Ovarian Cancer and Modern Immunotherapy: Regulatory Strategies for Drug Development

Sanjeeve Bala, MD, MPH
Ovarian Cancer Endpoints Workshop
FDA White Oak
September 3, 2015
Overview

- Immune agents from a regulatory perspective:
 - Efficacy
 - Patterns of response, determining “clinical benefit,” and endpoints
- Regulatory considerations for trial design
- Biomarkers in immunotherapy trials
The Challenge

Challenge assumptions:
The primacy of the drug development paradigm derived from early experience with cytotoxic chemotherapy:
 - MTD, PFS, RECIST, toxicity attribution

Preclinical development: direct toxicity and efficacy studies impossible in cells and non-human species

No longer direct molecular action of drug on tumor cell
Interleukin-2

- Described in 1976
- Approved in 1992 (RCC) and 1998 (melanoma)

<table>
<thead>
<tr>
<th>Disease</th>
<th>Year</th>
<th>ORR</th>
<th>CR</th>
<th>DOR (PR)</th>
<th>DOR (CR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCC</td>
<td>1992</td>
<td>15%</td>
<td>7%</td>
<td>20m</td>
<td>NR</td>
</tr>
<tr>
<td>Melanoma</td>
<td>1998</td>
<td>16%</td>
<td>6%</td>
<td>6m</td>
<td>NR</td>
</tr>
</tbody>
</table>

- Melanoma based on 8 trials all analyzed as single-arm

- No mechanism elucidated
- No predictive or prognostic biomarkers
Regulatory Considerations: Efficacy

• Traditional approval relies on overall survival as the gold standard

• Frequently, PFS has been used as a surrogate

• But, in the context of immunotherapy: We would not have recognized the benefit of these agents if relying on RR, PFS
Road to Approval: Ipilimumab

Limitations of PFS

- Approved 2011
- Toxicity spectrum new and challenging
- Toxicity management required new awareness

Road to Approval: Ipilimumab
PFS and ORR Inadequate

Figure 1: Overall Survival

SUBJECTS AT RISK

<table>
<thead>
<tr>
<th></th>
<th>Lpi+gp100</th>
<th>Lpi</th>
<th>gp100</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>403</td>
<td>137</td>
<td>136</td>
</tr>
<tr>
<td>0</td>
<td>297</td>
<td>106</td>
<td>93</td>
</tr>
<tr>
<td>1</td>
<td>223</td>
<td>79</td>
<td>58</td>
</tr>
<tr>
<td>2</td>
<td>163</td>
<td>56</td>
<td>32</td>
</tr>
<tr>
<td>3</td>
<td>115</td>
<td>38</td>
<td>23</td>
</tr>
<tr>
<td>4</td>
<td>81</td>
<td>30</td>
<td>17</td>
</tr>
<tr>
<td>5</td>
<td>54</td>
<td>24</td>
<td>16</td>
</tr>
<tr>
<td>6</td>
<td>42</td>
<td>18</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>33</td>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>24</td>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>17</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>7</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

MOUTHS

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56
Nivolumab in Squamous NSCLC

• Nivolumab in squamous NSCLC
 – First demonstration of immunotherapy in non-RCC non-melanoma

• 272 patients treated at 3mg/kg q2w vs docetaxel 75mg/m² q3w

• PFS: 3.5m v. 2.8m

• **0.7m** PFS advantage for treatment arm
Nivolumab experience

- OS: 9.2m v. 6.0m
- 1 year survival: 42% v. 24%

Clinical Regulatory Pathway: Then

- Safe dose
- Preliminary effectiveness
- Pivotal RCT
- Post-marketing safety
Clinical Regulatory Pathway: Now Options for Rapid Translation

Phase 0:
PD evaluation; Biomarkers of target engagement

Phase 1a:
Safe dose

Phase 1b:
“Dose expansion”: Looking for activity in specific population; may be biomarker-selected

Phase 2:
Randomized: Accelerated approval

Early-Phase trials in other countries

FDA

Pivotal RCT

Post-marketing safety
Road to Approval:
Pembrolizumab in Melanoma

- Pembrolizumab
 - Accelerated approval: based on a surrogate that requires confirmatory studies

 - Expansion cohort within Trial P001
 - 173 patients, post ipilimumab and BRAF inhibitor if V600 mutation, treated with pembro at 2 or 10 mg/kg
 - Several other disease-specific cohorts reported

 - ORR based on RECIST (24% in 2mg arm) with 1 CR and 20 PR, with 18 ongoing responses at data lock

Road to Approval: Pembrolizumab in Melanoma

Road to Approval: Nivolumab in Melanoma

• Accelerated approval based on ORR
• Phase 3, ipilimumab-refractory, randomized (2:1), open-label; 631 patients screened
 – Nivolumab
 – Dacarbazine
 – Carboplatin + paclitaxel

• Planned per-protocol interim analysis as a **single arm** after 120 patients were treated with nivolumab for a minimum of 24 weeks.

Nivolumab in Melanoma

Regulatory Considerations: Efficacy

• Regulatory pathways for accelerated approval

• PFS may not be an adequate measure of clinical benefit for these agents
 – irRC changes ORR, but inconsistently (Chiou 2015)
 – irRC is of limited value

• Prolonged DOR has been a hallmark of effective immunotherapy

• Better efficacy endpoints needed:
 – eg, tumor kinetics

Regulatory considerations: AEs

• Standardized approach to tox management
 – Greater community experience ➔ easier trials
 – Early recognition and prompt management
 • Immunosuppression doesn’t seem to blunt response
 – Familiarity ➔ fewer investigations

• Case definitions for adverse events
 – *Immune-mediated* adverse events vs other
 – Consistency: attribution vs immunosuppression
 – Fewer investigations ➔ greater variability in AE reporting
Biomarkers

• Checkpoint proteins
 • Current IHC strategies are predictive/selective biomarkers in specific diseases, while non-predictive in others

• CDRH rules for companion diagnostics
Anti-PD-L1 in UBC

PD-L1 staining in tumor cells of ≥50% correlated with OS with pembrolizumab treatment

Multiple checkpoint inhibition

• Tune intensity of breaking of self-tolerance to patient and tumor immune characteristics...?
PD-L1 Biomarker Predicts Response

Avelumab experience in OvCa

• 75 women with refractory/resistant OvCa
 – 51 patients with at least 3 prior regimens
 – 0 CR, 11 PR (15%) by RECIST
 – 2/2 clear cell responses

• Breaking the immunoRx barrier?

Change from baseline in sum of longitudinal diameter (%)

Used with permission: N. Disis
Trial Design Considerations

• Does intensity of prior therapy independently impact immune influence?

 – More resistant/more heavily pretreated disease → higher mutational load → more antigen targets

 Vs:

 – More resistance mechanisms; more senescent immune system and other host factors

• Lines of prior therapy is likely to play a continued role in selecting patients
Trial Design Considerations

• Novel endpoints to consider
 – eg: Tumor kinetics
 – Endpoints for same drug may vary by disease setting
 – Novel analyses of conventional endpoints
 • eg: DOR > ORR

• Prolonged DOR demonstration is key for regulatory evaluation when median PFS benefit may be small
Take-home messages

• Be aware of strategies for accelerated approval
 – eg, planned interim analysis of single arm if adequate follow-up duration
• Consider need for alternative efficacy endpoints
 – DOR vs PFS to support ORR for accelerated approval
 – OS for traditional approval
• Explore single-agent efficacy first
Take-home messages

• Plan for treatment beyond initial RECIST progression

• Early and aggressive toxicity management

• Evaluate checkpoint target expression as predictor of response
 – Correlation with target expression is disease-specific, and perhaps treatment-specific/test-specific
 – Goal: Marker negative population should identify patients who do not respond to treatment