Rare Disease and Clinical Trials

Anne Pariser, M.D.
Office of Translational Sciences
Center for Drug Evaluation and Research
FDA
November 4, 2014
Outline

• Background
• Flexibility
  – Case examples
• General IND considerations
• Expanded Access
• Key points
• Additional Resources
Rare Diseases

• Rare disease aka “Orphan” disease defined as:
  “A disease or condition affecting less than 200,000 persons in the United States”\(^1\)
  - In reality though, most rare diseases are far less prevalent than this
  - Large public health concern
    • ~7,000 different diseases
    • affect ~25 million Americans

• Orphan Drug Act
  - Mainly provides incentives intended to make the development of drugs to treat small populations financially viable
  - Does not provide for separate regulatory standards for Orphan drugs
  - Intention: Patients with rare diseases are as entitled to safe and effective medications as those with common diseases

\(^1\)Orphan Drug Act Pub L 97-414, as amended 1984
Rare Diseases (R)Evolution

• Fastest growing area of drug development

Orphan Designations 1983-2014*

Please note: 2013-2014 <2-year increment, as of Sept 25, 2014

Orphan Drug Approvals 1983-2014*

Please note: different scales

Rare Diseases and New Drugs

- ~1/3 of new drugs at CDER each year are for rare diseases

Table 2: CDER New Molecular Entities/Original Biologic Approvals 2009-2013

Table 2: CDER New Molecular Entities/Original Biologic Approvals 2009-2013

<table>
<thead>
<tr>
<th>Calendar Year</th>
<th>Product Approvals</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>Rare: 30, Common: 10</td>
</tr>
<tr>
<td>2010</td>
<td>Rare: 15, Common: 15</td>
</tr>
<tr>
<td>2011</td>
<td>Rare: 25, Common: 15</td>
</tr>
<tr>
<td>2012</td>
<td>Rare: 45, Common: 15</td>
</tr>
<tr>
<td>2013</td>
<td>Rare: 30, Common: 15</td>
</tr>
</tbody>
</table>

Source, Drugs@fda
Rare Diseases: What is different

• Small populations, limited opportunity for study and replication in clinical trials
  – Few treating physicians, few treatment centers
• Highly heterogeneous collection of diseases
  – Within and between diseases
  – E.g., genetic disorders often characterized by wide range of severity, clinical presentation and rate of progression
• Diseases are poorly understood
  – Natural histories incompletely described
  – Diagnosis difficult
    • Often years between presentation and diagnosis
• Most are serious or life-threatening, most have unmet medical needs
  – Lack regulatory/drug development precedent
• Endpoints, outcome assessment tools often lacking
• Many affect pediatric patients
  – Additional ethical considerations and constraints
Rare Diseases: What is the same

- Best access for patients to an efficacious treatment is an approved drug
- Statutory standards for approval apply to all drugs – rare and common
  - Requires establishing a drug’s effectiveness by “substantial evidence”
- Substantial evidence defined as evidence from adequate and well-controlled (A&WC) trials:
  “on the basis of which it could fairly and responsibly be concluded that the drug will have the effect it purports to have under the conditions of use”
  - Generally, 2 A&WC trials (affirm and confirm)

4PHS Act 505(d)
Adequate and Well-controlled Trials

- A&WC = Trial has been designed well enough so as to be able “to distinguish the effect of a drug from other influences, such as spontaneous change..., placebo effect, or biased observation”\(^5\)
  - RCTs are the gold standard
  - Control can be concurrent or historical
    - Purpose of any control is to measure what *might* have happened without the intervention

\(^5\)Code of Federal Regulations, title 21, section 314.126, Adequate and well-controlled studies
Flexibility

• Statute allows for flexibility and exercise of scientific judgment in kinds and quantity of data required for a particular drug for an indication\textsuperscript{6}

\textsuperscript{6}21CFR §314.105 Approval of an application and an abbreviated application
## Flexibility: Rare vs. Common Diseases

### Table 2. CDER NME/NBE Approvals 2009-2013, Level of Evidence

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>Rare</th>
<th>Common</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approvals</td>
<td>159</td>
<td>52</td>
<td>107</td>
</tr>
<tr>
<td>&gt;2 A&amp;WC Trials</td>
<td>92 (58)</td>
<td>17 (33)</td>
<td>75 (70)</td>
</tr>
<tr>
<td>1 A&amp;WC Trial + Supporting Evidence</td>
<td>61 (38)</td>
<td>31 (60)</td>
<td>30 (28)</td>
</tr>
<tr>
<td>Other</td>
<td>6 (4)</td>
<td>4 (8)</td>
<td>2 (2)</td>
</tr>
</tbody>
</table>

NME = new molecular entity; NBE = original biologic (new biologic)
A&WC = adequate and well-controlled
159 approvals = 143 drugs for 159 drugs + indication (at time of initial approval, 3 drugs approved for 3 indications each, 10 drugs from 2 indications each)

7 Source, Drugs@fda

Flexibility - Approaches

• For example, a single study + supporting evidence, e.g.
  – multiple event measures, pharmacologic/pathophysiologic endpoints,
  – statistically persuasive findings
  – Extrapolation from existing studies
    • Commonly used in pediatrics (e.g., HIV drugs)
    • Bioequivalence
    • Different dosage forms or routes of administration
  – Studies in qualitatively similar populations, other phases of disease or closely related diseases
    • E.g., Commonly used in cancer: one study in refractory population, one to support earlier stage

• Described in Guidance:
  – Providing Clinical Evidence of Effectiveness in Human Drug and Biological Products

\(^9\)Guidance for Industry, Providing Clinical Evidence of Effectiveness for Human Drug and Biological Products. Available at:
Example #1: Elosulfase (Vimizim)

- **Elosulfase (Vimizim)**\(^{10}\)
  - Enzyme replacement therapy (ERT) for the treatment of Morquio Syndrome Type A (Mucopolysaccharidosis (MPS) IVA)

- **MPS IVA**
  - Rare autosomal recessive enzyme deficiency disorder (lysosomal storage disease (LSD)) results in accumulation of glycosaminoglycans (GAGs) throughout the body
  - Most commonly manifests in early childhood (~18 months of age) with growth deficiency, skeletal and joint development abnormalities, heart problems
    - Wide disease spectrum, attenuated forms may present as late as early adulthood
  - High morbidity, life-limiting, life expectancy 20s-30s years (attenuated forms may be to ~60s)
  - ~500-800 patients in the US (1 in 1-2 million live births)
  - Related disorders: MPS 1-VII

\(^{10}\)Source, Drugs@fda
Elosulfase Clinical Development

• Elosulfase first AP’d treatment for Morquio
  – 4th ERT approved for an MPS
    • MPS I (Hurler, Hurler-Scheie, Scheie syndromes) laronidase (Aldurazyme) AP’d 2003
    • MPS VI (Maroteaux-Lamy syndrome) galsufase (Naglazyme) AP’d 2005
    • MPS II (Hunter syndrome) idursulfase (Elaprase) AP’d 2006

• Clinical Program
  – Pivotal trial: 1 A&WC trial: R DB PC trial X 24 weeks, n=176 patients with MPS IVA, ages 5-57 years, randomized 1:1:1:1 elosulfase qWeek, qoW or PBO
    • Followed by open-label extension where all patients received elosulfase, n=173
  – Primary endpoint: 6MWT
  – Other endpoints: 3- minute stair climb, urinary GAG levels
  – Entire program= 6 clinical trials
    • 1 Phase 3, 1 Phase 1/2 (n=20)
    • 2 on-going extension trial
    • 2 ancillary Phase 2 trials (n~35)
Elosulfase Results

Treatment difference btw Elo qWeek and PBO at Week 24
--22.5 m (p = 0.0174)\(^\text{11}\)
Largest effect in patients who walked \leq 200 m at baseline

\(^{11}\text{Source: Johnson T, Clinical Review. BLA 125460, elosulfase alfa, available at “Drugs@FDA”}\)
Elosulfase: Key Points

- Disease reasonably well understood and characterized
  - Natural history data
  - Biochemical, pathophysiology described
  - Serious, life-threatening disorder with unmet medical needs
- Close and frequent communication with FDA review division during drug development
- Existing regulatory history from other MPS ERTs (and other LSDs)
  - Relied upon functional endpoints of six- or twelve minute walk tests (6MWT, 12MWT), stair climbs or pulmonary testing PFTs
  - Each relied upon 1 A&WC trial with supporting evidence, small pre-market populations
- Continued evaluation post-approval in a long-term registry
- Use of incentive and expedited programs
  - Orphan drug designation and exclusivity
  - Pediatric Rare Disease Priority Review Voucher
  - Fast Track, Priority Review
Example #2: Glucarpidase

- Indication: Treatment of toxic plasma methotrexate concentrations due to impaired renal function
- Full approval 2012
  - Pharmacodynamic endpoint
    - Proportion of subjects with elevated MTX level who achieved rapid and sustained clinically important reduction (RSCIR) in MTX level $\leq 1 \mu$mol/l
Glucarpidase (2)

- Evidence of effectiveness
  - Analysis of subset of patients (n=22) in an NCI-sponsored study who had evaluable MTX levels post-glucarpidase administration
  - NCI trial: prospective, OL, historically-controlled, non-randomized single-arm compassionate use trial in 184 patients with high-dose MTX-induced nephrotoxicity and delayed MTX excretion.
  - “not feasible to prospectively study glucarpidase in a randomized placebo controlled trial for this indication...emergency situation that occurs unpredictably”\(^\text{13}\)
  - 10/22 patients (45%) met criteria for RSCIR
  - All 22 patients >95% reduction in MTX for up to 8 days

\(^{13}\text{Dinndorf P, M.D., Clinical Review BLA 125327, available at Drugs@FDA}\)
Glucarpidase (3)

- **Historical Information**
  - MTX available since 1948
  - Used for higher-dose (e.g., leukemias, sarcomas) as well as lower-dose (e.g., RA) indications
  - Large and long-term clinical experience
    - Effects, mechanism of action, toxicity, excretion and metabolism well understood
    - Adverse effects of toxic MTX levels well understood
      - E.g., MTX excretion curve and correlation with increased risks of toxicity and MTX $C_{\text{max}}$ and AUC, and repeated confirmation
  - “Given the extensive data... the (MTX) excretion curves are well-characterized and can be used as an historical control against which the results of this trial can be assessed for efficacy and is sufficient to provide a clear assessment of the treatment effect”\(^\text{14}\)

\(^{14}\)Keegan P, M.D., Summary Review BLA 125327, available at Drugs@FDA
Glucarpidase Key Points

- Open-label single-arm historically controlled study design supported by body of existing, good quality information
  - Condition well-understood and well-characterized
  - Used all available information in study design and assessment of results
  - Well-characterized endpoint
  - Results self-evidence and persuasive
- Close communication during drug development
- Use of incentive and expedited programs
  - Orphan drug, priority review, Fast Track
A Few Words on IND Studies

• Study designs expected to vary widely depending on many factors
  – E.g., novelty of drug, previous experience, developmental phase, etc.

• Initial IND, generally will contain, at minimum\textsuperscript{15}
  – Animal pharmacology and toxicology studies
  – Manufacturing information
  – Clinical protocols and investigator information adequate for phase of investigation

• Please note, same ethical and safety standards apply to rare and common disease drug IND applications

\textsuperscript{15}21CFR 312.23 IND Content and Format
IND Studies: General Approach

• As with all IND trials, medical research in rare diseases must conform to generally accepted scientific principles
  – i.e., Good Clinical Practice\textsuperscript{16}

• Generally states:
  – Results must be credible and accurate
  – Rights, safety and well-being of subjects protected
  – Based on through understanding of scientific information from all relevant sources
  – Design and conduct of each study must be clearly described in the submission
    • E.g., detailed protocol
  – Before trial is initiated, a careful assessment of foreseeable risks to subjects should be weighed against anticipated benefits for subjects
  – And more...

IND Studies: General Approach (2)

- Careful planning even more important for rare diseases than common diseases.
- General plan:
  1. Understand the disease (e.g., disease natural history)
  2. Understand the target/intervention and expected outcomes
     -- Assays, tests, biomarkers
  3. Develop clinical outcome assessment tools
     -- Can pilot in, for example, natural history trials
  4. Plan/conduct IND-enabling studies in a timely manner (e.g., animal toxicology)
  5. Use all available information (e.g., related diseases, prior studies)
  6. Use 1→5 to define efficacy and safety (i.e., design and conduct pivotal trial(s))
  7. Feedback loops: additional study in post-marketing period, e.g., registries
IND Studies: Common Concerns

• Clinical plan should be supported by information in the IND submission.

• Clinical Hold issues:
  – Early/Pre-IND Phase
    • Usually safety related
    • Hold criteria – two most common\textsuperscript{17}
      – Subjects would be exposed to an unreasonable and significant risk of illness or injury
      – Insufficient information to assess risks to subjects
  – Later phase - hold criteria
    • Safety concerns (as above), and
    • Plan/protocol for the investigation is clearly deficient in design to meet its stated objectives

\textsuperscript{17}\textsection 312.42 Clinical holds and requests for modification
A Few Words on Expanded Access (EA)\textsuperscript{18}

- Aka “compassionate use”
  - Purpose:
    - Provide access to investigational drugs outside of a clinical trial
    - Patients with serious or life-threatening conditions
    - No comparable or satisfactory alternative treatment options
    - Enables these patients to access products that are still in development for treatment purposes
  - Includes
    - Emergency INDs (E-IND)
    - Single-patient investigational new drug applications (IND)
    - Small or medium-sized group INDs
    - Treatment INDs

\textsuperscript{18} Guidance for Industry, Expanded access to investigational drugs for treatment use -- Qs & As
Expanded Access (2)\textsuperscript{19}

- Intended to provide access to investigational drugs to patients with serious or life-threatening conditions with no satisfactory alternatives
  - EA INDs \textbf{NOT} likely to describe effectiveness
  - EA INDs \textbf{NOT} likely to provide evidence for marketing applications

- EA use \textbf{cannot} “\textit{interfere with}” the initiation, conduct or completion of clinical investigations that could support marketing approval... or otherwise compromise the potential development” of the product

- \textbf{Manufacturer must be willing to supply the drug}
  - Contact the manufacturer prior to contacting FDA
  - FDA \textbf{cannot} compel the manufacturer to supply the drug

\textsuperscript{19}Physician request for an individual patients IND under Expanded Access for Non-emergency or emergency use, available at: http://www.fda.gov/Drugs/DevelopmentApprovalProcess/HowDrugsareDevelopedandApproved/ApprovalApplications/InvestigationalNewDrugINDApplication/ucm107434.htm
Key Point #1

- Best access for patients to effective, safe, quality products is through approved drugs
  - Investigational agents do not yet have safety and effectiveness described
  - Demonstrate evidence through well-designed appropriate clinical trials
  - Ideally, clinical investigations proceed in a stepwise manner toward defining benefit-risk
Key Point #2

- For rare diseases (and many serious or life-threatening conditions)
  - Opportunity for study and replication will be limited
  - “Getting it right” from the start is critical
  - Careful planning, frequent and quality communication (especially early communication) between FDA and drug developer is strongly recommended
    - Take advantage of all opportunities for formal meetings\(^{20}\)
      - come in early, come in often

Key Point #3

• IND-enabling and foundational science (e.g., translational research, disease natural history)
  – Critical to designing, initiating and conducting successful clinical trials
  – Proposed clinical plan needs to be supported by information in the IND submission
Key Point #4 – Incentives

• Orphan Drug Act
  – Provides incentives intended to make the development of drugs to treat small populations financially viable
    • Waiver of PDUFA fees (~$2 million)
  – Does not define standard for approval; does not define lower or different standards for development nor approval for orphan drugs
  – Orphan drug designation
    • Separate process and considerations from IND/NDA submissions
    • Need to specifically apply for Orphan Designation prior to NDA filing

• For more information, please contact the Office of Orphan Products Development

http://www.fda.gov/ForIndustry/DevelopingProductsforRareDiseasesConditions/default.htm
Additional Resources

• FDA CDER Office of New Drugs, Rare Diseases Program
  http://www.fda.gov/AboutFDA/CentersOffices/OfficeofMedicalProductsandTobacco/CDER/ucm221248.htm

• Expedited Programs for Serious Diseases
  - Fast track, Breakthrough, Priority Review designations and Accelerated Approval pathway
  - Guidance available at: