Financial Disclosure

I have no financial interests or relationships to disclose.

Web versus Paper Ophthalmic PRO Assessments Susan Vitale, PhD, MHS Division of Epidemiology and Clinical Applications National Eye Institute, NIH

October 19, 2014

Patient-reported outcomes (PROs)

Increasingly important in clinical studies Assessment of safety Support of specific medical claims

Modes of administration Paper Electronic

Potential advantage of electronic PROs for conditions affecting vision

Images of visual aberrations

Adjusting display and formatting

Pilot FDA/NEI Collaborative Study

Why?

Decrease resources (time, \$) associated with administration of PRO instruments and

Facilitate use in device trials

Existing QoL instruments used NEI-VFQ Driving **OSDI** Symptoms **NEI-RECQ** Near vision, Far vision, Glare, Clarity of vision, Symptoms, Worry, Satisfaction with correction

Study description

Web vs paper administration

Identical questions, same order

Participants completed both versions

Randomized crossover design

Subjects randomized to

Paper first, Web second (P1) or to Web first, Paper second (P2)

Bland-Altman approach

Participant	Paper score	Electronic score	Difference
1	P1	E1	(P1-E1) = D1
2	P2	E2	$(P_{2}-E_{2}) = D_{2}$
:	:	:	:
n	Pn	En	(Pn-En) = Dn
	Mean P	Mean E	Mean D

Bias

Multivariable logistic regression models

Outcome: **Close agreement** (difference between paper and web is <10% of paper score)

 $\frac{(Paper - web)}{Paper} \le 10\%$

Participants OSD patients (n=68) Schirmer 1 ≤ 10

or TBUT ≤ 10

Controls (n=50) Sex-matched

Age >=18 y, near VA 20/40 or better

Study population

Study population

Cases were significantly older than controls

Comparing subscale scores

RQL Clarity RQL Near **RQL** Far **RQL** Glare **RQL Sympt RQL Worry RQL Satisf. VFQ Driving OSDI Sympt**

Comparing agreement between subgroups

Subscale	Age ≥40 vs <40 yrs	Male vs female sex	OSD vs controls	Paper 1 st vs web 1st
Clarity	0.22	0.03	0.006	0.89
Near Vision	0.49	0.94	0.35	0.58
Far Vision	0.47	0.44	0.49	0.26
Glare	0.29	0.48	0.70	0.20
Symptoms	0.05	0.09	0.78	0.11
Worry	0.14	0.62	0.26	0.54
Satisfaction	0.78	0.89	0.73	0.49
Driving	0.20	0.04	0.37	0.49
OSDI	0.04	0.72	0.56	0.98

P values testing whether bias differed between groups

Prediction of close agreement - associations with age > 40

RQL Clarity RQL Near RQL Far RQL Glare **RQL** Sympt RQL Worry **RQL** Satisf VFQ Driving OSDI Sympt 0.1 0.01 10

Multivariable-adjusted analyses

Prediction of close agreement - associations with OSD (vs control)

RQL Clarity RQL Near RQL Far RQL Glare **RQL** Sympt RQL Worry **RQL** Satisf VFQ Driving OSDI Sympt

0.01

Multivariable-adjusted analyses

Prediction of close agreement - associations with sex (male vs female)

RQL Clarity RQL Near RQL Far RQL Glare **RQL** Sympt RQL Worry **RQL** Satisf VFQ Driving OSDI Sympt

0.01

Multivariable-adjusted analyses

Conclusion

No evidence that agreement was affected by sex

Less agreement if over age 40 (RQL Far Vision) or if had OSD (RQL Clarity of Vision) – but trends were not consistent over other subscales

Conclusion

Average score differences between paper and web versions were **between 0.2 and 2.3 points** – not clinically significant

No evidence of clinically significant difference between paper and web scores for any subscales examined

Summary

One of the first to compare web-based and paper-based versions of previously psychometrically evaluated questionnaires used in ophthalmology

Summary

Validates computer administration of ophthalmic PRO instruments

Adds to the body of knowledge in the field of PROs

Reference

Clayton JA et al. Web-based versus paper administration of common ophthalmic questionnaires: comparison of subscale scores. *Ophthalmology* **2013**:120:2151-2159