Challenges in Non-Clinical Testing of Hemostatic Medical Devices for Trauma Use

Charles N. Durfor, Ph.D.
FDA/CDRH/ODE/DSD
(301) 796-6970
Various Compositions of Hemostatic Devices

- Animal Tissue (e.g., Collagen, Gelatin, Chitosan, Thrombin)
- Derived from Plants (e.g., Alginate)
- Mineral-Based (e.g., Kaolin, Zeolite)
- Synthetics (e.g., Polyester, Carboxymethylcellulose)
Issues with Animal Source Material

- Sourcing Issues
 - Animal Husbandry
 - Control of Tissue Collection
 - Manufacturing Controls for Animal Tissue Components
 - Sterilization (and Virus Validation Studies)

Medical Devices Containing Materials Derived from Animal Sources (Except for In Vitro Diagnostic Devices) (Draft)
http://www.fda.gov/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm381379.htm
Considerations for Non-Clinical Testing

For Potential Battlefield Products

– Consider Environmental Conditions
 . Temperature
 . Altitude
 . Humidity
 . Robustness of Packaging

– Consider the User
 . Labeling revisions based on bench/animal experience

- Series of standardized tests
- Dependent on:
 - Time of contact
 - Type of contact
- Works for many, but not all biomaterials

Points of Interest (pp. 9 – 13)

- Final Product or Representative Sample?
- *In Situ* Polymerizing Material
- Bioabsorbable Material
- Biological Response Resulting from Device Mechanical Failure
- Submicron or Nanotechnology Components
- Multiple components or materials in a single sample

- Sources of Information
 - In-house studies
 - Master Files from Raw Material Suppliers
 - Published Literature
 - Others? (e.g., MSDS)
Situations where Standard Biocompatibility Tests may be less than optimal

• **Final Product or Representative Sample?**
 - Animal Tissue / Scaffold construct
 - Sealant / Patch – Crosslinked *in situ*
 - Surgical Instrument Models for TSE

 “Certain instrument features are particularly difficult to clean – hinges, mated surfaces and lumens. Many TSE investigators are now using small (5 mm) stainless steel wires coated with inoculum in their studies of TSE transmissibility. The material is a suitable stand-in for many instruments.”

(page 7 – FDA Briefing Material 9/27/05 – Panel Mtg.)
Situations where Standard Biocompatibility Tests may be less than optimal

- *In Situ* Polymerizing and Bioabsorbable Materials
 - Consider the Reagents
 - Consider the Reaction
 - Consider the Final Product
 - Consider the Decomposition Products
 - Kinetics of Resorption
Situations where Standard Biocompatibility Tests may be less than optimal

Submicron or Nanotechnology Components

- Unique properties of submicron / nanotechnology components, (e.g., large surface area / particle, aggregation, agglomeration, immunogenicity, toxicity (altered release kinetics?)

- Rationally designed features that modify host cell response.
Situations where Standard Biocompatibility Tests may be less than optimal

Submicron or Nanotechnology Components

Consider:

– Careful characterization of the test sample and extract conditions (e.g., solvent type) to avoid non-clinically relevant testing artifacts

– Assure that the test article is representative of the clinical product
Resources

Device Search Engines
PMA/510k/MAUDE
http://www.fda.gov/cdrh/databases.html

CDRH - Guidance Database Search Engine
http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/default.htm

Medical Devices Containing Materials Derived from Animal Sources (Except for In Vitro Diagnostic Devices) (Draft)
http://www.fda.gov/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm381379.htm