Welcome and Overview of the Current FDA Approach to Thrombogenicity Evaluation

Jennifer Goode, BS, Biomedical Engineer
FDA Office of Device Evaluation
Division of Cardiovascular Devices

April 14, 2014 FDA Workshop
Methods for Thrombogenicity Testing of Medical Devices
Workshop Organizing Committee:

Program Committee:

- Kenneth Cavanaugh, PhD\(^b\)
 (kenneth.cavanaugh@fda.hhs.gov)
- Rakhi Dalal, PhD
- Judy Davis, DVM
- Tanya Farooque, PhD
- Xin Fu, PhD, DABT
- Jennifer Goode\(^b\)
 (jennifer.goode@fda.hhs.gov)
- Molly Ghosh, PhD, DABT
- Victoria Hampshire, VMD
- Michael John, MS
- Anchal Kaushiva, MS\(^a\)
- James Kleinedler, PhD\(^a,b\)
 (james.kleinedler@fda.hhs.gov)

Program Committee (cont):

- Qijin Lu, PhD
- Richard Malinauskas, PhD
- Karen Manhart-Byrnes, VMD, ANP, DACVP
- Steven Wood, PhD

Logistics:

- Susan Monahan
- Joyce Raines
- Anchal Kaushiva
- Jim Kleinedler

Special thanks to Erica Takai and Donna Lochner

\(^a\) meeting coordinators \(^b\) moderators
Workshop Logistics:

Format:

- Presentations (scientific presentations & homework survey results)
- Moderated discussion with lead discussants
 - Limited audience participation as time permits
 - Strict time limits for discussions

Ground Rules:

- Tent cards upright to comment
- State your name each time before you comment

Other:

- Box lunches, snacks and drinks are available for purchase in the lobby
- Visitors can only access Building 31 (workshop site)
Clinical concerns - Thrombogenicity:

• **Thrombosis deposition**: can lead to device malfunction.

• **Thromboembolism**: can lead to severe adverse events such as ischemic stroke, myocardial infarction or pulmonary embolism.

• **Bleeding**: (due to increased anticoagulation and/or antiplatelet therapy) can lead to hemorrhagic stroke.
Preclinical thrombogenicity assessments prior to human use:

- FDA relies on *in vivo* studies for many:
 - Implant devices where thrombogenicity evaluations are included in anticoagulated large animal studies which are conducted to assess safety and possible effectiveness
Preclinical thrombogenicity assessments prior to human use (cont.):

- FDA relies on \textit{in vivo} studies for many:
 - Catheter-based devices (minutes to hours) where a 4-hour canine non-anticoagulated venous implant (NAVI) model* is often requested to assess potential for material-mediated and geometry-mediated thrombus formation.
 - Indwelling catheters (long-term/repeat use) where thrombogenicity evaluations are included in anticoagulated \textit{in vivo} studies.

*validity of model and interpretability of data are often questioned
Device-specific thrombogenicity evaluations:

- **Catheters:**
 - Interventional catheters (10min-several hours): 4 hour canine NAVI study
 - Indwelling catheters (multi-day use): 30 day anticoagulated animal study with platelet activation and leukocyte information

- **Stents/Grafts:**
 - Thrombogenicity assessments included in anticoagulated large animal studies
Device-specific thrombogenicity evaluations:

- **Ventricular Assist Devices:**
 - Thrombogenicity assessments included in anticoagulated large animal studies

- **Bypass circuit components:**
 - CPBP: mechanical hemolysis, panel of *in vitro* coagulation assays
 - Hemodialysis/hemoperfusion: mechanical hemolysis, panel of *in vitro* coagulation assays (new materials: clinical thrombus assessments and complement activation)
Where the 4 hr canine NAVI study has been informative:

NAVI = non-anticoagulated venous implant

- Catheter geometries that can result in niduses for thrombus formation:
 - Gaps between shaft/balloon/markers;
 - Side port holes;
 - Stent securement components.
- Relative effectiveness of coatings designed to improve “hemocompatibility”
- Problems with molds that result in non-smooth surfaces
Concerns w/4 hr canine NAVI study:

NAVI = non-anticoagulated venous implant

• Clinical relevance of:
 – Canine implant model
 – Venous implant location: Worst case? (use in both venous and arterial vessels)
 – Unheparinized animals: Worst case? (use in both heparinized and unheparinized patients)
 – 4 hour assessment (device use time and time-dependent nature of thrombus generation and resolution)
 – Impact of vessel:device diameter ratio on study findings
 – Impact of surgical technique on study findings
 – Nonstandardized scales (thrombosis) used across test labs

• How to assess clinical relevance of adverse study findings?
Workshop Objectives:

• Discuss the advantages, limitations and potential for optimization of *in vitro* and *in vivo* thrombogenicity tests used for regulatory submissions.
• Discuss strategies to optimize the design of a short term *in vivo* thrombogenicity model.
• Identify alternative *in vitro* data that can provide equivalent or improved insight into the potential for clinical thrombogenicity while minimizing expenses and animal use.
Workshop topics will include:

1. Strengths, weaknesses, and optimization of *in vivo* thrombogenicity test methods;
2. Current methodologies for conducting *in vitro* thrombogenicity testing (e.g., blood conditions, static versus dynamic methods, and different test endpoints);
3. Correlation between *in vitro/in vivo* thrombogenicity test results and clinical outcomes;
4. Special testing considerations for catheters, stents, grafts, ventricular assist devices, and bypass circuit components
Considerations for discussion:

• How might the following impact data expectations for FDA clinical trial or marketing submissions:
 – New materials or geometry of final device
 – Material changes after marketing
 – Geometry changes after marketing

• How should time-dependent factors be implemented in dynamic studies (in vitro/in vivo)?

• What research and/or methods standardization are needed to improve regulatory assessments?