Arsenal Trauma Foam System

Overview for FDA workshop

September 3, 2014
Arsenal Medical

- Medical device start-up company located in Boston metro area
- Focused on coupling conventional biomaterials with innovative engineering
- R&D Team
 - 22 scientists and engineers; 7 PhD’s
 - Chemistry, biology, materials science
 - Mechanical, chemical, and biomedical engineering
 - In house quality assurance and histology capabilities
Product Requirements

- Achieve hemostasis quickly
- Maintain hemostasis for 3 hours
- Administered by an advanced medic
- Simple to use, without requiring identification or direct access to wounds
- Easy removal at time of surgery
- Compatible with field use (compact, extreme temperatures)
Arsenal’s Device: A Treatment for Non-Compressible, Abdominal Hemorrhage

- Two part liquid injected into body; chemical reaction in the body generates a solid, conformal device
- Device delivered using standard, laparoscopic access
- Provides intra-abdominal compression
- Removed at definitive surgery
Delivery System Design

- **Cartridge**: Contains polyol and isocyanate phases.
- **Nozzle**: Mixes liquid phases & disperses into abdomen.
- **Aeration Mechanism**: With ready indicator.
- **Friction Drive & Piston Rods**: Dispense in <30 sec.
- **Pistol Grip**: Allows one handed operation; Detachable.
Intended Use

- Emergent control of exsanguinating intraabdominal hemorrhage (Class III or IV hemorrhagic shock)

- Bridge to definitive surgical care – temporary internal use

- Military and civilian use by EMT-P level or higher
 - Personnel must be trained & certified in device use by Arsenal
Summary of Performance Testing

- Bench: Qualified test methods to characterize material and delivery system → over 2300 deployments
- Swine: Established safety and effectiveness based on work in 600+ swine
- Recently deceased study: Evaluation of human dose
Overview of Animal Testing

Formulation Selection
- Swine
- 16 formulations evaluated
- \(n = 58 \)

Lethal liver injury
- Swine
- Venous bleeding
 - 3 Hours
 - \(n = 431 \)

Lethal iliac injury
- Swine
- Arterial bleeding
 - 3 Hours
 - \(n = 39 \)

Non-lethal spleen injury
- Swine
- Survival study
 - 28 & 90 days
 - \(n = 27 \)

ISO-10993 testing used to establish biocompatibility
Summary of Swine Studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Key Findings</th>
</tr>
</thead>
</table>
| **Liver Injury** | • Range of doses tested demonstrating significant survival benefit and reduction in hemorrhage rate relative to control
 • Survival benefit improved with increasing dose
 • Similar level of organ contact observed with all doses |
| **Iliac Artery Injury**| • Foam resulted in a significant survival benefit and reduction in hemorrhage rate relative to control |
| **Spleen Injury Survival** | • Demonstrated long-term viability of foam treatment |

Duggan et al., J. Trauma, 2013
Duggan et al, JSR, 2013
Duggan et al, JSR, 2013
Peev et al., J. Trauma, 2014
Rago et al, J. Trauma, 2014
Rago et al., J. Trauma, 2014
Duggan et al, JSR, 2014

Additional discussion of swine studies in tomorrow’s session
Recently Deceased Study (RDS) in Humans

<table>
<thead>
<tr>
<th>Objective</th>
<th>Confirm appropriate human dose in recently deceased subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study Population</td>
<td>Subjects within three hours of death</td>
</tr>
<tr>
<td></td>
<td>Minimize any post-mortem changes in tissue compliance</td>
</tr>
<tr>
<td>Sites</td>
<td>Massachusetts General Hospital</td>
</tr>
<tr>
<td></td>
<td>University of Texas Health Science Center – Houston</td>
</tr>
<tr>
<td></td>
<td>Oregon Health and Science University</td>
</tr>
<tr>
<td>Outcome</td>
<td>Foam performance as compared to swine results</td>
</tr>
</tbody>
</table>

Additional discussion of RDS in tomorrow’s session
Arsenal Trauma Foam is Moderate Risk

- Patients will die without immediate control of bleeding
 - Lack of alternative treatments for intra-abdominal hemorrhage
 - Surgical control not immediately available
- Probable benefit outweighs probable risk for its intended use
 - Pre-clinical data will be used to demonstrate safety and effectiveness
- Device design for simple application by trained personnel

Post-market surveillance planned
Regulatory Pathways Considered

<table>
<thead>
<tr>
<th>Pathway</th>
<th>Risk</th>
<th>Arsenal Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>510(k)</td>
<td>Low/Moderate (Class 2)</td>
<td>Requires substantially equivalent legally marketed device</td>
</tr>
</tbody>
</table>
Regulatory Pathways Considered

<table>
<thead>
<tr>
<th>Pathway</th>
<th>Risk</th>
<th>Arsenal Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>510(k)</td>
<td>Low/Moderate (Class 2)</td>
<td>Requires substantially equivalent legally marketed device</td>
</tr>
</tbody>
</table>
| De novo 510(k)| Low/Moderate (Class 2) | Special controls can be written to provide a reasonable assurance of safety and effectiveness – **PROPOSED PATHWAY**
 - Least burdensome approach
Regulatory Pathways Considered

<table>
<thead>
<tr>
<th>Pathway</th>
<th>Risk</th>
<th>Arsenal Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>510(k)</td>
<td>Low/Moderate (Class 2)</td>
<td>Requires substantially equivalent legally marketed device</td>
</tr>
</tbody>
</table>
| **De novo 510(k)** | Low/Moderate (Class 2)| Special controls can be written to provide a reasonable assurance of safety and effectiveness – **PROPOSED PATHWAY**
 • Least burdensome approach |
| Expedited access PMA | High (Class 3) | • Likely requires pre-market clinical study
 • Longer review times likely for Class 3 device
 • Guidance document established 4 months ago; no experience with pathway
 • Requirement of FDA review for post-market manufacturing changes ➔ burdensome for low volume products
 • **NOT the least burdensome approach** |
De Novo 510(k) Proposed Special Controls

<table>
<thead>
<tr>
<th>Key Risks</th>
<th>Mitigations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient diagnosis</td>
<td>• Indication to ensure only high risk patients receive treatment</td>
</tr>
<tr>
<td></td>
<td>• Robust training and certification program</td>
</tr>
<tr>
<td>Safety & efficacy</td>
<td>• Two acute lethal, large animal models (arterial and venous injuries)</td>
</tr>
<tr>
<td></td>
<td>• One survival, large animal model</td>
</tr>
<tr>
<td></td>
<td>• Conformity to ISO-10993</td>
</tr>
<tr>
<td>Dose translation</td>
<td>• Recently deceased study to translate swine dose to human dose</td>
</tr>
<tr>
<td>Product reliability</td>
<td>• Bench and analytical testing to confirm product specifications and</td>
</tr>
<tr>
<td></td>
<td>performance (delivery system and formulation)</td>
</tr>
<tr>
<td>Device usability</td>
<td>• IFU / labeling</td>
</tr>
<tr>
<td></td>
<td>• Usability testing</td>
</tr>
<tr>
<td>Safety monitoring</td>
<td>• Post-market surveillance including medical device reporting and</td>
</tr>
<tr>
<td></td>
<td>registration on clinicaltrials.gov</td>
</tr>
</tbody>
</table>

Proposed special controls provide reasonable assurance of safety and efficacy
<table>
<thead>
<tr>
<th></th>
<th>Pre-market IDE</th>
<th>Post-market</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study population</td>
<td>Research based, narrowly defined eligibility criteria</td>
<td>Observational or registry based study, more consistent with trauma population</td>
</tr>
<tr>
<td>Endpoint</td>
<td>Primary endpoint with statistical power</td>
<td>Observational study – statistically powered endpoint not required</td>
</tr>
<tr>
<td>Time to first patient</td>
<td>+6 months</td>
<td></td>
</tr>
<tr>
<td>Time to full launch</td>
<td>+2 years</td>
<td></td>
</tr>
<tr>
<td>Protocol Flexibility</td>
<td>Protocol modifications require FDA review/IDE supplement & IRB
<i>Protocol Change = 90 - 120 Days</i></td>
<td>Generalized “open ended” protocol could enable changes to be made without FDA involvement or IRB changes
<i>Protocol Change = 0 Days</i></td>
</tr>
</tbody>
</table>
Summary

- Reasonable assurance of safety and effectiveness based on work in 600+ swine and RDS study
 - Performance in two large animal models of lethal hemorrhage and one survival model; confirmed biocompatibility
 - Groundbreaking study for human dose translation in recently deceased subjects
 - Six peer reviewed publications and eight presentations at national meetings
- Ongoing development of robust training/certification plan
- Post-market surveillance planned
- Proposed regulatory pathway: *De novo* 510(k)
Arsenal Trauma Foam System

Overview for FDA workshop

September 3, 2014
Statistics on Medical Device Development

Survey conducted of 204 companies developing “innovative new technologies” (20% of total number of companies in this space)

<table>
<thead>
<tr>
<th>Pathway</th>
<th>Average time to clearance</th>
<th>Average cost to clearance / approval</th>
</tr>
</thead>
<tbody>
<tr>
<td>510K</td>
<td>10 months from first filing</td>
<td>$31M</td>
</tr>
<tr>
<td>510K + clinical trial</td>
<td>31 months from first communication</td>
<td>$31M</td>
</tr>
<tr>
<td>PMA</td>
<td>54 months from first communication</td>
<td>$94M</td>
</tr>
</tbody>
</table>

Proposed Post-Market Plan

Initial human experience – Level 1 trauma
- Post-market observational study
- Training and certification
- Executive committee review
- ~20 cases across sites
- Commercial distribution - SOCOM only

Expanded human experience
- Post-market observational study
- Training and certification
- Executive committee review
- ~20 additional cases

Full commercial launch
- Training and certification
- Ongoing data registry

Controlled post-market study to confirm labeling and gather data to drive market adoption

September 3, 2014