Fish and Fishery Products Hazards and Controls Guidance

Fourth Edition – March 2020

Additional copies may be purchased from:

Florida Sea Grant
IFAS - Extension Bookstore
University of Florida
P.O. Box 110011
Gainesville, FL 32611-0011
(800) 226-1764
www.ifasbooks.com

Copies of this guidance document may be downloaded from:

www.FDA.gov/Seafood

U.S. Department of Health and Human Services
Food and Drug Administration
Center for Food Safety and Applied Nutrition
(240) 402-2300

March 2020
Table of Contents

Guidance for Industry: Fish and Fishery Products Hazards and Control Guidance ... G - 1

CHAPTER 1: General Information ... 1 – 1

CHAPTER 2: Conducting a Hazard Analysis and Developing a HACCP Plan ... 2 – 1

CHAPTER 3: Potential Species-Related and Process-Related Hazards .. 3 – 1

CHAPTER 4: Pathogens from the Harvest Area ... 75

CHAPTER 5: Parasites ... 91

CHAPTER 6: Natural Toxins ... 6 – 1

CHAPTER 7: Scombrotoxin (Histamine) Formation ... 113

CHAPTER 8: Other Decomposition-Related Hazards .. 153

CHAPTER 9: Environmental Chemical Contaminants and Pesticides ... 155

CHAPTER 10: Methylmercury .. 181

CHAPTER 11: Aquaculture Drugs .. 183

CHAPTER 12: Pathogenic Bacteria Growth and Toxin Formation (Other than *Clostridium botulinum*) as a Result of Time and Temperature Abuse ... 209

CHAPTER 13: *Clostridium botulinum* Toxin Formation ... 245

CHAPTER 14: Pathogenic Bacteria Growth and Toxin Formation as a Result of Inadequate Drying 293

CHAPTER 15: *Staphylococcus aureus* Toxin Formation in Hydrated Batter Mixes 309

CHAPTER 16: Pathogenic Bacteria Survival Through Cooking or Pasteurization 315

CHAPTER 17: Pathogenic Bacteria Survival Through Processes Designed to Retain Raw Product Characteristics ... 331

CHAPTER 18: Introduction of Pathogenic Bacteria After Pasteurization and Specialized Cooking Processes ... 345

CHAPTER 19: Undeclared Major Food Allergens and Certain Food Intolerances Causing Substances 19 – 1

CHAPTER 20: Metal Inclusion .. 385

CHAPTER 21: Glass Inclusion .. 395

APPENDIX 1: Forms ... 405

APPENDIX 2: Product Flow Diagram – Example .. 411

APPENDIX 3: Critical Control Point Decision Tree .. 413

APPENDIX 4: Bacterial Pathogen Growth and Inactivation .. 417

APPENDIX 5: FDA and EPA Safety Levels in Regulations and Guidance ... A5 – 1

APPENDIX 6: Japanese and Hawaiian Vernacular Names for Fish Eaten Raw 443

APPENDIX 7: Bacterial and Viral Pathogens of Greatest Concern in Seafood Processing-Public Health Impacts ... 451

APPENDIX 8: Procedures for Safe and Sanitary Processing and Importing of Fish and Fishery Products A8 – 1

APPENDIX 9: Allergen Cleaning and Sanitation .. A9 – 1

APPENDIX 10: Allergen Cross-Contact Prevention .. A10 – 1

Table of Contents

(March 2020)
This guidance represents the Food and Drug Administration’s (FDA’s) current thinking on this topic. It does not create or confer any rights for or on any person and does not operate to bind FDA or the public. You can use an alternative approach if the approach satisfies the requirements of the applicable statutes and regulations. If you want to discuss an alternative approach, contact the FDA staff responsible for implementing this guidance. If you cannot identify the appropriate FDA staff, call the telephone number listed on the title page of this guidance.

I. INTRODUCTION

This guidance is intended to assist processors of fish and fishery products in the development of their Hazard Analysis Critical Control Point (HACCP) plans. Processors of fish and fishery products will find information in this guidance that will help them identify hazards that are associated with their products and help them formulate control strategies. The guidance will help consumers and the public generally to understand commercial seafood safety in terms of hazards and their controls. The guidance does not specifically address safe handling practices by consumers or by retail establishments, although many of the concepts contained in this guidance are applicable to both. This guidance is also intended to serve as a tool to be used by federal and state regulatory officials in the evaluation of HACCP plans for fish and fishery products.

FDA’s guidance documents, including this guidance, do not establish legally enforceable responsibilities. Instead, guidance describes the Agency’s current thinking on a topic and should be viewed only as recommendations, unless specific regulatory or statutory requirements are cited. The use of the word should in Agency guidance means that something is suggested or recommended, but not required.

This guidance has been prepared by the Division of Seafood Safety in the Center for Food Safety and Applied Nutrition at the U.S. Food and Drug Administration.

II. DISCUSSION

A. Scope and Limitations

The control strategies and practices provided in this guidance are recommendations to the fish and fishery products industry unless they are required by regulation or statute. This guidance provides information that would likely result in a HACCP plan that is acceptable to FDA. Processors may choose to use other control strategies, as long as they comply with the requirements of the applicable food safety laws and regulations. However, processors that chose to use other control strategies (e.g., critical limits) should scientifically establish their adequacy.

The information contained in the tables in Chapter 3 and in Chapters 4 through 21 provide guidance for determining which hazards are “reasonably likely to occur” in particular fish and fishery products under ordinary circumstances. However, the tables should not be used separately for this purpose. The tables list potential hazards for specific species and finished product types. This information should be combined with the information in the subsequent chapters to determine the likelihood of occurrence.

The guidance is not a substitute for the performance of a hazard analysis by a processor of fish and fishery products, as required by FDA’s regulations. Hazards not covered by this guidance may be relevant to certain products under certain circumstances. In particular, processors should be alert to new or emerging problems (e.g., the
occurrence of natural toxins in fish not previously associated with that toxin).

FDA announced its adoption of final regulations to ensure the safe and sanitary processing of fish and fishery products in the Federal Register of December 18, 1995 (60 FR 65096) (hereinafter referred to as the Seafood HACCP Regulation). This guidance, the Seafood HACCP Regulation (21 CFR 123), and the Control of Communicable Diseases regulation (21 CFR 1240) apply to all aquatic animal life, other than birds and mammals, used as food for human consumption. For example, in addition to fresh and saltwater finfish and crustaceans, this guidance applies to echinoderms such as sea cucumbers and sea urchins; reptiles such as alligators and turtles; amphibians such as frogs; and to all mollusks, including land snails (escargot). It also applies to extracts and derivatives of fish, such as eggs (roe), oil, cartilage, and fish protein concentrate. In addition, this guidance applies to products that are mixtures of fish and non-fish ingredients, such as tuna sandwiches and soups. Appendix 8, § 123.3, lists the definitions for “fish” and “fishery product” used in the Seafood HACCP Regulation.

This guidance covers safety hazards associated with fish and fishery products only. It does not cover most hazards associated with non-fishery ingredients (e.g., *Salmonella enteritidis* in raw eggs). However, where such hazards are presented by a fishery product that contains non-fishery ingredients, control must be included in the HACCP plan (§ 123.6). Processors may use the principles included in this guidance for assistance in developing appropriate controls for these hazards.

This guidance does not cover the hazard associated with the formation of *Clostridium botulinum* (*C. botulinum*) toxin in low-acid canned foods (LACFs) or shelf-stable acidified foods. Mandatory controls for this hazard are contained in the Thermally Processed Low-Acid Foods Packaged in Hermetically Sealed Containers regulation (hereinafter referred to as the LACF Regulation, 21 CFR 113) and the Acidified Foods regulation (21 CFR 114). Such controls may be, but are not required to be, included in HACCP plans for these products.

This guidance does not cover all sanitation controls required by the Seafood HACCP Regulation. The maintenance of a sanitation monitoring program is an essential prerequisite to the development of a HACCP program. When sanitation controls are necessary for food safety, but are not included in a sanitation monitoring program, they must be included in the HACCP plan (21 CFR 123.6). However, this guidance document does contain recommendations only for allergen cleaning and sanitation, and allergen cross-contact through two new appendixes since normal cleaning and sanitation does not necessarily address allergen residues.

This guidance does not describe corrective action or verification records, because these records are not required to be listed in the HACCP plan. Nonetheless, such records must be maintained, where applicable, as required in § 123.7 and § 123.8. Additionally, this guidance does not restate the general requirements for records that are set out in § 123.9(a).

This guidance does not cover reassessment of the HACCP plan and/or the hazard analysis or review of consumer complaints, as mandated by § 123.8.

This guidance also does not provide specific guidance to importers of fish and fishery products for the development of required importer verification procedures. However, the information contained in the text, and, in particular, in Appendix 5 (“FDA and EPA Safety Levels in Regulations and Guidance”), should prove useful for this purpose.

B. Chapter Modifications

The following is a summary of the most significant changes made to this guidance. Moving forward, FDA will publish this guidance as a living document on the FDA Seafood website (www.fda.gov/seafood). Until all the chapters and/or appendixes have been updated this guidance will continue to be identified as the fourth edition with the date being modified to reflect the most recent changes. Each chapter or appendix will also reference the date (month and year) the most recent changes were made and published. Chapters and appendixes that have not been modified will reflect the original publication date of April 2011. Additionally, the “Guidance for Industry” section will identify the specific changes in the header with the date of publication. You should carefully review the chapters applicable to your product and process in addition to using this summarized list of significant changes.

The following changes have been made throughout this guidance document:
Chapter 1 for general information has been modified with the following recommendations as of April 2011:

Chapter 2 for conducting a hazard analysis and developing a HACCP plan has been modified with the following recommendations as of April 2011:

Chapter 3 for identifying potential species-related and process-related hazards has been modified with the following recommendations as of August 2019:

- Table 3-1: Potential Species-Related Hazards Associated with the Actual Market Name of Product (from Table 3-2):
 - Escolar - “Gempylotoxin” and “Histamine” has been changed to “Gempylid Fish Poisoning” and “Scombrotoxin (Histamine).”

- Table 3-1: Potential Species-Related Hazards Associated with the Actual Market Name of Product (from Table 3-2):
 - Puffer fish - “Pufferfish Poisoning” has been included in parenthesis after “Tetrodotoxin;”

- Table 3-1 Under Potential Species-Related Hazards Associated with the Actual Market Name of Product (from Table 3-2):
 - Spanish Mackerel - “Scombrotoxin” has been added with “Histamine” being placed in parenthesis.

- Potential Species-Related Hazards Associated with the Actual Market Name of Product (from Table 3-2):
 - Basa - “Environmental Chemical Contaminants” and “Pesticides” has been changed to “Environmental Chemicals” and “Aquaculture Drugs.”

Chapter 3, Table 3-2 (“Potential Vertebrate Species-Related Hazards”) has been modified with the following recommendations as of August 2019:

- Amberjack – *S. rivoliana* has been added with the hazards of CFP and Scombrotoxin (Histamine).
- Amberjack or Yellowtail, aquacultured – Parasite hazard has been added.
- Amberjack or Buri, aquacultured – *Seriola quinqueradiata* has been added.
- Anchovy – The following changes have been made:
 - Footnote 12 has been added to the market name;
 - The hazard of Parasites has been added;
- Mackerel, Atka - is listed under “Atka Mackerel.”
- Barracuda (*Sphyraena* spp.) – The hazard of CFP has been removed to align with scientific information. FDA has not identified all species of barracuda as containing ciguatoxins.
- Basa or Bocourti – Footnote 8 has been removed.
- Basa or Bocourti, aquacultured – Footnote 8 has been removed.
- Bream (*Acanthopagrus* spp.) – Footnote 7 has been removed.
- Butterfish – Footnote 8 has been removed.
- Caparari – Footnote 8 has been removed.
- Cascarudo – Footnote 8 has been removed.
- Cisco or Tullibee (*Coregonus artedi*) – Footnote 7 has been removed.
- Clarias Fish or Walking Clarias Fish – Footnote 8 has been removed.
- Clarias fish or Walking Clarias Fish, or Clairesse, aquacultured – The following changes have been made:
 - Footnote 8 has been removed;
 - Clairesse has been added as a market name;
 - *Clarias gariepinus* has been replaced with *Clarias spp.*
• Cod, Morid, (*Pseudophycis barbata*) – Footnote 7 has been removed.

• Cod, aquacultured (*Gadus morhua*) has been added with the hazards of environmental chemicals and aquaculture drug.

• Coroata – Footnote 8 has been removed.

• Corvina (*Cilus gilberti*) – Footnote 7 has been removed.

• Croaker or Yellowfish (*Larimichthys polyactis*) – Footnote 7 has been removed.

• Drum or Cubbyu (*Pareques umbrosus*) – Footnote 7 has been removed.

• Drum or Lion Fish (*Collichthys* spp) - The market name “lion Fish” has been removed.

• Drum or Meagre (*Argyrosomus regius*) – Footnote 7 has been removed.

• Eel – The following changes have been made:
 o *Anguilla anguilla* has been added with the hazard of Ichthyohemotoxin.

• Eel, aquacultured – The following changes have been made:
 o *Anguilla anguilla* – The hazard of Ichthyohemotoxin has been added.
 o *Anguilla japonica* – Footnote 7 has been removed.

• Eel, Conger – The following changes have been made:
 o *Conger conger* has been added with the hazard of Ichthyohemotoxin:
 o *Conger* spp. – The hazard of Parasite has been added.

• Eel, Moray
 o *Muraena helena* has been added with the hazard of Ichthyohemotoxin:
 o *Muraena retifera* – The hazard of CFP has been added.

• Emperor (*Lethrinus* spp.) – The hazard of CFP has been added.

• Flatwhiskered Fish – Footnote 8 has been removed.

• Flounder – Footnote 15 has been added.

• Flounder, aquacultured – Footnote 15 has been added.

• Flounder, aquacultured - Taxonomy change from *Pleuronectes glacialis* to *Liopsetta glacialis*.

• Flounder or Dab – Footnote 7 has been removed.

• Flounder or Fluke (*Paralichthys flesus*) – Footnote 7 has been removed.

• Flounder, Arrowtooth (*Atheresthes stomias*) – Footnote 7 has been removed.

• Flounder or California Flounder (*Paralichthys californicus*) – The name has been moved to Flounder.

• Frog, aquacultured (*Rana* spp.) – New listing has been added.

• Gemfish (*Lepidocybium flavobrunneum*) – Has been removed from this market name.

• Gillbacker or Gilleybaka or Whiskerfish (*Sciades* parkeri) – The following changes have been made:
 o The alternate market name of “Whiskerfish” has been added;
 o Footnote 8 has been added;
 o Taxonomy change from *Aspistor parkeri* to *Sciades parkeri* with Footnote 7 being added.

• Greenbone (*Odax pullus*) – Footnote 7 has been removed from species name.

• Greenland Turbot (*Reinhardtius hippoglossoides*) – The following changes have been made:
 o Has been moved to turbot;
 o The hazard of Parasites has been added.

• Grenadier – Footnote 7 has been removed from the following: *Nezumia bairdii*, *Macruronus* spp. *Nezumia bairdii*, and *Trachyrhynchus* spp.

• Grouper - *Dermatolepis inermis* has been added with the hazards of CFP and Parasite.
• Grouper or Scamp (Mycteroperca phenax) has been added with the hazards of CFP and parasite.
• Grouper, Orange-Spotted, aquacultured (Epinephelus coioides) has been added with the hazards of environmental chemicals and aquaculture drug.
• Grouper Malabar, aquacultured (Epinephelus malabaricus) has been added with the hazards of environmental chemicals and aquaculture drug.
• Grouper, aquacultured (Epinephelus spp.) has been added with the hazards of environmental chemicals and aquaculture drug.
• Halibut or California Halibut (Paralichthys californicus) has been moved to “Flounder.”
• Hamlet, Mutton (Alphetes afer) – Footnote 7 has been removed.
• Herring – Footnote 12 has been added.
• Herring or Sea Herring or Sild – Footnote 12 has been added.
• Herring or Sea Herring or Sild roe – Footnote 12 has been added.
• Herring, Thread – Footnote 12 has been added.
• Jack (Seriola rivoliana) - Has been moved to Amberjack.
• Jack or Crevalle (Alectis indicus) – Footnote 7 has been removed.
• Jacksmelt or Silverside (Antherinopsis californiensis) – New line entry with the hazard of ASP has been added.
• Jobfish or Snapper – Footnote 8 has been added.
• Kingfish (Menticirrhus littoralis) – The hazard of ASP has been added.
• Ling, Mediterranean (Molva macrophthalma) – Footnote 7 has been removed.
• Lionfish – New line entry with the hazard of CFP has been added.
• Mackerel (Scomber scombrus) – The hazard of PSP has been added.
• Mackerel, Spanish or Narrow-Barred – The market name has been modified.
• Mackerel, Spanish or Cero – Cero has been added.
• Mahi-Mahi, aquacultured (Coryphaena spp.) – The hazard of environmental chemicals has been added.
• Menhaden (Brevoortia partonos) – The hazard of ASP has been added.
• Milkfish – The hazard of Scombrototxin (Histamine) has been added.
• Milkfish, aquacultured – The hazard of Scombrototxin (Histamine) has been added.
• Morwong (Aplodactylus arctidens) – Footnote 7 has been removed.
• Mullet (Mugil cephalus) – The following changes have been made:
 o Footnote 7 has been removed;
 o Mugil curena with the hazards of Parasites and ASP has been added.
• Nile Perch – Row added to accommodate this market name.
• Nile Perch, aquacultured – Row added to accommodate this market name.
• Oreo Dory – Footnote 12 has been added to market name.
• Pangasius, Giant – The following changes have been made:
 o Footnote 8 has been removed;
 o P. sanitwongsei with the hazard of Environmental Chemicals has been added.
• Pangasius Shortbarbel – Footnote 8 has been removed.
• Parrotfish – The following changes have been made:
 o Scarus spp. has been removed;
 o The following with the hazard of CFP were added: Chlorurus gibbus, Scarus coerules,

Guidance for the Industry: Fish and Fishery Products Hazards and Controls Guidance, Fourth Edition

G - 5 (March 2020)
S. taeniopтерus, Sparisoma chrysopterum, S. viride.

• Patagonian Toothfish or Chilean Sea Bass (*Dissostichus eleginoides*) – Footnote 7 has been removed.

• Patagonian Toothfish or Chilean Sea Bass, aquacultured (*Dissostichus eleginoides*) has been added with the hazards of environmental chemicals and aquaculture drug.

• Perch, Ocean or Rockfish – The following changes have been made:
 o Rockfish has been added;
 o Footnote 8 has been added.

• Piramutaba or Laulao Fish – Footnote 8 has been removed.

• Pollock or Alaska Pollock – the following changes have been made:
 o Alaska Pollock has been replaced with “Walleye Pollock;”
 o Footnote 8 has been added;
 o Taxonomy changed from *Theragra chalcogrammus* to *Gadus chalcogrammus* with Footnote 7 added.

• Pompano, aquacultured – New listing has been added.

• Porgy spp. (*Calamus* spp.) The hazard of CFP has been added.

• Puffer Fish – The following changes have been made:
 o Puffer has been replaced with Puffer Fish;
 o Footnotes 8, 11, and 16 have been added;
 o Toxin acronym has changed to PFP;
 o The following species are no longer listed *Arothron* spp. *Legoccephalus* spp. *Sphoeroides annulatus*, *Sphoeroides spengleri*, *Sphoeroides testudineus*, and *Tetraodon* spp.

• Puffer Fish, aquacultured – The following changes have been made:
 o Puffer has been replaced with Puffer Fish;
 o Footnote 8, 11, and 16 have been added;
 o Toxin acronym has changed to PFP;
 o *Takifugu* spp. has been replaced with *Takifugu rubripes*.

• Roughy, Orange – Footnote 12 has been added.

• Roughy, Silver – Footnote 7 has been added.

• Sablefish, aquacultured (*Anoplopoma fimbria*) has been added with the hazards of environmental chemicals and aquaculture drug.

• Sardine – The following changes have been made:
 o Footnote 12 has been added;
 o The following species with the hazards of ASP have been added *Harengula clupeola*, *H. jaguana*, and *Sardinops sagax*.

• Sauger – The following changes have been made:
 o *Atule mate* has been removed;
 o *Sander canadensis* has been added.

• Scad (*Atule mate*) – Footnote 7 has been removed.

• Skate - *Amblyraja* spp., *Leucoraja* spp., and *Malacoraja* spp. with hazard of Environmental Chemicals have been added.
• Snakehead (*Parachanna obscura*) - Footnote 7 has been removed.

• Snapper – The following changes have been made:
 - The hazard of CFP has been added to *Ocyurus chrysurus* and *Pristipomoides* spp.;
 - The hazard of Parasites has been added to *Symphorus nematophorus*;
 - *Lutjanus* spp. has been replaced with the specific *Lutjanus* species names.

• Snapper or Schoolmaster – *Lutjennus apodus* has been added with the hazard of CFP.

• Snapper, aquacultured (*Lutjanus* spp.) has been added with the hazards of environmental chemicals and aquaculture drug.

• Sole or Flounder – Footnote 7 has been removed.

• Sole or Flounder, aquacultured – Footnote 7 has been removed.

• Sorubim or Surubi – Footnote 8 has been removed.

• Spot – The hazard of ASP has been added.

• Sturgeon and roe (Caviar) – Caviar with Footnote 8 has been added.

• Sturgeon and roe, (Caviar) aquacultured – Caviar with Footnote 8 has been added.

• Sunfish – “Not *Mola mola*” has now been removed.

• Sutchi or Swai – The following changes have been made:
 - Footnote 8 has been removed;
 - Taxonomy change from *Pangasius hypophthalmus* to *Pangasianodon hypophthalmus*; with Footnote 7 being added.

• Swordfish – The hazard of Scombrotoksin (Histamine) has been added.

• Tang – The following changes have been made:
 - *Ctenochaetus* spp. has been replaced with *Ctenochaetus striatus*;
 - Footnote 2 has been added to the hazard of CFP.

• Threadfin – *Gnathanodon* spp. has been removed.

• Tilapia – The hazard of Parasites has been added.

• Tilapia, aquacultured – The hazard of Parasites with Footnote 4 has been added.

• Trevally – The following changes have been made:
 - *Caranx ignobilis*, and *C. melampygus* with the hazards of CFP, Parasites, and Scombrotoksin (Histamine) have been added;
 - The hazards associated with *Gnathanodon speciosus* have been removed.

• Triggerfish – The following changes have been made:
 - *Balistes* spp. has been removed;
 - *Balistes vetula* has been added with the hazard of CFP.

• Trout, aquacultured – Taxonomy change from *Oncorhynchus mykiss aquabonita* to *Oncorhynchus aguabonita* with Footnote 7 being added.

• Tuna - The descriptions of “Small” and “Large” have been removed.

• Tuna, (*Thunnus alalonga*) – The hazard of ASP has been added.

• Turbot – Footnote 7 has been removed.

• Turbot, aquacultured – The hazard of Parasites with Footnote 4 has been added.
• Unicornfish – The hazard of CFP has been added.
• Walleye - Sander spp. has been replaced with Sander vitreus.
• Whiskered Fish – Footnote 8 has been removed.
• Whiskered Fish or Gafftopsail Fish – Footnote 8 has been removed.
• Whiskered Fish or Hardhead Whiskered Fish – Footnote 8 has been removed.
• Whiting – The hazard of Parasites has been added.
• Whiting, Blue – The hazard of Parasites has been added.
• Yellowtail Amberjack, aquacultured – The following changes have been made:
 o Footnote 7 has been removed;
 o The hazard of Parasites with Footnote 4 has been added.
• Zander – Footnote 7 has been removed.
• Zander, aquacultured – Footnote 7 has been removed.
• Acronym Changes – The following changes have been made:
 o G = Gemplytoxin has been changed to GFP = Gempylid Fish Poisoning;
 o IHT = Ichthyohemotoxin has been added;
 o T = Tetrodotoxin has been changed to PFP = Puffer Fish Poisoning.
• Footnotes – Footnotes 11, 12, 13, and 14 have been added.

Chapter 3, Table 3-3 (“Potential Invertebrate Species-Related Hazards”) has been modified with the following recommendations as of August 2019:
• Clam, Surf or Surfclam – The spelling of Mactrotoma spp. has been corrected.
• Crab, Beni-zuwai – New listing has been added.
• Crab, Golden King – The following changes have been made:
 o Market name has changed from Crab, Brown King;
 o Footnote 4 has been removed.
• Crab, Chinese Mitten – New listing has been added.
• Crab, Chinese Mitten, aquacultured – New listing has been added.
• Crab, Dungeness – The following changes have been made:
 o Taxonomy change from Cancer magister to Metacarcinus magister;
 o Footnote 4 has been added.
• Crab, Red – Footnote 4 has been removed.
• Crab, Santolla, Nova, or Southern Red – New listing has been added.
• Crab, Swimming, (Ovalipes punctatus) – New listing has been added.
• Cuttlefish – The hazard of Natural Toxin with Footnote 2 has been added.
• Lobster – The hazard of Natural Toxin with Footnote 2 has been added.
• Octopus – The hazard of Natural Toxin with Footnote 2 has been added.
• Octopus, Blue-Ringed (Hapalochlaena spp.) – New listing has been added
• Scallop (Euvola spp.) – Footnote 4 has been removed.
• Sea Cucumber, aquacultured – New listing has been added.
• Shrimp – Footnote 4 has been removed from Farfantepenaeus spp. Fenneropenaeus spp., Litopenaeus spp. Marsupenaeus spp., and Melicertus spp.
• Shrimp or Prawn – Taxonomy change from Hymenopenaeus sibogae to Haliporoides sibogae.
• Squid or Calamari – Market name has been updated to add “Calamari.”
• Squid (*Dosidicus gigas*) – The hazard of Natural Toxin with Footnote 2 has been added.

• Squid (*Loligo media*) – Footnote 4 has been removed.

• Whelk or Sea Snail (*Zidona dufresnei*) – New listing has been added.

Chapter 3, Table 3-4 (“Potential Process-Related Hazards”) has been modified with the following recommendations as of August 2019:

• Footnote 2 has been removed.

• Footnotes 3, 4, 5, 6, and 7 have been renumbered as a result of footnote 2 being removed.

• Header – Allergens and Food Intolerance Substances – Chapter 19 – The following changes have been made:
 o Chapter title updated to remove “Prohibited Food and Color Additives;”
 o Footnote 5 has been added to the header.

• Smoked Fish (Other than ROP) – New listing for Chap 16 with Footnote 6 has been added.

• Dried Fish (All) – Footnote 7 for Chapter 13 has been added.

• Battered or Breaded Finished Product Food – The following changes have been made:
 o “Package Type” has been divided into two types;
 o New listing for Chapter 13 for the ROP Package Type has been added.

• Raw oysters, clams, and mussels (ROP) – The following changes have been made:
 o “Hot Fill” and “Steam Flush” has been removed from the Package Type description;
 o The hazard of undeclared allergen has been removed.

• Raw oysters, clams, and mussels (other than ROP) – The following changes have been made:
 o “Hot Fill” and “Steam Flush” has been removed from the Package Type description;
 o The hazard of undeclared allergen has been removed.

Chapter 4 for the control of pathogens from the harvest area has been modified with the following recommendations as of April 2011:

• Hydrostatic pressure, individual quick freezing (IQF) with extended storage, and irradiation are now identified as processes that are designed to retain raw product characteristics and that can be used to reduce *Vibrio vulnificus* (*V. vulnificus*) and *Vibrio parahaemolyticus* (*V. parahaemolyticus*) to non-detectable levels;

• It is now recognized that a tag on a container of shellstock (in-shell molluscan shellfish) received from another dealer need not identify the harvester;

• Critical limits relating to control of pathogen growth prior to receipt of raw molluscan shellfish by the primary processor are now linked to monitoring the time that the shellfish are exposed to air (i.e., by harvest or receding tide) rather than to the time that the shellfish are harvested;

• Reference is now made to the role of the Federal, state, tribal, territorial and foreign government shellfish control authorities in determining whether the hazard of *V. parahaemolyticus* is reasonably likely to occur in raw molluscan shellfish and in the development of a *V. parahaemolyticus* control plan that will dictate, at least to some extent, the nature of the controls for this pathogen in HACCP plans;

• The control strategy examples are restructured for improved clarity: one for source controls (e.g., tagging, labeling, source waters, harvester licensure, and raw consumption advisory) and a second for time from harvest to refrigeration controls.

Chapter 5 for the control of parasites has been modified with the following recommendations as of April 2011:

• It is now recognized that the parasite hazard may be reasonably likely to occur in fish raised in freshwater containing larvae of pathogenic...
liver, lung and intestinal flukes because these parasites enter the fish through the skin rather than in the food.

Chapter 6 for the control of natural toxins has been modified with the following recommendations as of August 2019:

- The information in the Chapter has been reorganized into two categories in each section.
 - “Fish other than molluscan shellfish” and “Molluscan Shellfish.”

- Natural Toxin Detection Section was removed. This information is utilized to confirm illnesses/outbreaks, inform advisories for at risk harvest areas, and/or make a determination for harvest area closures. This information was never intended for a processor to include in the HACCP plan as a control measure. The information has been relocated to Appendix 5.

- Ciguatera Fish Poisoning (CFP) – The following changes have been made:
 - Additional locations were included based on scientific discovery of the toxin;
 - Areas included are Florida, Hawaii, and Puerto Rico;
 - Addition of finfish to contain CFP – lionfish, mackerel and tang;
 - Finfish previously listed in Chapter 3 are now included in Chapter 6.

- Tetrodotoxin – Symptomology development has been updated to align with the *Bad Bug Book*.

- Natural Toxins addition – The following changes have been made:
 - Clupeotoxin has been added as a natural toxin with associated information;
 - Ichthyohemotoxin has been added as a natural toxin with associated information;
 - Seafood-associated rhabdomyolysis (sometimes referred to as Haff disease) has been added as a natural toxin with associated information.

- A “Note” was added to the chapter regarding venomous fish. This was to correspond to the *Bad Bug Book’s* new chapter to address the potential concern and FDA's thoughts.

- Amnesic shellfish poisoning (ASP) – Additional species of lobster, sardine, white mullet, menhaden, and predatory species, such as Florida pompano, Gulf Kingfish and spot, were included.

- Diarrhetic shellfish poisoning (DSP) – Addition locations for the toxin were included such as Puget Sound and the west coast of Canada, Texas, Washington State, Alabama, Maryland, Massachusetts, and New York.

- Paralytic shellfish poisoning (PSP) – The following additions were made:
 - Molluscan shellfish examples of clams, cockles, mussels, oysters, and scallops;
 - Information regarding retention of the toxin and depuration;
 - Expanded the information regarding gastropod accumulation of the toxin;
 - Addition of finfish species where the toxin has been found in the viscera such as mackerel, Dungeness crab, tanner crab and red rock crab.

- Natural Toxin Control Section – The following changes have been made: in the Natural Toxin Control Section:
 - ASP and PSP in fish other than molluscan shellfish – An example was added of the adductor muscle from the scallop to eliminate the toxin;
 - Molluscan Shellfish – The statement: “States must have a Biotoxin Contingency Plan” was added.

- Control Strategy Example 1 – Source control for fish other than molluscan shellfish – The following changes have been made:
 - Critical Limit – “ASP for consumption advisory” was added;
 - Establish Verification procedures – “Periodic verification of harvest locations” was added.
• Control Strategy Example 2 – Harvest Area for Molluscan Shellfish – The following changes have been made:
 o Critical Limit –
 ▪ Update made to align with the NSSP and regulations for shellfish and HACCP, and
 ▪ A note was added regarding dockside screening to align with NSSP;
 o Monitoring Procedures –
 ▪ Update made to include information that would be required for monitoring as identified though the regulation and NSSP;
• Bibliography was updated to reflect the additions throughout the chapter.

Chapter 7 for the control of scombrotoxin (histamine) formation has been modified with the following recommendations as of April 2011:

• Information is now provided about the potential for scombrotoxin (histamine) formation in products like tuna salad that have been allowed to become recontaminated and then subjected to time and temperature abuse;

• The recommendations regarding on-board chilling of scombrotoxin-forming species of fish are now listed as follows:
 o Fish exposed to air or water temperatures above 83°F (28.3°C) should be placed in ice, or in refrigerated seawater, ice slurry, or brine of 40°F (4.4°C) or less, as soon as possible during harvest, but not more than 6 hours from the time of death, or

 o Fish exposed to air and water temperatures of 83°F (28.3°C) or less should be placed in ice, or in refrigerated seawater, ice slurry, or brine of 40°F (4.4°C) or less, as soon as possible during harvest, but not more than 9 hours from the time of death, or

 o Fish that are gilled and gutted before chilling should be placed in ice, or in refrigerated seawater, ice slurry, or brine of 40°F (4.4°C) or less, as soon as possible during harvest, but not more than 12 hours from the time of death, or

• Cautions are now provided that handling practices and processing controls that are recommended as suitable for preventing the formation of scombrotoxin may not be sufficient to prevent fish from suffering quality or shelf-life degradation (i.e., decomposition) in a way that may otherwise render it adulterated under the Federal Food, Drug, and Cosmetic Act;

• The lower anterior portion of the loin is now identified as the best place to collect a sample from large fish for histamine analysis;

• Fermenting, pickling, smoking, and drying are now identified as likely critical control points (CCPs) for this hazard;

• When fish are checked for internal temperature at off-loading, it is now recommended that:
 o For fish held iced or refrigerated (not frozen) onboard the vessel and off-loaded from the vessel by the processor 24 or more hours after death, the internal temperature should be 40°F (4.4°C) or below, OR

 o For fish held iced or refrigerated (not frozen) onboard the vessel and off-loaded from the vessel by the processor from 15 to less than 24 hours after death, the internal temperature should be 50°F (10°C) or below, OR

 o For fish held iced or refrigerated (not frozen) onboard the vessel and off-loaded from the vessel by the processor from 12 to less than 15 hours after death, the internal temperature should be 60°F (15.6°C) or below;

• The recommended level at which a lot should be rejected based on sensory examination when

Guidance for the Industry: Fish and Fishery Products Hazards and Controls Guidance, Fourth Edition

G - 11 (March 2020)
118 fish are examined is now corrected to be no more than 2 fish to coincide with the goal of less than 2.5% decomposition in the lot;

- It is now recommended that the number of fish subjected to sensory examination be increased if there is likely to be greater than normal variability in the lot, and that only one species constitute a lot for sampling purposes;

- When histamine analysis is performed as a corrective action, it is now recommended that any fish found to exceed the internal temperature at receiving critical limit be included in the sample;

- When the sensory critical limit has not been met, it is now recommended that the processor perform histamine analysis of a minimum of 60 fish, collected representatively from throughout the lot, including all fish in the lot that show evidence of decomposition, and reject the lot if any fish are found with a histamine level greater than or equal to 50 ppm;

- Subdividing and retesting for histamine is no longer recommended after an initial failed histamine test;

- It is now recommended that employees who conduct sensory screening receive adequate training;

- It is now recommended that for shipments of scombrotxin-forming species received under ice on open-bed trucks be checked for both sufficiency of ice and internal product temperature;

- It is now recommended that shipments of scombrotxin-forming species received under gel packs be checked for both adequacy of gel packs and internal product temperature;

- It is now recommended that if only the internal temperature of fish is checked at receipt by a secondary processor because the transit time is no more than 4 hours, calculation of transit time should include all time outside a controlled temperature environment;

- It is now recommended that if only the internal temperature of fish is checked at receipt by a secondary processor because the transit time is no more than 4 hours, a temperature-indicating device (e.g., a thermometer) should be used to determine internal product temperatures in a minimum of 12 fish, unless there are fewer than 12 fish in a lot, in which case all of the fish should be measured;

- When checks of the sufficiency of ice or chemical cooling media, such as gel packs, or internal product temperatures are used at receipt of fish from another processor, it is now recommended that the number of containers examined and the number of containers in the lot be recorded;

- Control of scombrotxin (histamine) formation during processing and storage are now provided as separate control strategy examples, and examples of HACCP plans are now provided for both strategies;

- The extended exposure times during processing (more than 12 hours, cumulatively, if any portion of that time is at temperatures above 70°F (21.1°C); or more than 24 hours, cumulatively, as long as no portion of that time is at temperatures above 70°F (21.1°C)) previously recommended for fish that have been previously frozen are now also recommended for fish that have been previously heat treated sufficiently to destroy scombrotxin-forming bacteria and are subsequently handled in a manner where there is an opportunity for recontamination with scombrotxin-forming bacteria;

- It is now acknowledged that it may be possible to control scombrotxin formation during unrefrigerated processing using a critical limit that is time of exposure only (i.e., no temperature component), if it is developed with an assumption that worst-case temperatures (e.g., in excess of 70°F (21.1°C)) may occur;

- Chemical coolants (e.g., gel packs) are no longer recommended for control of temperature during in-plant storage;

- For control of time and temperature during refrigerated storage, it is now noted that critical limits that specify a cumulative time and temperature of exposure to temperatures above 40°F (4.4°C) are not ordinarily suitable because of the difficulty in determining when specific products have entered and left the cooler and the time and temperature exposures to which they were subjected. However, there may be circumstances where this approach is suitable. It is also noted that minor variations in cooler temperature measurements can be
avoided by submerging the sensor for the temperature-recording device in a liquid that mimics the characteristics of the product;

- High-temperature alarms are no longer recommended for monitoring temperatures in coolers or processing areas;
- When the adequacy of ice is established as the critical limit for refrigerated storage, it is now recommended that monitoring be performed with sufficient frequency to ensure control rather than at least twice per day.

Chapter 8 related to other decomposition-related hazards has been modified with the following recommendations as of April 2011:

- It is now noted that FDA has received consumer complaints concerning illnesses associated with the consumption of decomposed salmon, attributable to the production in the fish of toxins other than histamine (e.g., biogenic amines, such as putrescine and cadaverine);
- It is now noted that there are also some indications that chemicals formed when fats and oils in foods oxidize may contribute to long-term detrimental health effects.

Chapter 9 for the control of environmental chemical contaminants and pesticides has been modified with the following recommendations as of April 2011:

- Toxic element guidance levels for arsenic, cadmium, lead, and nickel are no longer listed;
- Tolerance levels for endothall and its monomethyl ester in fish and carbaryl in oysters are now listed;
- The collection of soil samples from aquaculture production sites is no longer listed as a preventive measure;
- An example of a HACCP plan is now provided for control of environmental chemical contaminants in molluscan shellfish;
- When testing for environmental chemical contaminants and pesticides is used as the control measure, it is now recommended that the adequacy of the testing methods and equipment be verified periodically (e.g., by comparing results with those obtained using an Association of Official Analytical Chemists (AOAC) or equivalent method, or by analyzing proficiency samples).

Chapter 10, which covers the control of methylmercury, has been rewritten to acknowledge that FDA is receiving comments on a draft quantitative risk assessment for methylmercury, which may result in a reassessment of its risk management strategies has been modified with the following recommendations as of April 2011:

Chapter 11 for the control of aquaculture drugs has been modified with the following recommendations as of April 2011:

- The potential for this hazard to occur during transportation of live fish is now recognized, and recommended controls are provided;
- An explanation of extra-label use of drugs is now provided, and a list of drugs prohibited for extra-label use is now listed;
- FDA high enforcement priority aquaculture drugs are now listed;
- Aquaflor® Type A Medicated Article (florfenicol) is now listed as an approved drug for catfish and salmonids;
- Aquaflor® CA1 is now listed as an approved drug for catfish or in fingerling to food fish as the sole ration for 10 consecutive days.
- 35% PEROX-AID® (hydrogen peroxide) is now listed as an approved drug for freshwater-reared salmonids and freshwater-reared cool water finfish and channel catfish;
- Terramycin® 200 for Fish (oxytetracycline dihydrate) Type C, is now listed as an approved drug for catfish, salmonids; and lobster;
- OxyMarine®, Oxytetracycline HCl Soluble Powder-343, Terramycin-343, TETROXY Aquatic is now listed as an approved drug for all finfish fry and fingerlings as an aid in identification;
- Quarterly raw material, in-process, or finished product testing is now recommended as a verification step for control strategies involving review of suppliers’ certificates at receipt of
raw materials, review of records of drug use at receipt of raw materials, and on-farm visits;

- When testing for aquaculture drugs is used as the control measure, it is now recommended that the adequacy of the testing methods and equipment be verified periodically (e.g., by comparing results with those obtained using an AOAC or equivalent method, or by analyzing proficiency samples).

Chapter 12 for the control of pathogenic bacteria growth and toxin formation (other than *C. botulinum*) as a result of time and temperature abuse has been modified with the following recommendations as of April 2011:

- It is now recognized that *V. vulnificus*, *V. parahaemolyticus*, and *Vibrio cholaerae* non-O1 and non-0139 are generally associated with marine and estuarine species of fish and may not be reasonably likely to occur in freshwater species or non-fishery ingredients, unless they have been cross-contaminated;

- It is now clarified that products that are partially cooked to set the batter or breading or stabilize the product shape (e.g., fish balls, shrimp egg rolls, and breaded fish portions) are not considered to be ready to eat;

- Information is now provided on the determination of CCPs for products that are a combination of raw, ready-to-eat and cooked, ready-to-eat fishery ingredients;

- Control of time and temperature abuse at receipt, during cooling after cooking, during unrefrigerated processing, and during refrigerated storage and processing are now provided as four separate control strategy examples. Examples of HACCP plans are now provided for all four strategies;

- For control of transit conditions at receipt of ready-to-eat fish or fishery products delivered refrigerated (not frozen), it is now recommended that all lots be accompanied by transportation records that show that the fish were held at or below an ambient or internal temperature of 40°F (4.4°C) throughout transit or, for transit times of 4 hours or less, that the internal temperature of the fish at time of receipt was at or below 40°F (4.4°C);

- For control of time and temperature during refrigerated storage and refrigerated processing, it is now noted that critical limits that specify a cumulative time and temperature of exposure to temperatures above 40°F (4.4°C) are not ordinarily suitable because of the difficulty in determining when specific products have entered and left the cooler and the time and temperature exposures to which they were subjected. However, there may be circumstances where this approach is suitable. It is also noted that minor variations in cooler temperature measurements can be avoided by submerging the sensor for the temperature-recording device in a liquid that mimics the characteristics of the product;

- It is now recommended that if only the internal temperature of the fishery product is checked at receipt, because the transit time is no more than 4 hours, calculation of transit time should include all time outside a controlled temperature environment;

- It is now recommended that if only the internal temperature of product is checked at receipt by a secondary processor because the transit time is no more than 4 hours, a temperature-indicating device (e.g., a thermometer) should be used to determine internal product temperatures in a minimum of 12 containers (e.g., cartons and totes), unless there are fewer than 12 containers in a lot, in which case all of the containers should be measured;

- When checks of the sufficiency of ice or chemical cooling media, such as gel packs, or internal product temperatures are used at receipt of fish from another processor, it is now recommended that the number of containers examined and the number of containers in the lot be recorded;

- Chemical coolants (e.g., gel packs) are no longer recommended for control of temperature during in-plant storage;

- Recommended cumulative exposure times and temperatures (i.e., critical limits) are now listed as follows:

For raw, ready-to-eat products:

- If at any time the product is held at internal temperatures above 70°F (21.1°C), exposure time (i.e., time at internal temperatures above 50°F (10°C) but below
135°F (57.2°C) should be limited to 2 hours (3 hours if *Staphylococcus aureus* (*S. aureus*) is the only pathogen of concern), OR

- Alternatively, exposure time (i.e., time at internal temperatures above 50°F (10°C) but below 135°F (57.2°C)) should be limited to 4 hours, as long as no more than 2 of those hours are between 70°F (21.1°C) and 135°F (57.2°C), OR

- If the product is held at internal temperatures above 50°F (10°C), but never above 70°F (21.1°C), exposure time at internal temperatures above 50°F (10°C) should be limited to 5 hours (12 hours if *S. aureus* is the only pathogen of concern), OR

- The product is held at internal temperatures below 50°F (10°C), OR

- Alternatively, the product is held at ambient air temperatures below 50°F (10°C) throughout processing;

For cooked, ready-to-eat products:

- If at any time the product is held at internal temperatures above 80°F (26.7°C), exposure time (i.e., time at internal temperatures above 50°F (10°C) but below 135°F (57.2°C)) should be limited to 1 hour (3 hours if *S. aureus* is the only pathogen of concern), OR

- Alternatively, if at any time the product is held at internal temperatures above 80°F (26.7°C), exposure time (i.e., time at internal temperatures above 50°F (10°C) but below 135°F (57.2°C)) should be limited to 4 hours, as long as no more than 1 of those hours is above 70°F (21.1°C), OR

- If at any time the product is held at internal temperatures above 70°F (21.1°C), but never above 80°F (26.7°C), exposure time at internal temperatures above 50°F (10°C) should be limited to 2 hours (3 hours if *S. aureus* is the only pathogen of concern), OR

- Alternatively, if the product is never held at internal temperatures above 80°F (26.7°C), exposure times at internal temperatures above 50°F (10°C) should be limited to 4 hours, as long as no more than 2 of those hours are above 70°F (21.1°C), OR

- If the product is held at internal temperatures above 50°F (10°C), but never above 70°F (21.1°C), exposure time at internal temperatures above 50°F (10°C) should be limited to 5 hours (12 hours if *S. aureus* is the only pathogen of concern), OR

- The product is held at internal temperatures below 50°F (10°C), OR

- Alternatively, the product is held at ambient air temperatures below 50°F (10°C) throughout processing;

- High-temperature alarms are no longer recommended for monitoring temperatures in coolers or processing areas;

- When the adequacy of ice is established as the critical limit for refrigerated storage, it is now recommended that monitoring be performed with sufficient frequency to ensure control rather than at least twice per day;

- It is now recommended that monitoring shipments received under gel packs include both adequacy of gel packs and internal product temperature.

Chapter 13 for the control of *C. botulinum* toxin formation has been modified with the following recommendations as of April 2011:

- Information is now provided on Time-Temperature Indicator (TTI) performance and suitability;
A control strategy is now provided for application of TTIs on each of the smallest package units (i.e., the unit of packaging that will not be distributed any further, usually consumer or end-user package), where refrigeration is the sole barrier to prevent toxin formation;

It is no longer recommended that consideration be given to whether the finished product will be stored and distributed frozen when determining whether the hazard is significant. A control strategy is now provided to ensure that frozen products are properly labeled when freezing is the sole barrier to prevent toxin formation;

Processors are now advised to take particular care in determining the safety of a packaging material for a product in which (1) the spoilage organisms have been eliminated or significantly reduced by such processes as high-pressure processing and (2) refrigeration is the sole barrier to toxin formation. The generally recommended 10,000 cc/m²/24 hours at 24ºC oxygen transmission rates may not be suitable in this case;

High-temperature alarms are no longer recommended for monitoring temperatures in coolers or processing areas;

Chemical coolants (e.g., gel packs) are no longer recommended for control of temperature during in-plant storage;

When the adequacy of ice is established as the critical limit for refrigerated storage, it is now recommended that monitoring be performed with sufficient frequency to ensure control rather than at least twice per day;

It is now recommended that a water phase salt level of 20% be achieved in shelf-stable, reduced oxygen packaged products in which salt is the only barrier to pathogenic bacteria growth and toxin formation;

It is now recommended that monitoring shipments received under gel packs include both adequacy of gel packs and internal product temperature;

It is now recommended that if only the internal temperature of the fishery product is checked at receipt, because the transit time is no more than 4 hours, calculation of transit time should include all time outside a controlled temperature environment;

It is now recommended that if only the internal temperature of product is checked at receipt by a secondary processor because the transit time is no more than 4 hours, a temperature-indicating device (e.g., a thermometer) should be used to determine internal product temperatures in a minimum of 12 containers (e.g., cartons and totes), unless there are fewer than 12 containers in a lot, in which case all of the containers should be measured;

A control strategy example is now provided for receipt by a secondary processor of refrigerated reduced oxygen packaged products that may be stored and further distributed or used as an ingredient for further processing;

It is now clarified that brining time should be monitored during the processing of smoked fish;

It is now recommended that brine be treated to minimize microbial contamination or be periodically replaced as a good manufacturing practice control.

Chapter 14 for the control of pathogenic bacteria growth and toxin formation as a result of inadequate drying has been modified with the following recommendations as of April 2011:

It is no longer recommended that consideration be given to whether the finished product will be stored and distributed frozen (in the case of reduced oxygen packaged products) or refrigerated (in the case of aerobically packaged products) when determining whether the hazard is significant. A control strategy to ensure that refrigerated dried products are properly labeled when refrigeration is the sole barrier to toxin formation is now provided. A control strategy to ensure that frozen products are properly labeled when freezing is the sole barrier to toxin formation is now provided in Chapter 13.

Chapter 15 for the control of \textit{S. aureus} toxin formation in hydrated batter mixes has been modified with the following recommendations as of April 2011:

The number of \textit{S. aureus} organisms normally needed to produce toxin is now listed as 500,000 to 1,000,000 per gram;
High-temperature alarms are no longer recommended for monitoring temperatures in processing areas.

Chapter 16 for the control of pathogenic bacteria survival through cooking has been modified with the following recommendations as of April 2011:

- The separate chapters that previously covered pathogen survival through cooking and pathogen survival through pasteurization are now combined;
- Pasteurization is now defined as a heat treatment applied to eliminate the most resistant pathogen of public health concern that is reasonably likely to be present in food;
- Information is now provided for an option to monitor End-Point Internal Product Temperature, instead of continuous time and temperature monitoring during cooking or pasteurization, when a scientific study has been conducted to validate that it will provide a 6D process for the target pathogen;
- For surimi-based products, soups, or sauces, the following pasteurization process is now recommended: a minimum cumulative, total lethality of $F_{194^\circ F}(90^\circ C) = 10$ minutes, where $z = 12.6^\circ F (7^\circ C)$ for temperatures less than $194^\circ F (90^\circ C)$, and $z = 18^\circ F (10^\circ C)$ for temperatures above $194^\circ F (90^\circ C)$;
- For Dungeness crabmeat, the following pasteurization process is now recommended: a minimum cumulative total lethality of $F_{194^\circ F}(90^\circ C) = 57$ minutes, where $z = 15.5^\circ F (8.6^\circ C)$;
- Information concerning levels of *Listeria monocytogenes* (*L. monocytogenes*) in foods is now updated based on the final FDA/U.S. Department of Agriculture *L. monocytogenes* risk assessment.

Chapter 17 is a new chapter that contains guidance for the control of pathogen survival through processes designed to retain raw product characteristics. However, these technologies may have other applications as well has been modified with the following recommendations as of April 2011:

Chapter 18 for the control of the introduction of pathogenic bacteria after pasteurization and specialized cooking processes has been modified with the following recommendations as of April 2011:

- It is no longer recommended that consideration be given to whether the finished product will be stored and distributed frozen when determining whether the hazard is significant. A control strategy to ensure that frozen products are properly labeled when freezing is the sole barrier to prevent *C. botulinum* toxin formation is now provided in Chapter 13.

Chapter 19 for the control of undeclared food allergens and intolerance substances has been modified with the following recommendations as of August 2019:

- The language regarding allergen cross-contact has been enhanced.
- The language regarding allergen sanitation and cleaning has been enhanced.
- The examples have been consolidated for relevance.
- Unnecessary examples have been removed.
- “Prohibited additives” has been removed from the title and chapter since they are prohibited.
- Label review for the appropriate identification of the allergen and being applied to the appropriate product has been added.
- CFR and other regulatory references have been removed.

Chapter 20 for the control of metal inclusion has been modified with the following recommendations as of April 2011:

- Foreign objects less than 0.3 inch (7 mm) are now identified as having a potential for causing trauma or serious injury to persons in special risk groups, such as infants, surgery patients, and the elderly;
• Additional information on calibration and validation of electronic metal detectors is now provided;

• Wire mesh baskets are no longer used as an example of an unlikely source of metal fragments;

• The recommended critical limit for the metal detection or separation control strategy has been expanded to read, “All product passes through an operating metal detection or separation device,” and “No detectable metal fragments in a product passing through the metal detection or separation device.” As a result, the recommended monitoring procedures are also expanded so that they now are designed to also ensure that the processes are in place and operating;

• It is now recommended that when metal fragments are found in a product by a metal detector or separated from the product stream by magnets, screens, or other devices, the source of the fragment is located and corrected.

Chapter 21 for the control of glass inclusion has been modified with the following recommendations as of April 2011:

• This chapter is no longer identified as a draft;

• The use of x-ray detection devices is no longer recommended as a reliable method for controlling glass inclusion;

• The recommended critical limit for the glass container cleaning and visual inspection control strategy has been expanded to read, “All container pass through an operating glass container inspection or cleaning process,” and “No detectable glass fragments in glass containers passing the CCP.” As a result, the recommended monitoring procedures are also expanded so that they now are designed to also ensure that the processes are in place and operating;

• The monitoring procedures for the glass container cleaning and visual inspection control strategy now include a recommendation that a representative sample of the cleaned or inspected containers be examined at the start of processing, every 4 hours during processing, at the end of processing, and after any breakdowns;

• It is now recommended that monitoring for the presence of glass be performed at the start of each production day and after each shift change.

• It is now recommended that a representative sample of cleaned or inspected glass containers be examined daily, at the start of processing, every 4 hours during processing, at the end of processing, and after any breakdowns.

Appendix 1: “Forms” has been modified with the following recommendations as of April 2011:

Appendix 2: “Sample Product Flow Diagram” has been modified with the following recommendations as of April 2011:

Appendix 3: “Critical Control Point Decision Tree” has been modified with the following recommendations as of April 2011:

Appendix 4: “Bacterial Pathogen Growth and Inactivation,” has been modified with the following recommendations as of April 2011:

• Recommended summary cumulative exposure times and temperatures are now listed as described above for Chapter 12;

• The maximum water phase salt level for growth of Campylobacter jejuni is now listed as 1.7%;

• The maximum level of acidity (pH) for growth of pathogenic strains of Escherichia coli (E. coli) is now listed as 10;

• The maximum recommended cumulative exposure times for Bacillus cereus are now listed as follows: 5 days at temperatures of 39.2 to 43°F (4 to 6°C); 1 day at temperatures of 44 to 59°F (7 to 15°C); 6 hours at temperatures of 60 to 70°F (16 to 21°C); and 3 hours at temperatures above 70°F (21°C);

• The maximum cumulative exposure times for E. coli, Salmonella, and Shigella spp. are now listed as follows: 2 days for temperatures from their minimum growth temperature 41.4 to 50°F (10°C); 5 hours for temperatures of 51 to 70°F (11 to 21°C); and 2 hours for temperatures above 70°F (21°C);

• The maximum cumulative exposure times for Listeria monocytogenes are now listed as...
follows: 7 days for temperatures of 31.3 to 41°F (-0.4 to 5°C); 1 day for temperatures of 42 to 50°F (6 to 10°C); 7 hours for temperatures of 51 to 70°F (11 to 21°C); 3 hours for temperatures of 71 to 86°F (22 to 30°C); and 1 hour for temperatures above 86°F (30°C);

- The maximum cumulative exposure times for *Vibrio cholerae*, *V. vulnificus*, and *V. parahaemolyticus* are now listed as follows: 21 days for temperatures from their minimum growth temperature to 50°F (10°C); 6 hours for temperatures of 51 to 70°F (11 to 21°C); 2 hours at temperatures of 71 to 80°F (22 to 26.7°C); and 1 hour at temperatures above 80°F (26.7°C), with the last temperature range applying only to cooked, ready-to-eat products.

Appendix 5: Table A-5, “FDA and EPA Safety Levels in Regulations and Guidance,” has been modified with the following recommendations as of March 2020:

- Biological Safety Levels – The < sign has been changed to ≥ for:
 - Post-harvest processed clams, mussels, oysters, and whole and roe-on scallops, fresh or frozen, that make a label claim of “process to reduce *Vibrio parahaemolyticus* to non-detectable levels”
 - Post-harvest processed clams, mussels, oysters, and whole and roe-on scallops, fresh or frozen, that make a label claim of “process to reduce *Vibrio vulnificus* to non-detectable levels”

- Chemical Safety Levels – The ≥ sign has been changed to > for the following:
 - 2,4-Dichlorophenoxyacetic acid (2,4-D);
 - Bispyribac-sodium;
 - Carbaryl;
 - Carfentrazone-ethyl;
 - Diquat;
 - Diuron and its metabolites;
 - Endothall and its monomethyl ester;
 - Ethoxyquin;
 - Flumioxazin;
 - Fluridone;
 - Fluxapyroxad;
 - Florpyrauxifen-benzyl;
 - Glyphosate;
 - Imazapyr;
 - Penoxsulam;
 - Saflufenacil;
 - Spinosad;
 - Triclopyr and its metabolites and degradates; and
 - Topramezone.

Appendix 6 no longer lists food allergens. It now contains a table of Japanese and Hawaiian vernacular names and their corresponding U.S. market names has been modified with the following recommendations as of April 2011:

Appendix 7 no longer lists the bibliography. It now contains information regarding the public health impacts of bacterial and viral pathogens of greatest concern in seafood processing has been modified with the following recommendations as of April 2011:

Appendix 8: “Procedures for Safe and Sanitary Processing and Importing of Fish and Fishery Products” has been modified with the following recommendations as of August 2019:

- Part 123 has been updated to include 21 CFR Part 117.
- Part 1240 has been updated to include “d.”

Appendix 9 – “Allergen Cleaning and Sanitation” has been modified with the following recommendations as of August 2019:

- New appendix with recommendations for establishing an allergen cleaning and sanitation program has been added.
Appendix 10 – “Allergen Cross-Contact Prevention” has been modified with the following recommendations as of August 2019:

- New appendix with recommendations for establishing controls to prevent cross-contact in a facility has been added.