Suprachoroidal outflow as a surgical target for the treatment of glaucoma

Steven Vold, MD
Vold Vision, PLLC
Fayetteville, AR
Disclosures

- Aeon
- Alcon
- Allergan
- AqueSys
- Bausch & Lomb
- Calhoun Vision
- Carl Zeiss Meditec
- ForSight Labs
- Glaukos
- InnFocus

- IRIDEX
- iScience Interventional
- Ivantis
- Merck & Co
- NeoMedix
- Ocunetics
- QLT
- SOLX
- Transcend Medical
- TrueVision Systems
Two main physiologic outflow paths for aqueous humor:

- Trabecular pathway
- Uveoscleral pathway
Uveoscleral outflow path

- Considered pressure independent and contributes **up to 57% of total aqueous outflow**\(^1\)

- Aqueous exits primarily through the sclera and choroidal blood vessels

- The highest point of resistance is the **ciliary body**
Suprachoroidal outflow as therapeutic target

Robust pressure gradient
Pressure differential between anterior chamber and suprachoroidal space is 4 mmHg (at physiological range)

Continuous, absorptive reservoir
Single point access to the suprachoroidal continuum with up to 160x more surface area vs the trabecular meshwork

Pharmacologic precedent
Prostaglandins – first-line therapy and most effective medical treatment – acts on uveoscleral pathway

1. Emi K, Pederson JE, Toris CB. Hydrostatic pressure of the suprachoroidal space. IOVS. 30(2):233-238
Supraciliary stenting creates a conduit to the suprachoroidal space.

Cyclodialysis cleft
Historically used procedure which was effective but limited in duration, as the ciliary body cleft would eventually close.

Supraciliary Stent in situ
Supraciliary stenting allows for a “controlled cyclodialysis” that is repeatable and permanent to overcome ciliary body flow resistance.

Current ab interno supraciliary devices in US clinical studies

CyPass Micro-Stent

iStent Supra

Caution: Investigational devices. Federal (US) Law limits these devices to investigational use.
Supraciliary micro-stent implantation
Challenges with trabecular outflow path

Downstream resistance
Discrete canalicular system and episcleral venous back pressure limits outflow potential.

Variability in collector channel location
Placement of two stents may be required for optimal placement with respect to collector channels.

Smaller anatomical target
Trabecular meshwork and Schlemm’s canal provide significantly smaller surgical target vs. the ciliary body band.
Suprachoroidal outflow – promising MIGS target

• Potential for best-IOP-lowering efficacy based on physiological mechanism

• Preliminary safety results from international experience in line with other MIGS devices

• Anatomical approach makes for more elegant procedure

• Overall – suprachoroidal outflow represents a very promising MIGS approach