Required Postmarketing Studies

Jerald Mullersman, M.D., Ph.D., M.P.H.

Division of Epidemiology
Office of Biostatistics and Epidemiology
Center for Biologics Evaluation and Research
US Food and Drug Administration

Application of Pharmacovigilance to
U.S. FDA Regulatory Decisions for Vaccines

June 2, 2012
Vaccine Safety Throughout the Life Cycle

- Ensuring that biologics are as safe as possible is a priority of the FDA

- Vaccine safety occurs throughout the life cycle
 - Preclinical (non-human) testing of candidate vaccines
 - Early phase human studies through large phase III clinical trials
 - Inspection of manufacturing facilities
 - Monitoring of lot release
 - Postlicensure adverse event surveillance

- Monitoring vaccine safety during development is as important as the postmarketing period

Plan for Talk

- Why require postmarketing studies?
- When to require postmarketing studies?
- What are the study options and considerations for a required postmarketing study?
- Examples of FDA required studies
Limits of Clinical Trial Safety Data

- Smaller sample sizes and observation periods limit reliable detection to the most common events
 - Detecting a 2-fold increase of an event normally occurring 1/1000 requires a sample size of 50,000 (two-arm, 80% power, 5% alpha)

- Rare adverse events may not be detected in pre-licensure studies

- Patient enrollment exclusions limit generalizability

- Multiple comparisons and post hoc analyses often limit inferences about safety
Risk Detection Limits in Prelicensure Trials

Power to Detect a 2-Fold Increase

<table>
<thead>
<tr>
<th>Background rate</th>
<th>N = 3,000 vaccinees</th>
<th>N = 10,000 vaccinees</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 in 10</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>1 in 100</td>
<td>87%</td>
<td>100%</td>
</tr>
<tr>
<td>1 in 1,000</td>
<td>10%</td>
<td>38%</td>
</tr>
<tr>
<td>1 in 10,000</td>
<td>0.4%</td>
<td>2.6%</td>
</tr>
<tr>
<td>1 in 100,000</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

- **Power > 80%**
- **Power < 80%**

Fisher’s exact test. Assuming alpha 0.05, 1:1 ratio of vaccinees to placebo/controls
Interpreting 0 Events in Clinical Trials

Summary of Boys and Men 9 Through 26 Years of Age Who Reported an Incident Condition Potentially Indicative of a Systemic Autoimmune Disorder After Enrollment in Clinical Trials of GARDASIL, Regardless of Causality

<table>
<thead>
<tr>
<th>Conditions</th>
<th>GARDASIL (N = 3093)</th>
<th>AAHS Control* or Saline Placebo (N = 2303)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n (%)</td>
<td>n (%)</td>
</tr>
<tr>
<td>Alopecia Areata</td>
<td>2 (0.1)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Ankylosing Spondylitis</td>
<td>1 (0.0)</td>
<td>2 (0.1)</td>
</tr>
<tr>
<td>Arthralgia/Arthritis/Reactive Arthritis</td>
<td>30 (1.0)</td>
<td>17 (0.7)</td>
</tr>
<tr>
<td>Autoimmune Thrombocytopenia</td>
<td>1 (0.0)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Diabetes Mellitus Type 1</td>
<td>2 (0.1)</td>
<td>2 (0.1)</td>
</tr>
<tr>
<td>Hyperthyroidism</td>
<td>0 (0.0)</td>
<td>1 (0.0)</td>
</tr>
<tr>
<td>Hypothyroidism**</td>
<td>3 (0.1)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Inflammatory Bowel Disease***</td>
<td>1 (0.0)</td>
<td>2 (0.1)</td>
</tr>
<tr>
<td>Myocarditis</td>
<td>1 (0.0)</td>
<td>1 (0.0)</td>
</tr>
<tr>
<td>Proteinuria</td>
<td>1 (0.0)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Psoriasis</td>
<td>0 (0.0)</td>
<td>4 (0.2)</td>
</tr>
<tr>
<td>Skin Depigmentation</td>
<td>1 (0.0)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Vitiligo</td>
<td>2 (0.1)</td>
<td>5 (0.2)</td>
</tr>
</tbody>
</table>

If 0 events are observed, will it never happen in the general population?

**Inflammatory bowel disease includes the following terms: Colitis ulcerative and Crohn's disease
N = Number of individuals who received at least one dose of either vaccine or placebo
n = Number of individuals with specific new Medical Conditions
NOTE: Although an individual may have had two or more new Medical Conditions, the individual is counted only once within a category. The same individual may appear in different categories.
Maximum Risk for Rare Events in Clinical Trials

- Rule of 3* for maximum risk estimate
 - 95% confidence interval = [0, (3/N)]
 - Where N = number of vaccinees

- If N = 3,093 Gardasil vaccinated males aged 9 – 26 years
 - 95% confident that the risk for hyperthyroidism is at most 1 in 1,000 after Gardasil

- Cannot rule out substantial increases in rarer events
 - Example: 5 fold increase in an event normally occurring 1 per 10,000

- Therefore, even if “nothing goes wrong” in clinical trials, we still need postmarketing surveillance to detect meaningful increases in risk for more rare events

Immune Mediated Conditions are Challenging to Assess in Clinical Trials

Table 2. Estimated new cases in 2009 of autoimmune disease in the United States based on mean weighted incidence rates reported in a systematic meta-analysis (71). Expected new diagnoses were extrapolated using the 2009 U.S. Census data for population >18 years of age (73).

<table>
<thead>
<tr>
<th>Autoimmune disease</th>
<th>Incidence (per 100,000 persons per year)</th>
<th>Expected new diagnoses (persons >18 years of age)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult rheumatoid arthritis</td>
<td>23.7</td>
<td>55,092</td>
</tr>
<tr>
<td>Thyroiditis (hypothyroidism)</td>
<td>21.8</td>
<td>50,675</td>
</tr>
<tr>
<td>Graves disease (hyperthyroidism)</td>
<td>13.9</td>
<td>32,311</td>
</tr>
<tr>
<td>Type 1 diabetes (age >20 years)*</td>
<td>8.1</td>
<td>18,829</td>
</tr>
<tr>
<td>Systemic lupus erythematosus</td>
<td>7.3</td>
<td>16,969</td>
</tr>
<tr>
<td>Sjogren disease*</td>
<td>3.9</td>
<td>9,065</td>
</tr>
<tr>
<td>Multiple sclerosis</td>
<td>3.2</td>
<td>7,438</td>
</tr>
<tr>
<td>Primary systemic vasculitis*</td>
<td>2.0</td>
<td>4,649</td>
</tr>
<tr>
<td>Polymyositis/dermatomyositis</td>
<td>1.8</td>
<td>4,184</td>
</tr>
<tr>
<td>Systemic sclerosis*</td>
<td>1.4</td>
<td>3,254</td>
</tr>
<tr>
<td>Addison disease*</td>
<td>0.6</td>
<td>1,394</td>
</tr>
<tr>
<td>Myasthenia gravis</td>
<td>0.4</td>
<td>929</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>204,789</td>
</tr>
</tbody>
</table>

*Additional categories of autoimmune diseases with an age distribution older than 18 years for which missing or updated incidence data were available in a subsequent publication (72).
Plan for Talk

- Why require postmarketing studies?
- **When to require postmarketing studies?**
 - What are the study options and considerations for a required postmarketing study?
 - Examples of FDA required studies
The 3 Criteria for FDA Required Studies

Study purpose is one of the following:

1. To assess a known serious risk related to the use of the drug
2. To assess signals of serious risk related to the use of the drug
3. To identify an unexpected serious risk when available data indicate the potential for a serious risk

Defining Key Terms in the Criteria

- **New safety information**
 - Information from clinical trial, adverse event report, postapproval study, FDA’s Sentinel system, scientific literature

- **Signal of a serious risk**
 - Any information from the above sources about a serious adverse event

- **Unexpected serious risk**
 - Serious event not listed in the labeling, or
 - Listed in label, but differs because of greater severity, specificity, or prevalence
Plan for Talk

- Why require postmarketing studies?
- When to require postmarketing studies?
- **What are the study options and considerations for a required postmarketing study?**
- Examples of FDA required studies
Match the Safety Issue to the Study Design

Index of Concern

Strength of association
– Demonstrated vs. theoretical risk

Public health impact
– Population attributable risk
– Seriousness of outcome

Study Design

Medical complexity
– Strength of confounding
– Availability of comparator

Feasibility
– Availability of data sources
– Confirmation of exposure and outcome
Selected Options for Required Studies

<table>
<thead>
<tr>
<th></th>
<th>Patient Outcome Registry</th>
<th>Electronic Database</th>
<th>VAMPSS*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temporality</td>
<td>Prospective</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient recruitment</td>
<td>Voluntary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Testable hypothesis</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comparator group</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exposure / outcome confirmation</td>
<td>Chart confirmed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confounding control</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Selected Options for Required Studies

<table>
<thead>
<tr>
<th></th>
<th>Patient Outcome Registry</th>
<th>Electronic Database</th>
<th>VAMPSS*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temporality</td>
<td>Prospective</td>
<td>Prospective or retrospective</td>
<td></td>
</tr>
<tr>
<td>Patient recruitment</td>
<td>Voluntary</td>
<td>Identified through billing claims</td>
<td></td>
</tr>
<tr>
<td>Testable hypothesis</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Comparator group</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Exposure / outcome confirmation</td>
<td>Chart confirmed</td>
<td>Chart confirmed</td>
<td></td>
</tr>
<tr>
<td>Confounding control</td>
<td>N/A</td>
<td>Variable</td>
<td></td>
</tr>
</tbody>
</table>

* Vaccines and Medications in Pregnancy Surveillance System.
Selected Options for Required Studies

<table>
<thead>
<tr>
<th></th>
<th>Patient Outcome Registry</th>
<th>Electronic Database</th>
<th>VAMPSS*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temporality</td>
<td>Prospective</td>
<td>Prospective or retrospective</td>
<td>Prospective</td>
</tr>
<tr>
<td>Patient recruitment</td>
<td>Voluntary</td>
<td>Identified through billing claims</td>
<td>Voluntary, self-referral</td>
</tr>
<tr>
<td>Testable hypothesis</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Comparator group</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Exposure / outcome confirmation</td>
<td>Chart confirmed</td>
<td>Chart confirmed</td>
<td>Chart confirmed</td>
</tr>
<tr>
<td>Confounding control</td>
<td>N/A</td>
<td>Variable</td>
<td>Improved with patient interviews</td>
</tr>
</tbody>
</table>

* Vaccines and Medications in Pregnancy Surveillance System.
Selected Options for Required Studies

<table>
<thead>
<tr>
<th></th>
<th>Patient Outcome Registry</th>
<th>Electronic Database</th>
<th>VAMPSS*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temporality</td>
<td>Prospective</td>
<td>Prospective or retrospective</td>
<td>Prospective</td>
</tr>
<tr>
<td>Patient recruitment</td>
<td>Voluntary</td>
<td>Identified through billing claims</td>
<td>Voluntary, self-referral</td>
</tr>
<tr>
<td>Testable hypothesis</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Comparator group</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Exposure / outcome confirmation</td>
<td>Chart confirmed</td>
<td>Chart confirmed</td>
<td>Chart confirmed</td>
</tr>
<tr>
<td>Confounding control</td>
<td>N/A</td>
<td>Variable</td>
<td>Improved with patient interviews</td>
</tr>
</tbody>
</table>

Even more options exist and are dependent on the available resources in each country

* Vaccines and Medications in Pregnancy Surveillance System.
Plan for Talk

- Why require postmarketing studies?
- When to require postmarketing studies?
- What are the study options and considerations for a required postmarketing study?
- Examples of FDA required studies
3 Examples of FDA Required Studies

<table>
<thead>
<tr>
<th>Safety issue</th>
<th>Cervarix</th>
<th>Octagam</th>
<th>Provenge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spontaneous abortion</td>
<td>Spontaneous abortion</td>
<td>Thromboembolic events</td>
<td>Cerebrovascular events</td>
</tr>
</tbody>
</table>
Cervarix PMR

<table>
<thead>
<tr>
<th>Safety issue</th>
<th>Cervarix</th>
<th>Octagam</th>
<th>Provenge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spontaneous abortion</td>
<td>Thromboembolic events</td>
<td>Cerebrovascular events</td>
<td></td>
</tr>
</tbody>
</table>
Cervarix and Spontaneous Abortion

- Cervarix is a vaccine that prevents infection by HPV types 16 and 18 that cause cervical cancer

- Not indicated in pregnant women
 - Target population includes women of child-bearing age
 - Risk of inadvertent vaccination during pregnancy

- Safety concern noted in Cervarix clinical trials
 - Imbalance in miscarriage among pregnancies with onset around the time of vaccination (13.8% vs. 9.8%)
 - Overall proportions of pregnancy outcomes were similar between treatment groups
Risk Among Pregnancies Conceived Within 3 Months of Vaccination

- Time frame with the highest prior probability of an effect
- The observed difference (14.7% vs. 9.1%) consistent with a small effect of vaccination or statistical noise

BMJ 2010;340:c712
From Safety Signal to Study

Index of Concern

Strength of association
– Post-hoc analysis of clinical trials

Public health impact
– Target population at risk
– Potential reproductive adverse events mitigates benefits of cancer prevention

Study Design

Medical complexity
– Difficult to study pregnant women

Feasibility
– Data sources limited
– Confirmation of exposure, outcome, confounders needed
Summary of Cervarix Required Study

<table>
<thead>
<tr>
<th>Safety issue</th>
<th>Spontaneous abortion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study Purpose</td>
<td>To identify an unexpected serious risk when available data indicate the potential for a serious risk</td>
</tr>
</tbody>
</table>
| **Considerations** | - Pregnancy difficult to study
- Known prenatal confounders, outcome difficult to detect, comparison group difficult to find |
| **Study design** | Prospective observational cohort study of Cervarix recipients during pregnancy compared to non-exposed pregnant women (VAMPSS) |
Octagam PMR

<table>
<thead>
<tr>
<th>Safety issue</th>
<th>Cervarix</th>
<th>Octagam</th>
<th>Provenge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spontaneous abortion</td>
<td>Thromboembolic events</td>
<td></td>
<td>Cerebrovascular events</td>
</tr>
</tbody>
</table>

Octagam and Thrombotic Events

- Purified pooled human-derived antibodies
 - Indicated for treatment of primary immune deficient diseases
 - Administered intravenously

- Thrombotic events (stroke, pulmonary embolism) are known adverse events after all intravenous immunoglobulins
 - Dose-dependent increase in serum viscosity
 - Increased platelet aggregation
 - Preexisting recipient dehydration
 - Residual procoagulant activity after purification

Timeline to Octagam Market Withdrawal

- **FDA approval**
- **July**: 8 reports thrombosis in 1 lot (80 times expected)
- **Aug**: voluntary withdrawal of 31 lots

Source: [FDA.gov](http://www.fda.gov/downloads/BiologicsBloodVaccines/NewsEvents/WorkshopsMeetingsConferences/UCM260769.pdf)
Timeline to Octagam Market Withdrawal

- **2004**
 - FDA approval

- **2005**

- **2010**
 - 8 reports thrombosis

- **2011**
 - Sept: All lots withdrawn
 - Withdrawal of 31 lots
 - April: High Factor Xla implicated as root cause. EMA lifts suspension after manufacturing changes instituted.

- **2012**

Additional resources:

- [FDA.gov](http://www.fda.gov/BiologicsBloodVaccines/SafetyAvailability/Recalls/ucm227133.htm)
- [FDA.gov](http://www.fda.gov/BiologicsBloodVaccines/SafetyAvailability/Recalls/ucm223897.htm)
- [FDA.gov](http://www.fda.gov/downloads/BiologicsBloodVaccines/NewsEvents/WorkshopsMeetingsConferences/UCM260769.pdf)
Timeline to Octagam Market Withdrawal

- FDA approval
- 8 reports thrombosis
- Sept: All lots withdrawn
- Withdrawal of 31 lots
- Factor IXα implicated
- Return to US market

From Postlicensure Signal to Postlicensure Study

Index of Concern

Strength of association
- Passive and active surveillance
- Temporal association, unique presentation (multiple infarcts)

Public health impact
- Death and disability

Study Design

Medical complexity
- Multiple indications, host factors
- Dosage and dosing regimens

Feasibility
- Confounding adjustment is critical
Summary of Octagam Required Study

<table>
<thead>
<tr>
<th>Safety issue</th>
<th>Thrombotic events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study Purpose</td>
<td>Assess a known serious risk</td>
</tr>
</tbody>
</table>
| **Considerations** | ▪ Post-interventional study (started after root cause identified and manufacturing changes instituted)
▪ Goal is to confirm that Octagam is no more thrombogenic compared to other IVIG
▪ Must address between-person confounding |
| **Study design** | Observational 2-arm comparator study |
Provenge PMR

<table>
<thead>
<tr>
<th>Safety issue</th>
<th>Cervarix</th>
<th>Octagam</th>
<th>Provenge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spontaneous abortion</td>
<td>Thromboembolic</td>
<td></td>
<td>Cerebrovascular</td>
</tr>
<tr>
<td></td>
<td>events</td>
<td></td>
<td>events</td>
</tr>
</tbody>
</table>

What is Provenge?

- 1st FDA approved autologous cell based immunotherapy
 - Indicated for late stage metastatic prostate cancer

- White blood cells are obtained by apheresis
 - Grown in culture
 - Activated by a recombinant prostatic protein
 - Reinfused into same patient

http://www.provenge.com/hcp/
Provenge is designed to induce an immune response targeted against an antigen expressed in most prostate cancers.
Provenge Clinical Trials

- 600 Provenge recipients compared to 300 patients with prostate cancer receiving non-activated autologous white blood cells
- Course of therapy is 3 doses, given at 0, 2, and 4 weeks

Median increased survival of ~4 months for end-stage prostate cancer patients
Provenge and Cerebrovascular Events

- Statistically significant difference in cerebrovascular events (hemorrhagic and ischemic strokes) observed
 - 3.5% Provenge group vs. 2.6% control group in crude analyses

- No clear biologic mechanism linking Provenge to stroke
From Prelicensure Signal to Required Study

Index of Concern

Strength of association
– Statistically significant imbalance in crude rates during clinical trials

Public health impact
– Risk estimates during routine use would improve patient’s decision to use product for end stage disease

Study Design

Medical complexity
– Used in very ill patients
– Cancer is known risk factor for thrombosis

Feasibility
– Exposure easily detected because autologous
– Uptake limited late-stage cancer indication
Summary of Provenge Required Study

<table>
<thead>
<tr>
<th>Safety issue</th>
<th>Cerebrovascular Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study Purpose</td>
<td>Assess signals of serious risk</td>
</tr>
</tbody>
</table>
| Considerations | ▪ Balance need for better safety data for patients decision making against clear clinical benefit
 ▪ Confounding must be addressed due to elevated baseline increased risk for thrombosis |
| Study design | Patient outcomes registry for cerebrovascular events |
Summary

- Despite rigorous study prelicensure, postlicensure safety monitoring is necessary due to the known limitations of clinical trials.
- FDA may require postmarketing studies when 3 criteria are fulfilled:
 - New safety information
 - Safety issue cannot be evaluated in FDA’s Sentinel system
 - Meets one of 3 study purposes
- Postmarketing study design should be tailored to answer the surveillance question and the needed degree of certainty.
Thank You
Resources

- FDA’s acronym finder:

- Complete list of U.S. licensed vaccines (labels, approval letters, reviews, telecons, etc):
 - http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/UCM093833

- CBER’s FDAAA Implementation page:

- Postmarketing commitments and requirements (PMC versus PMR)
 - Draft Guidance for Industry
 - Information on FDA website:
 - http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Post-marketingPhaseIVCommitments/default.htm
 - CBER’s PMR/PMC Administrative Handling SOPP:
 - http://www.fda.gov/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/ProceduresSOPPs/ucm073513.htm

- REMS Draft Guidance Sept 2009:
Rotarix and Intussusception

- Rotarix is a live vaccine for preventing serious gastrointestinal infection with rotavirus

- Intussusception (bowel obstruction) has been an outcome of interest since the withdrawal of Rotashield 1999
 - Greatest risk 7 days after first dose Rotashield
 - ~1 excess case in 10,000 Rotashield recipients

- Rotarix licensed 2008 after >60,000 patients in clinical trials demonstrated no increased risk of intussusception
 - RR = 1.23 (95% CI: 0.41–3.90)

http://my.clevelandclinic.org/disorders/intussusception/hic_intussusception.aspx
Evaluating Intussusception After Rotarix

Index of Concern

- **Strength of association**
 - Demonstrated risk in a prior vaccine
 - No risk detected in clinical trials

- **Public health impact**
 - Universal routine vaccination
 - Outcome is serious

Study Design

- **Medical complexity**
 - Confounded by age
 - Comparator group available

- **Feasibility**
 - Data are available
 - Confirmation of exposure and outcome possible
From Safety Concern to Required Study

<table>
<thead>
<tr>
<th>Safety issue</th>
<th>Intussusception</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study Purpose</td>
<td>Assess a known serious risk</td>
</tr>
</tbody>
</table>
| Considerations | ▪ Low tolerance for serious outcome for an otherwise healthy infant population
▪ Rare outcome requires large sample size
▪ Substantial confounding by age |
| Study design | Observational cohort study in a large electronic database |
Background Rates of Select Adverse Events

Predicted numbers of coincident, temporally associated events after a single dose of a hypothetical vaccine, based upon background incidence rates

<table>
<thead>
<tr>
<th>Number of coincident events since a vaccine dose</th>
<th>Baseline rate used for estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Within 1 day</td>
<td>Within 7 days</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Guillain-Barré syndrome (per 10 million vaccinated people)</td>
<td></td>
</tr>
<tr>
<td>0.51</td>
<td>3.58</td>
</tr>
<tr>
<td>Optic neuritis (per 10 million female vaccinees)</td>
<td></td>
</tr>
<tr>
<td>2.05</td>
<td>1440</td>
</tr>
<tr>
<td>Spontaneous abortions (per 1 million vaccinated pregnant women)</td>
<td></td>
</tr>
<tr>
<td>397</td>
<td>2780</td>
</tr>
<tr>
<td>Sudden death within 1 h of onset of any symptoms (per 10 million vaccinated people)</td>
<td></td>
</tr>
<tr>
<td>0.14</td>
<td>0.98</td>
</tr>
</tbody>
</table>