Guidance for Industry

The FDA published Good Guidance Practices in February 1997. This guidance was developed and issued prior to that date.

Additional copies are available from:
Office of Training and Communications
Division of Communications Management
Drug Information Branch, HFD-210
5600 Fishers Lane
Rockville, MD 20857

(Tel) 301-827-4573
(Internet) http://www.fda.gov/cder/guidance/index.htm

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES, FOOD AND DRUG ADMINISTRATION
C. DATA REQUIRED FOR EVALUATION

The guidelines recommended in this document for the studies required to bring a Category III antiperspirant drug product into Category I are in accord with the present state of the art and do not preclude the use of any advances or improved technology in the future.

1. Guidelines for products categorized as Category III because of inadequate data concerning their safety for the skin. Skin reactions to topically applied agents are customarily thought to occur by one of two different mechanisms, either due to allergens or irritants. It may be difficult to test for allergens prior to marketing because allergens depend for their effect on individual differences in susceptibility to sensitization (Refs. 1 through 4). Of the antiperspirant materials that have been reviewed, those in Category I are not sensitizers and the Panel feels that nothing more than the standard older tests (Refs. 1 and 2) should be required for other antiperspirants.

Primarily because of their low pH, however, all of the antiperspirant materials are capable of producing some skin irritation. Considering the irritating nature of these chemicals, it is fortunate that they are designed to be
applied to the auxiliary vault. Dermatologists have long recognized that hairy areas are relatively resistant to the development of contact dermatitis from either allergens or irritants. Lanman, Elvers, and Howard (Ref. 3) and Elvers and Lanman (Ref. 4) have suggested the use of comparative controls in evaluating the tendency of agents to irritate the skin. This concept of comparing the irritancy of the test agent with the irritancy of other widely used agents makes special sense in evaluating antiperspirant products. For one thing, a single ingredient, aluminum chloride, so dominates this product-antiperspirant market that comparative testing against aluminum chloride affords a sensitive and practical measure of evaluation. For another, the use of known marketed products for comparison permits the rational Introduction of risk/benefit considerations into the question of "how much" risk.

At this point it might be noted that the Panel applied such considerations to the topical application of aqueous solutions of aluminum chloride, deem- ing them more irritating than the aluminum chlorohydrates but at the same time more effective and, therefore, placed them in Category I with an additional warning, "Warning: Some users of this product will experience skin irritation." The following is, therefore, suggested as a technique for deciding whether ingredients now in Category III because of questions of skin irritancy could be reclassified into Category I, or into Category I with special irritancy warnings, or into Category II.

a. If the ingredient in final product form is more irritating than aluminum chloride in the same vehicle using the Lanman technique, it is acceptable as Category I.

b. If the ingredient in final product form which are more irritating in the comparative irritancy test than aluminum chloride in the same vehicle, must demonstrate a significantly greater reduction in perspiration than the effectiveness standard.

c. If the ingredient in final product form although more irritating than aluminum chloride in the same vehicle, is more effective, it must bear an additional label warning of irritation. "Warning: Some users of this product will experience skin irritation," but may be classified as Category I.

Summary of Guidelines for Classifying Category III Ingredients into Category I

<table>
<thead>
<tr>
<th>Category</th>
<th>Skin irritation (compared with aluminum chloride)</th>
<th>Effectiveness</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>No more irritating</td>
<td>20 pt.</td>
</tr>
<tr>
<td>II</td>
<td>More irritating</td>
<td>>20 pt.</td>
</tr>
<tr>
<td>I plus warning label</td>
<td></td>
<td>Not statistically significantly better than 20 pt.</td>
</tr>
</tbody>
</table>

2. Guidelines for tests to be done for aerosolized antiperspirant sprays to be classified as Category I. Since the aluminum chlorohydrates are the predominant active ingredients in the antiperspirant market, the following guidelines are written specifically for them. Other aerosolized antiperspirant ingredients which are Category III should follow the same guidelines except that the test material will be the active ingredient used in the marketed formulation rather than the aluminum chlorohydrates as discussed below.

a. Preliminary studies. Prior to conducting the chronic animal inhalation study the following steps will be taken:

(1) Determination of 1 times human exposure level. The concentration, which shall be the 1 times level for the chronic animal inhalation study, of respirable aluminum to which persons are exposed during heavy usage of aerosolized antiperspirants in finished product form will be determined. Heavy usage is defined as the upper 95 percent tolerance limit (i.e., that concentration exceeded by only 5 percent of the population) of the distribution of individual respirable aluminum concentration values as determined by the following procedure.

A minimum of 20 subjects should participate in the test. They should be finished product samples of the aerosol antiperspirant to be used for a 1-week period prior to the exposure assay in order to permit them to become accustomed to the product. Subjects may not be selected for their pattern of use of antiperspirant products. Each subject should participate in a series of supervised normal use collections. The number of such collections (5 to 15) should be determined by the efficiency of the sampling instrument used; the objective being to collect a sufficient quantity of material to permit an accurate aluminum assay. For each of these collections the subject should be given a sample of the product and asked to spray both axillae according to his/her normal practice, and in the test room (simulated home bathroom) for 15 minutes. During the application and 15-minute postapplication period the collection of respirable aluminum in the breathing zone should be continuous. Room air should be changed between subject runs, but not during the collection period.

Upon entrance into the test room the subject should be positioned near a respirable mass sampling device, with the collection port located in close proximity to the nose. The subject should be given an aerosol package and asked to apply the product to both axillae in his/her usual manner. Having had the opportunity in the pretest period to consult the label directions, the subject should receive no specific instructions on the test days with respect to distance, duration, or direction of product application. Air sampling of the breathing zone should be initiated at the start of product application and continued for 15 minutes. During the entire collection period a constant sampling flow rate should be maintained at the level appropriate for the specific instrument used.

(2) Determination of animal chamber conditions equivalent to human exposure. Conditions of chamber flow rate and duration and frequency of as- culation necessary to produce a chamber concentration equivalent to the human 1 times exposure levels and multiples thereof, should be determined.

(3) Preparation of prototype product forms. For the animal studies, prototype aerosolized antiperspirants should be formulated which are representative of marketed product forms and which, for each of these marketed forms, deliver the highest concentra- tion of respirable aluminum in the breathing zone.

(4) Pulmonary deposition of aluminum in animals. Preliminary studies to relate exposure conditions to pulmonary deposition of aluminum from prototype product forms should be used to provide the basis for the selection of dose levels and product formulation to be used in the chronic animal inhalation studies should be conducted.

FEDERAL REGISTER, VOL. 43, NO. 196—TUESDAY, OCTOBER 10, 1978
b. Chronic animal inhalation study.—(1) Test material. The Panel believes that to test every chemical known as aluminum chloride would be an enormous undertaking that is not necessary to assess the chronic pulmonary toxicity of aerosol products of these materials. The chemical properties of the aluminum chlorohydrates are very similar and all evidence presented to the Panel on the toxicity of these materials suggests that they have the same risk potential. The Panel concludes that it would be sufficient to carry out the proposed test on the aluminum chloride formulation which in the preliminary studies has been demonstrated to show the greatest potential for pulmonary deposition.

(2) Respiratory systems of lower animals are sufficiently different from humans that it is difficult to assign the burden of proof of safety to one animal species (Refs. 5 and 6). By selecting two animal species, a large and a small one, a check on species variation would be provided. The two groups of animals to be selected for this long-term study are the cynomolgus monkey for the larger test animal, and the Syrian hamster, rabbit, or rat for the smaller one. There is a substantial body of knowledge on edge on the respiratory characteristics of these animals which should facilitate the extrapolation of the experimental results to humans (Ref. 5).

(3) Exposure conditions. The animals should be whole-body exposed to the test material from aerosol packages for 15 minutes twice daily in the morning and evening for 7 days a week for the duration of the study. Air control animals should be exposed to filtered room air in a similar chamber with flow characteristics identical to those of the treatment groups.

(4) Duration of test. The duration of the inhalation test should be 2 years. The Panel took into consideration a number of factors in deciding on this duration. The primary factors considered were the period necessary to induce in animals or humans lung disorders of the type that might develop from the chronic use of aerosol antiperspirants, the length of time these products are used by the public, and the practicality of carrying out a long-term inhalation study on laboratory animals. In the case of the smaller animals, 2 years represents its life expectancy, while for the larger animal it is a significant fraction of their lives.

(5) Group design. The following group design should be followed:

<table>
<thead>
<tr>
<th>Group 1</th>
<th>Number of large animals</th>
<th>Number of small animals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air control</td>
<td>8 (4 males, 4 females)</td>
<td>8 (4 males, 4 females)</td>
</tr>
<tr>
<td>1 times</td>
<td>8 (4 males, 4 females)</td>
<td>8 (4 males, 4 females)</td>
</tr>
<tr>
<td>100 times</td>
<td>8 (4 males, 4 females)</td>
<td>8 (4 males, 4 females)</td>
</tr>
<tr>
<td>Recovery</td>
<td>8 (4 males, 4 females)</td>
<td>None</td>
</tr>
</tbody>
</table>

(7) Chamber monitoring. Total particulate, particulate size distribution, and active ingredient analysis should be monitored in the chambers during exposure.

(7) Biological measurements.—(1) Body weights. The small animals should be weighed weekly for the first 13 weeks and every 2 weeks thereafter. The large animals should be weighed weekly throughout the study.

(II) Daily observations. All animals should be observed twice daily during exposure for pharmacological activity and/or toxic effects.

(iii) Serum chemistry. Serum chemistry should be performed on the large animals prior to exposure and every 3 months thereafter.

(iv) Urinalysis. Urinalysis studies should be performed on the large animals prior to exposure and every 3 months thereafter.

(v) Ophthalmoscopic examination. The large animals should have an ophthalmoscopic examination prior to exposure and every 3 months thereafter.

(vi) Post-mortem examination.—(1) Gross pathology. (a) The following tissues from each animal should be removed at necropsy and weighed: Brain, thyroid, lungs, adrenals, liver, kidneys, spleen, gonad, and heart. Organ/body-weight and organ/body-weight ratios should be calculated and analyzed statistically.

(b) The following tissues should be removed at necropsy and fixed: Brain (cerebellum, midbrain, cerebrum); stomach; esophagus; thyroid, parathyroid; pituitary; eyes; thymus; heart; spleen; bone marrow (sternum); skeletal muscle, pancreas; small intestine; large intestine; adrenals; cervical lymph node; mesenteric lymph node; liver; skin; gonads; peripheral nerve; kidney; diaphragm; esophagus, internal, testes, liver, skin, respiratory system (external nares, larynx, lungs, nasopharynx, trachea, tonsil, cervical lymph nodes, mesenteric lymph nodes, peripheral lymph nodes, cervical lymph node, mesenteric lymph node, gonads, liver, skin, respiratory system (external nares, larynx, lungs, nasopharynx, trachea, cervical lymph nodes, nasal turbinates, peribronchial lymph nodes, tonsil). All animals that die during the study should be autopsied and the tissues saved for histopathology. Animals that appear moribund during the study should be sacrificed and the tissues saved for histopathology.

(4) Deposition of aluminum. Aluminiun deposition in the tracheobronchial-aveolar systems of the large and the small animals will be determined. The deposition level within the lungs of the test animals exposed to the highest concentration of aluminum salt must be significantly above background.

(10) Good laboratory practices. The study should be conducted in accordance with good laboratory practices.
cannot be directly attributed to extra antiperspirant performance, but may be due to less stingild, perfume, etc.

After deleting the “no difference” response (i.e., those subjects who could not decide for either product) the binomial test with $H^0=0.5$ may be applied. That is, if the null hypothesis of no difference between the two products may be rejected at the 0.05 level in the reduced sample (ties removed), then the manufacturer may make an extra effective claim.

This statistical test reduces to the simple procedure of counting the number of subjects who expressed a preference for the test antiperspirant as follows:

<table>
<thead>
<tr>
<th>Total number of test subjects expressing a preference</th>
<th>Number of subjects required to express preference for the test antiperspirant</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>25</td>
<td>15</td>
</tr>
<tr>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>100</td>
<td>55</td>
</tr>
</tbody>
</table>

This test will demonstrate that with high probability at least 50 percent of the target population will experience the added benefit.

REFERENCES

(5) Jones, R. C., letter to G. E. Thompson, PDA, October 3, 1975, copy is included in OTC volume 14069.

(6) Transcript of open session, December 18, 1975.

The Food and Drug Administration has determined that this document does not contain an agency action covered by 21 CFR 25.1(b) and consideration by the agency of the need for preparing an environmental impact statement is not required.

as amended (5 U.S.C. 553, 554, 702, 703, 704)), and under authority delegated to him (21 CFR 6.1), the Commissioner proposes that subchapter D of chapter I of title 21 of the Code of Federal Regulations be amended by adding new part 350, to read as follows:

FEDERAL REGISTER, VOL 43. NO. 196—TUESDAY, OCTOBER 10, 1978