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Use of Bayesian Methodology in Clinical Trials of Drugs and 1 
Biologics Guidance for Industry1 2 

 3 
 4 
This draft guidance, when finalized, will represent the current thinking of the Food and Drug 5 
Administration (FDA or Agency) on this topic. It does not establish any rights for any person and is not 6 
binding on FDA or the public. You can use an alternative approach if it satisfies the requirements of the 7 
applicable statutes and regulations. To discuss an alternative approach, contact the FDA staff responsible 8 
for this guidance as listed on the title page.  9 
 10 

 11 
 12 
 13 
I. INTRODUCTION  14 
 15 
This document provides guidance to sponsors and applicants submitting investigational new drug 16 
applications (INDs), new drug applications (NDAs), biologics licensing applications (BLAs), or 17 
supplemental applications on the appropriate use of Bayesian methods in clinical trials. Bayesian 18 
methods can be used in various ways in clinical trials. For example, Bayesian calculations can be 19 
used to govern the timing and adaptation rules for an interim analysis in an adaptive design, to 20 
inform design elements (e.g., dose selection) for subsequent clinical trials, or to support primary 21 
inference in a trial. The primary focus of this guidance is on the use of Bayesian methods to 22 
support primary inference in clinical trials intended to support the effectiveness and safety of 23 
drugs.2  24 
 25 
In general, FDA’s guidance documents do not establish legally enforceable responsibilities. 26 
Instead, guidances describe the Agency’s current thinking on a topic and should be viewed only 27 
as recommendations, unless specific regulatory or statutory requirements are cited. The use of 28 
the word should in Agency guidances means that something is suggested or recommended, but 29 
not required.  30 
 31 
 32 
II. BACKGROUND 33 
 34 

A. Definition 35 
 36 
Bayesian statistics is an approach to estimation or hypothesis testing to draw inference based on 37 
the use of Bayes' theorem. In a Bayesian analysis, data collected in a study are combined with a 38 
prior distribution that captures the pre-study information about a parameter of interest to form a 39 

 
1 This guidance has been prepared by the Office of Biostatistics in the Center for Drug Evaluation and Research and 
the Division of Biostatistics in the Center for Biologics Evaluation and Research at the Food and Drug 
Administration.  
 
2 For the purposes of this guidance, all references to drugs include both human drugs and biological products unless 
otherwise specified. 
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posterior distribution that expresses the updated, post-study information about the parameter of 40 
interest (e.g., the primary estimand3). The prior distribution often represents a summary of 41 
information and uncertainty available before the study begins. The posterior distribution can be 42 
used for inference and to draw conclusions about efficacy or safety. 43 
 44 

B. Important Concepts 45 
 46 
The following are definitions of important concepts used in this guidance: 47 
 48 

• The prior distribution or prior is the pre-study probability distribution for model 49 
parameters. 50 
  51 

• The likelihood function or likelihood describes the quantitative relationship between the 52 
parameters of interest and the study data. The mathematical form of the likelihood is 53 
determined by the model being used (for example, linear regression, logistic regression, 54 
ordinal regression).  55 
 56 

• The posterior distribution or posterior is the post-study probability distribution for the 57 
parameter of interest. It is obtained by combining the prior distribution and the likelihood 58 
using Bayes theorem. It quantitatively summarizes what is known about the parameter of 59 
interest following collection of study data and can be used to draw inferences on the 60 
study hypotheses. Inference is often based on summary measures of this distribution. For 61 
example, evaluation of a treatment effect may be informed by the posterior mean to 62 
estimate the effect, a credible interval to quantify uncertainty around the estimated effect, 63 
and relevant posterior probabilities (e.g., the posterior probability that the effect is greater 64 
than zero). Credible intervals are intervals of possible values for the unobserved 65 
parameter that will contain the parameter value with a specified probability under the 66 
posterior distribution (e.g., 95% posterior probability).  67 
 68 

• Bayes theorem is the mathematical rule for combining the prior distribution and 69 
likelihood together to form the posterior distribution.  70 

 71 
 72 
III. SITUATIONS WHERE BAYESIAN METHODS HAVE BEEN USED 73 
 74 
This section discusses settings and specific examples from development programs where 75 
Bayesian methods have been used in submissions to the Agency. Most of these case examples 76 
focus on the use of borrowing or leveraging of previously available trials or information across 77 
populations within a trial. Bayesian methods can also be considered in other settings.  78 
 79 
 80 
 81 

 
3 For discussion of estimands, see the ICH guidance for industry E9(R1) Statistical Principles for Clinical Trials: 
Addendum: Estimands and Sensitivity Analysis in Clinical Trials (May 2021). For the most recent version of a 
guidance, check the FDA guidance web page at https://www.fda.gov/regulatory-information/search-fda-guidance-
documents. 

https://www.fda.gov/regulatory-information/search-fda-guidance-documents
https://www.fda.gov/regulatory-information/search-fda-guidance-documents
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A. Borrowing from Previous Clinical Trials 82 
 83 
Under certain circumstances, an informative prior for a clinical trial analysis can be formed 84 
based on results from previous clinical trial(s) of the same drug. For example, borrowing from a 85 
previous trial was used in a phase 3 study to evaluate REBYOTA, a fecal microbiota transplant 86 
product, for the prevention of recurrence of Clostridioides difficile infection (CDI) in individuals 87 
with recurrent CDI. C. difficile is a common cause of antibiotic-associated diarrhea and colitis 88 
and is a major public health burden. The primary analysis of the randomized, double-blind, 89 
placebo-controlled phase 3 study to evaluate the effectiveness of REBYOTA used a Bayesian 90 
model to formally incorporate data from a previous phase 2 placebo-controlled study of 91 
REBYOTA. This analysis supported the effectiveness of REBYOTA, which was approved in 92 
2022. 4 93 
 94 

B. Augmenting a Randomized Concurrent Control Using an External Control 95 
or Nonconcurrent Control Data 96 

 97 
In some cases, it can be challenging to conduct an adequately powered randomized trial due to 98 
limited population and/or ethical considerations. Borrowing data from an external or 99 
nonconcurrent control to augment the randomized concurrent control may be appealing in these 100 
situations, and Bayesian methods have been proposed to implement such approaches. For 101 
example, Bayesian methods have been proposed to augment the randomized concurrent control 102 
and leverage nonconcurrent control data in the oncology platform trials GBM AGILE5 and 103 
Precision Promise,6 which evaluate marker-targeted treatments for patients with glioblastoma 104 
and pancreatic cancer, respectively. The analyses use a Bayesian model to try to account for 105 
temporal shifts in efficacy outcomes such as tumor response (Saville et al. 2022).7 As another 106 
example, a non-inferiority study of pediatric patients with multiple sclerosis8 was proposed 107 
through the Complex Innovative Trial Design (CID) program9 with a prespecified Bayesian 108 
analysis to leverage information from historical studies of the active comparator.  109 
 110 

C. Pediatric Extrapolation 111 
 112 
Pediatric extrapolation is defined in the ICH E11(R1)10 guideline as “an approach to providing 113 
evidence in support of effective and safe use of drugs in the pediatric population when it can be 114 
assumed that the course of the disease and the expected response to a medicinal product would 115 
be sufficiently similar in the pediatric [target] and reference (adult or other pediatric) 116 

 
4 See prescribing information for Rebyota (fecal microbiota, live – jslm) suspension 
(https://www.fda.gov/media/163587/download?attachment). 
5 For additional details on GBM AGILE, see https://www.clinicaltrials.gov/study/NCT03970447. 
6 For additional details on Precision Promise, see https://www.clinicaltrials.gov/study/NCT04229004. 
7 See the FDA draft guidance for industry Master Protocols for Drug and Biological Product Development 
(December 2023) for additional discussion on the use of nonconcurrent control data in platform trials and potential 
for temporal shifts to lead to bias. When final, this guidance will represent the FDA’s current thinking on this topic. 
8 See CID Case Study: A Study in Pediatric Patients with Multiple Sclerosis. 
(https://www.fda.gov/media/172313/download). 
9 Complex Innovative Trial Design Meeting Program (https://www.fda.gov/drugs/development-resources/complex-
innovative-trial-design-meeting-program).  
10 See ICH guidance for industry E11(R1) Addendum: Clinical Investigation of Medicinal Products in the Pediatric 
Population (April 2018). 

https://www.fda.gov/media/163587/download?attachment
https://www.clinicaltrials.gov/study/NCT03970447
https://www.clinicaltrials.gov/study/NCT04229004
https://www.fda.gov/media/172313/download
https://www.fda.gov/drugs/development-resources/complex-innovative-trial-design-meeting-program
https://www.fda.gov/drugs/development-resources/complex-innovative-trial-design-meeting-program
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population.” Pediatric extrapolation can extend what is known about the characteristics of 117 
interest in the reference population (e.g., efficacy, safety, and/or dosing) to those of the target 118 
population based on an assessment of the relevant similarities of disease, drug pharmacology, 119 
and response to therapy of the two populations. When some degree of pediatric extrapolation is 120 
justified, Bayesian methods can be considered to borrow data from adults in the analysis of a 121 
pediatric trial by using an informative prior distribution constructed based on results from 122 
previous adult trials. A discussion of safety considerations incorporated into pediatric 123 
extrapolation approaches is discussed in other guidance.11 An example of a Bayesian approach to 124 
facilitate borrowing can be seen in supportive analyses in recent supplements for empagliflozin12 125 
and linagliptin13 for the treatment of pediatric patients with type 2 diabetes mellitus (T2D). It is 126 
critical to consider the relevance14 of the information from adults when considering borrowing. 127 
In these particular cases, the review team concluded that although there are differences in disease 128 
progression between pediatric and adult T2D populations, the pathophysiology of pediatric T2D 129 
is similar to that in adults and so the information was relevant, and borrowing was justified.  130 
 131 

D. Borrowing Information Across Similar Diseases or Disease Subtypes 132 
 133 
In some cases, distinct diseases or disease subtypes may have similar underlying causes and a 134 
history of similar responses to drugs. For example, there are groups of different types of cancer 135 
that share a specific molecular alteration and may be expected to respond to drugs targeting that 136 
alteration. In such cases, Bayesian methods might be considered to borrow information across 137 
the similar diseases or disease subtypes in evaluating an individual drug. For example, Bayesian 138 
analyses have been proposed for leveraging information about drug effects across related 139 
populations in basket trials that evaluate a drug for multiple diseases or disease subtypes under a 140 
common master protocol. As another example, a randomized, double-blind, placebo-controlled 141 
study in patients with epilepsy with myoclonic-atonic seizures15 (EMAS) was proposed through 142 
the CID program that used a Bayesian primary analysis to borrow information from previous 143 
trials evaluating the effect of the drug in related conditions. The proposed approach leveraged 144 
data from previously conducted trials for different types of epilepsy using a Bayesian 145 
hierarchical model (BHM).  146 
 147 

E. Borrowing Information Between Subgroups of a Patient Population (i.e., 148 
Subgroup Analysis) 149 

 150 
It is important to try to understand drug effects in different subgroups of patients. There are 151 
statistical approaches that make use of results from every subgroup when estimating the 152 
treatment effect in each subgroup. One common approach is shrinkage estimation through a 153 
BHM. For a one-way BHM, the estimated treatment effect in one subgroup is a weighted 154 

 
11 For further discussion on pediatric extrapolation, see ICH guidance for industry E11(A): Pediatric Extrapolation 
(December 2024). 
12 See FDA Clinical Review (https://www.fda.gov/media/172973/download); FDA Statistical Review: 
(https://www.fda.gov/media/172972/download). 
13 See FDA Clinical Review (https://www.fda.gov/media/172628/download); FDA Statistical Review: 
https://www.fda.gov/media/172630/download). 
14 See section V.D.2 for a discussion of factors that impact the relevance of the data. 
15 See CID Case Study: A Study in Patients with Epilepsy with Myoclonic-Atonic Seizures 
(https://www.fda.gov/media/172312/download). 

https://www.fda.gov/media/172973/download
https://www.fda.gov/media/172972/download
https://www.fda.gov/media/172628/download
https://www.fda.gov/media/172630/download
https://www.fda.gov/media/172312/download
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average of its raw estimated treatment effect (using only the data in that subgroup) and the 155 
overall estimated treatment effect. Shrinkage estimation can increase the precision of the 156 
subgroup estimates. As an example of this approach, a BHM was used to estimate treatment 157 
effects across regions in the Liraglutide Effect and Action in Diabetes: Evaluation of 158 
Cardiovascular Outcome Results trial, which compared liraglutide to placebo in patients with 159 
T2D at high risk for cardiovascular disease. The analyses helped clarify potential differences in 160 
the drug effects across regions (i.e., Asia, Europe, North America, and the rest of the world).16 161 
BHMs have also been used for subgroup analyses that appear in some of FDA’s Drug Trials 162 
Snapshots (Wang et al. 2024). One example is the Rinvoq Drug Trial Snapshot.17  163 
 164 

F. Dose-Finding Trials in Oncology 165 
 166 
Dose-finding trials for oncology drugs18 have historically utilized non-randomized dose-167 
escalation trials that seek to identify the maximum tolerated dose (MTD). Dose-escalation 168 
designs using Bayesian methods have been proposed with goals such as improving efficiency 169 
(e.g., reaching the MTD earlier), optimizing dose selection (i.e., minimizing toxicity and/or 170 
improving efficacy), and adding flexibility in terms of cohort sizes and timing of assessments. 171 
Designs which aim to identify the MTD include model-based designs (e.g., continual 172 
reassessment model [CRM], Bayesian logistic regression model [BLRM]) and model-assisted 173 
designs (e.g., Bayesian Optimal Interval Design [BOIN], modified toxicity probability interval 174 
[mTPI], mTPI2) (Ji et al. 2010; Quigley and Conway, 2010; Neuenschwander et al., 2008; Yuan 175 
et al., 2016;19 Tighiouart and Rogatko, 2010). Although identifying the MTD has been the 176 
traditional paradigm for oncology drug development, for modern targeted therapies, such as 177 
kinase inhibitors and antibodies, identifying optimized dosage(s) based on alternative approaches 178 
may be more appropriate than selecting the MTD for further development.20 Bayesian designs 179 
with the aim of identifying such dosages have been proposed for early-phase trials in oncology 180 
(Thall and Cook, 2004; Lin et al. 2020). 181 
 182 
 183 
IV. SUCCESS CRITERIA AND OPERATING CHARACTERISTICS 184 
 185 

A. Success Criteria: Definition and Role in Regulatory Decision-making 186 
 187 
Clinical trial design includes pre-specification of criteria for determining whether the primary 188 
objectives of the trial have been met. In clinical trials intended to support the effectiveness and 189 

 
16 Additional discussion on the use of shrinkage estimation and BHMs for subgroup analysis, and additional details 
on the BHM model and results in the liraglutide trial, can be found in an FDA impact story: 
(https://www.fda.gov/drugs/regulatory-science-action/impact-story-using-innovative-statistical-approaches-provide-
most-reliable-treatment-outcomes).  
17 Drug Trials Snapshots: RINVOQ Accessed August 29, 2024 (https://www.fda.gov/drugs/drug-approvals-and-
databases/drug-trials-snapshots-rinvoq). 
18 See FDA guidance for industry Optimizing the Dosage of Human Prescription Drugs and Biological Products for 
the Treatment of Oncologic Diseases (August 2024). 
19 The BOIN design has received the fit-for-purpose designation for phase 1 dose-finding cancer trials: 
(https://www.fda.gov/media/155363/download). 
20 See footnote 17. 

https://www.fda.gov/drugs/regulatory-science-action/impact-story-using-innovative-statistical-approaches-provide-most-reliable-treatment-outcomes
https://www.fda.gov/drugs/regulatory-science-action/impact-story-using-innovative-statistical-approaches-provide-most-reliable-treatment-outcomes
https://www.fda.gov/drugs/drug-approvals-and-databases/drug-trials-snapshots-rinvoq
https://www.fda.gov/drugs/drug-approvals-and-databases/drug-trials-snapshots-rinvoq
https://www.fda.gov/media/155363/download
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safety of drugs, success criteria of this type are useful as a goal to shape other design 190 
characteristics, such as sample size and power. Such criteria serve as a point of discussion 191 
between FDA and a sponsor on whether trial results could contribute to substantial evidence of 192 
effectiveness. Carefully chosen success criteria are important to trial interpretability and 193 
efficiency.  194 
 195 
In clinical trials intended to support effectiveness and safety that are conducted with an overall 196 
frequentist statistical analysis plan, the efficacy success criteria are almost always chosen in such 197 
a way that the familywise Type I error rate (FWER) across all primary and secondary estimands 198 
is no greater than 0.025, one-sided. In the case of a trial with a single primary estimand, this 199 
means performing a statistical hypothesis test at a one-sided significance level of 0.025. For trials 200 
with multiple primary and/or secondary endpoints, the criteria can become more complex.21 201 
 202 
In clinical trials with Bayesian inference for the primary estimand, this default success criterion 203 
may not be applicable or appropriate, such as in the case where there is borrowing of information 204 
(see Sections V.D and V.E), so careful specification of alternative success criteria is often critical 205 
when using Bayesian analyses. For these Bayesian approaches, specification of a success 206 
criterion is most often based on the posterior probability that the true treatment effect size 207 
exceeds some threshold. In mathematical notation, such a criterion might take the form Pr(d > a) 208 
> c, where d is a population-level summary of the size of the treatment effect, a is a minimum 209 
threshold for the treatment effect to be considered beneficial, and c is a minimum probability 210 
level that would support a conclusion of effectiveness. (In some cases, the criterion may be Pr(d 211 
< a) > c instead, if lower values of d reflect greater benefit.) Choice of a success criterion of this 212 
kind thus means choice of specific values for a and for c. There are a variety of approaches to 213 
specifying these thresholds for Bayesian analyses. The choice of which approach to use depends 214 
on the trial objectives and specific Bayesian methods used. 215 
 216 

1. Calibration to Type I Error Rate 217 
 218 
For some Bayesian approaches, a and c can be chosen such that the overall FWER is controlled 219 
at a given level, typically 0.025 one-sided. This is referred to as calibrating the success criteria to 220 
Type I error rate. Such an approach may be appropriate for designs where Bayesian approaches 221 
are used not to synthesize multiple information sources, but instead to facilitate complex 222 
adaptive designs. Calibration to Type I error rate also may be useful in designs with 223 
noninformative prior distributions that express a lack of prior information relevant to the 224 
analysis. 225 
 226 
When calibrating Bayesian success criteria to Type I error rate, a is chosen to be 0 for superiority 227 
designs or is based on the non-inferiority margin, m, for non-inferiority designs. Determining the 228 
appropriate choice of c to control FWER then becomes a computational problem only. For the 229 
simplest Bayesian approaches, including some designs with noninformative and/or conjugate 230 
prior distributions, c can be derived algebraically. For more complicated designs, including 231 
complex adaptive designs, c is instead approximated using clinical trial simulations.22  232 
 233 

 
21 See FDA guidance for industry Multiple Endpoints in Clinical Trials (October 2022). 
22 See FDA guidance for industry Adaptive Designs for Clinical Trials of Drugs and Biologics (December 2019). 
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2. Direct Interpretation of Posterior Probability 234 
 235 
In Bayesian approaches where the prior distribution has been chosen to provide an accurate 236 
summary of the state of belief based on existing information before the trial begins, decision-237 
making can be based on direct interpretation of the posterior probability distribution itself. With 238 
a prior chosen in this way, if the posterior probability Pr(d > a) = c then the probability that the 239 
treatment effect is less than a is less than 1 – c. For example, if the posterior probability of 240 
effectiveness is 0.98, the posterior probability that the treatment is ineffective is 0.02. The choice 241 
of success criteria can then be based on a determination of whether a 1 – c chance of 242 
ineffectiveness is sufficiently small in the specific context.  243 
 244 
This approach can be appropriate in Bayesian analyses that explicitly leverage external data 245 
sources to support decision-making, though it is not limited to that setting. In such scenarios, it is 246 
critical that the prior be specified in a way that accurately and comprehensively reflects the 247 
external data to ensure credible conclusions.  248 
 249 

3. Success Criteria Based on Benefit-Risk Assessment or Decision-Theoretic 250 
Approaches 251 

 252 
Another general approach specifies success thresholds in a broader context incorporating product 253 
risk or additional considerations. The simplest form of such an approach would adopt a choice 254 
for the threshold a that ensures sufficient benefit to outweigh known or potential product risks.  255 
 256 
More complex approaches might include consideration of external factors such as seriousness of 257 
a disease or availability of other approved therapies. A decision-theoretic approach might include 258 
assessment of the potential negative consequences of approving an ineffective drug or of not 259 
approving an effective drug. The statistical quantification of such negative consequences is 260 
sometimes referred to as “loss.” One approach to incorporating such information is to form 261 
success criteria that minimize the expected loss. The loss function can include safety as well as 262 
effectiveness considerations to incorporate benefit-risk assessment into the formal decision-263 
making process.  264 
 265 

4. Additional Considerations 266 
 267 
In trials that include interim decision-making, such as group sequential designs, success criteria 268 
should be specified for each decision point. In cases where success criteria are calibrated to Type 269 
I error rate, interim success criteria can be specified to ensure overall control of FWER across all 270 
decision-points for effectiveness. 271 
 272 
Success criteria should be specified for all primary and key secondary endpoints that use 273 
Bayesian approaches. In those trials with success criteria calibrated to Type I error rate, clinical 274 
trial simulations may be required to ensure control of FWER across all endpoints. Sample size 275 
can be calculated to achieve the desired statistical power under the controlled FWER.  276 
 277 
 278 
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B. Operating Characteristics 279 
 280 
In the design of a clinical trial, it is important to understand how the trial is likely to perform in 281 
terms of supporting correct conclusions and reliable estimation of treatment effects. In trials with 282 
frequentist inference, the most important operating characteristics related to hypothesis tests 283 
(long-run expectations of trial conclusions under assumptions about true parameter values) are 284 
the FWER and the power for the primary and other key endpoints. These quantities are fixed by 285 
design before the trial (conventionally, at 0.025 one-sided FWER and 80% or 90% power). This 286 
is possible because frequentist inference is based on the conditional probability of observing 287 
certain data given fixed assumptions about parameter values, and these probabilities can be 288 
calculated pre-test. The most important operating characteristics related to estimation in the 289 
frequentist paradigm are bias and mean squared error (MSE) of point estimates, and coverage 290 
probability and width of confidence intervals. 291 
 292 
The situation is somewhat different in trials with Bayesian inference because Bayesian inference 293 
is based on the posterior distribution. Operating characteristics of the design and analysis 294 
therefore depend on both the prior distribution and the observed data. It is also important to note 295 
that the concept of a false positive conclusion in a Bayesian framework is conditional on a 296 
positive conclusion and not, as in the frequentist framework, on a true null hypothesis. 297 
 298 
Some trials, including certain complex adaptive design trials, employ Bayesian analysis in an 299 
overall frequentist inferential framework (i.e., with calibration to Type I error rate control). In 300 
these cases, frequentist operating characteristics are of interest. Other trials, including most trials 301 
in which external information is incorporated into an informative prior distribution, use a 302 
Bayesian inferential framework that calls for a different approach to quantifying design 303 
characteristics. These two cases are discussed in the next two subsections.  304 
 305 

1. Trials Calibrated to Type I Error Rate 306 
 307 
For trial designs that calibrate Bayesian results to Type I error rate, the primary operating 308 
characteristics are the same as those described above for trials with frequentist inference (that is, 309 
Type I error rate and power for testing; bias and MSE of point estimates, and coverage 310 
probability and width of intervals, for estimation). Clinical trial simulations are generally used to 311 
estimate or demonstrate control of operating characteristics. Briefly, a large number of simulated 312 
trials, conditional on a chosen prior distribution and sample size, are generated under the 313 
assumption that the null hypothesis is true or that an alternative hypothesis is true. The 314 
proportions of simulated trials in which the null hypothesis is rejected is then used to estimate 315 
Type I error rate and power, respectively. An iterative simulation process is often used in which 316 
various sample sizes, prior distributions, success criteria, and other design elements (e.g., interim 317 
analysis boundaries) are adjusted to obtain desired operating characteristics. Simulations should 318 
comprehensively cover the plausible range of assumptions. This includes assumptions about 319 
statistical parameters such as the variance or background rate of the endpoint or operational 320 
parameters such as the accrual rate.23 321 
 322 

 
23 For additional considerations on these and other aspects of simulations, see Section VI.A of the FDA guidance for 
industry Adaptive Designs for Clinical Trials of Drugs and Biologics (December 2019). 
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2. Trials Not Calibrated to Type I Error Rate 323 
 324 
In cases where a sponsor and FDA agree that a study design does not need to be calibrated to the 325 
Type I error rate, the accuracy of conclusions depends strongly on the choice of prior 326 
distribution, as well as many of the same features required in frequentist inference: an adequately 327 
fitting data model, an appropriate experimental design, and accurate measurements. Accordingly, 328 
design characteristics are calculated in reference to the prior distribution. For example, Bayesian 329 
power is the probability of meeting the success criterion, averaged over a prior distribution 330 
(Spiegelhalter et al., 2004). The sample size of a trial is chosen to achieve a desired Bayesian 331 
power conditional on a chosen prior distribution and other study design features. Another 332 
relevant operating characteristic is the probability of a correct decision (akin to calculating the 333 
positive predictive value for a diagnostic test) corresponding to a chosen prior. For example, 334 
simulations can be used to calculate the proportion of trials where a positive treatment effect was 335 
present, from among those trials that concluded effectiveness. For estimation of treatment 336 
effects, relevant operating characteristics include the expected bias and expected MSE of point 337 
estimates averaged across a prior. Similarly, the expected coverage probability or width of the 338 
corresponding credible interval can be assessed (Adcock, 1988; Joseph and Bélisle, 1997).  339 
 340 
It is always critical for Bayesian analyses to have a prespecified prior, which is typically called 341 
the analysis prior. In a hypothetical situation where the choice of a prior distribution was 342 
unambiguous and clear, Bayesian power and other quantities could be calculated in reference to 343 
the same prior distribution that will be used in the final study analysis. In practice, however, 344 
there will usually be a range of plausible design priors (sometimes referred to as sampling 345 
priors), separate from the analysis prior, that are used as the basis for calculating study design 346 
characteristics. In simulation studies, the design prior serves as the prior from which parameter 347 
values are drawn, whereas the analysis prior is the prior that is used in the subsequent analysis of 348 
the data generated. An example of a design prior is a prior distribution on the treatment effect 349 
centered around the minimum clinically important difference (MCID) to evaluate Bayesian 350 
power. When the design prior is intended to explore scenarios corresponding only to an 351 
efficacious treatment, the design prior might be limited to an interval or a point mass indicating 352 
that the treatment is effective. Design priors that explore pessimistic assumptions about treatment 353 
effect should also be considered.  354 
 355 
Operating characteristics can be calculated under various plausible design priors. Differences in 356 
design characteristics corresponding to different design priors can be used to quantify the 357 
sensitivity of the design to the choice of prior or to demonstrate that the probability of making an 358 
incorrect decision is very low even when the design and analysis priors do not match. In general, 359 
trial characteristics will be more sensitive to the analysis prior when the sample size is small or 360 
when there is an early interim analysis that makes the sample size effectively small.  361 
 362 

3. Additional Considerations 363 
 364 
The operating characteristics discussed above are typically provided for key objectives of a 365 
clinical trial. For any trial and within any development program, there are often multiple other 366 
objectives for which data collection is essential. For example, it is essential to generate evidence 367 
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regarding the safety and tolerability of a product. These other objectives should be considered in 368 
the overall trial design and drug development program. 369 
 370 
 371 
V. PRIOR DISTRIBUTIONS 372 
 373 

A. Overview and General Principles 374 
 375 
Use of a prior distribution is the main feature distinguishing Bayesian from frequentist 376 
approaches. Priors allow the analysis to reflect the available information in the particular 377 
situation, whether positive, negative, or neutral. With any Bayesian analysis, the prior 378 
construction process should be designed, implemented, and documented in a systematic and 379 
transparent manner. Sponsors should pre-specify and justify the full details of the proposed prior 380 
distribution in the protocol. This justification should address the appropriateness of the prior 381 
distribution’s influence and the operating characteristics of the design, given the proposed prior. 382 
An important distinction is between informative prior distributions that borrow external 383 
information into the analysis of the current trial, and noninformative or minimally informative 384 
prior distributions that express a stance of general uncertainty. The complexity of the prior 385 
construction process will depend on whether an informative prior is used, and on the sources of 386 
external information being considered. Informative priors will generally need a greater amount 387 
of justification (see Section V.D for details). The following sections provide guidance for these 388 
different types of prior distributions and for other aspects of prior distribution evaluation and 389 
selection. 390 
 391 

B. Noninformative and Minimally Informative Priors 392 
 393 
Noninformative and minimally informative priors are typically specified to reflect a stance of 394 
general uncertainty regarding the parameters to be estimated. A noninformative prior is designed 395 
to use no external information. There are a variety of approaches that aim to reflect such lack of 396 
information, and no single approach is universally preferred to others. A minimally informative 397 
prior distribution could be based on general information about a trial and the possible outcomes, 398 
such as the plausible magnitudes of change in the endpoints of interest and available information 399 
about the variability in previous studies. Noninformative and minimally informative priors are 400 
often used in cases where there is no relevant prior information. In many situations, priors that 401 
fall into these classes will tend to be overwhelmed by the observed data and therefore have 402 
minimal effect on the results such that the final conclusions are dominated by the observed data. 403 
In other situations, the available data may not provide much information for a particular 404 
parameter and so using a noninformative or minimally informative prior for the parameter may 405 
place weight on parameter values we know to be unlikely and may have a large effect on the 406 
estimates (for example, see Gelman, 2006). The properties of a particular prior can typically be 407 
determined using appropriate simulations during study design.  408 
 409 
As with any prior distribution, a noninformative or minimally informative prior may not be 410 
invariant to parameter transformation, such that the induced distribution on such a transformation 411 
reflects an unintended understanding about the transformed parameter of interest. Care should be 412 
taken to understand such induced prior distributions during study design.  413 
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 414 
Noninformative and minimally informative priors can also play important roles in assessing the 415 
influence of informative prior distributions on the analysis. Such priors are often used in the 416 
calculation of effective sample size (see Section V.E) as a reference scale against which to 417 
measure the influence of another prior. In addition, when an informative prior is specified in the 418 
primary analysis, an analysis using a noninformative or minimally informative prior is often 419 
helpful in understanding the sensitivity of the results to the choice of prior. 420 
 421 

C. Skeptical Priors 422 
 423 
Skeptical priors express skepticism about the presence of very large treatment effects. One 424 
scenario where they may be appropriate is when there is prevailing information indicating the 425 
need to be more cautious than usual on drawing conclusions in favor of benefit. For example, if 426 
there have been a number of failed trials or drug development programs for closely related drugs 427 
in a therapeutic area, it would be natural to be skeptical about the potential for benefit with 428 
another similar trial or drug. Another possible scenario is in the evaluation of a new drug that is 429 
not likely to offer more than incremental improvement over an existing therapy. In this setting, it 430 
would be natural to be skeptical of a dramatic improvement over the existing therapy, and a 431 
skeptical prior could be used in the analysis. Such approaches have not been standard practice in 432 
drug development but could be considered in relevant circumstances such as those described 433 
above.  434 
 435 
Skeptical priors may also be considered in trials with an adaptive design. In designs where there 436 
is a desire to calibrate to Type I error rate, skeptical priors can be used as an alternative to 437 
modification of the decision rule to maintain the desired error rate as the skepticism will 438 
counterbalance early random highs or lows and hence early stopping requires even greater early 439 
evidence of benefit. Enthusiastic priors (priors containing some degree of positive belief) can be 440 
used in a similar way to control early stopping for futility.  441 
 442 

D. Informative Priors to Borrow External Information 443 
 444 

1. General Recommendations  445 
 446 
When proposing to use an informative prior that borrows external information for inference on 447 
the primary estimand, sponsors should provide strong justification that considers feasibility (e.g., 448 
of alternative approaches that do not involve borrowing) and the relevance of the available 449 
information. Areas where informative priors have been most often proposed include pediatrics 450 
and rare diseases. Additional areas can be considered on a case-by-case basis, and FDA advises 451 
early discussion of such proposals with the Agency.24 The specific sources of information to be 452 
used in the informative prior and the degree of reliance on the information should be justified. 453 
The justification should include discussion of the influence of the prior and how it relates to the 454 
relevance of the borrowed data for the current trial, the sufficiency of the amount of prospective 455 
trial data that will be collected (e.g., for evaluating safety and benefit-risk), and the 456 
appropriateness of trial operating characteristics. In some cases, it can be advantageous to 457 

 
24 See FDA Guidance for Industry Interacting with the FDA on Complex Innovative Trial Designs for Drugs and 
Biological Products (December 2020). 
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determine the details of the borrowing method while still blinded to the results of the trials that 458 
will be borrowed. The time needed for FDA and the sponsor to align on an appropriate prior 459 
should be considered in the development of the intended trial. 460 
 461 
It is important to consider the possibility of prior-data conflict, defined as the scenario in which 462 
the data observed are notably inconsistent with the prior distribution. More formally, prior-data 463 
conflict occurs when the prior distribution places its mass “primarily on distributions in the 464 
sampling model for which the observed data is surprising (Evans and Moshonov 2006, p 894).” 465 
The potential impact of prior-data conflict on the interpretability of trial results should be 466 
explored in simulations at the study design stage by varying the size of the assumed treatment 467 
effect over a sufficiently broad range of scenarios that cover plausible degrees of conflict, 468 
including no effect in the target population. The outcome of these simulations should be 469 
considered carefully and discussed in the justification of the prior, and appropriate sensitivity 470 
analyses (see Section V.F) should be planned.  471 
 472 
Prior construction, including making decisions on how much to borrow, is a multidisciplinary 473 
process that requires quantifying the degree of uncertainty in the relevance of the external 474 
information to the question of interest. Understanding relevance requires domain knowledge, 475 
while quantifying uncertainty and selecting appropriate statistical methodology requires 476 
thorough statistical evaluation. Close collaboration between disciplines throughout the process is 477 
essential. 478 
 479 

2. Identification and Review of Available External Information  480 
 481 
In general, the process of determining a prior should begin with the identification and review of 482 
all the available relevant external information. Possible sources of information may include 483 
relevant pharmacokinetic, pharmacodynamic, and clinical data (e.g., from previous trials or 484 
systematic reviews of trials evaluating the drug in the same or other related conditions), as well 485 
as nonclinical data, real-world data, and professional or expert guidelines or consensus opinions. 486 
Several factors should be considered in evaluating whether and how much to leverage external 487 
information to ensure that conclusions relying on such information are valid, reliable, and 488 
interpretable, such as: 489 
 490 

• Data quality and reliability: The quality and reliability of information used to construct 491 
the prior should be adequate for the type of regulatory decision informed by the analysis. 492 
Data from clinical trials designed to support regulatory decisions will typically meet this 493 
bar, but other sources may require additional effort to ensure adequate quality and 494 
reliability. For real-world data, FDA has issued guidance25,26,27 that discusses the 495 
processes and procedures that help ensure quality of the data. Other sources may be 496 
necessary in some circumstances, and in these cases comparable steps should be taken to 497 
ensure the quality and reliability of the information.  498 

 
25 See FDA guidance for industry Real-World Data: Assessing Registries to Support Regulatory Decision-Making 
for Drug and Biological Products (December 2023). 
26 See FDA guidance for industry Use of Electronic Health Record Data in Clinical Investigations (July 2018). 
27 See FDA guidance for industry Real-World Data: Assessing Electronic Health Records and Medical Claims Data 
to Support Regulatory Decision-Making for Drug and Biological Products (July 2024). 
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• Pre-specification: Statistical methods should be prespecified to minimize bias. Similarly, 499 
sponsors should pre-specify the construction process for the prior, including for the 500 
selection of sources for the same reason. As with any evidence synthesis approach, the 501 
standards for inclusion and the intended scope of use of the various sources for the prior 502 
should be predefined before starting a systematic search to identify specific sources. 503 
 504 

• Relevance: The information being leveraged should be relevant to the applicable 505 
regulatory question. When multiple information sources are used, not all information may 506 
be equally relevant. It is important to consider and discuss any planned approaches to 507 
reflect the different degrees of relevance. Factors that may influence relevance include: 508 
 509 

 Similarity in estimand attributes such as the population (e.g., inclusion or 510 
exclusion criteria), endpoint, treatment conditions, or handling of intercurrent 511 
events 512 
 513 

 Any differences in measurement or assessment (e.g., of the endpoint) 514 
 515 

 Recency of data 516 
 517 

 Any potentially important changes (e.g., in aspects of standard of care such as 518 
concomitant medications) over time 519 

 520 
• The design of studies providing the information: Borrowing of information based on 521 

randomized controlled comparisons typically relies on fewer and more plausible 522 
assumptions28 than borrowing of information based on non-randomized comparisons or 523 
on a single treatment condition (e.g., historical control data).  524 
 525 

• The availability of patient-level data: Typically, information should come from patient-526 
level data as this allows for a thorough evaluation of the relevance of the external data 527 
and the potential to adjust for relevant covariates in the analysis, which is particularly 528 
important when inclusion and exclusion criteria are not fully aligned. 529 

 530 
3. Prior Construction 531 

 532 
After identification and review of the available external information sources, sponsors should 533 
decide how to use the relevant information sources. A thorough evaluation of all relevant sources 534 
and evidence for informing the prior should be completed, including evidence that may suggest 535 
skepticism of the existence or magnitude of a treatment effect. This evaluation should include a 536 
prespecified list of criteria and discussion of steps taken to ensure information was not 537 
selectively obtained or used to ensure that preferential selection of favorable studies (or the most 538 
favorable studies) did not occur. If multiple information sources will be leveraged, an evidence 539 
synthesis process should be pre-specified and employed to obtain the most plausible estimate of 540 

 
28 When borrowing information based on randomized controlled comparisons, it is still important to evaluate the 
potential impact of differences in effect modifiers between information sources. 
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the responses. Typical best practices for evidence synthesis in systematic reviews and meta-541 
analyses, such as pre-specification of data collection processes, study inclusion or exclusion 542 
criteria, and synthesis methods, are relevant here.29  543 
 544 
The modeling approach for constructing the prior will depend on several factors, including the 545 
similarity between the various data sources, the relative amount of information each source 546 
contains, and the relationships between the data sources. As the data sources increase in variety 547 
and the relationships becomes more varied, the necessary modeling approach becomes more 548 
complex. For example, suppose a sponsor is designing a pediatric study that will use an FDA-549 
approved drug as an active control. For the investigational drug, there is available data from 550 
completed adult studies, whereas for the drug used as the active control there are pediatric as 551 
well as adult data. In this situation, not all data sources would be equally relevant since the adult 552 
data would be less relevant than the pediatric data and so a modeling approach that reflects this 553 
belief would be preferable. Modeling approaches can also be used to increase the relevance of 554 
the prior data (compared to taking the raw results from the previous studies) by adjusting 555 
estimates based on covariates or by selecting a subset of the data that more closely aligns with 556 
the question of interest. For example, the multiple sclerosis trial discussed in Section III.B 557 
modeled the relationship between age and the annualized relapse rate to improve the relevance of 558 
the data from the adult trials. 559 
 560 
Typically, multiple sources of information and many assumptions30 underlie a particular prior, 561 
and it is crucial to ensure that these are documented in the protocol with a discussion of the 562 
supporting evidence for each assumption to facilitate FDA’s review. For example, in some cases 563 
it may be reasonable to assume that all data sources are equally relevant. A typical example of an 564 
assumption of equal relevance would be in a primary analysis in which all patients who are 565 
enrolled in a single clinical trial are analyzed simultaneously without any regard for possible 566 
subgroups. An example of where this assumption should be considered more closely is when 567 
pediatric patients (most commonly adolescents) are included in a single trial with adults. The 568 
appropriateness of an assumption of equally relevant data from adults and adolescents would be 569 
informed by the specific extrapolation concept and plan,31 and the most appropriate type of 570 
relationship should be justified and discussed with the Agency.  571 
 572 
In other cases, models that include exchangeability may be reasonable. The outcomes of a group 573 
of participants are considered exchangeable in a setting where if the values of the outcomes are 574 
revealed, but their labels are not, then the values are not helpful in predicting their labels. When 575 
the outcomes of a group of participants are exchangeable then all possible ordering of the 576 
outcomes are equally likely prior to observing the values for the outcomes. Statistical models 577 
routinely assume that the outcomes of participants within a treatment group are exchangeable or 578 
assume that the residuals are exchangeable. Outcomes modeled as independently drawn from the 579 
same distribution are exchangeable. Outcomes modeled as random draws without replacement 580 

 
29 See FDA draft guidance for industry Meta-Analyses of Randomized Controlled Clinical Trials to Evaluate the 
Safety of Human Drugs or Biological Products (November 2018). When final, this guidance will represent the 
FDA’s current thinking on this topic.  
30 In this discussion, we use the taxonomy of the types of assumed relationships between data sources from 
Spiegelhalter, David J., Keith R. Abrams, and Jonathan P. Myles. Bayesian approaches to clinical trials and health-
care evaluation. Vol. 13. John Wiley & Sons, 2004. 
31 See the ICH guidance for industry E11A Pediatric Extrapolation (December 2024).  
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from a set of possible values are also exchangeable. There are also other conditions that imply 581 
exchangeable outcomes (Yuan and Chai, 2008).  582 
 583 
One setting where exchangeability may be considered is in the estimation of treatment effects 584 
within subgroups of a population (i.e., subgroup analysis). An assumption of exchangeability 585 
may be reasonable if there are no a priori expectations regarding effect modification by the 586 
subgroup factor. However, exchangeability of subgroup treatment effects is not always an 587 
appropriate choice. For example, if a drug is expected to be more effective in a subgroup of 588 
cancer patients who exhibit the molecular target than the complementary subgroup of patients 589 
without that target, the two possible orderings of treatment effects with the subgroups would not 590 
be equally likely. In some cases where exchangeability of subgroup treatment effects is not 591 
appropriate, all known effect modifiers can be included in the model as effect modifiers (e.g., as 592 
interaction effects with treatment when modeling individual observations). It then may be 593 
appropriate to regard the residual subgroup treatment effects as exchangeable. 594 
 595 
There are settings where other potential assumptions may be reasonable. For example, there may 596 
be cases where it is reasonable to model the relationship between the source and prospective trial 597 
data using an assumed bias parameter in the model. This approach, which would allow 598 
borrowing of information on the precision while allowing for differences in the treatment effect, 599 
might be considered if there is reliable evidence of the magnitude of the bias or suspicion of a 600 
bias.  601 
 602 
In other cases, it may be reasonable to use a model with a functional dependence assumption that 603 
predicts the distribution of responses using some function based on systematic predictable 604 
processes. For example, suppose two distinct populations were studied in two different trials. If a 605 
third trial was conducted that included both populations, it may be reasonable to construct the 606 
prior expectation for the effect in this trial using a combination of the results from the two 607 
previous trials while adjusting this expectation based on the relative sizes of the populations in 608 
the prospective trial. This type of assumption can be seen in some pediatric extrapolation settings 609 
where attempts are made to adjust for expected differences between adult and pediatric patients. 610 
For example, in the development programs for empagliflozin32 and linagliptin,33 the sponsor 611 
constructed pharmacometric models based on the previously conducted studies combined with 612 
the relevant observed baseline values of the pediatric patients to predict response. 613 
 614 
Finally, there is often a need to implement a discounting approach to reflect any residual 615 
uncertainty regarding the question of interest. For example, when using Bayesian methods to 616 
implement pediatric extrapolation, if the adult trial results were used to derive the prior without 617 
discounting, the evidence from the adults alone would already meet typically used success 618 
criteria and if a trial were conducted, the adult data would often overwhelm the pediatric data 619 
regardless of the results in the pediatric study. This would not be consistent with the uncertainty 620 
on the question of benefit in pediatric patients. Therefore, it will often be more reasonable to use 621 
a prior centered on a degree of benefit similar to what is observed in adults, but with a greater 622 

 
32 See FDA Clinical Review (https://www.fda.gov/media/172973/download); FDA Statistical Review 
(https://www.fda.gov/media/172972/download). 
33 See FDA Clinical Review (https://www.fda.gov/media/172628/download); FDA Statistical Review: 
https://www.fda.gov/media/172630/download). 

https://www.fda.gov/media/172973/download
https://www.fda.gov/media/172972/download
https://www.fda.gov/media/172628/download
https://www.fda.gov/media/172630/download
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degree of variability and hence uncertainty. Discounting is discussed in more detail in the next 623 
section.  624 
  625 

4. Discounting 626 
 627 
Many prior discounting approaches fall into one of two categories – either static discounting 628 
where the method borrows the same information regardless of the observed trial data or dynamic 629 
discounting (sometimes called adaptive discounting) where the amount that is borrowed is 630 
determined by some measure of the similarity of the data, such as the difference between the 631 
observed and prior means. Static discounting methods tend to be easy to design and implement, 632 
as there are fewer decisions to be made, while dynamic discounting methods can provide 633 
protection against prior-data conflict because they borrow less when the data are less similar and 634 
more when the data are more similar. Dynamic approaches are used in many cases due to the 635 
more advantageous operating characteristics, such as with respect to bias and MSE, resulting 636 
from the lesser borrowing in cases of prior-data conflict. The challenge with dynamic 637 
discounting methods is that they introduce more parameters that need to be specified, for 638 
example, the similarity measure to be used and the rate at which borrowing declines based on 639 
this similarity measure.  640 
 641 
There are many specific methods proposed in the scientific literature for implementing 642 
discounting. With any approach, the goal should be to identify parameter values that correspond 643 
to a reasonable degree of borrowing. What is reasonable will depend on the situation and the 644 
relevance of the borrowed data. A prior that is too informative risks overwhelming the data 645 
collected in the target population, regardless of what is observed. Leveraging too little 646 
information means not taking advantage of the available data and more information will be 647 
required in the target population, making the trial less efficient. Hence, finding the appropriate 648 
balance in the informativeness of the prior is crucial. Model parameter values that determine the 649 
degree of discounting and their interpretation depend on the method being used and may not 650 
always be easily compared across models. Hence, it is often useful to use more interpretable 651 
metrics (such as those discussed in Section V.D).  652 
 653 
In some cases, it may be helpful to conduct a formal expert elicitation exercise (O’ Hagan et al., 654 
2006) with subject matter experts to incorporate the degree of consensus in the level of 655 
borrowing. It is important to consult with the Agency on the scope and utility of such an exercise 656 
before conducting it, and to prespecify the approach for elicitation.  657 
 658 
The following paragraphs discuss considerations for the use of a few different methods for 659 
discounting but are not intended to provide an exhaustive list of methods. Applicability of a 660 
discounting method will be determined on a case-by-case basis and should be discussed with the 661 
Agency. 662 
 663 
One approach uses power priors that are constructed by raising a prior distribution based on 664 
external data to a fixed power less than one, sometimes called a discounting factor. The 665 
discounting factor adjusts the relative informativeness of a single external subject’s data 666 
compared to a single current subject’s data. A discounting factor of 1 corresponds to equal 667 
weighting of external and prospective trial subjects, a discounting factor of 0 corresponds to no 668 
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borrowing of external information, and discounting factors in between correspond to borrowing 669 
with each external subject contributing less information than each trial subject. Once the 670 
discounting factor is chosen, the degree of borrowing is fixed, making this a static borrowing 671 
approach. Advantages of the power prior approach include simple implementation and a 672 
seemingly intuitive approach to discounting. A disadvantage is that it is static and therefore may 673 
have worse operating characteristics than dynamic approaches. 674 
 675 
Although the basic power prior approach is a static borrowing approach, there are extensions 676 
proposed in the literature such as commensurate priors and supervised power priors which make 677 
the degree of borrowing dependent on different measures of the similarity between the observed 678 
and prior data. As the difference between the observed and prior means grows larger, less 679 
information will be borrowed. These approaches can allow control of how fast the discounting 680 
occurs as the difference grows, and determining an appropriate rate is one of the main challenges 681 
in using this approach. 682 
 683 
Using a mixture prior is another simple way to implement a dynamic borrowing approach. Two 684 
or more individual prior components are combined with prespecified weights, and the result is a 685 
prior distribution that will adaptively reflect the similarity between the individual components 686 
and the observed data. The chosen weights must sum to one and can be interpreted as the 687 
probability of applicability of the particular data source. For example, a mixture prior might be 688 
constructed by combining an informative component based on estimates obtained from previous 689 
trial data with a noninformative component. The degree to which the resulting posterior will 690 
borrow the previous trial data will depend on the degree of similarity between the observed and 691 
previous data. The main difficulty is determining the level of weighting for informative 692 
components and hence the strength of borrowing. The advantages of this approach are simple 693 
programming implementation and well-developed methods for estimating the degree of 694 
borrowing.  695 
 696 
Other discounting approaches include Bayesian hierarchical models and elastic priors. Bayesian 697 
hierarchical models are the main method used to implement exchangeable models. They induce 698 
borrowing by assuming that the parameters for various groups are at some level drawn from a 699 
common distribution. For example, in a basket trial evaluating a drug in multiple related 700 
diseases, a possible starting point for the modeling process might be that the treatment effects for 701 
the diseases are a random sample drawn from a single common distribution. Elastic priors (Jiang 702 
et al., 2023) are implemented in two steps. First, a measure of the degree of similarity called a 703 
congruence measure is used to quantify the strength of similarity between the external and 704 
current data. Then a function called an elastic function is used to map the congruence measure to 705 
a degree of borrowing. Like the power prior approach, the degree of borrowing takes values 706 
between 0 (no borrowing) and 1 (full borrowing). Elastic priors are flexible methods as they can 707 
use any of an extremely broad range of different functions to implement discounting that adapts 708 
as fast or as slow as desired based on the level of observed conflict between the prior and current 709 
data. However, this flexibility may make it harder to justify a particular choice of function. 710 
 711 
 712 
 713 
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E. Quantifying the influence of the prior distribution 714 
 715 
The influence of a prior distribution should be discussed and documented. The influence can be 716 
measured in multiple ways using different metrics. Metrics that have been used in the regulatory 717 
setting include: 718 
 719 

• The estimated treatment effect/difference or parameter(s) of interest based solely on the 720 
prior distribution. This is usually the mean of the prior distribution. 721 
 722 

• Effective sample size (ESS): a measure of the information in a probability distribution in 723 
terms of the equivalent number of patients in the target population. For example, when 724 
applied to the prior alone we would call it the prior ESS. Note that this number may be 725 
larger than the sample size from the source population if there is a larger amount of 726 
variability in the target population than the reference population. Multiple methods that 727 
rely on different summary measures have been proposed for the ESS (Malec, 2001; 728 
Morita et al., 2008; Neuenschwander et al, 2020). In general, it is important to quantify 729 
and summarize the ESS for the entire plausible range of outcomes while also presenting 730 
relevant summary statistics such as the maximum and mean ESS.  731 
 732 

These metrics are helpful to compare candidate priors. When an informative prior is used, values 733 
of these metrics should be compared to values obtained when using noninformative or minimally 734 
informative priors (or other relevant priors) to understand the effect of the informative prior. 735 
These metrics may be more easily understood than prior parameter values that depend on the 736 
specific model being used.  737 
 738 
It can also be helpful to consider extensions of these metrics. For example, one might determine 739 
the ratio of the prior effective sample size to the intended prospective trial size or to the total 740 
amount of information (prior effective sample size plus prospective trial size) to measure the 741 
relative amount of information borrowed in an analysis. If a dynamic prior is used, then the 742 
effective sample size contribution of the prior will change as information is accrued and so it is 743 
important to reassess this measure following completion of the trial. After data are collected, 744 
additional measures regarding the prior’s impact may be useful. Examples include measures of 745 
the conflict between the prior and the observed data and updated measures quantifying the 746 
strength of borrowing. 747 
 748 
In some cases, the type I error rate has been proposed as a way to measure the degree of 749 
information in the informative prior. Borrowing information in an analysis will typically lead to 750 
an inflation in the Type I error rate compared to the nominal value (most often, a one-sided level 751 
of 0.025) used in the absence of borrowing. This degree of inflation has been proposed as one 752 
way of measuring the influence of a prior (Pennello and Thompson, 2007). However, there are 753 
multiple issues that make this method a poor way of measuring the degree of borrowing, and 754 
therefore it is not recommended for this purpose. First, by borrowing information, one is 755 
assuming that the borrowed information is relevant. Evaluating the degree of borrowing based on 756 
the expected outcome when there is no effect is philosophically inconsistent given a prior which 757 
assumes a non-zero effect. Second, dynamic methods lessen the impact of borrowing when 758 
effects that are smaller and close to the null value are observed. Consequently, borrowing will be 759 
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low when the observed data are incompatible with the prior, mitigating any potential increase in 760 
Type I error rate. Hence, the Type I error rate alone will not provide a complete assessment of 761 
the influence of the prior. 762 
 763 

F. Sensitivity analyses 764 
 765 
A necessary part of statistical inference in clinical trials is evaluating the sensitivity of the results 766 
and conclusions to plausible deviations from important analysis assumptions. In a Bayesian 767 
analysis, the choice of prior distribution is a critical assumption that can affect the results and 768 
conclusions, particularly when the prior distribution is informative and is associated with a large 769 
ESS. Therefore, sensitivity analyses should be planned that utilize a range of alternative 770 
reasonable choices for the prior distributions. For example, the amount or strength of borrowing 771 
could be varied (see Section IV.B on operating characteristics for additional examples). 772 
Comparing the results and conclusions (based on the respective posterior distributions) of such 773 
analyses can help one understand the sensitivity of the primary results and conclusions. Some 774 
approaches can build uncertainty about specific assumptions into the prior itself. 775 
 776 
 777 
VI. ESTIMANDS AND MISSING DATA IN A BAYESIAN SETTING 778 
 779 
The general considerations related to estimands and missing data described in the International 780 
Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use 781 
(ICH) E9 and E9(R1) guidances are relevant for a trial that uses Bayesian methods as with any 782 
other trial. These considerations include the importance of constructing a relevant primary 783 
estimand of interest that can be estimated with plausible assumptions, implementing design and 784 
conduct approaches to prevent missing data, pre-specifying an appropriate primary analysis 785 
approach (i.e., estimator), documenting missing data assumptions, and planning sensitivity 786 
analyses to evaluate robustness to violations in those assumptions. Bayesian methods can be used 787 
to address missing data in the primary analysis or in sensitivity analyses.  788 
 789 
There are additional important considerations in trials that use Bayesian methods to borrow 790 
external information. In particular, it is critical to consider whether there are any differences in 791 
the estimands and estimators between the external information source (e.g., previous trial) and 792 
the prospective trial. Ideally, the same primary estimands and estimators should be used in 793 
analyzing both data sources. The properties of the parameter estimates depend on the approaches 794 
used, and lack of alignment in the approaches between the data sources can make the external 795 
data less relevant and affect considerations about the degree of borrowing. However, FDA 796 
recognizes that it may not be feasible or advisable to use the same approach in all situations.  797 
 798 
In general, where there is a lack of alignment between the estimands or estimators, sponsors can 799 
consider reanalyzing the external data using the approach that is planned for the prospective trial. 800 
This will produce the most compatible estimates but may not be possible if patient-level data are 801 
inaccessible or if a particular estimand or estimator that will be used in the prospective trial relies 802 
on data that were not collected in the external data source (for example, patient outcome data 803 
after treatment discontinuation may be necessary for some approaches and are not always 804 
collected). Reanalyzing completed studies risks overfitting to observed random highs, thereby 805 
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introducing bias. Sponsors should have early discussions with the Agency about the planned 806 
estimands, estimators, and approaches for handling missing data in the analyses of external data 807 
that will be borrowed, and any differences relative to the approaches planned for the prospective 808 
trial data. 809 
 810 
 811 
VII. SOFTWARE AND COMPUTATION 812 
 813 
When performing Bayesian inference, it is often necessary to rely on various approximate 814 
sampling algorithms to perform statistical inference. These sampling algorithms are implemented 815 
in a variety of general and specialized statistical software packages. These algorithms may also 816 
be implemented in specific situations using a variety of general programming languages. As 817 
stated in the Statistical Software Clarifying Statement,34 “FDA does not require use of any 818 
specific software for statistical analyses.” As noted in the statement and in ICH guidance E9 819 
Statistical Principles for Clinical Trials,35 “computer software used for data management and 820 
statistical analysis should be reliable, and documentation of appropriate software testing 821 
procedures should be available.” 822 
 823 
When performing Bayesian analyses, it is critical to ensure that the sampling algorithm being 824 
employed is reliable for the specific model (Gelman et al., 2020). Bayesian methods are 825 
dependent on algorithms to approximate the posterior distribution and approximations can fail 826 
for a variety of reasons. For example, a Markov Chain Monte Carlo (MCMC) algorithm may not 827 
adequately sample from a particular part of the posterior distribution, or an approximation used 828 
in an algorithm may not be accurate. Hence it can be necessary, especially for more complex 829 
models, to evaluate the reliability and accuracy of Bayesian computation using simulations 830 
before final selection of the model. In cases where sampling or convergence issues are 831 
encountered, more detailed documentation of the reliability of the final selected model should be 832 
provided, e.g., in a simulation report, including a discussion of any steps taken to ensure better 833 
sampling or convergence. The documentation should include the range of scenarios evaluated 834 
and the code used to implement the model to allow verification of the sampling properties.  835 
 836 
 837 
VIII. DOCUMENTING AND REPORTING BAYESIAN ANALYSES 838 
 839 
Clear documentation is necessary for FDA to review Bayesian proposals. The study design, 840 
estimands, and analyses should be pre-specified and justified in a protocol and consider 841 
applicable guidances.36 A clinical study report should describe the design, analysis, and results. 842 
As with non-Bayesian approaches, an assessment of parametric assumptions associated with the 843 
likelihood should be provided in the clinical study report using appropriate diagnostics. Details 844 
specific to Bayesian approaches are discussed below. 845 

 
34 See FDA Statistical Software Clarifying Statement (https://www.fda.gov/media/161196/download).  
35 See ICH guidance for industry E9 Statistical Principles for Clinical Trials (September 1998). 
36 For example, see the ICH guidances for industry E9 Statistical Principles for Clinical Trials (September 1998) 
and E9(R1) Statistical Principles for Clinical Trials: Addendum: Estimands and Sensitivity Analysis in Clinical 
Trials (May 2021), and the FDA guidance for industry Adaptive Designs for Clinical Trials of Drugs and Biologics 
(December 2019). 

https://www.fda.gov/media/161196/download
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 846 
A. Documenting Plans for Bayesian Analyses 847 

 848 
The protocol should describe and justify the design and the planned statistical analysis methods. 849 
For Bayesian methods, this includes detailed information to support the proposed prior 850 
distribution and any external information borrowing, likelihood function, success criteria, and 851 
trial operating characteristics. Additional details or supporting information may be provided in 852 
additional documents such as a statistical analysis plan or simulation report. All relevant 853 
information should be submitted to FDA during the design stage and as early as possible to 854 
ensure sufficient time for FDA feedback prior to initiation of the trial.  855 
 856 
The following information should be provided to support the proposed prior distribution (see 857 
Section V for further discussion):  858 
 859 

• A detailed description of the proposed prior distribution, including explicit specification 860 
of prior parameterization and underlying assumptions. If a function of parameter(s) is of 861 
interest, this should include a description of any induced priors. 862 
 863 

• A rationale for the plausibility of the assumptions. 864 
 865 
• Any data or other information that informed the prior distribution.  866 

 867 
If the trial will use an informative prior to borrow external information for inference on the 868 
primary estimand the following additional information should also be provided: 869 
 870 
• A strong justification for borrowing that considers feasibility (e.g., of alternative 871 

approaches that do not involve borrowing) and the relevance of the available information. 872 
 873 

• A thorough evaluation of all the available relevant evidence for informing the prior, 874 
including evidence that may suggest skepticism. This should include a discussion of steps 875 
taken to ensure information was not selectively obtained or used.  876 

 877 
• A detailed description of each external information source used to inform the prior, as 878 

well as any source that was excluded and why, including a discussion of data quality and 879 
reliability, relevance, type (e.g., patient-level vs. summary-level) and completeness of 880 
data available, and a rationale for the degree of borrowing incorporating such factors. 881 

 882 
• If multiple information sources are leveraged, a description of how the data will be 883 

synthesized and the modeling approach for their synthesis. 884 
 885 
• If a discounting method is incorporated, a description and justification of the selected 886 

approach, including a rationale for any parameters (e.g., that impact the degree of 887 
borrowing). 888 

 889 
• A discussion of how the proposed analysis will handle prior-data conflict (e.g., supported 890 

by simulation results). 891 
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• Quantification and discussion of the degree of influence of the prior distribution (e.g., 892 
based on the ESS and other metrics).  893 
 894 

• Planned sensitivity analyses that utilize a range of alternative reasonable choices for the 895 
prior distribution (e.g., that vary the amount or strength of borrowing from the prior 896 
distribution). 897 

The following information should be provided to support the proposed success criteria (see 898 
Section IV.A for further discussion): 899 
 900 

• Specification of the success criteria for all primary and key secondary estimands. For 901 
success criteria based on the posterior probability, both the treatment effect threshold 902 
and the minimum probability of effectiveness should be discussed and justified. 903 
 904 

• For trials that include interim analyses with the potential for early stopping for efficacy, 905 
specification of the success criteria for each decision point.  906 
 907 

• For trials with success criteria calibrated to Type I error rate, justification that the choice 908 
of success criteria leads to control of the FWER (e.g., based on a detailed report of 909 
simulations used to estimate the Type I error rate).   910 

The following information should be provided to describe and support the appropriateness of the 911 
operating characteristics of the trial (see Section IV.B for further discussion): 912 
 913 

• A discussion of how operating characteristics are estimated, with sufficient detail to 914 
facilitate FDA’s verification of the values and evaluation of the proposed sample size and 915 
other design elements. 916 
 917 

• For study designs calibrated to Type I error rate, an evaluation of the Type I error rate 918 
and power under a range of plausible effect sizes, and estimation properties including 919 
bias and MSE of point estimates and coverage probability and width of intervals.  920 
 921 

• For study designs not calibrated to Type I error rate, an evaluation of Bayesian power, 922 
expected bias, expected interval width, expected MSE, and other quantities to assess the 923 
accuracy of conclusions and treatment effect estimates under relevant priors.  924 
 925 

• When simulations are required to estimate operating characteristics, a comprehensive 926 
simulation report. This report should include simulation code and a detailed description 927 
of the simulation design, implementation, and results. The scenarios and assumptions 928 
used in the simulation should be pre-specified, comprehensive, and plausible. 929 

For Bayesian analyses performed using approximate sampling algorithms (see Section VII), 930 
sponsors should provide a summary of the simulation setup. For example, for MCMC 931 
approaches, sponsors should provide a general summary of the length of warmup or burn-in, 932 
number of iterations, number of chains, convergence diagnostics, and any other important 933 
algorithm-specific settings (e.g., proposal distribution for the Metropolis algorithm, target 934 
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proposal acceptance probability when relevant for software implementation of Hamiltonian 935 
Monte Carlo). If computation requires specialized software, the software should be cited, and 936 
details of planned implementation provided. If such computation is required, there should be a 937 
description of how implementation issues (e.g., lack of convergence) will be addressed in the 938 
analysis.  939 
 940 
For complex design proposals such as those with borrowing of external information based on 941 
informative priors, comparisons should be made between the operating characteristics of the 942 
proposed design and analysis plan and a variety of alternatives, including simpler designs. These 943 
comparisons should be documented as they help understand the potential advantages and 944 
limitations of the proposed design features. FDA also recommends that sponsors considering 945 
complex designs request a meeting with FDA prior to initiation of the trial. Including a detailed 946 
discussion of the proposed design and comparisons against alternative designs in meeting 947 
packages can help FDA reviewers understand and assess the appropriateness of trial operating 948 
characteristics.  949 
 950 

B. Reporting Results from Bayesian Analyses 951 
 952 
For completed clinical trials, sponsors should submit a clinical study report describing the 953 
design, analysis plan, and results from the trial. In addition to the typical content, the report of a 954 
trial with Bayesian analyses should include the following: 955 
 956 

• The principal aspects of the design and analysis plan, as described in Section VIII.A. 957 
 958 

• The results of the planned primary and secondary statistical analyses, including the 959 
treatment effect estimates, uncertainty in the estimates (e.g., with a credible interval), and 960 
whether pre-specified success criteria were met. The marginal posterior distributions of 961 
the estimands of interest should be described, including measures of location and 962 
variation. The results of sensitivity analyses, including quantifying and summarizing the 963 
sensitivity of results and conclusions to alternative reasonable choices for the prior 964 
distribution (see Section V.F). In the case of borrowing of external information with an 965 
informative prior in the primary analysis, the posterior results should be shown for other 966 
prior choices with different degrees of borrowing.  967 
 968 

• The results from model checking, including an assessment of prior-data conflict and 969 
comparisons of the model predictions to the observed data.  970 
 971 

• A report of sampling convergence diagnostics. For Bayesian analyses performed using 972 
non-direct sampling algorithms, this should include a description of the simulation 973 
settings as implemented. Any deviations from the planned implementation and a rationale 974 
for such deviations should be discussed.  975 
 976 

• The software used to conduct analyses, including version details. Documented code 977 
should be provided for all primary and key secondary analyses and for any sensitivity 978 
analyses described in the study report. For Bayesian analyses performed using MCMC, 979 
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sufficient detail should be provided such that the results are reproducible. This requires 980 
reporting of the seed number(s) used during chain initiation.  981 
 982 

• A discussion of the overall conclusions about the evidence related to the key trial 983 
objectives and analyses. This should briefly comment on the model chosen and the 984 
sensitivity of results and conclusions to alternative plausible assumptions and prior 985 
specifications.  986 

In some cases, it may be reasonable to include highly technical information (e.g., reports of 987 
sampling convergence diagnostics) in an Appendix to the study report or in a separate dedicated 988 
document. 989 
 990 
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