Defining Standards for Dystrophin Quantification in DMD Muscle Biopsies

John Babiak, PhD, PTC Therapeutics
Financial Disclosure

- John Babiak – employee at PTC Therapeutics, Inc
Questions for Today

- What is the current status of assay validation and methodology for quantification of dystrophin in the context of drug development?

 - Current methods for quantification of dystrophin have significant limitations in the ability to measure small differences in the dystrophin content of DMD muscle samples.

 - The quality of biopsy samples due to sampling, handling and the extent of disease progression can negatively impact the interpretation of muscle biopsy dystrophin expression data in large clinical studies.

- What are the key opportunities and knowledge gaps in the field?
How much dystrophin is in a DMD muscle?

- Western blot: 0 – 5% of “healthy control”
- Immunostaining: 5 – 20% of “healthy control”

Why is there such a large difference between methods?

- Assumptions regarding linearity of measured response
- Use of relevant reference standards (or not)
- Subtracting background or other interfering signal (or not)

Fundamental goals: Can an assay (samples + quantification method) consistently detect a small difference between two samples?

Can you scale the assay to run a large number (100s) of samples?
Use of a standard curve in Western Blot supports the concept that DMD muscle dystrophin is in the range of 0 – 5%.

Normalization to an internal reference muscle protein is a concern

- A common practice is to normalize to a “loading control” muscle protein
- This can severely impact reliability of results due to non-linearity of staining intensity of “overloaded” loading control

Overloading of protein from DMD biopsy samples can introduce migration, transfer and staining artifacts

From Cirak et al., Lancet 2011
Challenges with Western blot (especially for DMD)

- Efficiency extracting a large protein from muscle tissue
- Electrophoresis and electroblot of a large protein
- Potential for degradation of dystrophin
- Need to “overload” gel to visualize dystrophin can create distortions in migration, transfer and staining, especially of “loading control” protein

What can help?

- When available, use full-length recombinant dystrophin protein standard
 - Can run a standard curve
 - Can spike biopsies to determine extraction/detection efficiency
 - Potential to provide absolute determination of dystrophin content
- Spike biopsies with another detectable protein can also provide a useful “processing and loading control”
- Avoid normalization to an overloaded reference muscle protein
Immunostaining and Western Blot results do not correlate

Dystrophin (% control) by Western Blot

Dystrophin (% control) by Immunostaining

Within the range relevant to DMD, immunostaining overestimates the amount of dystrophin in a muscle biopsy relative to Western blot analysis and does not correlate with WB.

Adapted from data in: Cirak et al., Lancet, 2011
Forcing a correlation across a broad dynamic range reduces reliability within the range needed for DMD.

Extrapolation of fit to include healthy controls distorts the linearity of response among DMD sample.
The world is **not** linear, but locally it can be pretty close.

Forcing long-range linearity reduces local accuracy.

Forcing “healthy control” to fit on the line reduces sensitivity in measuring dystrophin in DMD samples.
Normalization to “control”: There can be large variability within and between “control” biopsies.

Calibration of appropriate “controls” could reduce variability across experiments.

Arechavala-Gomeza et al, Neuropath and App Neurobio, 2010
Within-sample variability and staining techniques can impact results (immunofluorescence)

- Intensity of dystrophin staining varies considerably within samples
- Different antibodies yielded 3-fold difference in dystrophin level

![Graphs showing dystrophin intensity units for control, DMD, and carrier samples.]

5% of control
15% of control

Arechavala-Gomeza et al, Neuropath and App Neurobio, 2010

Highlights the need for reference standards in DMD range

March 2015
Dystrophin-positive fiber counting overestimates dystrophin expression (by Western blot) in TA muscles of PMO-treated *mdx* mice.

Within the range relevant to DMD, Dys+ fiber counting overestimates the amount of dystrophin in a muscle biopsy and does not correlate with Western blot analysis.

Sharp et al, Molecular Therapy, 2011
Quantifying the AVERAGE Intensity of an IF image introduces a high degree of imprecision because of the vague definition of an “edge”.

High and low estimates differ by ~50% because a large number of low-intensity pixels flank the sides of the membrane.

Possible ways to reduce the impact of this limitation:

- Do not determine edge manually
- Measure TOTAL intensity of fibers of interest
- Normalize to length of membrane, not area (length x width)
- Examine pixel intensity distribution to assess extent of variability
It is possible to identify and reduce the impact of artifacts in IF analysis.

Opportunities to reduce impact of background intensity

- Use isotype control to measure endogenous membrane fluorescence
- Explore use of calibrated fluorescent beads or spotting fluorescent standards onto sample to confirm linearity of fluorescent reading

Beekman et al, PLoS ONE, 2014
Challenges with Immunostaining (especially for DMD)

- Interference from background staining and endogenous fluorescence
- Non-linearity of staining response between DMD and healthy control
- Image analysis can introduce variability (uncertainty of edge detection)
- Limited batch size of current analysis methods increases variability
- Limitations in quality of DMD samples (due to disease or sample handling)

What can help?

- Subtract background signal, as appropriate
- Run isotype control to measure background membrane fluorescence
- Utilize calibrated reference standard within DMD range
- Evaluate use of other calibrators (e.g. beads or spotted fluors)
- Use C-terminal-directed antibodies that detect full-length dystrophin
- Do not normalize to other muscle protein in DMD sample
- Work with gain settings appropriate to DMD, not “control” dystrophin signal
- Review algorithm for edge detection and assess potential to introduce variability
- Do not scale results to healthy control

March 2015
Biopsy sample integrity can confound the measurement of dystrophin in DMD muscle biopsies

- Differences in dystrophin content between muscle groups
- Variability within a DMD muscle
- Differences in dystrophin content among fibers
- Impact of disease progression on immunostaining results
- Integrity of stored and shipped sample biopsies
Heterogeneity in Loss of Muscle Contractile Area in DMD Muscles Complicates Biopsy Interpretation

Biopsy is Invasive

Should you biopsy “representative” or “most normal” section?
Heterogeneity of dystrophin staining among muscle fibers is well documented.

A. Dystrophin (P7) staining distribution across different samples.

C. Analysis of dystrophin levels:

- Fibers
- Cumulative fibers

- Mean membrane dystrophin intensity per fiber (au)

References:

- Arechavala-Gomeza et al, Neuropath and App Neurobio, 2010
- Beekman et al, PLoS ONE, 2014
Dystrophin is not predictive of 6MWD

<table>
<thead>
<tr>
<th>Spectrin</th>
<th>Dystrophin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Patient A 6MWD = 474 m Age 10

Patient B 6MWD = 475 m Age 15

Patient C 6MWD = 292 m Age 12

Patient D 6MWD = 276 m Age 15

March 2015
Process challenges for determining dystrophin levels in a large, multi-site clinical study

What muscle to biopsy?
- High variability in size of sample
- Significant heterogeneity across entire muscle
- Should you biopsy “representative” or "most normal" section?
- Invasive procedure performed multiple times in a study

Sample processing and shipping can lead to poor sample orientation and freezing artifacts

Challenges in staining for low levels of dystrophin expression

Dystrophin quantification using dystrophic muscle adds complexity

Limited batch size of current methods
Tissue pathology and defects can introduce aberrant staining artifacts (observations in 2 clinical studies)

- “High fat and fibrotic tissue content and low muscle content or damage related to biopsy handling or shipping can prohibit immunofluorescence analysis” – Lourbakos, A., et al, WMS poster 2013

- “…the majority of muscle biopsy samples were compromised…, which confounded interpretation of the dystrophin expression results.” – Bushby et al, Muscle and Nerve, 2014.

- **Freezing artifacts, n (%)**
 - None = 74/342 (21.6)
 - Mild = 123/342 (36.0)
 - Severe = 145/342 (42.4)

- **Orientation, n (%)**
 - Cross = 206/342 (60.2)
 - Mixed = 135/342 (39.5)
 - Longitudinal = 1/342 (0.3)

- **Endomysial fibrosis with or without fatty replacement, n (%)**
 - Mild = 172/342 (50.3)
 - Moderate = 122/342 (35.7)
 - Severe = 48/342 (14.0)
Questions for Today

- What is the current status of assay validation and methodology for quantification of dystrophin in the context of drug development?

- Current methods for quantification of dystrophin have significant limitations in the ability to measure small differences in the dystrophin content of DMD muscle samples.

- The quality of biopsy samples due to sampling, handling and the extent of disease progression can negatively impact the interpretation of muscle biopsy dystrophin expression data in large clinical studies.

- What are the key opportunities and knowledge gaps in the field?
Conclusions – Methods and Sampling

- Potential good practices for Western blot:
 - Use a relevant standard curve
 - Avoid normalization to overloaded muscle proteins
 - Spike biopsies with detectable “processing and loading control”

- Potential good practices for Immunostaining:
 - Subtract background due to endogenous membrane fluorescence and non-specific antibody binding
 - Utilize calibrated reference standards within DMD range, NOT “healthy control”
 - Evaluate use of possible calibrators to determine linearity within relevant range
 - Utilize antibodies and fluorescence gain settings appropriate to DMD
 - Review algorithms used to detect edges and assess possible impact on results
 - Avoid normalization to other protein in DMD sample
 - Avoid fitting data to include “healthy control” results

- The quality of biopsy samples due to sampling, handling and the extent of disease progression can negatively impact the interpretation of muscle biopsy dystrophin expression data in large clinical studies