BLOOD GROUPING REAGENT

Anti-D beta

ALBAclone®

(Human/Murine Monoclonal IgM)

For Slide and Tube Techniques

This insert refers to product Z036U

- Meets FDA potency requirements
- Discard if turbid
- Preservative: 0.1% sodium azide

CAUTION: THE ABSENCE OF ALL VIRUSES HAS NOT BEEN DETERMINED. THIS PRODUCT HAS COMPONENTS (DROPPER BULBS) CONTAINING DRY NATURAL RUBBER.

SUMMARY

First described in 1939, the RhD antigen is surpassed in importance only by the antigens of the ABO blood group system. Transfusion of RhD positive blood to a RhD negative recipient or failure to administer prophylactic anti-D to a RhD negative woman can result in the production of anti-D. Consequently, establishing the correct RhD group is fundamental to safe transfusion practice. Certain individuals exhibit a quantitative reduction in the expression of their RhD antigen and are categorised as weak D (D"). Others display a qualitative variation in RhD antigen expression and are referred to as partial RhD. Weak D individuals may also be partial RhD.

This monoclonal IgM anti-D will directly agglutinate red blood cells from most weak D and partial RhD except DVI.

INTENDED USE

This Anti-D reagent is for the in vitro detection and identification of human RhD blood group status by direct agglutination.

PRINCIPLE OF THE TEST

When used by the recommended technique, this reagent will cause agglutination (clumping) of red blood cells carrying the RhD antigen. Lack of agglutination demonstrates the absence of the RhD antigen.

REAGENT DESCRIPTION

The main component of this reagent is derived from the in vitro culture of the IgM secreting human/mouse heterohybridoma -

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Product Code</th>
<th>Cell Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-D beta</td>
<td>Z036U</td>
<td>LDM3</td>
</tr>
</tbody>
</table>

The formulation also contains potentiators, EDTA and 1g/l sodium azide.

The volume delivered by the reagent dropper bottle is approximately 40µl. Bearing this in mind, care should be taken to ensure that appropriate serum:cell ratios are maintained in all test systems.

STORAGE CONDITIONS

The reagent should be stored at 2°C - 8°C. Do not use if turbid. Do not dilute. The reagent is stable until the expiry date stated on the product label.

PRECAUTIONS FOR USE AND DISPOSAL

This reagent contains 0.1% (w/v) sodium azide. Sodium azide may be toxic if ingested and may react with lead and copper plumbing to form explosive compounds. If discarded into sink, flush with a large volume of water to prevent azide build up.

INTERPRETATION OF LABELING SYMBOLS

- **LOT**
 - Batch code
- **Use by (YYYY-MM-DD)**
- **8°C**
 - Storage temperature limitation (2°C-8°C)
- **2°C**
 - In vitro diagnostic medical device
- **IVD**
 - Consult instructions for use
- **Harmful**
- **Manufacturer**

SPECIMEN COLLECTION AND PREPARATION

Specimens should be collected by aseptic technique with or without an anticoagulant. The specimen should be tested as soon as possible after collection. If testing is delayed, the specimen should be stored at 2°C - 8°C. Blood specimens exhibiting gross haemolysis or contamination should not be used. Clotted samples or those collected in EDTA should be tested within fourteen days from collection. Donor blood stored in citrate anticoagulant may be tested until the expiry date of the donation.

TEST PROCEDURES

General Information

This reagent has been standardised for use by the techniques described below and therefore its suitability for use in other techniques cannot be guaranteed. When a test is required to be incubated for a specific time period, a timer should be used.

Two tube techniques offering different incubation times are described below. Both are equal and will give comparable results. The user can choose the incubation time within the range that is most compatible with their current laboratory procedures.

ADDITIONAL MATERIALS AND REAGENTS REQUIRED

- Isotonic saline
- Reagent red blood cells for use in RhD grouping
- 10 x 75mm or 12 x 75mm glass test tubes
- Glass slides
- Pipettes
- Optical aid
- Centrifuge
- Heating block / waterbath @ 37°C
- Timer

RECOMMENDED TECHNIQUES

Tube Technique - Immediate Spin

- Add 1 volume of blood grouping reagent to a test tube.
- Add 1 volume of red blood cells suspended to 2-4% in isotonic saline.
- Mix the contents of the test tube well and centrifuge. Suggested centrifugation: 1000g for 10 seconds or a time and speed appropriate for the centrifuge used that produces the strongest reaction of antibody with antigen-positive red blood cells, yet allows easy resuspension of antigen-negative red blood cells.
- After centrifugation, gently shake the tube to dislodge the cell button from the bottom and immediately observe macroscopically for agglutination.
Tube Technique – 15 minute / spin
. Add 1 volume of blood grouping reagent to a test tube.
. Add 1 volume of red blood cells suspended to 2-4% in isotonic saline.
. Mix the contents of the tube test well and incubate for 15 minutes at 37°C ± 1°C.
. Centrifuge the test tube.

Suggested centrifugation: 1000g for 10 seconds or a time and speed appropriate for the centrifuge used that produces the strongest reaction of antibody with antigen-positive red blood cells, yet allows easy resuspension of antigen-negative red blood cells.
. After centrifugation, gently shake the tube to dislodge the cell button from the bottom and immediately observe macroscopically for agglutination.

Slide Technique
. Add 1 volume of blood grouping reagent to an appropriately prepared area of a glass slide e.g. a wax pencil oval.
. Add 1 volume of red blood cells suspended to 30-45% in group homologous plasma/serum.
. Mix well by rocking the slide for approximately 30 seconds and incubate the test for 5 minutes at 18 – 24°C with occasional mixing.
. After incubation, immediately observe macroscopically for agglutination. This may be facilitated by reading over a diffuse light source.

INTERPRETATION OF RESULTS
Agglutination = positive test result
No agglutination = negative test result

QUALITY CONTROL
Quality control of reagents is essential and should be performed with each series of RhD groups, single RhD groups and in accordance with local, state and federal regulations. We suggest that the following red blood cell samples are used to control the reactions of this reagent. Other red blood cell types may be suitable but should be selected with care.

O Rh red blood cells should be used as a positive control
O rr red blood cells should be used as a negative control

PERFORMANCE LIMITATIONS
The quantity of RhD antigen expressed by weak D individuals varies considerably. While this anti-D reagent will directly agglutinate red blood cells from most weak D individuals, if it is considered important to test for weak D, a reagent specifically prepared for that purpose should be used.

Slide techniques are not recommended for the detection of weak D or partial RhD samples. All negative slide tests should be confirmed by tube testing to confirm absence of weak subgroups.

Certain tests performed on unwashed samples (eg cord), direct antiglobulin test positive samples, or samples stored and tested at 18°C or below, may exhibit false positive reactions due to the potentiators used in the formulation of this reagent. A satisfactory reagent control may be achieved by substituting 6-10% BSA in saline for the blood grouping reagent in the procedure chosen for use. If the control test gives a positive reaction, a valid interpretation of the results obtained in red blood cell testing cannot be made. A control test should always be used if a sample groups as AB RhD positive.

Drriblocks and waterbaths promote better heat transfer and are

SPECIFIC PERFORMANCE CHARACTERISTICS
Prior to release, each lot of ALBAclone® Anti-D beta is tested by FDA recommended methods against a panel of antigen-positive and antigen-negative red blood cells to ensure suitable reactivity.

This Anti-D reagent will directly agglutinate red blood cells from most known RhD categories except DVR.

This reagent will also directly agglutinate most weak D and unclassified partial RhD samples.

BIBLIOGRAPHY

DATE OF ISSUE
April 2009