Congenital heart disease and rapid cardiac prototyping

Laura Olivieri, MD
Assistant Professor Pediatrics, The George Washington School of Medicine
Pediatric Echo, Cardiac MR and Cardiac CT
Director, Cardiac 3D Printing Group
Children’s National Health System
Sheik Zayed Institute for Surgical Innovation
Objectives

• Review literature on 3D cardiac printing
• Describe 3D printing workflow
• Discuss clinical applications
Rapid Prototyping: A New Tool in Understanding and Treating Structural Heart Disease

Michael S. Kim, Adam R. Hansgen, Onno Wink, Robert A. Quaife and John D. Carroll

Circulation. 2008;117:2388-2394
doi: 10.1161/CIRCULATIONAHA.107.740977

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2008 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322, Online ISSN: 1524-4539
To help solve challenging cardiac problems, doctors at Children’s press ‘print’

3-D printer saves toddler struggling to breathe
Scope of the clinical problem

- Congenital heart defects most common human birth defect; 1-2% population; Common
- Wide variety of defects with wide range of severity
- Clinical decisions largely made based on appearance of heart on imaging Structural information necessary
- Care of the patient with congenital heart disease involves Individualized, specialized care
 - Exquisite 3D cardiac imaging
 - Frequently require a procedure to perform repair/palliation
 - Expert post-operative cardiac intensive care unit care
Rapid Cardiac Prototyping - 2014

• 3D printers more accurate, affordable
• 3D segmentation software allows for complex segmentation shapes
• High-quality Pediatric cardiac 3D imaging
 – Cardiac CT
 – Cardiac MRI
 – 3D Echocardiogram
3D segmentation (CT)
3D segmentation (MRI)
3D Echo
3D segmentation (echo)
Clinical Impact
Case 1

- D-TGA S/P Mustard
- Pulmonary venous baffle obstruction
Letter to the Editor

3D heart model guides complex stent angioplasty of pulmonary venous baffle obstruction in a Mustard repair of D-TGA

Laura Olivieri, Axel Krieger, Marcus Y. Chen, Peter Kim, Joshua P. Kanter

Children’s National Medical Center, Division of Cardiology, 111 Michigan Avenue NW, Suite HS-106, Washington, DC 20010, USA

Children’s National Medical Center, Children’s National Medical Research Institute, 111 Michigan Avenue NW, Room M272, Washington, DC 20010, USA

National Institutes of Health, National Heart, Lung and Blood Institute, Advanced Cardiovascular Imaging Laboratory, Building 10, Room 4S30, Bethesda, MD 20892, United States
Case 2

- Post-myocardial infarction ventricular septal defect
- Severe congestive heart failure
Case 4

• Cc-TGA with pulmonary stenosis S/P double switch
• Severe systemic venous baffle obstruction
Case 3
Case 4: 3D Printed Model for Guiding Conjoined Twin Separation Surgery

It takes a village...

Clinical Team:
- Pranava Sinha, MD,
- Michael Boyajian, MD,
- Dorothy Bulas, MD,

Clinical Team (continued):
- Albert Oh, MD,
- Andrea Badillo, MD,
- Mary Donofrio, MD,
- Anthony Sandler, MD

Segmentation Team:
- Laura Olivieri, MD,
- Yue-Hin Loke, MD,
- John P Costello, MD,
- Emmarie Myers, BS,
- Nabile Safdar, MD

3D printing/engineering Team:
- Carolyn T Cochenour, BBME,
- Axel Krieger, PhD
Education

• Education of clinicians indirectly impacts care of patients
• Patient-specific team simulation/education
• Pediatric resident education series on VSD, Tetralogy of Fallot
Acknowledgements

3D Cardiac Printing Group
Laura Olivieri
Axel Krieger

Dilip Nath
Peter Kim
Craig Sable
Justin Opfermann
Carolyn Cochenour
Yue-Hin Loke
Fahad Alvares
Case 3

- Double outlet right ventricle with anterior and leftward aorta, bilateral conus
- Two well-formed ventricles
- Single v vs. switch and VSD closure?
Anterior Surface