Medical Device Technologies: Potential to Treat and Prevent Biofilm Implant-Related Infections

Dustin Williams, PhD
Assistant Professor
Department of Orthopaedics
University of Utah

Ryan Looper, PhD
Associate Professor
Department of Chemistry
University of Utah

Paul Sebahar, PhD
Director
Synthetic and Medicinal Chemistry Core Facility
University of Utah
 Disclosure

• Curza
• Chief Scientific Officer
• Sponsored research – University of Utah
• Travel
Reminiscing Moment

• Dr. Darouiche

• Journal of Inconsequential Results
Goal

• Provide overview of what the world is facing with biofilm implant-related infections / how we are addressing the issues.

• 3-fold approach
 • Background – impact of biofilms on medical devices
 • Current strategies in clinical use to address biofilm-related infections
 • Technologies under development / factors to consider – what more can we do?
Early Indicators

A Scanning and Transmission Electron Microscopic Study of an Infected Endocardial Pacemaker Lead

Thomas J. Marrie, M.D., Joyce Nelligan, and J. William Costerton, Ph.D.

Bacteria-Laden Biofilms: A Hazard to Orthopedic Prostheses

Anthony G. Gristina, M.D.
Boyer Medical School of Medicine
J. William Costerton, Ph.D.
University of Calgary

Marrie et al. Circ 1982;66:1339-1341
Impact of Biofilms on Medical Devices

• Infection is a catastrophic outcome

• Hospital Associated Infections (HAI) pose tremendous burden

In hospital resource prices, the overall annual direct medical costs of HAI to U.S. hospitals ranges from $28.4 to $33.8 billion (after adjusting to 2007 dollars using the CPI for all urban consumers) and $35.7 billion to $45 billion (after adjusting to 2007 dollars using the CPI for inpatient hospital services). After adjusting for hospital resource expenditures, the annual direct healthcare costs of HAI range from $27.2 to $32.7 billion (after adjusting to 2007 dollars using the CPI for all urban consumers) and $34.8 to $44.1 billion (after adjusting to 2007 dollars using the CPI for inpatient hospital services).
Impact of Biofilms on Medical Devices

• Rates of device-related infection range from 1-10%, as high as 50%
Problem: Antibiotic Resistance

- Biofilms up to 1,000x more resistant to antibiotics
- CDC Threat Report 2013
 "Antimicrobial resistance is one of our most serious health threats."

www.cdc.gov
Drenkard, Microbe Infect 2003;5:1213-1219
Williams et al., Curr Microbiol 2011;62:1657-1663
How Do We Currently Fight Biofilms?

Antibiotics

Coatings:
Active release
Passive

Common agents:
Silver
Gentamicin
Triclosan

Klemm, *Clin Microbiol Infec* 2001;7:28-31
Products in Clinical Use

Synthes Expert Tibial Nail PROtect

Bard Bardex IC Catheter

Arestin Microspheres

PDLLA Coated Gentamicin Initial 21 patients, good results

Silver-loaded hydrogel Variable results Short term more beneficial

Minocycline Variable results

Schmidmaier et al., Biom Assoc Infect 2012; Chpt 37:436-454
Verleyen et al., Eur Urol 1999;36:240-246
Thibon et al., J Hosp Infect 2000;45:127-124
Karchmer et al., Arch Int Med 2000;160:3294-3298
Genovesi et al., Minerva Stomatol 2014; Epub
Javed et al., Curr Drug Deliv 2013;63:369-376
Products in Clinical Use

ArrowGard and Vantex CVC

Vicryl Plus Sutures

More effective:
- Silver/chlorhexidine
- Silver/platinum/carbon

Less effective:
- Silver only
- Benzalkonium chloride

Triclosan release
Variable, but mostly beneficial

Darouiche, Biom Assoc Infect 2012;Chpt 19:485-503
Brooks et al., Biom Assoc Infect 2012;Chpt 13:307-354
Chen et al., Eur J Surg Oncol 2011;37:300-304
Ueno et al., Spine J 2013;Epub
Additional Devices in Clinical Use

- Palacos G bone cement - gentamicin
- Palacos R+G bone cement – gentamicin
- CMW2 bone cement - gentamicin
- Agento IC Endotracheal tube – silver
- ACTICOAT dressing – silver
- HyGentic – silver
- Tegaderm Ag dressing – silver
- ACTISORB dressing – silver
- Contreet Foam dressing – silver

Variable results
Why the Variability?

• Few suggestions:
 • Stagnant broth solutions
 • MIC values ≠ to antibiofilm activity
 • 70 kg male, 40 L volume
 • Final concentration of 25 µg/mL
 • Biofilms as initial inocula

Williams et al., Biomaterials 2012;33:8641-8656
Williams et al., J Biomed Mat Res B 2012;100:1163-1169
Summary of Current Technologies

• Polytherapy

• Silver alone
 • Variable Consistent

• Primarily antibiotic agents
 • Resistance, reduced efficacy global concern

• Innovation still in demand
Future Technologies

Imagination Fosters Innovation
Smart Coatings

- Degrade when bacteria are present
- Nano / microsensors to detect bacteria

Zhou et al., JACS 2010;132:6566-6570
Quanterix.com
Combination Therapies

Possible applications:
- Contact lenses and lens cases
- Catheters
- Voice prostheses
- Dental implants (subgingival component)

Nonadhesive surfaces:
- Unsuitable for any implant application in absence of other antimicrobial functionalities
- Useful added functionality for all applications requiring nonadhesive surfaces

Tissue-integrating surfaces:
- Highly suitable in revision surgery after biomaterial-associated infection to clear infection from surrounding tissues and local antibiotic prophylaxis in primary surgery

Contact-killing surfaces:
- Ideal for applications requiring tissue integration:
 - Vascular grafts
 - Bone anchoring in dental implants and joint prostheses
 - Scaffolds in tissue engineering
Modified Surfaces

- Superhydrophobic / hydrophobic coatings
 - Black silicon
 - Dragonfly wing
- Si_3N_4
- Sharklet

Neverwet.com
Ivanova et al., Nat Comm 2013;4:2838
Amedica.com
Sharklet.com
New Antimicrobials: Biofilms in Mind

- Bismuth thiols – Microbion
- Seldox – Selenium, Ltd. / Emergent Technologies, Inc.
- \(\text{cis}-2\)-decenoic acid – disperse biofilms, Dr. David Davies
- CSA-13 - n8 Medical / Biocare
- Imidazoles – disperse biofilms, Agile Sciences
- Dispersin B – inhibit and disperse biofilms, Kane Biotech
- Quorum sensing inhibitors – inhibit biofilm, Dr. Bonnie Bassler
- CZ Compounds – inhibit, disperse and kill biofilms, Curza
Efficacy of CZ Compounds

Vancomycin

<table>
<thead>
<tr>
<th>Organism</th>
<th>MIC (µg/mL)</th>
<th>MBEC (µg/mL)</th>
<th>EBEC (µg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRSA</td>
<td>2</td>
<td>>500</td>
<td>>20,000</td>
</tr>
</tbody>
</table>

CZ-86

<table>
<thead>
<tr>
<th>Organism</th>
<th>MIC (µg/mL)</th>
<th>MBEC (µg/mL)</th>
<th>EBEC (µg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRSA</td>
<td>1</td>
<td>15</td>
<td>250</td>
</tr>
</tbody>
</table>

10^5 planktonic bacteria

10^3 biofilm bacteria

10^9 biofilm bacteria
Dispersing MRSA Biofilms

- Water Only: 27%
- 0.25% Glutaraldehyde: 51%
- 0.25% CZ-86: 83%

Heavy Biofilm | Light Biofilm | Clean
Dispersing MRSA Biofilms

Water Only

0.25% CZ-25
Active Release Coating Strategy
Conclusion

• Biofilm-related infections pose threat

• Current technologies efficacy declining
 • Innovations necessary

• Promising technologies under development
Acknowledgments

Ryan Looper, PhD
Director of Chemistry

Todd Kinard, JD
VP Legal

James Clarke
Chairman

Ryan Davies
CEO

Paul Sebahar, PhD
Medicinal Chemist

Technical Team
Travis Haussener
Hari Reddy
Julia Lerdahl
Ralph Gochnour
Scott Smith
Andrew Grange

Naomi Starks
Shirley Luo
Will Gochnour
Logan Horne
Gina Allyn