Hypotony as an Adverse Outcome of Minimally Invasive Glaucoma Surgery

Gregory L. Skuta, MD
President and CEO
E. L. Gaylord Professor and Chair
Dean McGee Eye Institute
University of Oklahoma
Disclosure Statement

- Dr. Skuta serves on the Claims Committee and the Finance Committee of the Ophthalmic Mutual Insurance Company (OMIC).
- He has no other financial disclosures.
- He has served as an investigator for the Collaborative Normal Tension Glaucoma Study, the Advanced Glaucoma Intervention Study, the Collaborative Initial Glaucoma Treatment Study, and the Tube versus Trabeculectomy Study.
- He also has served on the Data and Safety Monitoring Committee for the Ocular Hypertension Treatment Study.
Definition of Hypotony

- Some would define hypotony as intraocular pressure (IOP) below set level (e.g., < 6 mmHg).
- In two textbooks, Pederson defined “statistical hypotony” as IOP < 6.5 mmHg (more than 3 standard deviations below mean).
- Others, including Pederson, would define “clinically significant hypotony” as IOP below which eye does not function normally.
- Fannin, Schiffman, and Budenz (Ophthalmology, 2003) defined hypotony as IOP ≤ 5 mmHg.
- Tube versus Trabeculectomy (TVT) Study: IOP ≤ 5 mmHg on two consecutive visits after 3 months.
Manifestations of Hypotony

- Corneal folds, edema, and astigmatism
- Shallow or flat anterior chamber
- Peripheral anterior synechiae
- Cataract
- Choroidal effusion and suprachoroidal hemorrhage
- Hypotony maculopathy:
 - Decreased visual acuity
 - Optic nerve and retinal edema/cystoid macular edema
 - Macular folds
- Some eyes with “statistical hypotony” experience none of the above
- Some eyes without “statistical hypotony” experience some or all of the above
Courtesy of Paul Palmberg, MD, PhD
Risk Factors for Hypotony Maculopathy

- 228 eyes of 228 patients from BPEI with hypotony
- 81 eyes with hypotony maculopathy; 147 control eyes with hypotony alone
- Risk factors for hypotony maculopathy: young age, male gender, and myopia
- History of diabetes and choroidal effusion were associated with decreased risk for hypotony maculopathy

Fannin, Schiffman, Budenz, Ophthalmology, 2003
Risk Factors for Hypotony Maculopathy

<table>
<thead>
<tr>
<th></th>
<th>Hyp/Mac</th>
<th>Hyp</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>81</td>
<td>147</td>
<td></td>
</tr>
<tr>
<td>Mean age (y)</td>
<td>50.5</td>
<td>70.6</td>
<td><0.001</td>
</tr>
<tr>
<td>Male</td>
<td>54.3%</td>
<td>33.6%</td>
<td>0.004</td>
</tr>
<tr>
<td>Ref error (D)</td>
<td>-3.02</td>
<td>-0.61</td>
<td>0.003</td>
</tr>
<tr>
<td>Choroidals</td>
<td>21%</td>
<td>52.4%</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Fannin et al, Ophthalmology, 2003
TREATMENT OUTCOMES IN THE TUBE VERSUS TRABECULECTOMY (TVT) STUDY AFTER FIVE YEARS OF FOLLOW-UP

Steven J. Gedde, M.D.
Bascom Palmer Eye Institute
Treatment Outcomes

<table>
<thead>
<tr>
<th></th>
<th>Tube Group (n = 73)</th>
<th>Trabeculectomy Group (n = 84)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failure</td>
<td>24 (33%)</td>
<td>42 (50%)</td>
<td>0.034</td>
</tr>
<tr>
<td>Success</td>
<td>49 (67%)</td>
<td>42 (50%)</td>
<td>0.034</td>
</tr>
<tr>
<td>Qualified</td>
<td>31 (42%)</td>
<td>18 (21%)</td>
<td></td>
</tr>
<tr>
<td>Complete</td>
<td>18 (25%)</td>
<td>24 (29%)</td>
<td>0.58</td>
</tr>
</tbody>
</table>
Reasons for Treatment Failure

<table>
<thead>
<tr>
<th>Reason</th>
<th>Tube Group (n = 24)</th>
<th>Trabeculectomy Group (n = 42)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inadequate IOP control</td>
<td>20 (83%)</td>
<td>28 (67%)</td>
</tr>
<tr>
<td>Persistent hypotony</td>
<td>3 (13%)</td>
<td>13 (31%)</td>
</tr>
<tr>
<td>Loss of LP vision</td>
<td>1 (4%)</td>
<td>1 (2%)</td>
</tr>
</tbody>
</table>

\(P = 0.43 \) for the difference in distribution of reasons for treatment failure
Collaborative Initial Glaucoma Treatment Study (CIGTS)
Collaborative Initial Glaucoma Treatment Study

- Hypotony not systematically defined or recorded as postoperative complication on post-trabeculectomy follow-up form
- Of 465 trabeculectomies performed in study, 4 eyes (0.9%) were described by investigators under “Other Problems” as having “hypotony” or “prolonged low IOP.”
Trabecular Micro-Bypass Stents
Intracanalicular MicroStent (Hydrus)
Trabecular Micro-Bypass Stent (iStent)

- Randomized controlled clinical trial in which 111 patients underwent iStent with cataract surgery and 122 underwent cataract surgery alone.

- One eye (group not specified) experienced transient hypotony at 5 – 7 hours that resolved by 1 day postoperatively.

Samuelson et al, Ophthalmology, 2011
Ab-Interno Suprachoroidal Stents
iStent Supra

From RA Hill et al, Surgical Innovations in Glaucoma, 2014
Suprachoroidal Micro-Stent (CyPass)

- Prospective case series in which 184 patients underwent cataract surgery and placement of suprachoroidal micro-stent
- Most common complication was transient early hypotony (IOP < 6 mmHg, 25 eyes, 13.8%)
- Hypotony resolved in all but 1 case by 1 month and all cases by 6 months

Hoeh et al, JCRS, 2013
Suprachoroidal Micro-Stent (CyPass)

- Transient hypotony was attributed to micro-stent placement and creation of cyclodialysis cleft
- Particularly in early postoperative course, cleft may extend beyond implant’s external diameter

Hoeh et al, JCRS, 2013
Subconjunctival-Based Transscleral Filtration Devices
AqueSys XEN Gel Stent

- Soft, collagen-based gelatin implant injected into subconjunctival space by ab interno approach through clear corneal incision
- No peer-reviewed publications to date

 Courtesy Steven R. Sarkisian, Jr., MD
InnFocus Microshunt

- Filtering device made from polymer called poly(styrene-block-isobutylene-block-styrene) and placed by ab externo approach
- Procedure involves creation of fornix-based conjunctival flap and use of intraoperative mitomycin
- No peer-reviewed publications to date

From InnFocusInc.com
AqueSys XEN Gel Stent and InnFocus Microshunt

- Both involve diversion of aqueous to subconjunctival space and creation of filtering bleb
- InnFocus Microshunt accompanied by use of intraoperative mitomycin
- Both devices attempt to control flow and minimize hypotony by applying Poiseuille’s Law of laminar flow to create tube that is sufficiently long and narrow
- As filtering procedures, will be important to determine incidence of transient and long-term hypotony and any impact on vision
Summary and Conclusions

- Would be helpful and appropriate to establish consistent definition of hypotony.
- Documentation of transient and longer term hypotony may be particularly relevant for minimally invasive surgical procedures that involve placement of device into suprachoroidal space or subconjunctival filtration.
- Very important to document visual impact, if any, and differentiate postoperative “statistical hypotony” from “clinically significant hypotony”.