Gene Therapies in the Clinic: A Product Perspective

Zenobia Taraporewala, Ph.D

Product Reviewer
Gene Therapies Branch
Office of Cellular, Tissues and Gene Therapies (OCTGT)
CBER FDA

Clinical Investigator’s Course 2012
Presentation outline

- Products regulated by the Office of Cellular, Tissues and Gene Therapies (OCTGT) in CBER
- Introduction to gene therapy, gene therapy products and gene delivery approaches
- Manufacture of gene therapy products
- Gene therapy products in the clinic
Products regulated by OCTGT

CELL THERAPY PRODUCTS

• Stem cells and stem cell-derived products
 - Examples: Hematopoietic, mesenchymal, embryonic, umbilical cord blood

• Cancer vaccines and immunotherapies
 - Examples: Dendritic cells, activated T lymphocytes (TILs), B cells, monocytes, peptides, recombinant proteins

• Somatic cells
 - Examples: Allogeneic pancreatic islets, chondrocytes, myoblasts

• Cell lysates and extracts

• Cells plus scaffold matrix
 - Examples: Encapsulated cells, tissue engineering products
Products regulated by OCTGT

GENE THERAPY PRODUCTS

- Recombinant Vectors
 - Plasmids
 - Viral
 - Examples: Adenoviruses, Adeno-associated Virus (AAV), Retroviruses & Lentiviruses, Herpes Simplex Virus, Poxvirus
 - Bacterial
 - Examples: Listeria, Salmonella, Clostridium

- Gene modified cells
 - Modified T cells (CAR-T), dendritic cells, fibroblasts, stem cells
Gene therapy (GT): Definition
All products that:
- Mediate their effects by transcription and/or
- Translation of transferred genetic material and/or
- By integrating into the host genome, and
- Are administered as nucleic acids, viruses, or genetically engineered microorganisms.

The GT product may be used to modify cells in vivo or transferred to cells ex vivo prior to administration to the recipient.
Delivery of GT products

Viral Vectors
- Retrovirus/Lentivirus
- Adenovirus
- Adeno-Associated Virus
- Herpes Simplex Virus
- Vaccinia Virus

Non-viral Vectors
- Naked DNA
- plasmids
- Liposomes
- Molecular conjugates

In vivo (direct)
- Recombinant virus
- Liposome
- Plasmid
- Ballistic gun

Ex vivo (via cells)
- Recombinant virus
- Cells
- Plasmid
- Transduction
- Cell Selection and/or Expansion

Donor

allogeneic

autologous
GT products: Indications

Indications Addressed by Gene Therapy Clinical Trials

- Cancer diseases 64.4% (n=1186)
- Monogenic diseases 8.7% (n=161)
- Cardiovascular diseases 8.4% (n=155)
- Infectious diseases 8% (n=147)
- Neurological diseases 2% (n=36)
- Ocular diseases 1.5% (n=28)
- Inflammatory diseases 0.7% (n=13)
- Other diseases 1.4% (n=25)
- Gene marking 2.7% (n=50)
- Healthy volunteers 2.3% (n=42)

n=number of trials
Factors affecting safety and efficacy of gene therapy vectors

- Delivery and efficiency of gene transfer
- Target specificity
- Ability to infect dividing/non-dividing cells
- Immunogenicity and toxicity
- Long term Vs short term expression
- Genotoxicity: Insertional mutagenesis
General manufacturing scheme
Allogenic/Autologous cells

Producer Cells
Mammalian, bacterial, primary or qualified banked

Culturing: Cell Expansion

Transduction
Plasmid, Virus (qualified banks)

Harvest

Purification

Bulk Drug Substance
dilution, formulate, fill

Final Formulated Product

QC Tests

QC Tests

QC Release Tests

RELEASE

STABILITY
Final product testing

Safety
 - Sterility, mycoplasma, adventitious agent testing

Purity
 - Endotoxin, residuals

Identity

Potency

Objective?
 - Demonstrate product safety and quality
 - Show lot-to-lot consistency
GT product manufacturing is a complex biological process
Starting material

Cells
- Fastidious and diverse

Vector
- Unique make-up and growth requirements

Biological Process
- Complex and Variable

Raw Materials
- Complex (quality and source)
- Animal-derived (adventitious agents)

- Serum
- Media
Manufacturing process

• Complex biologicals
 - Limit cell and process impurities
 - Limit process variability

• No terminal sterilization
 - Aseptic processing throughout manufacture
 - Closed manufacturing systems wherever feasible

• Patient specific
 - Limited product for testing
 - Need to prevent product mix-ups
 - Limited shelf life (due to cell viability)
GT products:
Common regulatory challenges
• **Potency**
 - Mechanism of action not defined, potency assay does not provide a meaningful measurement of biological activity

• **Stability**
 - Formulation, cryopreservation -> viability, potency??

• **Lot size**
 - Patient specific, small scale

• **Characterization/Purity**
 - Limited purification process, heterogeneity, cell-derived impurities

• **Scale-up**
 - Undefined variables due to complex biology of production process

• **Storage/shipping**
 - Some GT products are not 'off the shelf' products, i.e., these products are patient-specific, not always frozen and require special handling and shipping
GT products: Challenges in the clinic
• Dose
 - Manufacturing limits, volume limits, dose does not always correlate with toxicity and efficacy

• Vector delivery (route of administration, device) and vector targeting
 - Imaging, monitoring for related AEs

• Immune reactions: anti-vector, anti-transgene, autoimmune
 - Vector clearance -> ineffective repeat dosing
 - Off target effects, cytokine storm -> SAE
 - Vector purity -> high antigenic load, low effective dose
• Vertical vector transmission and vector shedding
 - Monitoring in the clinic

• Vector integration and latency
 - Long-Term Follow-Up (LTFU)

• Mechanism of action: not elucidated
 - Selection of endpoints, surrogate measures of efficacy
Progress in the clinic:
Recent reports
AAV-vectored gene therapy in Hemophilia B

Note: The first AAV-vectored gene therapy Phase I/II trial for hemophilia started in 1999

Challenges:
- Immune clearance and toxicity
- Sustained expression
- Optimized dosing

In sum, this gene therapy trial with an AAV8 vector for hemophilia B is truly a landmark study, since it is the first to achieve long-term expression of a blood protein at therapeutically relevant levels. If further studies determine that this approach is safe, it may replace the cumbersome and expensive protein therapy currently...

Conclusions:
Peripheral-vein infusion of scAAV2/8-LP1-hFIXco resulted in FIX transgene expression at levels sufficient to improve the bleeding phenotype, with few side effects. Although immune-mediated clearance of AAV-transduced hepatocytes remains a concern, this process may be controlled with a short course of glucocorticoids without loss of transgene expression. (Funded by the Medical Research Council and others; ClinicalTrials.gov identifier: NCT000424980)
Autologous CAR-T cells in cancer treatment

T Cells with Chimeric Antigen Receptors Have Potent Antitumor Effects and Can Establish Memory in Patients with Advanced Leukemia
Michael Kalos et al., Sci Transl Med 3, 95ra73 (2011); DOI: 10.1126/scitranslmed.3002842

Editor's Summary

Go CAR-Ts in the Fast Lane

LEUKEMIA

T Cells with Chimeric Antigen Receptors Have Potent Antitumor Effects and Can Establish Memory in Patients with Advanced Leukemia
Michael Kalos,1,2* Bruce L. Levine,1,2* David L. Porter,1,3 Sharyn Katz,4 Stephan A. Grupp,5,6 Adam Bagg,1,2 Carl H. June1,2*

Cell persistence, and the unexpected occurrence of delayed tumor lysis syndrome. Here, we show that the CART19 cells mediated potent clinical antitumor effects in all three patients treated. On average, each infused CAR T cell and/or their progeny eliminated more than 1000 leukemia cells in vivo in patients with advanced chemotherapy-resistant chronic lymphocytic leukemia (CLL). CART19 cells underwent robust in vivo T cell expansion, persisted at high levels for at least 6 months in blood and bone marrow (BM), continued to express functional receptors on cells with a memory phenotype, and maintained anti-CD19 effector function in vivo.

Challenges:
- Persistence
- Trafficking
- Toxicity
- Manufacturing
OCTGT Contact Information

Speaker: Zenobia.Taraporewala@fda.hhs.gov

Regulatory Questions:
Contact the Regulatory Management Staff in OCTGT at CBEROCTGTRMS@fda.hhs.gov
or Lori.Tull@fda.hhs.gov
or by calling (301) 827-6536

OCTGT Learn Webinar Series:
http://www.fda.gov/BiologicsBloodVaccines/NewsEvents/ucm232821.htm
Public Access to CBER

CBER website:
http://www.fda.gov/BiologicsBloodVaccines/default.htm

Phone: 1-800-835-4709 or 301-827-1800

Consumer Affairs Branch (CAB)
Email: ocod@fda.hhs.gov
Phone: 301-827-3821

Manufacturers Assistance and Technical Training Branch (MATTB)
Email: industry.biologics@fda.gov
Phone: 301-827-4081

Follow us on Twitter
https://www.twitter.com/fdacber
Thank you!

We used to think that our fate was in our stars, but now we know that, in large measure, our fate is in our genes.

-James Watson