abe <i>et al</i> ., (2006)
ACR20 Rate	60.9% at Wk30	75.9% at Wk18	61.2% at Wk14
Dosing Schedule	3 mg/kg	g, Week 0, 2, 6, then every 8	8 weeks
MTX ²	12.5 – 25 mg/wk (Med 15 [n.r.]; Mean 15.6 ± 3.1)	7.5 – 20 mg/wk ²	≥ 6 mg/wk (Mean 7.1 ± 1.9)
Inclusion Criteria	 ≥ 6 tender joints ≥ 6 swollen joints plus any two of: 1) morning stiffness ≥ 45 min 2) ESR > 28 mm/hr and CRP > 2.0 mg/dL 	 ≥ 8 tender joints ≥ 3 swollen joints plus any two of: 1) morning stiffness ≥ 45 min 2) ESR > 28 mm/hr and CRP > 1.5 mg/dL 	 ≥ 6 tender joints ≥ 6 swollen joints plus any two of: 1) morning stiffness ≥ 45 min 2) ESR > 28 mm/hr and CRP > 2.0 mg/dL
Tender Joints ²	25.6 ± 13.9 22.0 [n.r.]	n.r.	19.0 ± 11.8
Swollen Joints ²	16.2 ± 8.7 15.0 [n.r.]	n.r.	15.1 ± 9.0
CRP (mg/dL) ²	1.9 ± 2.5 1.1 [n.r.]	n.r.	4.2 ± 3.1
Steroid	66.2%	n.r.	85.7%


¹ (mean ± SD) OR (Med [IQR]), ² Inclusion criteria; n.r. (not reported) ³ Dosing Schedule: At 0,2,6, and 14 weeks.

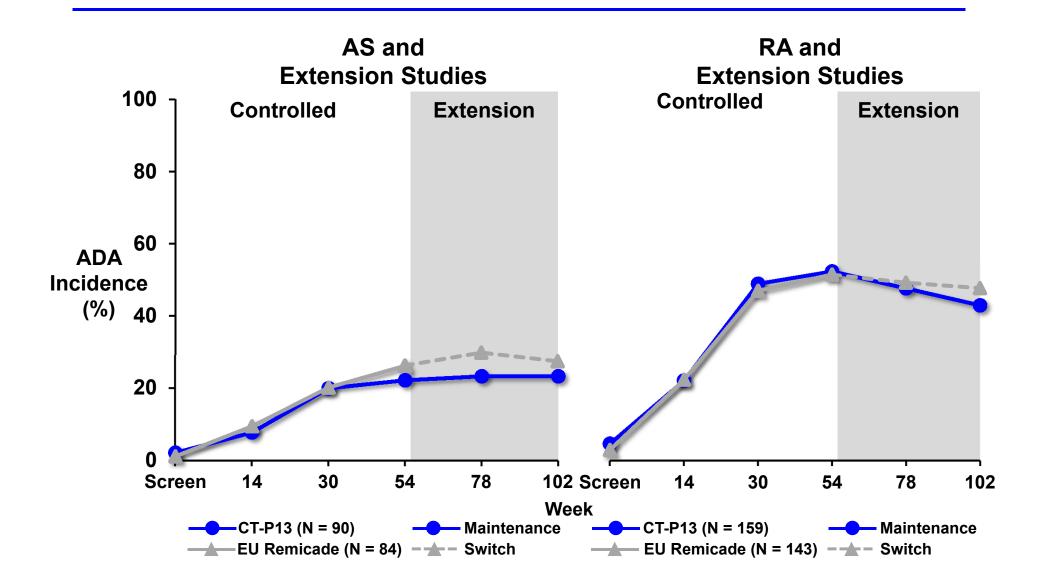
RA Study Comparison with Historical Data


	PLANETRA Study	Schiff <i>et al</i> ., (2008)				
ACR20 Rate	60.9% at Wk30	59.4% at Wk28				
Dosing Schedule	3 mg/kg, Week 0, 2, 6, then every 8 weeks					
MTX ²	12.5 – 25 mg/wk (Med 15 [n.r.]; Mean 15.6 ± 3.1)	≥ 15 mg/wk (Mean 16.3 ± 3.6)				
Inclusion Criteria	 ≥ 6 tender joints ≥ 6 swollen joints plus any two of: 1) morning stiffness ≥ 45 min 2) ESR > 28 mm/hr and CRP > 2.0 mg/dL 	≥12 tender joints ≥10 swollen joints and CRP ≥ 1 mg/dL				
Tender Joints ²	25.6 ± 13.9 22.0 [n.r.]	31.7 ± 14.5				
Swollen Joints ²	16.2 ± 8.7 15.0 [n.r.]	20.3 ± 8.0				
CRP (mg/dL) ² 1.9 ± 2.5 1.1 [n.r.]		3.3 ± 3.2				
Steroid	66.2%	71.5%				

¹ (mean ± SD) OR (Med [IQR]), ² Inclusion criteria; n.r. (not reported)

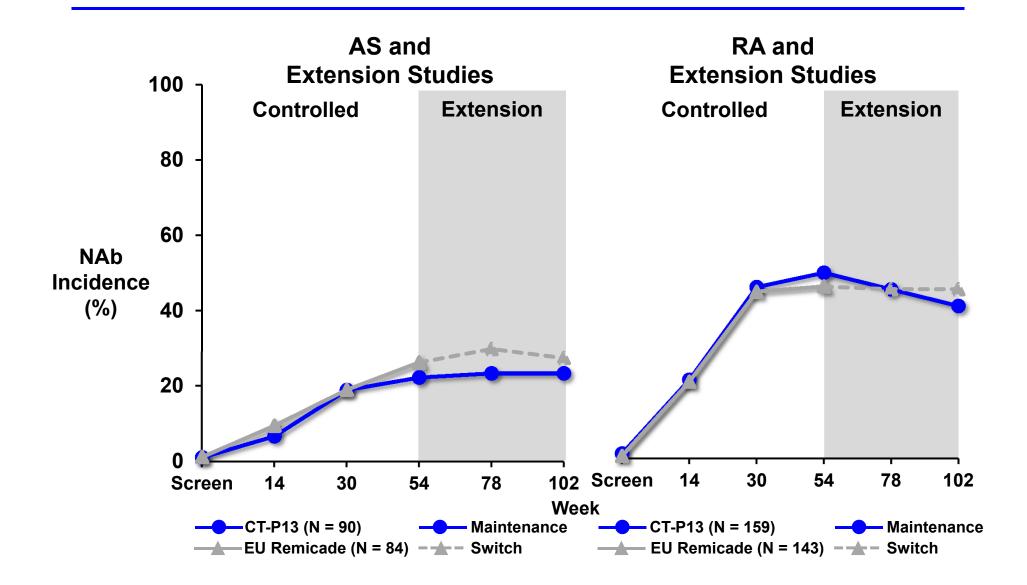
CT-P13 Product Development Strategy

Cumulative Exposure to CT-P13 in Post-marketing Experience


FDA and EMA Guideline: Statistical Recommendation on PK Assessment

FDA	EMA
 Acceptable confidence interval: 80 - 125% 	 Thorough justification required for equivalence margin beyond 80 - 125% for primary parameters
90% CI for mean ratio between proposed biosimilar product and reference product	 No acceptance range needs to be defined for secondary parameters Cls for ratios or differences can be presented together

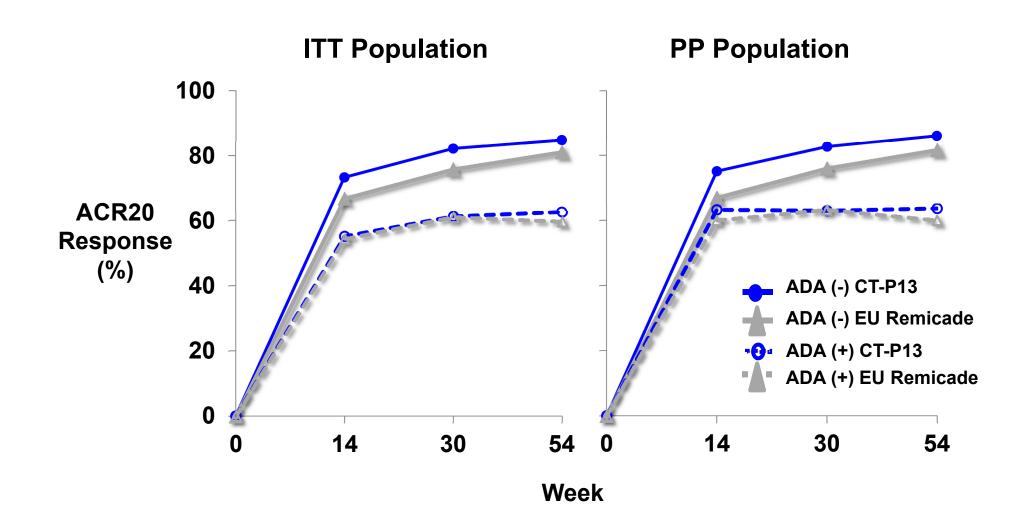
with descriptive statistics


FDA Guidance for Industry, Clinical Pharmacology Data to Support a Demonstration of Biosimilarity to a Reference Product (May 2014) EMA Guideline on similar biological medicinal products containing monoclonal antibodies – non-clinical and clinical issues (May 2012)

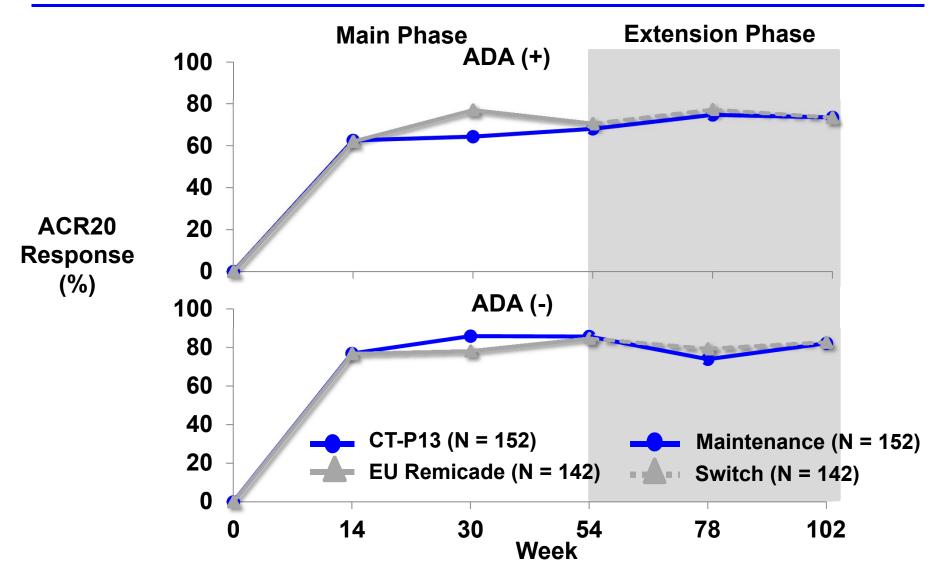
ADA Incidence Rates in AS and RA Studies (over 2-year)

IC-3

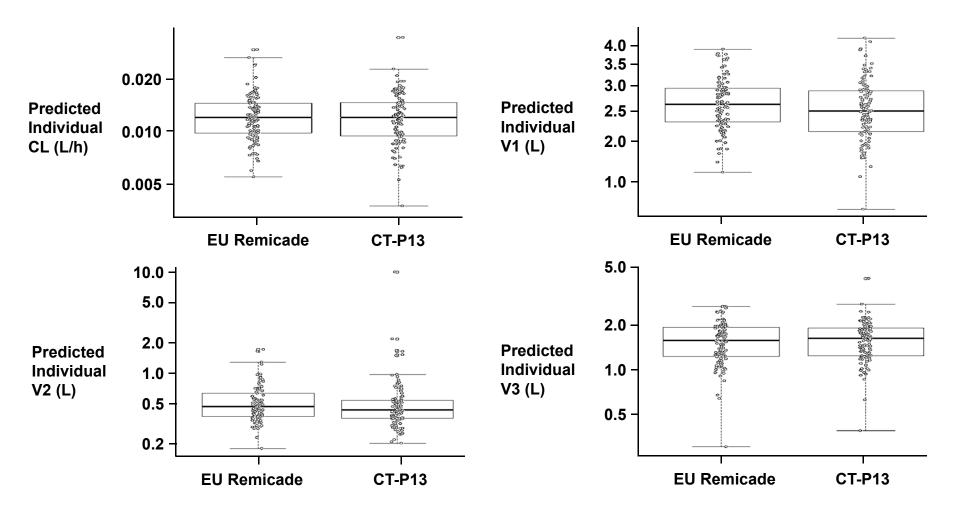
NAb Incidence Rates AS and RA Studies (over 2-year)



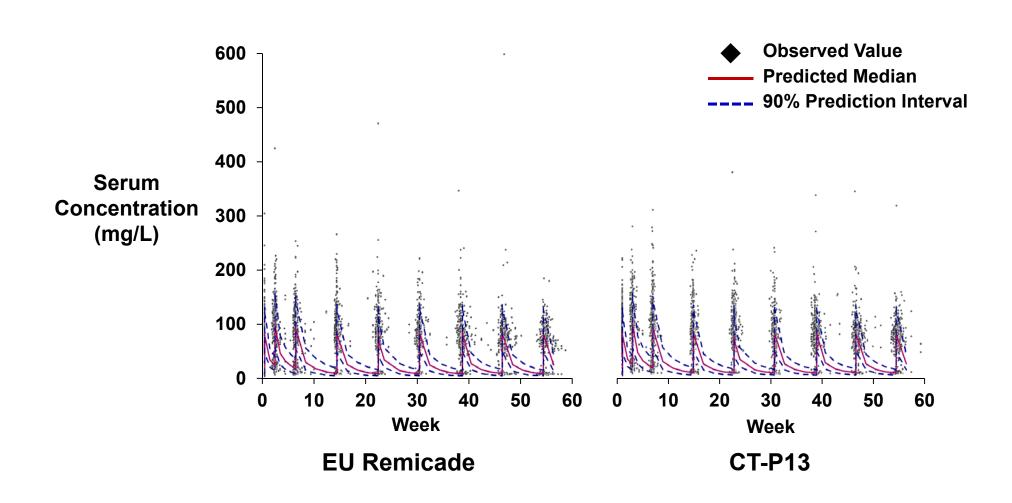
Primary PK Parameters by ADA Subset in 3-way PK Study


ADA Subset		PK Parameter	Ratio (90% CI)
	CT-P13 vs.	AUC _{last}	99.8 (88.06, 113.15)
	EU Remicade	AUC _{inf}	100.5 (88.10, 114.57)
ADA	CT-P13 vs.	AUC _{last}	98.7 (84.06, 115.79)
Positive	US Remicade	AUC _{inf}	97.0 (82.05, 114.77)
	EU Remicade vs.	AUC _{last}	98.8 (84.10, 116.16)
	US Remicade	AUC _{inf}	96.6 (81.55, 114.41)
	CT-P13 vs.	AUC _{last}	104.6 (99.14, 110.38)
	EU Remicade	AUC _{inf}	103.3 (96.78, 110.24)
ADA	CT-P13 vs.	AUC _{last}	103.8 (98.60, 109.35)
Negative	US Remicade	AUC _{inf}	103.0 (96.75, 109.64)
	EU Remicade vs.	AUC _{last}	99.3 (94.31, 104.48)
	US Remicade	AUC _{inf}	99.7 (93.76, 106.04)
		80 90 100 110 12	20 130

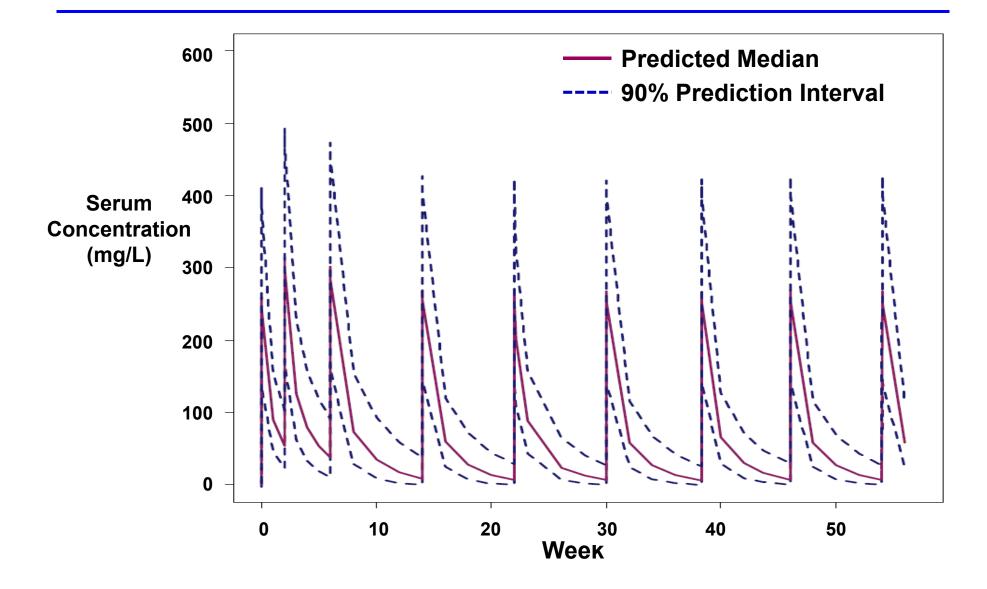
Ratio of Geometric Means (90% CI)


ADA Impact on ACR20 in RA Study

ADA Impact on ACR20 in RA Main and Extension Studies - Over 2-year (Efficacy Population)



PK Modeling in AS Study



The final population PK model was a three-compartment model with inter-individual variability estimated for CL, V1, V2 and V3.

PK Linearity in RA Study

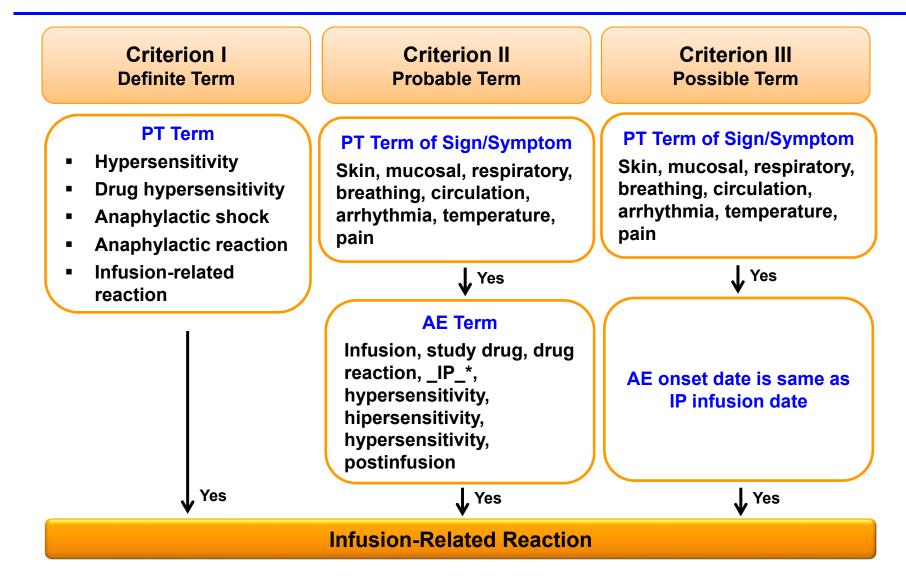
PO-13 Predicted PK Curve of CT-P13 under 10 mg/kg

BT-68 of Infusion-Related

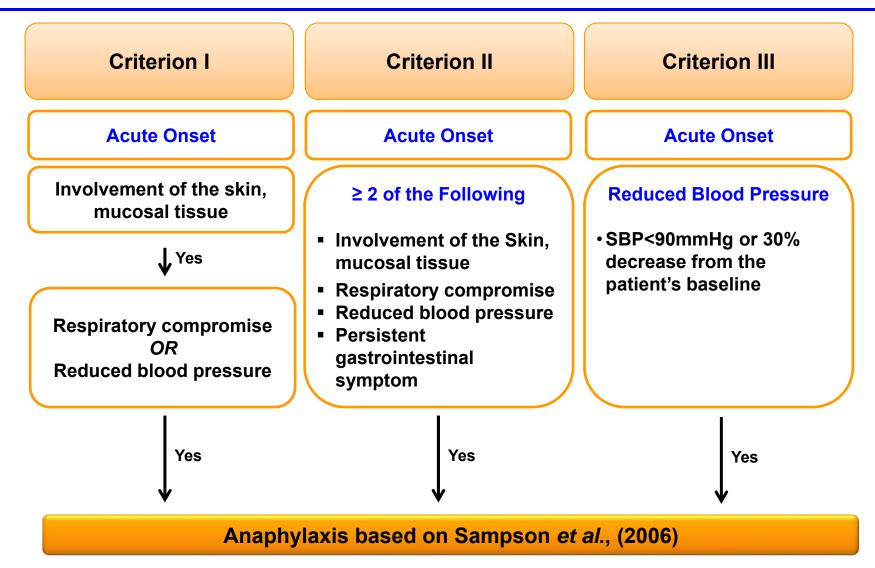
Table 42: Treatment-Emergent Adverse Events of Infusion-RelatedReactions and Anaphylaxis by Seroconversion Groups in ControlledStudies (Safety Population)

		AS Study		RA S	tudy	Total	
TEAE	Seroconversion Subgroup	CT-P13 5 mg/kg (N=128)	EU Remicade 5 mg/kg (N=122)	CT-P13 3 mg/kg (N=302)	EU Remicade 3 mg/kg (N=300)	CT-P13 (N=430)	EU Remicade (N=422)
		n/N' (%)	n/N' (%)	n/N' (%)	n/N' (%)	n/N' (%)	n/N' (%)
Infusion-	Seroconversion	6/44 (13.6)	11/39 (28.2)	23/169 (13.6)	35/164 (21.3)	29/213 (13.6)	46/203 (22.7)
Related Reaction	Non- seroconversion	5/84 (6.0)	4/83 (4.8)	7/133 (5.3)	8/135 (5.9)	12/217 (5.5)	12/218 (5.5)
Annahalasi	Seroconversion	1/44 (2.3)	3/39 (7.7)	4/169 (2.4)	2/164 (1.2)	5/213 (2.3)	5/203 (2.5)
Anaphylaxis	Non- seroconversion	0/84	0/83	2/133 (1.5)	2/135 (1.5)	2/217 (0.9)	2/218 (0.9)

(%) = n/N'*100.


AS: Ankylosing spondylitis, N': the number of patients in each seroconversion subgroup of each treatment. n: the number of patients with Infusion-related reaction/Anaphylaxis, RA: Rheumatoid arthritis, TEAE: Treatment emergent adverse event

Infusion-related Reaction: All CT-P13 Studies


	Со	ntrolled	Extension		
Number of Patients (%)	CT-P13 (N = 446)	EU Remicade (N = 440)	Maintenance (N = 257)	Switch (N = 235)	
IRR	41 (9.2)	59 (13.4)	18 (7.0)	10 (4.3)	
Serious or Severe IRR	9 (2.0)	9 (2.0)	2 (0.8)	1 (0.4)	
Anaphylaxis (Sampson)	7 (1.6)	7 (1.6)	1 (0.4)	0	
IRR Leading to Discontinuation	15 (3.4)	23 (5.2)	8 (3.1)	2 (0.9)	
IRR Leading to Death	0	0	0	0	

RCT: RA 3.1, AS 1.1, Pilot RA 1.2, Russia RA 3.3 OLE: RA 3.2, AS 1.3, Pilot RA 1.2 Ext.

Capture Rules for Infusion-related Reaction

Capture Rules for Anaphylaxis Based on Sampson Criteria

ADCC Using Intestinal Cells (LPMC) from IBD Patients

K562 cell line shows the natural cytotoxicity of the patient NK cells (% cell lysis).

AC-42

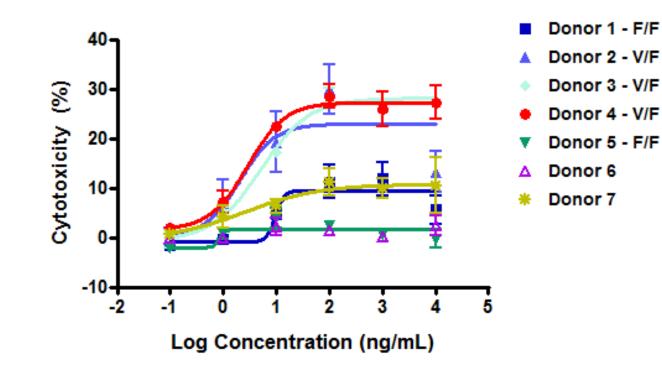
Published Data on Impact of Demographic Factors on PK of Remicade

- Age
 - No significant impact of age on Remicade PK¹
- Gender
 - In Women, 33% lower clearance, 16% lower volume distribution is shown².
 - Effect of gender is negated by weight-based dosing.
- Race/Ethnicity
 - No information on Race/Ethnicity is provided¹

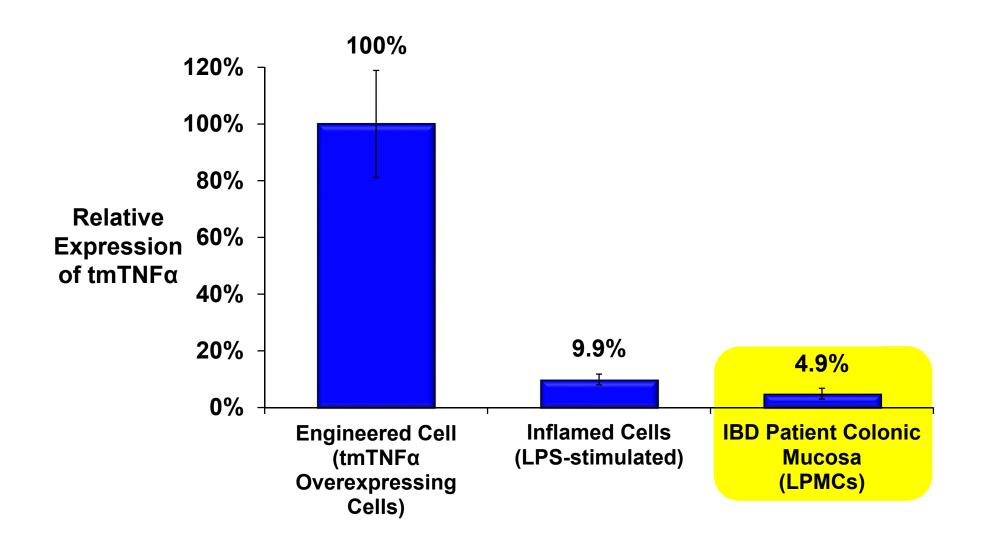
Baseline Characteristics in AS Study

		CT-P13 (N = 125)			micade 125)
Characteristic		n	%	n	%
Gender	Female	26	20.8	22	17.6
Gender	Male	99	79.2	103	82.4
	< 8	92	73.6	95	76.0
BASDAI	≥ 8	33	26.4	30	24.0
	White	97	77.6	92	73.6
Race	Asian	16	12.8	13	10.4
	Other	12	9.6	20	16.0
	Europe	87	69.6	86	68.8
Region	Latin America	22	17.6	27	21.6
	Asia	16	12.8	12	9.6

Only 2 patients in each group are \geq 65 years.

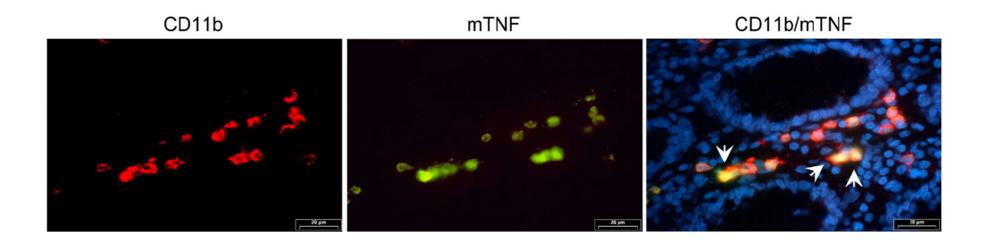

Primary PK Parameters in AS Study by Race

Race	Parameter	Ratio (95% CI)
Total	AUC,	104.48 (92.47, 118.06)
TOtal	C _{max,ss}	101.53 (93.40, 110.37)
White	AUC,	99.44 (85.78, 115.28)
winte	C _{max,ss}	101.53 (91.56, 112.59)
Asian	AUC _T	95.90 (81.57, 112.74)
Asian	C _{max,ss}	97.94 (81.04, 118.36)
Other	AUC,	 135.48 (94.03, 195.20)
Other	C _{max,ss}	104.26 (85.44, 127.23)
	60 80 100 120 140 160 180	200
	Ratio of Geometric Means (95% CI)

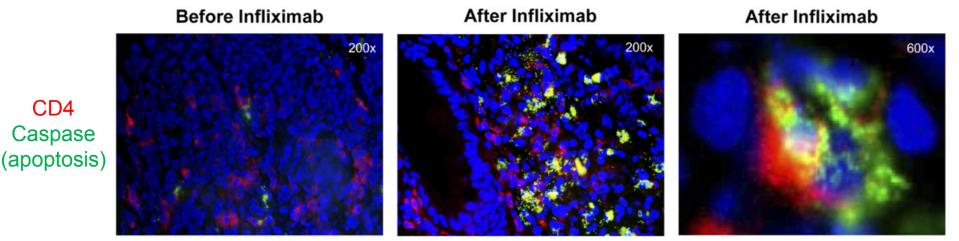

PK-6

Natural Variation in Cytotoxicity of PBMC from Different Donors

Donor 4 was selected for ADCC assays



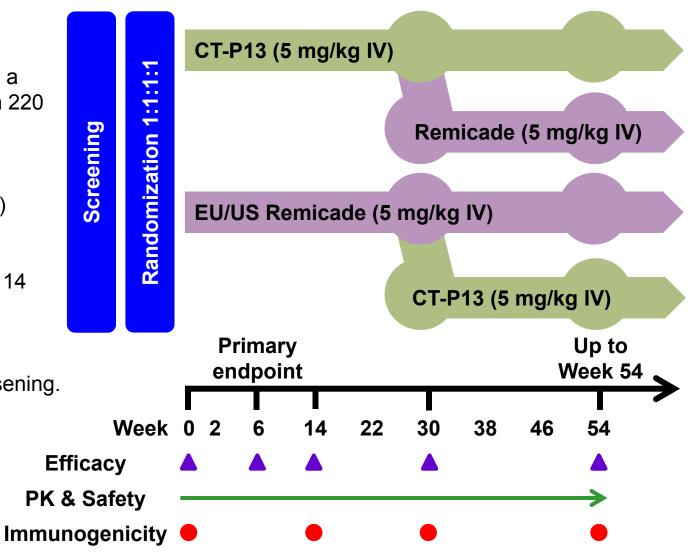
ADCC Activity Requires Overexpression of tmTNFα


Blocking tmTNF Appears an Important MoA in IBD

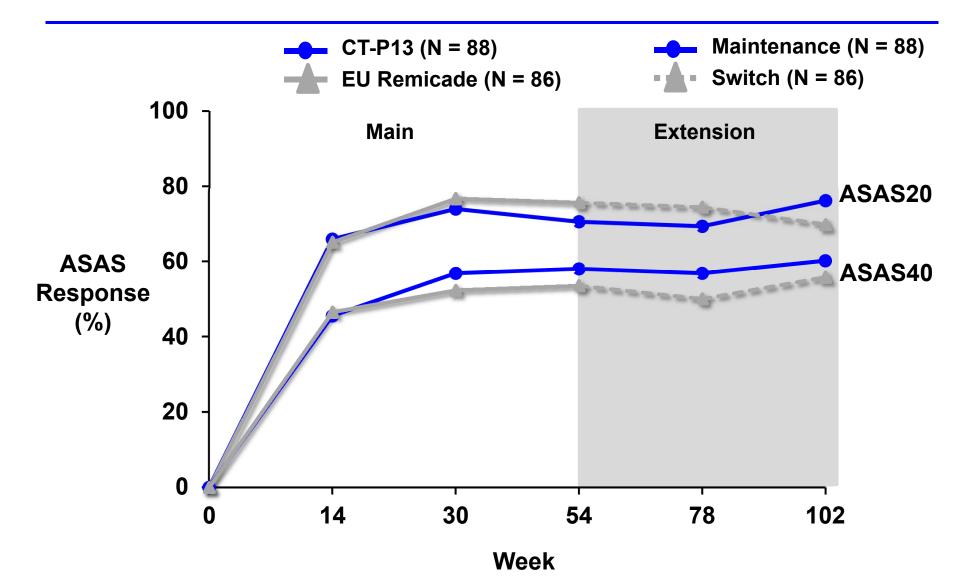
- In the IBD intestine, monocytes (CD11b+) are predominant tmTNFexpressing cell, whereas T cells (CD4+) express TNFR2.
- The T cells rather than the myeloid cells are the cells that die during infliximab therapy.

Blocking tmTNF Appears an Important MoA in IBD

- Administration of infliximab and adalimumab results in apoptosis in the intestinal lamina propria, mostly restricted to CD4+ T cells.
- T cells from IBD patients do not undergo apoptosis in the presence of clinically effective anti-TNFα antibodies (infliximab, adalimumab, and certolizumab) unless co-cultured with tmTNFα-expressing CD14+ intestinal macrophages. Etanercept was ineffective in these cocultures.



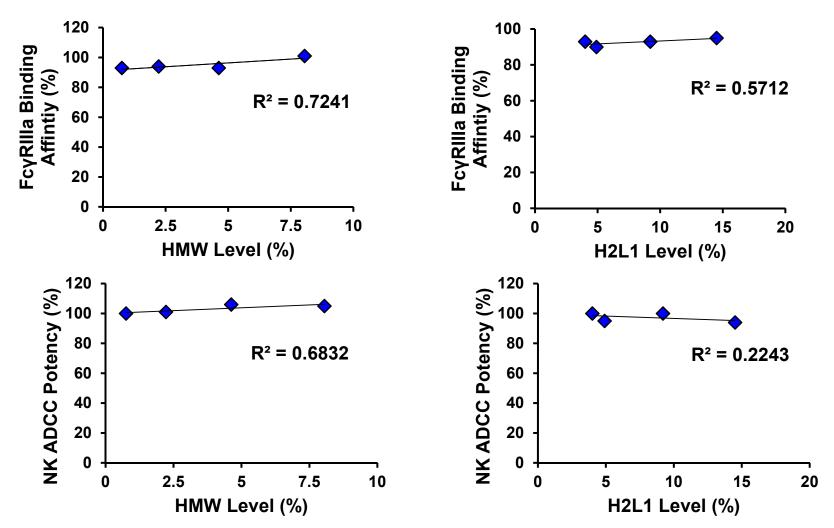
Atreya et al., (2011)


SD-9

CT-P13 CD Study

- Study population: patients with active Crohn's disease and a CDAI score between 220 and 450 points
- Primary endpoint: CDAI-70 (at week 6)
- Non-responder withdrawal at week 14
- Dose escalation: 10 mg/kg is allowed from week 22 if worsening.
- Sample size: 220

ASAS20/ASAS40 Responses over 2 Years in Patients of AS Extension Study

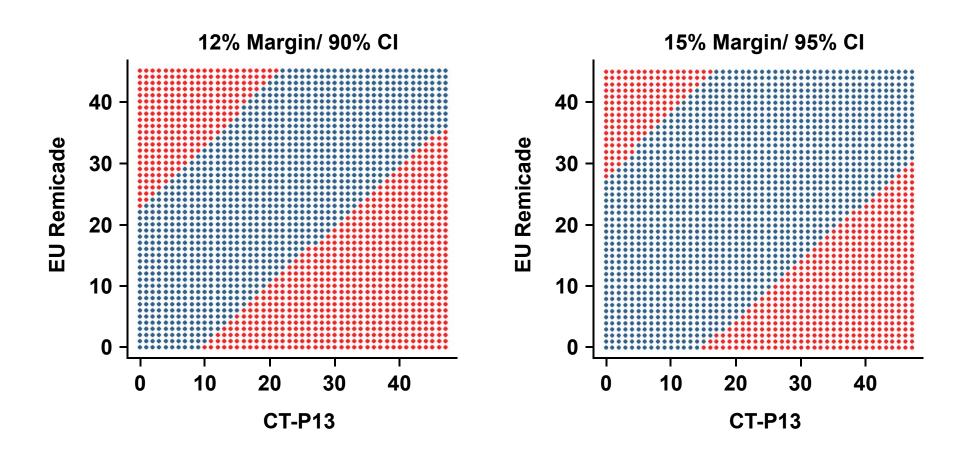


Efficacy Assessment Plan in AS Study

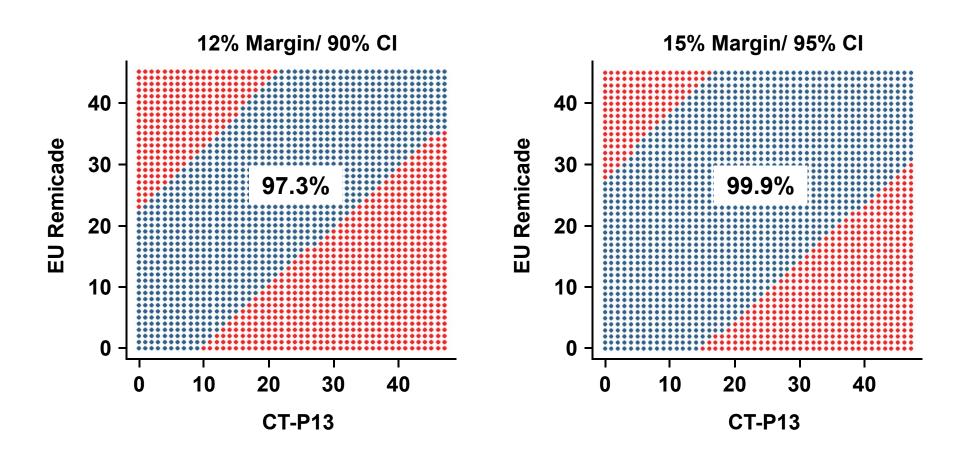
	Screening	Week 0	Week 14	Week 30	Week 54	EOS ¹
ASAS response	✓	\checkmark	✓	\checkmark	\checkmark	✓
Global Assessment Score (VAS)	1	✓	✓	✓	✓	✓
Spinal Pain Score (VAS)	✓	\checkmark	✓	\checkmark	\checkmark	✓
BASDAI Score	✓	✓	✓	✓	✓	✓
BASFI Score	✓	✓	✓	✓	✓	✓
BASMI Score	✓	✓	✓	✓	✓	✓
Chest Expansion	✓	✓	✓	\checkmark	✓	✓
SF-36 (Quality-of-Life Questionnaire)	✓	✓	✓	✓	✓	~

¹ EOS efficacy assessments only need to be completed if the patient withdraws prior to Week 54. If the patient has EOS efficacy assessments at Week 54, efficacy assessments are not required at EOS.

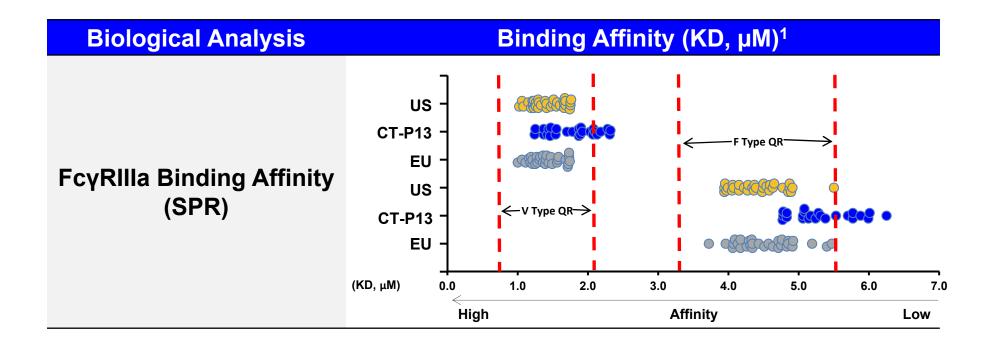
FcγRIIIa Binding Affinity and ADCC Activity are not Affected by HMW or H2L1 Levels



HMW: High Molecular Weight forms, H: Heavy chain, L: Light chain


Sensitivity Analysis with Discontinued Patients for ACR20 at Week 30 (ITT)

	Methods						(95% CI)
	Original ¹		F				(-0.06, 0.10)
ACR20	Method A ²	-	۰			_	(-0.06, 0.10)
	Method B ³	_	-			_	(-0.06, 0.10)
	Original ¹	_	-			_	(-0.06, 0.09)
ACR50	Method A ²	_	F			_	(-0.07, 0.09)
	Method B ³	_	F			_	(-0.06, 0.09)
	Original ¹	_			_	_	(-0.05, 0.07)
ACR70	Method A ²	_	F			_	(-0.06, 0.07)
	Method B ³	_	-		-	_	(-0.06, 0.06)
	r imputation ² Using	-0.2	-0.1	0.0	0.1	0.2	


Tipping Point Analysis with Missing Data for ACR20 at Week 30

Tipping Point Analysis with Missing Data for ACR20 at Week 30

Comparative FcyRIIIa Binding Affinity

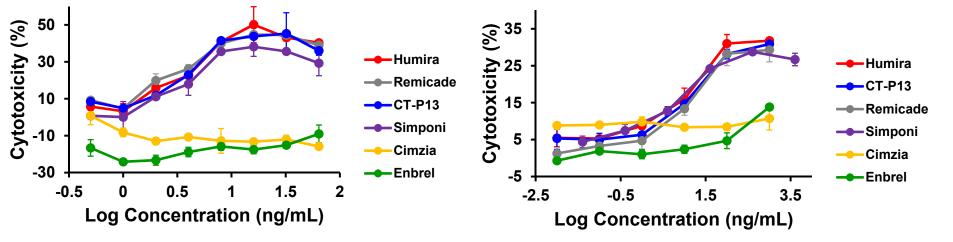
FcyRIIIa Role in Efficacy Not Confirmed

- FcγRIIIa genotypes have different IgG binding affinity¹
- No differences in clinical responses based on different FcγRIIIa genotypes in clinical studies of Remicade in CD², RA³, and PsA⁴
- Greater difference in binding of Remicade to FcγRIIIa receptors of different allotype

¹ Bruhns *et al., (*2009); Gillis *et al.*, (2014)

² Louis *et al.*, (2006); Papamichael *et al.*, (2011); Tomita *et al.*, (2010)

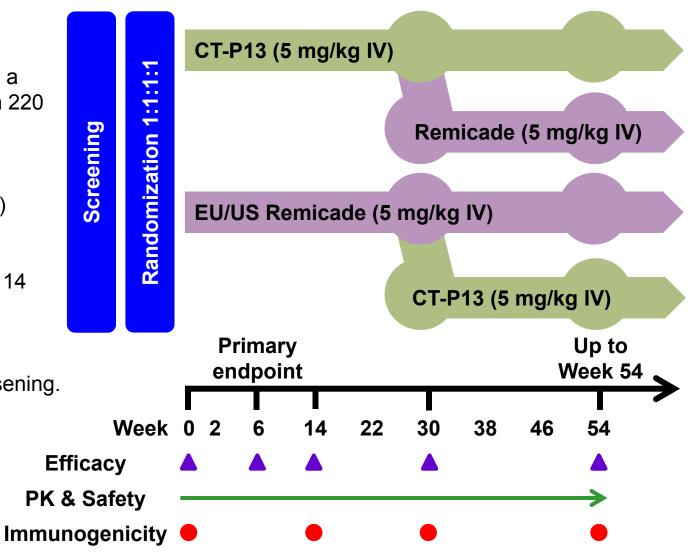
³ Kastbom *et al.*, (2007); Sarsour *et al.*, (2013)


⁴ Tutuncu *et al.*, (2005); Morales-Lara *et al.*, (2010); Ramirez *et al.*, (2012)

CT-P13 ADCC is Comparable to Levels Induced by Remicade, Humira and Simponi

Comparison of ADCC by CT-P13 and Various TNFα Inhibitors

NK ADCC



SD-9

CT-P13 CD Study

- Study population: patients with active Crohn's disease and a CDAI score between 220 and 450 points
- Primary endpoint: CDAI-70 (at week 6)
- Non-responder withdrawal at week 14
- Dose escalation: 10 mg/kg is allowed from week 22 if worsening.
- Sample size: 220

Is the company aware of data presented at ECCO by an Irish medical center describing reports of potential lack of efficacy in IBD?

- Hospira/Pfizer and Celltrion have rigorous PV processes in place. This includes collecting and reviewing safety data from multiple sources such as but not limited to:
 - spontaneous reports from HCPs, patients, and consumers, etc.
 - data from clinical studies
 - routine review of scientific literature
- Hospira/Pfizer has received 13 reports of suspected lack of efficacy involving Inflectra from a pharmacist in Ireland and is aware of data presented at ECCO IBD that included information from this Irish medical center. These reports are included in our safety database
- Infliximab literature supports that up to 40% of patients do not respond to induction therapy (primary non-response), and among initial responders, response wanes over time in approximately 23-46% of patients (secondary LOR).¹
- From EU marketing authorization in September 2013 to date, no safety data has been collected that is inconsistent with the safety information that was known at the time of EU authorization and is currently reflected in the EU Inflectra label