

Report on the Use of PFAS in Cosmetic Products and Associated Risks

Prepared by:
U.S. Food and Drug Administration
Office of the Chief Scientist
Office of Cosmetics and Colors

December 2025

Table of Contents

i.	Glossary/List of Abbreviations	4
ii.	Executive Summary.....	8
1	Introduction	12
	 Overview of PFAS	12
	 Overview of Regulatory Landscape of PFAS Use in Cosmetic Products	13
2	PFAS Use in Cosmetic Products.....	15
	 Overview of PFAS Use in Cosmetic Products	15
	 Functions of PFAS in Cosmetic Products	16
	 Market Share of PFAS-Containing Cosmetic Products in the U.S.	16
	 Trends in PFAS Use in the U.S. Cosmetics Industry.....	22
	 Use Concentration of PFAS in Cosmetic Products.....	23
3	Scope of the Report and Methods for Data Collection and Safety Assessment.....	24
	 Scope of the Report.....	24
	 Methodology on Toxicity Data Collection and Safety Assessment	25
4	Overall Conclusions.....	26
5	References	28
6	Appendices.....	41
	Appendix 1. Safety Assessments for Individual PFAS	41
1.	PTFE (Polytetrafluoroethylene).....	41
2.	Perfluorononyl Dimethicone.....	60
3.	Trifluoroacetyl Tripeptide-2	65
4.	Tetradecyl Aminobutyroylvalylaminobutyric Urea Trifluoroacetate.....	71
5.	Perfluorohexylethyl Triethoxysilane	77
6.	Methyl Perfluorobutyl Ether	89
7.	Methyl Perfluoroisobutyl Ether	94
8.	Perfluorodecalin.....	101
9.	Polyperfluoromethylisopropyl Ether	112
10.	HC Yellow No. 13	119
11.	Perfluorohexane	126

12. Diethylaminoethyl Methacrylate/HEMA/Perfluorohexylethyl Methacrylate Crosspolymer	135
13. Pentapeptide-34 Trifluoroacetate	138
14. Trifluoropropyldimethyl(trimethylsiloxy)silicate	142
15. Polyperfluoroethoxymethoxy Difluoroethyl PEG Phosphate	146
16. Perfluoroperhydrophenanthrene	151
17. Dimethiconol Fluoroalcohol Dilinoleic Acid	157
18. Tetrafluoropropene	160
19. Ethyl Perfluorobutyl Ether	175
20. Trifluoromethyl C1-4 Alkyl Dimethicone.....	179
21. Perfluorononylethyl Stearyl Dimethicone	183
22. Acetyl Trifluoromethylphenyl Valylglycine	187
23. Perfluorodimethylcyclohexane	191
24. Trifluoropropyl Cyclopentasiloxane	197
25. Perfluoromethylcyclopentane	201
Appendix 2. Supplemental Tables	207
Supplemental Table 1. List of INCI Names Identified as PFAS, CAS No, Reported Functions and Product Categories in wINCI (as of 2/14/24)	207
Supplemental Table 2. Cosmetic Product Categories and Codes	229
Supplemental Table 3. Categories of PFAS-Containing Cosmetic Products in FDA's Mandatory Cosmetic Product Listing Data	234
Supplemental Table 4. Market Trend of Top Used PFAS in Cosmetic Products in the U.S. Market.	242
Supplemental Table 5. Template for Searching Existing Assessments	244
Supplemental Table 6. Search Syntax for PTFE Using PubMed and Web of Science	245
Supplemental Table 7. Search Syntax for Perfluorodecalin using PubMed and Web of Science.....	248
Supplemental Table 8. Search Syntax for Perfluorohexane Using PubMed and Web of Science	251
Supplemental Table 9. Search Syntax for Other PFAS Using PubMed and Web of Science.....	255

i. Glossary/List of Abbreviations

ADME	Absorption, Distribution, Metabolism, and Excretion
ATSDR	Agency for Toxic Substances and Disease Registry
AUC	Area under the concentration curve
BfR	German Federal Institute for Risk Assessment
CAS	Chemical Abstracts Service
CCL2	C-C motif chemokine ligand 2
CID	Compound ID
CIR	Cosmetic Ingredient Review Panel
CN	Cosmetics Notification
CosIng	EU Inventory of Cosmetic Ingredients
CPSC	Consumer Product Safety Commission
CRDE	Calculated Relative Daily Exposure
CYP450	Cytochrome P450
DAF	Dermal Absorption Factor
DART	Developmental and Reproductive Toxicity
DMSO	Dimethyl sulfoxide
DNEL	Derived No Effect Level
DRG	Dorsal root ganglion
DTH	Delayed-type hypersensitivity
EAE	Experimental Allergic Encephalomyelitis
EC	European Commission
ECHA	European Chemicals Agency
EEA	European Economic Area
EEC	European Economic Community
EFSA	European Food Safety Authority
EPA	U.S. Environmental Protection Agency
EU	European Union
FDA	U.S. Food and Drug Administration
FD&C Act	Federal Food, Drug, and Cosmetic Act
GABA	Gamma-Aminobutyric Acid
GHS	Globally Harmonized System of Classification and Labelling of Chemicals

GLP	Good Laboratory Practice
GNPD	Mintel's Global New Products Database
HPFO-DA	Hexafluoropropylene oxide dimer acid
IARC	International Agency for Research on Cancer
ICCR	The International Cooperation on Cosmetics Regulation
IFN γ	Interferon-gamma
IL-4	Interleukin-4
IMAP	Inventory Multi-tiered Assessment and Prioritisation
INCI	International Nomenclature of Cosmetic Ingredients
IPCS	International Programme on Chemical Safety
JECFA	Joint FAO/WHO Expert Committee on Food Additives
KEMI	Swedish Chemicals Agency
LC ₅₀	Lethal Concentration, 50%
LD ₀	The Lowest Lethal Dose
LD ₅₀	Lethal Dose, 50%
LLNA	Local Lymph Node Assay
LOAEL	The lowest observed adverse effect level
LPS	Lipopolysaccharide
MCP-1	Monocyte chemoattractant protein-1
MDA	Malonaldehyde
MoCRA	Modernization of Cosmetics Regulation Act of 2022
MOE	Margin of Exposure
MSDS	Material Safety Data Sheet
NESIL	No Expected Sensitization Induction Level
NICNAS	National Industrial Chemicals Notification and Assessment Scheme
NNG	Net nuclear grains
NOAEC	No Observed Adverse Effect Concentration
NOAEL	No Observed Adverse Effect Level
NOEC	No Observed Effect Concentration
NOEL	No Observed Effect Level
NPDWR	National Primary Drinking Water Regulation
NTP	National Toxicology Program
OECD	Organisation for Economic Co-operation and Development

OSHA	Occupational Safety and Health Administration
PBPK	Physiologically based pharmacokinetic modelling
PC	Protein carbonyls
PFAAs	Perfluoroalkyl acids
PFAS	Per- and polyfluoroalkyl substances
PFBS	Perfluorobutanesulfonic acid
PFCAs	Perfluorocarboxylates or perfluorocarboxylic acids
PFHxA	Perfluorohexanoic acid or undecafluorohexanoic acid
PFHxS	Perfluorohexane sulfonic acid
PFOA	Perfluorooctanoic acid
PFOS	Perfluorooctane sulfonic acid
PFPrA	Perfluoropropanoic acid
PFSAs	Perfluorosulfonates or Perfluorosulfonic acids
PMMA	Polymethylmethacrylate
PBPK	Physiologically based pharmacokinetic modelling
POD	Point of Departure
PTFE	Polytetrafluoroethylene
QSR	Quantitative structure-activity relationship
REACH	Registration, Evaluation, Authorisation and Restriction of Chemicals
RF	Retention Factor
ROS	Reactive Oxygen Species
SAF	Safety Assessment Factor
SCCNFP	The Scientific Committee on Cosmetic Products and Non-food products intended for Consumers
SCCP	The Scientific Committee of Consumer Products
SCCS	The Scientific Committee of Consumer Safety
SDS	Safety Data Sheet
SED	Systemic Exposure Dose
SID	Substance ID
SVHC	Substances of very high concern
TFE	Tetrafluoroethylene
TNF- α	Tumor necrosis factor-alpha
TTC	Threshold of Toxicological Concern

UF Uncertainty Factor
VCRP Voluntary Cosmetic Registration Program
WHO World Health Organization

ii. Executive Summary

The [Modernization of Cosmetics Regulation Act](#) (MoCRA), signed into law on December 29, 2022, is the most significant expansion of the U.S. Food and Drug Administration's (FDA) authority to regulate cosmetics since the Federal Food, Drug, and Cosmetic Act (FD&C Act) was passed in 1938. The FD&C Act [sec.201(i)] defines the term "cosmetic" as "articles intended to be rubbed, poured, sprinkled, or sprayed on, introduced into, or otherwise applied to the human body...for cleansing, beautifying, promoting attractiveness, or altering the appearance," and "articles intended for use as a component of any such articles; except that such term shall not include soap." MoCRA amended the FD&C Act to include the term "cosmetic product," which is defined as "a preparation of cosmetic ingredients with a qualitatively and quantitatively set composition for use in a finished product" [FD&C Act, sec.604(2)]. This new law will help ensure the safety of cosmetic products many consumers use daily. Section 3506(a) of MoCRA requires an assessment of the use of perfluoroalkyl and polyfluoroalkyl substances (PFAS) in cosmetic products and the scientific evidence regarding the safety of such use in cosmetic products, including any associated risks with such use. This report summarizes the results of FDA's assessment and fulfills the mandate to publish such a report, as required by section 3506(b). The scope of this report is limited to PFAS that are intentionally added to cosmetic products as an ingredient and does not include PFAS that may be present in the final product as contaminants.

PFAS, a group of synthetic chemicals, have been widely used in industrial and consumer products, including cosmetic products because they are water- and oil-resistant, and are long-lasting. However, their use has raised significant health and environmental concerns due to their persistence and potential toxicity, leading to tightened global regulatory oversight including bans and restrictions by a growing number of states in the United States (U.S.).¹ Certain PFAS are intentionally added as ingredients to some cosmetic products, such as lipsticks, eyeshadows, moisturizers, nail polish and enamel, blushers and rouges, and cleansers. These PFAS are used in cosmetic products to condition and smoothen skin and hair, making them appear shiny, or to modify product consistency and texture.

Under the FD&C Act, cosmetic ingredients or products do not require FDA approval before they go on the market, with the exception of color additives which are subject to FDA approval before use. Otherwise, manufacturers are generally allowed to use any ingredient in the formulation of a cosmetic product, as long as the ingredient and the finished product are safe, the product is appropriately labeled, and the use of the ingredient does not render the cosmetic product adulterated or misbranded under FDA's laws. There are currently no federal regulations that specifically address the use of PFAS in cosmetic products in the U.S. PFAS that are intentionally added to cosmetic products as an ingredient are not currently prohibited and do not, based on presence alone, render the cosmetic product adulterated or misbranded.²

¹ Eleven states (California, Colorado, Connecticut, Maine, Minnesota, New Hampshire, New Mexico, Oregon, Rhode Island, Vermont, and Washington) passed legislation to prohibit the use of intentionally added PFAS substances in cosmetics which takes effect between 2025 and 2028 (as of May 15, 2025).

² Please note that this position may be subject to change as new scientific evidence emerges.

Our analysis of cosmetic product listing data,³ submitted to the FDA as required by MoCRA, revealed that 51 PFAS are intentionally added as ingredients in a total of 1,744 cosmetic product formulations sold in the U.S. (as of August 30, 2024) (see **Table 2.1**). These PFAS-containing cosmetic products represent 0.41% of the total products registered as of August 2024. Eye shadows, face and neck products (leave-on), eyeliners, face powders, and foundations were the top five product categories and constitute approximately 56% of PFAS-containing cosmetic products.

While information from FDA's now-sunset Voluntary Cosmetic Registration Program (VCRP)⁴ and Mintel's Global New Products Database (GNPD)⁵ indicated an overall declining trend in the use of PFAS in cosmetic products in recent years, the lack of historical data due to the recent implementation of cosmetic product listing requirements per MoCRA prevented further analysis.

Based on the FDA's cosmetic product listing data, polytetrafluoroethylene (PTFE) is the most frequently used PFAS in cosmetic products in the U.S., appearing in 490 products and accounting for 28.1% of all PFAS-containing cosmetic products. This is followed by perfluorononyl dimethicone, trifluoroacetyl tripeptide-2, tetradecyl aminobutyroylvalylaminobutyric urea trifluoroacetate, perfluorohexylethyl triethoxysilane, methyl perfluorobutyl ether, and methyl perfluoroisobutyl ether, used in 232 (13.3%), 164 (9.4%), 156 (8.9%), 124 (7.1%), 114 (6.5%) and 108 (6.2%) cosmetic products, respectively (see **Table 2.1**).

Based on cosmetic product listing data, the top 25 PFAS used in 10 or more products (see **Table 2.1**), account for over 96% of PFAS used in cosmetic products marketed in the U.S. Therefore, these 25 PFAS were prioritized for a safety review in this report, allowing for a focused assessment of those most prevalent, and potentially impactful, PFAS ingredients.

To gather existing safety data to assess human health risk of exposure to these PFAS, we conducted a comprehensive search of PubMed and Web of Science, consulted existing official safety assessments from government agencies and scientific advisory groups, such as the Cosmetic Ingredient Review Panel (CIR) and the Scientific Committee on Consumer Safety (SCCS), and explored the European Chemicals Agency (ECHA) chemicals database.

Our safety assessment considered the potential exposure pathways based on the product types and ingredient toxicokinetics, i.e., absorption, distribution, metabolism and excretion (ADME) processes, specific to exposure from cosmetic products use. Dermal contact is expected to be the primary route of exposure since most cosmetic products are applied to the skin. Other routes of exposure may include inhalation through aerosolized sprays like hairspray or face powder, and oral ingestion from lipstick or mouthwash use. For each of the 25 PFAS, we evaluated toxicological data encompassing both systemic effects (acute toxicity, genotoxicity, carcinogenicity, repeated dose toxicity, developmental and

³ Cosmetic product listing information, as required by MoCRA, can be submitted through one of the following options: Cosmetics Direct, Electronic Submission Gateway (ESG), SPL Xforms, and paper forms. For more details, refer to: [Registration & Listing of Cosmetic Product Facilities and Products | FDA](#).

⁴ Voluntary Cosmetic Registration Program (VCRP): <https://www.fda.gov/cosmetics/voluntary-cosmetic-registration-program>. The FDA stopped accepting submissions to the VCRP on March 27, 2023 due to a MoCRA mandate regarding mandatory facility registrations and product listings. FDA began enforcing the requirements regarding mandatory cosmetic product facility registration and cosmetic product listing data on July 1, 2024.

⁵ Mintel's Global New Products Database (GNPD) provides comprehensive tracking of new product launches across various markets, including cosmetics. It offers insights into market trends, product innovations, and consumer preferences.

reproductive toxicity, and neurotoxicity) as well as port-of-entry effects (via the skin, eyes, and respiratory tract). Based on data availability, the potential health risks associated with the use of PFAS-containing cosmetic products were assessed following standard risk assessment procedures, which include hazard identification, dose-response assessment, exposure assessment and risk characterization to derive Margin of Exposure (MOE) values, where appropriate. MOE is the ratio used in risk assessment to evaluate the safety of a substance by comparing the level of toxicological threshold or reference dose to the estimated level of human exposure.

Table ES.1 presents a high-level summary of the safety conclusion of our assessment. The safety of most (N=19 or 76%) of the reviewed PFAS could not be definitively determined due to the lack of critical toxicological data. Five PFAS (PTFE, perfluorodecalin, HC Yellow No. 13, perfluorohexane, and tetrafluoropropene) were considered to pose low safety concerns in cosmetic products under intended use conditions. One PFAS, namely perfluorohexylethyl triethoxysilane, was identified as having a potential safety concern when used in body lotion at the highest use level (i.e., the concentration of an ingredient in a final product).

Table ES.1. Summary of Review Conclusions for Individual PFAS

Insufficient data for safety conclusion
Perfluorononyl Dimethicone
Trifluoroacetyl Tripeptide-2
Tetradecyl Aminobutyroylvalylaminobutyric Urea Trifluoroacetate
Methyl Perfluorobutyl Ether
Methyl Perfluoroisobutyl Ether
Polyperfluoromethylisopropyl Ether
Diethylaminoethyl Methacrylate/HEMA/Perfluorohexylethyl Methacrylate Crosspolymer
Pentapeptide-34 Trifluoroacetate
Trifluoropropyltrimethylsiloxysilicate
Polyperfluoroethoxymethoxy Difluoroethyl PEG Phosphate
Perfluoroperhydrophenanthrene
Dimethiconol Fluoroalcohol Dilinoleic Acid
Ethyl Perfluorobutyl Ether
Trifluoromethyl C1-4 Alkyl Dimethicone
Perfluorononylhexyl Stearyl Dimethicone
Acetyl Trifluoromethylphenyl Valylglycine
Perfluorodimethylcyclohexane
Trifluoropropyl Cyclopentasiloxane
Perfluoromethylcyclopentane
Low safety concern based on available data for the intended conditions of use
PTFE
Perfluorodecalin
HC Yellow No. 13*
Perfluorohexane
Tetrafluoropropene
A potential safety concern based on available data at highest concentration of use in body lotion

Perfluorohexylethyl Triethoxysilane

* HC Yellow No. 13 is a synthetic coal tar dye which does not require FDA approval or batch certification when used in hair dyes. In 2010, SCCS concluded that HC Yellow No. 13 is safe for use up to 2.5% in hair dye as specified in the Opinion document (SCCS 2011).

This assessment is subject to significant uncertainties, including limited data on use level, lack of dermal and oral absorption data, and mechanistic information, as well as the absence of dermal toxicity data. As further data becomes available for these PFAS ingredients, these assessments could be refined to provide a more accurate evaluation of the safety and potential risks associated with their use in cosmetic products. Our assessment underscores significant data gaps for PFAS used in cosmetic products. The FDA will continue to monitor emerging data on PFAS to ensure the continued safety of cosmetic products.

1 Introduction

Overview of PFAS

PFAS are a diverse group of synthetic chemicals used in a wide range of consumer and industrial products for their water- and oil-repellent properties, as well as their resistance to heat and chemical degradation (Gluge, Scheringer et al. 2020).

There is currently neither a consensus definition of PFAS internationally nor a federal definition in the U.S. (Hammel, Webster et al. 2022, Gaines, Sinclair et al. 2023, NSTC 2023). The U.S. Congress did not define the term “PFAS” in Sec. 3506 of the MoCRA requirement for a PFAS report either. Regulators from various jurisdictions such as the European Union (EU) and the U.S. have proposed different definitions based on chemical structures. While the exact PFAS definition is still under discussion and evolving, this report uses a definition proposed by the Organization for Economic Co-operation and Development (OECD) in 2021 (OECD 2021) that is currently accepted widely. OECD defines PFAS as *“fluorinated substances that contain at least one fully fluorinated methyl or methylene carbon atom (without any H/Cl/Br/I atom attached to it), i.e., with a few noted exceptions, any chemical with at least a perfluorinated methyl group (–CF₃) or a perfluorinated methylene group (–CF₂–) is a PFAS.”* The “noted exceptions” refer to a carbon atom with a H/Cl/Br/I atom attached to it (Wang, Buser et al. 2021). This OECD definition broadens the scope of PFAS initially introduced by Buck et al. (2011) who defined PFAS as highly fluorinated aliphatic substances that contain the perfluoroalkyl moiety C_nF_{2n+1}[–]. As scientific understanding and regulations regarding PFAS evolve, PFAS definitions may continue to change according to specific needs in the future regulatory landscape.

Chemically, the PFAS family encompasses a wide range of chemical compounds characterized by a very strong fluorine-carbon bond, with variations in chain length, functional groups, molecular structural features, and thus properties. Therefore, individual PFAS can be very different in their physicochemical and toxicological properties, and the safety of PFAS should be assessed taking these differences into consideration. In general, PFAS are classified into two primary categories: nonpolymers and polymers. Further, nonpolymer PFAS encompass two major subclasses including perfluoroalkyl substances and polyfluoroalkyl substances, each further divided into many groups and subgroups. Polymer PFAS include fluoropolymers, polymeric perfluoropolyethers, and side-chain fluorinated polymers (Buck, Franklin et al. 2011). Polymeric PFAS usually have distinct physicochemical and toxicological profiles compared with nonpolymer PFAS due to their large molecular weight and complex molecular structures.

In addition, PFAS, especially perfluoroalkyl acids (PFAAs) and their associated anions are classified according to their chain length based on the number of carbons present in the C-F chain as either long-chain, short-chain or ultrashort-chain PFAS. Long-chain PFAS have 7 or more perfluorocarbons for perfluorocarboxylates (PFCAs), and 6 or more perfluorocarbons for perfluorosulfonates (PFSAs). Short-chain PFAS have 3 to 6 perfluorocarbons for PFCAs, and 4 to 5 perfluorocarbons for PFSAs. Ultrashort-chain PFAS have 2 or fewer perfluorocarbons for PFCAs, and 3 or fewer perfluorocarbons for PFSAs. Ultrashort-chain PFAS also includes trifluoroacetic acid (TFA) and perfluoropropanoic acid (PFPrA) (Buck, Franklin et al. 2011, Neuwald, Hubner et al. 2022, Pizzorno 2023).

The exact number of PFAS in global commerce is unclear due to varying definitions and methodologies. In 2018, OECD identified over 4,700 PFAS by CAS numbers (OECD 2018). The number was estimated to

be 38,382 by Williams et al. (Williams, Gaines et al. 2022). According to U.S. EPA's CompTox chemicals dashboard, there are over 16,000 PFAS substances⁶ and in 2023, EPA identified at least 770 PFAS currently in use in the U.S. based on EPA's own working definition of PFAS.⁷

It is important to note that except for a very small number, most of these PFAS have limited or no safety data that is publicly available. Some PFAS, such as legacy PFAS perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), have been associated with adverse health effects, including liver toxicity, increased cholesterol levels, lower antibody response to some vaccines, developmental and reproductive toxicity, and increased risk of some cancers (ATSDR 2021).⁸ However, we note that neither PFOA or PFOS are intentionally added to cosmetic products as ingredients (see discussion below). It is noteworthy to mention that some PFAS, such as PFOS and 6:2-fluorotelomersulfonic acid, may be present in cosmetic products unintentionally for various reasons, for example due to their presence in raw material impurities or due to the breakdown of intentionally added PFAS that form other types of PFAS. These contaminant PFAS are not within the scope of this report.

Overview of Regulatory Landscape of PFAS Use in Cosmetic Products

The regulatory landscape for PFAS in cosmetics is complex, varying both internationally and domestically, and continues to evolve as PFAS definitions change and additional studies on their impacts are conducted.

International Landscape

In early 2024, New Zealand announced regulations on PFAS, which appear to phase out the use of all PFAS (>10,000 chemicals) in cosmetic products starting January 1, 2027, when the import or manufacturing of cosmetics containing intentionally added PFAS will be prohibited. In New Zealand, selling cosmetics containing PFAS will be banned starting January 1, 2028, while all PFAS-containing cosmetic products must be disposed of before July 1, 2028.⁹ Our understanding is that a similar measure has been under review in the EU since 2023, as Germany, Denmark, the Netherlands, Norway, and Sweden submitted a dossier that proposes to ban the manufacture and use of approximately 10,000 PFAS, targeting a number of uses, including the use of PFAS in cosmetics.¹⁰ This restriction is currently under evaluation by the ECHA. France passed legislation that reportedly mandates a gradual ban on PFAS, starting with their use in cosmetics, ski waxes and textiles by January 2026, and extending to all non-essential uses by 2030.¹¹

⁶ EPA PFAS chemical lists: 1) PFAS with explicit structures <https://comptox.epa.gov/dashboard/chemical-lists/PFASSTRUCT>, and 2) PFAS without explicit structures <https://comptox.epa.gov/dashboard/chemical-lists/PFASDEV3> (accessed 5/1/2024).

⁷ <https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/tsca-section-8a7-reporting-and-recordkeeping> (accessed 5/1/2024).

⁸ How PFAS Impacts Your Health. <https://www.atsdr.cdc.gov/pfas/about/health-effects.html> (accessed 5/1/2024).

⁹ Updated rules for cosmetics. <https://www.epa.gov/nz/hazardous-substances/rules-notices-and-how-to-comply/specific-substance-guidance/cosmetics/updated-rules-for-cosmetics/> (accessed 1/24/2025).

¹⁰ <https://echa.europa.eu/-/echa-and-five-european-countries-issue-progress-update-on-pfas-restriction> (accessed 1/24/2025).

¹¹ <https://www.sgs.com/en-rs/news/2025/03/safeguards-04025-france-bans-pfas-on-consumer-products> (accessed 3/31/2025).

Canada also appears to prohibit the manufacture, use, sale, offer for sale or import of cosmetics that contain long chain-PFCAs, with a limited number of exemptions.¹² Canada published a Notice of Intent¹³ to address the broad class of PFAS in 2021 and issued a final report on the state of PFAS that provides a qualitative assessment of the fate, sources, occurrence, and potential impacts of PFAS on the environment and human health in 2025 (Health Canada 2025).

The Ministry of Food and Drug Safety in the Republic of Korea appears to prohibit the intentional use of approximately 190 PFAS as ingredients in cosmetic products. If PFAS substances are detected in cosmetics due to unintentional contamination, our understanding is that providing objective evidence confirming the unintentional origin is required. The determination of the potential harm is concluded after a risk assessment (ICCR 2023).

National Landscape

At least 11 states in the U. S. have banned the use of PFAS substances in cosmetics and other products, while at least 8 other states have proposed legislation to ban or limit the use of these ingredients in cosmetics. California,¹⁴ Colorado,¹⁵ Connecticut,¹⁶ Maine,¹⁷ Minnesota,¹⁸ New Hampshire,¹⁹ New Mexico,²⁰ Oregon,²¹ Rhode Island,²² Vermont,²³ and Washington²⁴ recently passed legislation to prohibit the use of all intentionally added PFAS substances²⁵ in cosmetics which takes effect between 2025 and 2028.²⁶ The following states have proposed, but not yet enacted state laws to ban or limit the use of

¹² <https://www.canada.ca/en/environment-climate-change/services/management-toxic-substances/prohibition-regulations.html> (accessed 1/24/2025).

¹³ <https://www.canada.ca/en/health-canada/services/chemical-substances/other-chemical-substances-interest/per-polyfluoroalkyl-substances.html> (accessed 1/24/2025).

¹⁴ California Assembly Bill 2771. AB-2771. Cosmetic products: safety. Chapter 804. October 2022. https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=202120220AB2771 (accessed 1/28/2025).

¹⁵ https://leg.colorado.gov/sites/default/files/2022a_1345_signed.pdf (accessed 1/28/2025).

¹⁶ <https://www.cga.ct.gov/2024/ACT/PA/PDF/2024PA-00059-R00SB-00292-PA.PDF> (accessed 1/28/2025).

¹⁷ <https://www.maine.gov/dep/spills/topics/pfas/PFAS-products/> (accessed 1/28/2025).

¹⁸ Sec. 116.943 MN Statutes. <https://www.revisor.mn.gov/statutes/cite/116.943> (accessed 1/28/2025).

¹⁹ <https://legiscan.com/NH/text/HB1649/id/3003140> (accessed 1/28/2025).

²⁰ <https://legiscan.com/NM/text/HB212/2025> (accessed 8/7/2025).

²¹ Oregon Senate Bill 546-A, relating to chemicals used in cosmetic products. June 2023.

<https://olis.oregonlegislature.gov/liz/2023R1/Downloads/MeasureDocument/SB546/Enrolled> (accessed 1/28/2025).

²² <https://legiscan.com/RI/text/H7356/id/3008263> (accessed 1/28/2025).

²³ <https://legislature.vermont.gov/Documents/2024/Docs/ACTS/ACT131%20As%20Enacted.pdf> (accessed 1/28/2025).

²⁴ Washington House Bill 1047. Concerning the use of toxic chemicals in cosmetic products. May 2023 Link: Bill Text: [WA HB1047 | 2023-2024 | Regular Session | Chaptered | LegiScan](https://legiscan.com/WA/text/HB1047/2023-2024/RegularSession/Chaptered) (accessed 1/28/2025).

²⁵ PFAS substances means a class of fluorinated organic chemicals containing at least one fully fluorinated carbon atom.

²⁶ January 1, 2025 in California, Colorado, Minnesota and Washington, January 1, 2026 in Maine and Vermont, January 1, 2027 in New Hampshire, Oregon and Rhode Island, and January 1, 2028 in New Mexico and Connecticut. Connecticut's law also contains a provision to prohibit the uses earlier, by January 1, 2026 unless the manufacturer of the product provides prior notification in writing to the State, additional required information outlined in the legislation, and/or the products are clearly labeled as containing PFAS.

PFAS ingredients in cosmetic products: Georgia,²⁷ Hawaii,²⁸ Illinois,²⁹ Massachusetts,³⁰ New Jersey,³¹ New York,³² North Carolina,³³ Ohio,³⁴ Pennsylvania,³⁵ and Tennessee.³⁶

2 PFAS Use in Cosmetic Products

To assess PFAS use in cosmetic products and evaluate scientific data regarding safety (including any associated risks) of such use, the FDA collected, reviewed and summarized information on this topic.

Overview of PFAS Use in Cosmetic Products

PFAS have been used as intentionally added ingredients in a diverse range of cosmetic product types and for various technical functions. The Swedish Chemicals Agency (KEMI) conducted a study examining PFAS usage in cosmetics and market share³⁷ of PFAS-containing cosmetic products within the European Union/European Economic Area (EU/EEA) as well non-EU/EEA countries (KEMI 2021). This report identified 169 PFAS with INCI (International Nomenclature of Cosmetic Ingredients) names based on the CosIngr database³⁸ (as of May 2020) and estimated the market share of PFAS-containing cosmetic products in the EEA market to be between 0.33% and 1.4% depending on the database utilized. The CosmEthics database, deemed to be the most representative of the EU market, indicated that 1.4% of all registered products contained PFAS as ingredients (KEMI 2021). Further analysis of the CosmEthics data revealed that makeup contained the highest percentage of products with PFAS (4.1%), followed by facial care products and male grooming products (1.2% each). Baby and children's products accounted for 0.03% of PFAS-containing cosmetic products. No fragrances were found to contain PFAS. In addition, PTFE, perfluoroctyl triethoxysilane, C9-15 fluoroalcohol phosphate, perfluorononyl dimethicone and perfluorodecalin were found to be the top five most frequently listed ingredients in these products (KEMI 2021).

²⁷ Georgia General Assembly - HB 390: <https://www.legis.ga.gov/legislation/64348> (accessed 1/28/2025).

²⁸ Hawaii Senate Bill 2427: https://www.capitol.hawaii.gov/sessions/session2024/bills/SB2427_.HTM (accessed 1/28/2025).

²⁹ Illinois bill 5024:

<https://ilga.gov/legislation/fulltext.asp?DocName=&SessionId=112&GA=103&DocTypeId=HB&DocNum=5042&GAID=17&LegID=153031&SpecSess=&Session=>

³⁰ Bill S.1504: <https://malegislature.gov/Bills/194/S1504> (accessed 1/28/2025).

³¹ NJ Legislature: https://www.njleg.state.nj.us/bill-search/2024/S1042/bill-text?f=S1500&n=1042_11 (accessed 1/28/2024).

³² New York State Assembly Bill 2025 A1635: <https://www.nysenate.gov/legislation/bills/2025/A1635> (accessed 1/28/2024).

³³ NC House Bills 686 and 881: <https://legiscan.com/NC/bill/H686/2025> and <https://legiscan.com/NC/bill/H881/2025> (accessed 8/7/2025).

³⁴ OH House Bill 272: <https://legiscan.com/OH/text/HB272/2025> (accessed 8/7/2025).

³⁵ PA house bill 2238: [House Bill 2238 Information; 2023-2024 Regular Session - The Official Website of the Pennsylvania General Assembly](https://www.legis.state.pa.us/legislation/bills/2023-2024/HB2238) (accessed 1/28/2025).

³⁶ TN SB 1786: <https://wapp.capitol.tn.gov/apps/BillInfo/default.aspx?BillNumber=SB1786&GA=113> (accessed 1/28/2025)..

³⁷ In this report, market share is defined as the percentage of the total cosmetic products that contain PFAS in a database such as CosmEthics and Mintel's GNPD.

³⁸ CosIngr is the European Commission database for information on cosmetic substances and ingredients. It can be accessed via: <https://ec.europa.eu/growth/tools-databases/cosing>.

In contrast, the market share of PFAS-containing cosmetic products in the U.S. market has not been previously studied or reported. To better understand the extent of PFAS usage in cosmetic products, we first created an inventory of PFAS that could potentially be used in cosmetic products. A search of the term “fluoro” was conducted in February 2024 in wINCI, the online version of the *International Cosmetic Ingredient Dictionary & Handbook*. The resulting list of cosmetic ingredients were then reviewed against the current OECD PFAS definition to ensure that the inventory included only qualified PFAS, i.e., substances containing at least one -CF₂- or -CF₃, were included. This process yielded a list of 176 PFAS.

The 2021 KEMI report revealed that polyvinylidene fluoride was not retrieved from our search but was confirmed to be a PFAS in the wINCI database. Therefore, it has been added to our inventory, bringing the total to 177 PFAS (**Table S1**). The CAS Registry Number (CAS RN) for each ingredient, along with their reported functions and associated product categories obtained from the wINCI database, are also summarized in **Table S1**.

Functions of PFAS in Cosmetic Products

PFAS are commonly used as emulsion stabilizers, bulking agents, and for their ability to repel oil and water as well as enhancing product durability (Gluge, Scheringer et al. 2020, Wahlström, Pohjalainen et al. 2021, Gaines, Sinclair et al. 2023). PFAS in cosmetic products serve various functions, including as skin and hair conditioners, cleansers, emulsifiers, antistatics, stabilizers, surfactants, film formers, viscosity regulators, binding agents, solvents, and accelerants for hair dyeing (KEMI 2021, ECHA 2023, OECD 2024).

Market Share of PFAS-Containing Cosmetic Products in the U.S.

MoCRA established a requirement for registration of cosmetic product facilities and listing of cosmetic products.³⁹ Although certain small businesses, as defined in Section 612 of the FD&C Act, are exempt from this requirement, this new authority significantly improves the FDA’s knowledge about cosmetic product facilities and products sold in the U.S. and allows the FDA to gather more comprehensive information about cosmetic ingredients, as compared to the now-sunset VCRP. Cosmetic product listing information is currently submitted to the FDA through various avenues including the Cosmetics Direct portal,⁴⁰ the Electronic Submission Gateway (ESG) or any Structured Product Labeling (SPL)⁴¹ authoring software, including SPL Xforms, and paper forms.

To identify PFAS-containing cosmetic products sold in the U.S. market, the 177 PFAS were cross-referenced against the cosmetic product listing data submitted to the FDA, the VCRP and Mintel’s GNPD.

A search of the FDA’s cosmetic product listing data revealed that, as of August 30, 2024, 51 (out of 177) types of PFAS are used in 1,744 cosmetic product formulations (**Table 2.1**). These PFAS-containing cosmetic products account for 0.41% of the total number of cosmetic products registered (N=430,134).

³⁹ Refer to the following FDA webpage for more information regarding this topic: <https://www.fda.gov/cosmetics/registration-listing-cosmetic-product-facilities-and-products>.

⁴⁰ Cosmetics Direct: <https://www.fda.gov/cosmetics/registration-listing-cosmetic-product-facilities-and-products/cosmetics-direct>.

⁴¹ Structured Product Labeling (SPL): <https://www.fda.gov/industry/fda-data-standards-advisory-board/structured-product-labeling-resources>.

It should be noted that some products contain more than one type of PFAS. As a result, the total count (i.e., frequency of use) of individual PFAS in **Table 2.1** exceeds 1,744 cosmetic product formulations.

Table 2.1. PFAS Reported in the Mandatory Cosmetic Product Listing Data Submitted to the FDA (as of August 30, 2024).

No.	CAS Number from wINCI	PFAS Name	Frequency of Use*	Percentage of Total (%) [#]
1	9002-84-0	PTFE	490	28.1
2	259725-95-6	Perfluorononyl Dimethicone	232	13.3
3	64577-63-5	Trifluoroacetyl Tripeptide-2	164	9.4
4	934368-60-2	Tetradecyl Aminobutyroylvalylaminobutyric Urea Trifluoroacetate	156	8.9
5	51851-37-7	Perfluorohexylethyl Triethoxysilane	124	7.1
6	163702-07-6	Methyl Perfluorobutyl Ether	114	6.5
7	163702-08-7	Methyl Perfluoroisobutyl Ether	108	6.2
8	306-94-5	Perfluorodecalin	71	4.1
9	69991-67-9	Polyperfluoromethylisopropyl Ether	54	3.1
10	10442-83-8	HC Yellow No. 13	40	2.3
11	355-42-0	Perfluorohexane	40	2.3
12	NA	Diethylaminoethyl Methacrylate/HEMA/Perfluorohexylethyl Methacrylate Crosspolymer	35	2.0
13	NA	Pentapeptide-34 Trifluoroacetate	33	1.9
14	NA	Trifluoropropyldimethyl(trimethylsiloxy)silicate	28	1.6
15	NA	Polyperfluoroethoxymethoxy Difluoroethyl PEG Phosphate	27	1.5
16	306-91-2	Perfluoroperhydrophenanthrene	25	1.4
17	NA	Dimethiconol Fluoroalcohol Dilinoleic Acid	24	1.4
18	29118-24-9	Tetrafluoropropene	23	1.3
19	163702-05-4	Ethyl Perfluorobutyl Ether	22	1.3
20	NA	Trifluoromethyl C1-4 Alkyl Dimethicone	21	1.2
21	NA	Perfluorononylethyl Stearyl Dimethicone	18	1.0
22	379685-96-8	Acetyl Trifluoromethylphenyl Valylglycine	17	1.0
23	26637-68-3 335-27-3	Perfluorodimethylcyclohexane	17	1.0

No.	CAS Number from wINCI	PFAS Name	Frequency of Use*	Percentage of Total (%) [#]
24	NA	Trifluoropropyl Cyclopentasiloxane	11	0.6
25	1805-22-7	Perfluoromethylcyclopentane	10	0.6
26	163702-06-5	Ethyl Perfluoroisobutyl Ether	8	0.5
27	NA	Biotinyl Histidyl D-Tryptophanyl Dipeptide-29 Lysinamide Trifluoroacetate	8	0.5
28	429-67-4	Trifluoropropyl Cyclotetrasiloxane	7	0.4
29	NA	Perfluorononylethyl Carboxydecyl PEG-10 Dimethicone	6	0.3
30	NA	Trifluoromethylphenethyl Mesalazine	6	0.3
31	NA	Trifluoropropyl Dimethicone/Trifluoropropyl Divinyldimethicone Crosspolymer	6	0.3
32	115361-68-7	Trifluoropropyl Dimethicone	5	0.3
33	1185851-52-8	Ethyl tafluprostamide	4	0.2
34	460-73-1	Pentafluoropropane	4	0.2
35	2374-14-3	Trifluoropropyl Cyclotrisiloxane	4	0.2
36	355-04-4	Perfluoroisohexane	3	0.2
37	NA	Adamantanylcarboxamido Trifluoromethylbenzonitrile	2	0.1
38	355-02-2	Perfluoromethylcyclohexane	2	0.1
39	88645-29-8	Polyperfluoroethoxymethoxy Difluorohydroxyethyl Ether	2	0.1
40	NA	C12-16 Alkyl PEG-7 Methacrylate/Perfluorohexylethyl Methacrylate Copolymer	1	0.1
41	138495-42-8	Decafluoropentane	1	0.1
42	2001566-55-6	Difluorocyclohexyloxyphenol	1	0.1
43	NA	Fluoro C2-8 Alkyldimethicone	1	0.1
44	NA	Heptapeptide-50 Trifluoroacetate	1	0.1
45	NA	Isopropyl Titanium Triisostearate/Perfluorooctyl Triethoxysilane Crosspolymer	1	0.1
46	NA	PEG-10 Acrylate/Perfluorohexylethyl Acrylate Copolymer	1	0.1

No.	CAS Number from wINCI	PFAS Name	Frequency of Use*	Percentage of Total (%) [#]
47	NA	PEG-8 Trifluoropropyl Dimethicone Copolymer	1	0.1
48	NA	Perfluoroalkylsilyl Mica	1	0.1
49	NA	Perfluorononylethyl Carboxydecyl Lauryl Dimethicone	1	0.1
50	NA	Polyperfluoroisopropyl Ether	1	0.1
51	NA	Trifluoropropyl Dimethiconol	1	0.1

NA: not available.

* Frequency of use refers to the total number of cosmetic products that contain a particular ingredient.

[#] The percentage of total is calculated by dividing the frequency of use number with the total number of PFAS-containing cosmetic products (N=1744) * 100.

The cosmetic product listing data following the MoCRA mandate is considered more complete and more reliable than that in the VCRP, although there may still be underreporting of certain products. Among 17 cosmetic product categories from the cosmetic product listing data (**Table S2**), 12 contain products with PFAS. **Table S3** provides the number of PFAS-containing cosmetic products in each category. Products in the top five categories add up to 56% of all PFAS-containing cosmetic products: eye shadows (20.5%), face and neck care products (leave-on) (15.9%), eyeliners (8.4%), face powders (6.6%), and foundations (traditional applications) (4.5%). The rest of the product categories each represents 0.1-4.0% of all products (**Table S3**).

It is worth noting that the PFAS frequency of use from the cosmetic product listing data is based on input we received solely from the responsible person,⁴² and doesn't reflect the whole market, due to certain exemptions outlined in MoCRA (such as small businesses). Please also note that the cosmetic product listing data is subject to change over time as new data is collected. As such, this report only represents the data collected as of August 30, 2024. In addition, as the wINCI database is updated, the total number of PFAS identified may increase, and the number of PFAS currently found in cosmetic products may also change.

The VCRP, the FDA's former voluntary reporting system, contains data on cosmetic products in commercial distribution until March 2023. As of July 1, 2024, it was replaced by a mandatory data submission program for cosmetic product facility registrations and product listings as required by MoCRA. The VCRP remains a valuable resource for examining the prevalence of PFAS-containing products in the U.S. before its March 2023 sunset. A search of the VCRP using the INCI names of the 177

⁴² MoCRA defines "responsible person" as the manufacturer, packer, or distributor of a cosmetic product whose name appears on the label of such cosmetic product in accordance with section 609(a) of the FD&C Act or section 4(a) of the Fair Packaging and Labeling Act.

PFAS revealed that 32 of these PFAS were reported to be used in a total of 570 products, which represents 1.71% of all products voluntarily registered in the VCRP database (**Table 2.2**).

Table 2.2. List of PFAS Used in Products Reported in the VCRP (as of March 27, 2023)

No.	CAS No.	PFAS Name	Frequency of Use
1	51851-37-7	Perfluorohexylethyl Triethoxysilane	172
2	9002-84-0	Polytetrafluoroethylene (PTFE)	79
3	934368-60-2	Tetradecyl Aminobutyroylvalylaminobutyric Urea Trifluoroacetate	39
4	429-67-4	Trifluoropropyl Cyclotetrasiloxane	31
5	999004-82-1*	Trifluoropropyl Cyclopentasiloxane	31
6	259725-95-6	Perfluorononyl Dimethicone	29
7	306-94-5	Perfluorodecalin	28
8	163702-07-6	Methyl Perfluorobutyl Ether	23
9	163702-08-7	Methyl Perfluoroisobutyl Ether	22
10	64577-63-5	Trifluoroacetyl Tripeptide-2	21
11	355-42-0	Perfluorohexane	18
12	69991-67-9	Polyperfluoromethylisopropyl Ether	12
13	460-73-1	Pentafluoropropane	8
14	306-91-2	Perfluoroperhydrophenanthrene	7
15	10442-83-8	HC Yellow No. 13	6
16	163702-05-4	Ethyl Perfluorobutyl Ether	5
17	335-27-3	Perfluorodimethylcyclohexane	5
18	999004-53-1*	Trifluoropropyldimethyl(trimethylsiloxy)silicate	4
19	999004-94-9*	Trifluoropropyl Dimethicone/Trifluoropropyl Divinylmethicone Crosspolymer	4
20	163702-06-5	Ethyl Perfluoroisobutyl Ether	3
21	1805-22-7	Perfluoromethylcyclopentane	3
22	999001-10-7*	C9-15 Fluoroalcohol Phosphate	3
23	80977400-67-1*	Perfluorononyl Dimethicone/Methicone/Amodimethicone Crosspolymer	3
24	1557087-30-5	Acrylates/Perfluorohexylethyl Methacrylate Copolymer	3
25	999001-44-7	Trifluoromethyl C1-4 Alkyl Dimethicone	2

No.	CAS No.	PFAS Name	Frequency of Use
26	115361-68-7	Trifluoropropyl Dimethicone	2
27	50285-18-2	Perfluoro Dimethylethylpentane	2
28	999002-90-5	Trifluoropropyl Dimethiconol	1
29	999003-11-0*	Polyperfluoroethoxymethoxy Difluoroethyl PEG Phosphate	1
30	88645-29-8	Polyperfluoroethoxymethoxy Difluorohydroxyethyl Ether	1
31	2001566-55-6	Difluorocyclohexyloxyphenol	1
32	29118-24-9	Tetrafluoropropene	1

* These are VCRP Code Numbers. In the VCRP database, ingredients were assigned VCRP Code Numbers when they lacked a valid CAS Number.

The Mintel's GNPD is a comprehensive online resource that tracks and analyzes new product launches across various industries, including beauty and personal care products.⁴³ It provides detailed information on product formulations, packaging, claims, and marketing trends from around the world. Mintel's GNPD was chosen as a data source due to its comprehensive coverage of the beauty and personal care market, including a wide range of product categories that align closely with the definition of cosmetic products. Using the same approach used in the VCRP search, a search of the 177 PFAS in Mintel's GNPD (conducted in July 2024) identified 79 PFAS used in 13,093 products globally, representing 0.51% of the total 2,544,109 products launched globally. Mintel's GNPD also provides the number of products launched into the market over a 5-year period (August 2019 to July 2024) and in the last year of that period (August 2023 to July 2024). According to the data, 3,476 PFAS-containing cosmetic products were launched globally from 2019 to 2024 (August 2019 to July 2024), among which only about 10% (442) were launched between August 2023 to July 2024. Focusing on products launched over the last 5 years and 1 year, the prevalence of PFAS-containing cosmetic products decreased to 0.45% (53 PFAS in 3,476 products launched out of 777,648 total cosmetic products launched from 2019-2014) and 0.28% (30 PFAS in 442 products launched out of 155,526 cosmetic products launched from 2023-2024), respectively. In the U.S. there have been 57 PFAS used in 2,858 products, accounting for 0.75% of the total 382,917 products launched into the market. There has been a decline in the number of products launched in the U.S. that contain PFAS in the past 5 years (719 products launched between 2019-2024 compared to 74 that were launched from August 2023 to July 2024). In 2024, 0.37% of the newly launched products in the U.S. contain PFAS, compared to 0.28% in the global market and 0.15% in the EU market. For a more detailed data summary, please see **Table 2.3**.

Table 2.3. Total Number of Launched Cosmetic Products and Market Share of PFAS-Containing Cosmetic Products Based on Mintel's GNPD (As of July 27, 2024)

⁴³ Mintel uses the term "beauty & personal care" for its industry category which is a broader category than "cosmetic products." However, we used Mintel data on beauty & personal care products as a proxy of cosmetic products in this report based on our assumption that cosmetic products, as defined in the FD&C Act, represent a significant portion (or the majority) of the beauty and personal care market.

Regions	Time period	Total number of cosmetic products	Cosmetic products containing PFAS	Proportion of cosmetic products containing PFAS (%)
Global	All time	2,544,109	13,093	0.51
	5 year	777,648	3,476	0.45
	1 year	155,526	442	0.28
U.S.	All time	382,917	2,858	0.75
	5 year	98,463	719	0.73
	1 year	20,032	74	0.37
Europe	All time	939,671	3,338	0.36
	5 year	257,152	711	0.28
	1 year	47,963	70	0.15
Asia Pacific	All time	692,196	4,743	0.69
	5 year	229,069	1,404	0.61
	1 year	47,190	183	0.39
Latin America	All time	297,247	1,282	0.43
	5 year	107,995	448	0.41
	1 year	20,692	96	0.46
Middle East & Africa	All time	139,261	340	0.24
	5 year	67,153	129	0.19
	1 year	13,915	19	0.14

Overall, the data in Mintel's GNPD indicate a gradual decline in PFAS usage within the cosmetics industry across the U.S., the EU, and globally over time. This trend aligns with the growing public awareness of potential environmental and health risks associated with PFAS chemicals and the subsequent surge in demand for safer alternatives.

Trends in PFAS Use in the U.S. Cosmetics Industry

Recent data on the most frequently used PFAS in cosmetic products indicate a declining trend in the usage of some PFAS. For example, PTFE usage has significantly declined over recent years, dropping from 249 registered products in 2019 to just 79 products by early 2023, as shown by the FDA's VCRP (**Table S4**). This decline may reflect responses to state-level legislation banning or restricting PFAS in cosmetics. Mintel's GNPD data corroborates this trend, reporting only four PTFE-containing cosmetic products launched between August 2023 and July 2024, among 222 over a 5-year period (August 2019 to July 2024) in the U.S. (**Table S4**). Some other PFAS, such as perfluorodecalin and perfluorohexane,

have maintained relatively stable usage (**Table S4**). The use information of each individual PFAS is discussed in detail in **Appendix 1** of this report.

After the enactment of MoCRA, FDA collected information from the cosmetics industry on PFAS usage. The results, based on responses from a limited number of participants, indicate that cosmetic manufacturers in the U.S. have started reformulating their products to remove PFAS. FDA reached out to a total of nine firms, all of which have used PFAS in their products according to their submission to the VCRP. Of the five firms that provided responses, two have discontinued their PFAS-containing cosmetic products and reformulated them with non-PFAS alternative ingredients, such as cellulose-based raw material. Another firm responded that it had stopped using PFAS in its products to comply with California's bill AB2771 banning products (including cosmetics) that contain intentionally added PFAS substances effective on January 1, 2025. This firm stated that it started to require all of its suppliers to provide PFAS information; any suppliers that fail to provide PFAS statements are removed from the approved suppliers list and replaced with another supplier who does provide them with the PFAS statement. The two remaining firms responded that they were making efforts to discontinue and reformulate their PFAS-containing cosmetic products.

It should be noted that FDA's cosmetic product listing requirement, mandated by MoCRA and effective since December 18, 2023, with enforcement beginning July 1, 2024, is fairly recent. As a result, insufficient historical data is available at this time to allow for the extrapolation of trends in PFAS usage in cosmetic products.

Use Concentration of PFAS in Cosmetic Products

In contrast to regulations in some jurisdictions, such as Brazil,⁴⁴ Canada⁴⁵ and the EU,⁴⁶ where our understanding is that manufacturers are required to disclose the concentrations (or concentration ranges) and functions of intentionally added ingredients, such requirements do not apply in the U.S. MoCRA does not mandate companies to report ingredient concentrations when submitting product listing information. Because this information is often considered proprietary, it is generally not accessible in any publicly available, searchable databases.

In preparation for this report, the FDA searched for PFAS use concentration information from multiple publicly available sources, including but not limited to: CIR safety assessment reports, scientific publications, raw material suppliers' recommendations and product brochures. For example, the CIR safety assessment for PTFE (Johnson, Bergfeld et al. 2023) reported ingredient use levels in various cosmetic formulations based on the Personal Care Products Council's (PCPC's) industry survey data. The recent scientific publication by Balan et al. (2024) offers reported and recommended concentration ranges for different PFAS in skin care, hair care, and makeup products. Supplier data from some

⁴⁴ In Brazil, cosmetics are regulated by the National Health Surveillance Agency (ANVISA) under resolutions such as RDC No. 7/2015 and related guidelines. See <https://www.adippec.com.br/assets/pdf/ANVISA-DIRECTIVE-RDC-No7-10-FEBRUARY-2015.pdf> (accessed 8/8/2025).

⁴⁵ In Canada, cosmetics are regulated by Cosmetic Regulations under the Food and Drugs Act, administered by Health Canada. See <https://gazette.gc.ca/rp-pr/p2/2024/2024-04-24/html/sor-dors63-eng.html> (accessed 8/8/2025).

⁴⁶ EU regulates cosmetics under the Cosmetics Regulation (EC) No 1223/2009, enforced by European Commission and member state authorities. See <https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:02009R1223-20250501> (accessed 8/8/2025).

cosmetic companies provide recommended use concentrations for raw materials, noting that the actual concentrations in finished products may vary. These sources collectively were used to inform estimated PFAS concentration ranges in cosmetic products. The five companies that responded to FDA's PFAS in Cosmetics assignment questionnaire provided specific use concentration levels of PFAS in their products.

In general, while the exact concentration data for most PFAS that are reported to be used in cosmetic products are not available to the FDA, the limited information available indicates that PFAS concentrations vary depending on the ingredient and product type among the most frequently used PFAS in the U.S. market. For example, PTFE is used up to 13% in mascara, 12% in eye shadow, and at lower concentrations in other products. Perfluorononyl dimethicone is used in skin care products from 0.006% to 1%, while perfluorohexylethyl triethoxysilane use concentrations range between 0.03% and 0.82%. Some PFAS, such as trifluoropropyldimethyl(trimethylsiloxy)silicate, are used at higher levels (2% to 20%) in eyeliners. This is consistent with information provided in Cosmetic Notifications submitted to Health Canada that showed most PFAS-containing cosmetic products (87%) have concentrations at or below 3%, while about 4% contain PFAS above 10% (Health Canada 2025).

The lack of use concentration information presents challenges in estimating consumer exposure to PFAS from the use of cosmetic products and the downstream assessment of the potential health risks associated with their use.

3 Scope of the Report and Methods for Data Collection and Safety Assessment

Scope of the Report

This report provides context and a specific overview of current publicly available data pertaining to the safety of select PFAS used in cosmetic products. The scope of this report does not include PFAS present in the final product as contaminants, but rather focuses on intentionally added PFAS in cosmetic formulations in the U.S., specifically the top 25 PFAS based on their frequency of use. We determined the frequency of use from cosmetic product listing information submitted to the FDA as required by MoCRA. Since the mandatory cosmetic product listing data consists of a significantly larger number of products marketed in the U.S. compared with the VCRP or Mintel's GNPD, it is considered the most comprehensive list of cosmetic ingredients and products in the U.S. Therefore, we relied on the cosmetic product listing data as the basis for selecting and prioritizing the list of PFAS we reviewed for this report.

According to FDA's cosmetic product listing data, the top 25 (out of 51) PFAS all have a frequency of use of 10 products or greater (i.e. used in more than 10 products). Their uses, added together, contribute to 96.02% of all PFAS uses in cosmetic products (**Table 2.1**). The remaining 26 PFAS are each used in 1 to 8 products, making up the rest (~4%) of all PFAS uses. The FDA's current effort in assessing the safety of PFAS use in cosmetic products is limited to the top 25 PFAS identified as the most prevalent. Subsequent evaluation of the remaining PFAS will be conducted as resources permit. It is critical to point out that with increasing compliance with MoCRA regulations, the reported numbers are expected to change over time. The overall trend is anticipated to remain consistent or potentially decline, reflecting growing

global concerns about PFAS safety and tightened state regulations and restrictions on PFAS use in general.

We conducted a safety assessment for each of these 25 PFAS, considering factors including intended applications, toxicokinetics, as well as both systemic and site of contact toxicity. The findings of these reviews are presented in **Appendix 1** in descending order of their frequency of use. Based on the intended uses for each PFAS, consumer exposure pathways evaluated include dermal absorption, incidental ingestion (such as for lip products), incidental inhalation (such as for face powders), and ocular contact (especially with eye makeup), as appropriate.

Methodology on Toxicity Data Collection and Safety Assessment

Collection of Toxicity Data

To ensure that relevant and credible toxicological information was retrieved to the greatest extent, a tiered approach was implemented. Specifically, for each PFAS, we first searched for existing safety assessments performed by government agencies or scientific advisory groups, such as CIR, the Scientific Committee on Consumer Safety (SCCS), and the International Agency for Research on Cancer (IARC). A full list of sources for such assessments is provided in **Table S5**.

Then, we conducted searches of published literature in both PubMed and Web of Science. **Tables S6-S9** outline the literature syntax for obtaining toxicity data on these PFAS. Specifically, for data-rich PFAS such as PTFE, perfluorodecalin and perfluorohexane, the literature search was conducted with individual toxicity endpoints. For PFAS with limited toxicity data like perfluorononyl dimethicone, the literature search was conducted with the chemical name, CAS number and the technical names as key words. In addition, data on toxicokinetics or ADME which provides critical information for risk assessment was also gathered.

In addition, we consulted the ECHA Chemicals Database (ECHA CHEM)⁴⁷ if any REACH registration dossier(s) existed for the PFAS under evaluation. It should be noted that REACH dossiers provide only limited publicly available information and the original study reports were inaccessible for FDA's review. Thus, the quality of the data could not be independently and fully evaluated in the preparation of this report.

If no relevant toxicity data was found through any of the above sources, we referred to the Safety Data Sheet (SDS), or Material Safety Data Sheet (MSDS) provided by raw material suppliers (if publicly available) for safety information as a last resort. While these documents often contain information regarding the toxicological endpoints of a substance, it should also be noted that the SDS/MSDS provides only limited publicly available information, and the original study reports were inaccessible to FDA for review. Thus, the quality of the data could not be independently and fully evaluated in the preparation of this report.

Safety Assessment Approach

Based on data availability, we conducted the safety assessment for select PFAS following a tiered approach. Ideally, with sufficient data, we performed a quantitative assessment according to the principles of chemical risk assessment. Briefly, this process includes hazard identification and dose-response assessment (identifying the No Observed Adverse Effect Level, or NOAEL), exposure

⁴⁷ ECHA CHEM is a public chemicals database with information from all REACH registrations received by the ECHA. Chemicals can be searched through the link: <https://chem.echa.europa.eu/>.

assessment (estimating the systemic exposure dose, or SED), and the calculation for a margin of exposure (MOE) (SCCS 2023). This numerical value of MOE represents the ratio between the NOAEL and the SED, indicating whether there is a concern or not for systemic toxicity at the expected human exposure level of an ingredient. An MOE of 100 or greater is generally considered to indicate safe or low risk for cosmetic ingredients, particularly for threshold endpoints including cancer that may occur via a non-genotoxic mechanism of action.

This report evaluates all toxicity endpoints relevant to consumer exposure from the use of cosmetic products. The endpoints assessed include those from systemic effects, such as acute toxicity, repeated dose toxicity, genotoxicity, carcinogenicity, developmental and reproductive toxicity (DART), and other endpoints like neurotoxicity. It also examines local (or site of contact) effects including dermal irritation and sensitization, ocular irritation, respiratory irritation and photo-induced toxicity. In the assessment, we determine the potential exposure pathways based on the product types in which an individual PFAS is used. Dermal contact is expected to be the primary route of consumer exposure since most cosmetic products are applied to the skin. Other routes of exposure may include inhalation through aerosolized sprays like hairspray or face powder, and oral ingestion from lipstick or mouthwash use.

When data is insufficient for a quantitative assessment, we attempted a qualitative safety assessment. In such cases, we used a weight-of-evidence approach to gather available scientific information to categorize potential risks as low, moderate, or high concern.

Finally, if data on a particular PFAS was so limited that neither quantitative nor qualitative assessment was possible, we concluded that the safety of that PFAS use in cosmetic products and the risks associated with such use cannot be determined presently due to lack of data. Across all tiers, consideration of data quality and uncertainty is essential.

Assessments for Individual PFAS

The use and safety information about the 25 PFAS assessed in this report are provided in **Appendix 1**. Each assessment includes a general introduction of the chemical, data that describes its current uses in cosmetic products, and details of available relevant toxicological information. When adequate safety and exposure data were available, a quantitative risk assessment was conducted.

4 Overall Conclusions

Based on the mandatory cosmetic product listing data submitted to the FDA, 51 different PFAS are used in a total of 1,744 cosmetic formulations (as of August 30, 2024). These PFAS are used as ingredients in a variety of cosmetic products due to their unique properties, such as water repellency, smooth texture, and film formation. The primary route of exposure from the use of PFAS-containing cosmetic products is dermal, although inhalation (e.g., from powder or spray formulations), ocular (e.g., eye makeup), and incidental ingestion (e.g., lipsticks) are also possible. The VCRP and Mintel's GNPD suggest that the use of some PFAS in cosmetic products has declined in recent years. However, a definitive use trend cannot be demonstrated at present using the mandatory cosmetic product listing data submitted to the FDA due to the lack of historical data.

In this report, we conducted safety evaluations for the top 25 PFAS (out of a total of 51 PFAS) based on their frequency of use in cosmetic products, identified using the mandatory cosmetic product listing information submitted to the FDA. In general, toxicological data for a majority of these PFAS are

incomplete or unavailable. Based on the available toxicological data, our evaluations reveal significant variability in risk profiles depending on the specific PFAS chemical. While 5 of the 25 PFAS evaluated appear to have low safety concerns under their intended conditions of use in cosmetic products, the majority of the PFAS (19/25 or 76%), safety cannot be assessed at present due to lack of critical toxicological data. One PFAS, specifically, perfluorohexylethyl triethoxysilane, was identified as having a potential safety concern, however, significant uncertainties remain due to limited toxicity data on which the conclusion has been based.

Overall, the safety of most of the PFAS reviewed could not be definitively established due to insufficient toxicological data available to the FDA. The FDA will continue to monitor emerging information on the cosmetic use and safety of PFAS.

5 References

(2002). "Perflexane (AF0150, AFO 150, Imagent, Imavist)." *Drugs in R & D* **3**(5): 306-309.

Abdipour, H., F. Abbasi, M. Nasiri, A. Ghamkhari and M. Ghorbani (2024). "Multifunctional microbubbles comprising poly(lactic-co-glycolic acid), chitosan, polyethylene glycol, and folic acid for targeted cancer therapy." *Journal of Drug Delivery Science and Technology* **94**.

Aoki, A., A. Saito, K. Shima, Y. Kimura, K. Asakawa, R. Ohashi, H. Umez, T. Sakagami, H. Moriyama and T. Kikuchi (2022). "Occupational Lung Disease Caused by Exposure to Polytetrafluoroethylene." *Intern Med* **61**(24): 3713-3717.

Aragona, F., L. D'Urso, E. Scremin, R. Salmaso and G. P. Glazel (1997). "Polytetrafluoroethylene giant granuloma and adenopathy: long-term complications following subureteral polytetrafluoroethylene injection for the treatment of vesicoureteral reflux in children." *J Urol* **158**(4): 1539-1542.

Arnold, W. A., T. G. Hartman and J. McQuillen (2007). "Chemical characterization and thermal stressing studies of perfluorohexane fluids for space-based applications." *Journal of Spacecraft and Rockets* **44**(1): 94-101.

ATSDR (2021). *Toxicological Profile for Perfluoroalkyls*. Atlanta (GA).

Audran, M., M. P. Krafft, J. De Ceaurriz, J.-C. Maturin, M.-T. Sicart, B. Marion, G. Bougard and F. Bressolle (2000). "Determination of perfluorodecalin and perfluoro-N-methylcyclohexylpiperidine in rat blood by gas chromatography-mass spectrometry." *Journal of Chromatography B: Biomedical Sciences and Applications* **745**(2): 333-343.

Augustin, A. J., M. Spitznas, F. H. Koch, T. Boker, D. Meller and J. Lutz (1995). "Systemic effects of different perfluorochemical agents." *Graefes Arch Clin Exp Ophthalmol* **233**(1): 48-51.

Balan, S. A., T. A. Bruton, K. Harris, L. Hayes, C. P. Leonetti, V. C. Mathrani, A. E. Noble and D. S. C. Phelps (2024). "The Total Mass of Per- and Polyfluoroalkyl Substances (PFASs) in California Cosmetics." *Environ Sci Technol* **58**(27): 12101-12112.

Becker, L. C., W. F. Bergfeld, D. V. Belsito, R. A. Hill, C. D. Klaassen, D. Liebler, J. G. Marks, Jr., R. C. Shank, T. J. Slaga, P. W. Snyder and F. A. Andersen (2013). "Safety assessment of silylates and surface-modified siloxysilicates." *Int J Toxicol* **32**(3 Suppl): 5s-24s.

Benjamin, B., P. Robb, A. Clifford and R. Eckstein (1991). "Giant Teflon granuloma of the larynx." *Head Neck* **13**(5): 453-456.

Bergert, H., K.-P. Knoch, R. Meisterfeld, M. Jäger, J. Ouwendijk, S. Kersting, H. D. Saeger and M. Solimena (2005). "Effect of Oxygenated Perfluorocarbons on Isolated Rat Pancreatic Islets in Culture." *Cell Transplantation* **14**(7): 441-448.

Biesman, B. S. and C. Costner (2017). "Evaluation of a transparent perfluorodecalin-infused patch as an adjunct to laser-assisted tattoo removal: A pivotal trial." *Lasers Surg Med* **49**(4): 335-340.

Bleyl, J. U., M. Ragaller, U. Tscho, M. Regner, M. Hubler, M. Kanzow, O. Vincent and M. Albrecht (2002). "Changes in pulmonary function and oxygenation during application of perfluorocarbon vapor in healthy and oleic acid-injured animals." *Crit Care Med* **30**(6): 1340-1347.

Bremmer, H. J., L. C. H. Prud'homme de Lodder and J. G. M. van Engelen (2006). *ConsExpo Fact Sheets. Cosmetics Fact Sheet: To assess the risks for the consumer: Updated version for ConsExpo 4*. Bilthoven (NL), National Institute for Public Health and the Environment.

Bryson, G. and F. Bischoff (1969). "The limitations of safety testing." *Prog Exp Tumor Res* **11**: 100-133.

Buck, R. C., J. Franklin, U. Berger, J. M. Conder, I. T. Cousins, P. de Voogt, A. A. Jensen, K. Kannan, S. A. Mabury and S. P. van Leeuwen (2011). "Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins." *Integr Environ Assess Manag* **7**(4): 513-541.

Busuttil, S. J., C. Drumm and E. F. Plow (2005). "In vivo comparison of the inflammatory response induced by different vascular biomaterials." *Vascular* **13**(4): 230-235.

Camner, P., M. Anderson, K. Philipson, A. Bailey, A. Hashish, N. Jarvis, M. Bailey and M. Svartengren (1997). "Human bronchiolar deposition and retention of 6-, 8- and 10-micrograms particles." *Exp Lung Res* **23**(6): 517-535.

Chehade, L. K., B. Guo, W. Chan and J. Gilhotra (2021). "Medium-term tamponade with vitrectomy and perfluorodecalin for the management of complex retinal detachments." *Eur J Ophthalmol* **31**(5): 2625-2630.

Chelomin, V. P., V. V. Slobodskova, S. P. Kukla, A. A. Mazur, N. V. Dovzhenko, A. F. Zhukovskaya, A. A. Karpenko, M. A. Karpenko and V. S. Odintsov (2023). "Dietary Exposure to Particles of Polytetrafluoroethylene (PTFE) and Polymethylmethacrylate (PMMA) Induces Different Responses in Periwinkles *Littorina brevicula*." *Int J Mol Sci* **24**(9).

Chemours, M. (2017). Material Safety Data Sheet: PTFE Fine Powder. MSDS Number 150000002329. Revision Date 01/31/2017.

Cheng, Y. H., H. Cheng, C. X. Jiang, X. F. Qiu, K. K. Wang, W. Huan, A. Yuan, J. H. Wu and Y. Q. Hu (2015). "Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy." *Nature Communications* **6**.

Choi, W. I., H. R. Jung, E. Shehu, B. H. Rho, M. Y. Lee and K. Y. Kwon (2014). "Small airway-centered granulomatosis caused by long-term exposure to polytetrafluoroethylene." *Chest* **145**(6): 1397-1402.

Chubb, C. and P. Draper (1987). "Efficacy of perfluorodecalin as an oxygen carrier for mouse and rat testes perfused in vitro." *Proc Soc Exp Biol Med* **184**(4): 489-494.

Clayton, J. W., Jr (1967). "Fluorocarbon toxicity and biological action." *Fluorine Chemistry Reviews* **1**(2): 197-252.

Correia, M. S. and B. Z. Horowitz (2024). Polymer Fume Fever. *StatPearls*. Treasure Island (FL).

Cui, G., P. He, L. Yu, C. Wen, X. Xie and G. Yao (2020). "Oxygen self-enriched nanoplatform combined with US imaging and chemo/photothermal therapy for breast cancer." *Nanomedicine* **29**: 102238.

Cunningham, B. W., N. J. Hallab, N. Hu and P. C. McAfee (2013). "Epidural application of spinal instrumentation particulate wear debris: a comprehensive evaluation of neurotoxicity using an in vivo animal model." *J Neurosurg Spine* **19**(3): 336-350.

Danysz, W., B. Becker, M. Begnier, G. Clermont and P. Kreymerman (2020). "The effect of the perfluorodecalin patch on particle emission and skin temperature during laser-induced tattoo removal." *J Cosmet Laser Ther* **22**(3): 150-158.

Deep, N. L., C. S. Graffeo, W. R. Copeland, 3rd, M. J. Link, J. L. Atkinson, B. A. Neff, A. Raghunathan and M. L. Carlson (2017). "Teflon granulomas mimicking cerebellopontine angle tumors following microvascular decompression." *Laryngoscope* **127**(3): 715-719.

Desai, U. R., G. A. Peyman, C. J. Chen, N. C. Nelson, Jr., W. A. Alturki, K. J. Blinder and C. L. Paris (1992). "Use of perfluoroperhydrophenanthrene in the management of suprachoroidal hemorrhages." Ophthalmology **99**(10): 1542-1547.

Dewan, P. A., A. J. Owen and R. W. Byard (1995). "Long-term histological response to subcutaneously injected Polytef and Bioplastique in a rat model." Br J Urol **76**(2): 161-164.

Dias, A. M. A., R. P. Bonifácio, I. M. Marrucho, A. A. H. Pádua and M. F. C. Gomes (2003). "Solubility of oxygen in n-hexane and in n-perfluorohexane.: Experimental determination and prediction by molecular simulation." Physical Chemistry Chemical Physics **5**(3): 543-549.

Dimmitt, R. A., S. A. Beckman, L. P. Halamek, R. L. Moss, N. A. Mickas, D. A. Falco, C. Chubb and E. D. Skarsgard (2002). "Effects of partial liquid ventilation on cerebral blood flow and cerebral metabolism in neonatal lambs." J Pediatr Surg **37**(6): 840-844.

Ding, T., J. Sun and P. Zhang (2009). "Study on MCP-1 related to inflammation induced by biomaterials." Biomed Mater **4**(3): 035005.

Dinkelmann, S., W. Röhlke, H. Meinert and H. Northoff (2001). "A system establishing compatibility profiles for artificial oxygen carriers and other substances." Artificial Cells Blood Substitutes and Immobilization Biotechnology **29**(1): 57-70.

Dodd, D. E., W. T. Brashear and A. Vinegar (1993). "Metabolism and pharmacokinetics of selected halon replacement candidates." Toxicol Lett **68**(1-2): 37-47.

Ebnesajjad, S. (2020). Introduction to Fluoropolymers: materials, technology, and applications, William Andrew.

ECHA (1985). REACH registration dossier for perfluoroperhydrophenanthrene, EC number 400-470-0, CAS number 1201928-55-3. European Chemicals Agency (ECHA), Helsinki, Finland.

<https://chem.echa.europa.eu/100.100.249/dossier-view/8eb4b92d-44be-4a7a-8af6-3300c999cf55/>
(Accessed on 12-11-2024).

ECHA (1997). REACH registration dossier for methyl perfluoroisobutyl ether, EC number 422-270-2, CAS number 163702-08-7. European Chemicals Agency (ECHA), Helsinki, Finland.

<https://chem.echa.europa.eu/100.102.084/dossier-view/7504a8a4-59a1-4426-abb7-0cedf4840922/>
(Accessed: 11-20-2024).

ECHA (2002). REACH registration dossier for HC Yellow No. 13, EC number 443-760-2, CAS number 10442-83-8 European Chemicals Agency (ECHA), Helsinki, Finland.

<https://chem.echa.europa.eu/100.103.906/dossier-view/a5b3c2e8-fb2e-4f1f-b331-be9a6878c893/>
(Accessed on 12-04-2024).

ECHA (2007). REACH registration dossier for tetrafluoropropene, EC number 471-480-0, CAS number 29118-24-9. <https://chem.echa.europa.eu/100.104.972/dossier-view/01d9a2f8-ccf4-4e42-ba29-8f8541c77325/> (Accessed on 12-11-2024). European Chemicals Agency (ECHA), Helsinki, Finland.

ECHA (2011). REACH registration dossier for methyl perfluoroisobutyl ether, EC number 422-270-2, CAS number 163702-08-7. European Chemicals Agency (ECHA), Helsinki, Finland.
https://chem.echa.europa.eu/100.102.084/dossier-view/ddee67b2-acb5-472b-adc1-95bc454a3c42/fab7a1cd-9bce-4381-aa3d-dc7a137c3a34_fab7a1cd-9bce-4381-aa3d-dc7a137c3a34?searchText=163702-08-7 (Accessed: 11-20-2024).

ECHA (2016). REACH registration dossier for perfluorofene, EC number 206-192-4, CAS number 306-94-5. European Chemicals Agency (ECHA), Helsinki, Finland.

<https://chem.echa.europa.eu/100.005.631/dossier-view/feecbd57-e4b6-427d-b2d2-008aa31b5011/>
(Accessed: 10-07-2024).

ECHA (2017). REACH registration dossier for perfluorodimethylcyclohexane, EC number 206-386-9, CAS number 335-27-3. <https://chem.echa.europa.eu/100.005.807/dossier-view/8478400a-ea1e-4937-92ca-338d18fa700d/> (Accessed on 12-12-2024). European Chemicals Agency (ECHA), Helsinki, Finland.

ECHA (2018). REACH registration dossier for perfluoromethylcyclopentane, EC number 217-298-5, CAS number 1805-22-7. European Chemicals Agency (ECHA), Helsinki, Finland.

<https://chem.echa.europa.eu/100.015.726/dossier-view/ee827aea-1cf5-40ce-a32e-98ce4b74429d/>
(Accessed: 12-11-2024).

ECHA (2018). REACH registration dossier for tetradecafluorohexane, EC number 206-585-0, CAS number 355-42-0. European Chemicals Agency (ECHA), Helsinki, Finland.

<https://chem.echa.europa.eu/100.005.987/dossier-view/1f1b0deb-16f5-4095-9e35-22a21afba11a/>
(Accessed: 10-23-2024).

ECHA (2018). REACH registration dossier for triethoxy(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluoroctyl)silane, EC number 257-473-3, CAS number 51851-37-7. European Chemicals Agency (ECHA), Helsinki, Finland.

<https://chem.echa.europa.eu/100.052.232/dossier-view/795d76a5-237f-4c86-bf98-44d6c32d4224>
(Accessed: 09-20-2024).

ECHA (2023). ANNEX XV Restriction Report - Per- and polyfluoroalkyl substances (PFASs). European Chemicals Agency (ECHA). <https://echa.europa.eu/documents/10162/f605d4b5-7c17-7414-8823-b49b9fd43aea>.

Ericsson, C. H., K. Svartengren, M. Svartengren, B. Mossberg, K. Philipson, M. Blomquist and P. Camner (1995). "Repeatability of airway deposition and tracheobronchial clearance rate over three days in chronic bronchitis." *Eur Respir J* **8**(11): 1886-1893.

European Commission (1996). [Technical guidance documents in support of the Commission Directive 93/67/EEC on risk assessment for new notified substances and the Commission Regulation \(EC\) 1488/94 on risk assessment for existing substances. 3/4 \(1996\)](#), ECB.

Falk, R., K. Philipson, M. Svartengren, R. Bergmann, W. Hofmann, N. Jarvis, M. Bailey and P. Camner (1999). "Assessment of long-term bronchiolar clearance of particles from measurements of lung retention and theoretical estimates of regional deposition." *Exp Lung Res* **25**(6): 495-516.

FDA (2002). New Drug Application (NDA) No. 21-191: AF0150 (Imagent). Food and Drug Administration (FDA), Department of Health and Human Services.

https://www.accessdata.fda.gov/drugsatfda_docs/nda/2002/21-191_Imagenet.cfm (Accessed 10/23/2024).

Fernandes, D. A., D. D. Fernandes, A. Malik, G. W. Gomes, S. Appak-Baskoy, E. Berndl, C. C. Gradinaru and M. C. Kolios (2021). "Multifunctional nanoparticles as theranostic agents for therapy and imaging of breast cancer." *J Photochem Photobiol B* **218**: 112110.

FR (1990). Federal Register. Secondary direct food additives permitted in food for human consumption: Sec. 173.342 Chlorofluorocarbon 113 and perfluorohexane. 55 FR 8913. Mar. 9, 1990.

Gaines, L. G. T., G. Sinclair and A. J. Williams (2023). "A proposed approach to defining per- and polyfluoroalkyl substances (PFAS) based on molecular structure and formula." *Integr Environ Assess Manag* **19**(5): 1333-1347.

Gamal-Eldeen, A. M., A. A. Alrehaili, A. Alharthi and B. M. Raafat (2022). "Perftoran ((R)) Inhibits Hypoxia-Associated Resistance in Lung Cancer Cells to Carboplatin." *Front Pharmacol* **13**: 860898.

Giffen, P. S., J. D. Kilgour, M. Jacobsen, K. Thacker and A. A. Holmberg (2024). "The Nonclinical Assessment of Trans-1,3,3,3-tetrafluoropropene (HFO-1234ze (E)), a Near Zero Global Warming Potential Propellant for Use in Metered Dose Inhalation Products." *Int J Toxicol* **43**(1): 4-18.

Gjerdet, N. R., T. Kallus and A. Hensten-Pettersen (1987). "Tissue reactions to implanted orthodontic wires in rabbits." *Acta Odontol Scand* **45**(3): 163-169.

Gluge, J., M. Scheringer, I. T. Cousins, J. C. DeWitt, G. Goldenman, D. Herzke, R. Lohmann, C. A. Ng, X. Trier and Z. Wang (2020). "An overview of the uses of per- and polyfluoroalkyl substances (PFAS)." *Environ Sci Process Impacts* **22**(12): 2345-2373.

Graziano, G. (2017). "On the solubility of oxygen and xenon in n-hexane and n-perfluorohexane at room temperature." *Journal of Thermal Analysis and Calorimetry* **130**(1): 497-501.

Guo, Z. L., G. P. Lu, T. Ren, Y. H. Zheng, J. Y. Gong, J. Yu and Y. J. Liang (2009). "Partial liquid ventilation confers protection against acute lung injury induced by endotoxin in juvenile piglets." *Respir Physiol Neurobiol* **167**(3): 221-226.

Hamilton, R. G. and N. F. Adkinson, Jr. (1997). "Validation of the latex glove provocation procedure in latex-allergic subjects." *Ann Allergy Asthma Immunol* **79**(3): 266-272.

Hammel, E., T. F. Webster, R. Gurney and W. Heiger-Bernays (2022). "Implications of PFAS definitions using fluorinated pharmaceuticals." *iScience* **25**(4): 104020.

Harris, K. J. (2022). Occurrence of Per- and Polyfluoroalkyl substances in Cosmetics and Personal Care Products. Master of Science, Carleton University, Ottawa, Ontario.

Haskell Laboratories (1968). 3-Week Feeding Study in Rats with Polytetrafluoroethylene Resins (Teflon). Medical Research Project Number 1080 and Haskell Laboratory Report Number 224-68. October 21, 1968. (Obtained from National Technical Information Services, US Department of Commerce; OTS0571752).

Haufe, D., E. Koenigshausen, L. Knels, M. Wendel, S. N. Stehr and T. Koch (2008). "Leukocyte antibacterial functions are not impaired by perfluorocarbon exposure in vitro." *Am J Physiol Lung Cell Mol Physiol* **295**(1): L134-142.

Health Canada (2025). Draft State of Per- and Polyfluoroalkyl Substances (PFAS) Report. <https://www.canada.ca/en/environment-climate-change/services/evaluating-existing-substances/draft-state-per-polyfluoroalkyl-substances-report.html#toc7> (accessed, Feb 5, 2025). Environment and Climate Change Canada.

Henry, B. J., J. P. Carlin, J. A. Hammerschmidt, R. C. Buck, L. W. Buxton, H. Fiedler, J. Seed and O. Hernandez (2018). "A critical review of the application of polymer of low concern and regulatory criteria to fluoropolymers." *Integr Environ Assess Manag* **14**(3): 316-334.

Holman, R., O. Lorton, P. C. Guillemin, S. Desgranges, C. Contino-Pepin and R. Salomir (2021). "Perfluorocarbon Emulsion Contrast Agents: A Mini Review." *Front Chem* **9**: 810029.

Huang, H., Y. Dong, Y. Zhang, D. Ru, Z. Wu, J. Zhang, M. Shen, Y. Duan and Y. Sun (2019). "GSH-sensitive Pt(IV) prodrug-loaded phase-transitional nanoparticles with a hybrid lipid-polymer shell for precise theranostics against ovarian cancer." *Theranostics* **9**(4): 1047-1065.

IARC (1979). "Tetrafluoroethylene and polytetrafluoroethylene." *IARC Monogr Eval Carcinog Risk Chem Hum* **19**: 285-301.

ICCR (2023). International Cooperation on Cosmetics Regulation (ICCR) 17 annual meeting attachment 3A-PFAS Survey Responses-SC Regulators, July 2023. Brasilia, Brazil.

Iqbal, R., D. Bhandare, M. St Louis and R. Ruchi (2019). "Think before you leap: cutaneous hypersensitivity to polytetrafluoroethylene arteriovenous graft masquerading as infection." *BMJ Case Rep* **12**(9).

Ishii, K., E. Kodani, S. Miyamoto, T. Otsuka, M. Hosone, K. Ogata, W. Sato, S. Matsumoto, T. Tadera, C. Ibuki, Y. Kusama and H. Atarashi (2006). "Pacemaker contact dermatitis: The effective use of a polytetrafluoroethylene sheet." *Pacing Clin Electrophysiol* **29**(11): 1299-1302.

Jacoby, C., S. Temme, F. Mayenfels, N. Benoit, M. P. Krafft, R. Schubert, J. Schrader and U. Flögel (2014). "Probing different perfluorocarbons for in vivo inflammation imaging by 19F MRI: image reconstruction, biological half-lives and sensitivity." *NMR in Biomedicine* **27**(3): 261-271.

Jo, J., M. Acharya, C. P. K. A. Maharjan, D. Lee, R. Gautam, J. T. Kwon, K. Kim, C. Kim, Y. Heo and H. Kim (2023). "Immunodysregulatory potentials of polyethylene or polytetrafluoroethylene microplastics to mice subacutely exposed via intragastric intubation." *Toxicol Res* **39**(3): 419-427.

Johnson, W., Jr., W. F. Bergfeld, D. V. Belsito, R. A. Hill, C. D. Klaassen, D. C. Liebler, J. G. Marks, Jr., R. C. Shank, T. J. Slaga, P. W. Snyder, M. Fiume and B. Heldreth (2023). "Safety Assessment of Polyfluorinated Polymers as Used in Cosmetics." *Int J Toxicol* **42**(3_suppl): 144S-161S.

KEMI (2021). PFASs in Cosmetics. PM9/21.

Kim, H., C. H. Tator and M. S. Shoichet (2011). "Chitosan implants in the rat spinal cord: biocompatibility and biodegradation." *J Biomed Mater Res A* **97**(4): 395-404.

Kim, H. R., J. H. Kim, E. J. Choi, Y. K. Lee, J. H. Kie, M. H. Jang and J. Y. Seoh (2014). "Hyperoxygenation Attenuated a Murine Model of Atopic Dermatitis through Raising Skin Level of ROS." *Plos One* **9**(10).

Kossovsky, N., D. Millett, S. Juma, N. Little, P. C. Briggs, S. Raz and E. Berg (1991). "In vivo characterization of the inflammatory properties of poly(tetrafluoroethylene) particulates." *J Biomed Mater Res* **25**(10): 1287-1301.

Latson, G. W. (2019). "Perftoran (Vidaphor)-Introduction to Western Medicine." *Shock* **52**: 65-69.

Lee, N., K. Baek, S. Park, I. Hwang, I. Chung, W. Choi, H. Jung, M. Lee and S. Yang (2018). "Pneumoconiosis in a polytetrafluoroethylene (PTFE) spray worker: a case report with an occupational hygiene study." *Ann Occup Environ Med* **30**: 37.

Lee, S., K. K. Kang, S. E. Sung, J. H. Choi, M. Sung, K. Y. Seong, J. Lee, S. Kang, S. Y. Yang, S. Lee, K. R. Lee, M. S. Seo and K. Kim (2022). "In Vivo Toxicity and Pharmacokinetics of Polytetrafluoroethylene Microplastics in ICR Mice." *Polymers (Basel)* **14**(11).

Li, D. S., Y. Fan, M. M. Liu, S. L. Huang and S. S. Wang (2023). "The effect of using albumin-perfluorohexane/cisplatin-magnetite nanoparticles produced by hydrothermal method against gastric cancer cells through combination therapy." *Arabian Journal of Chemistry* **16**(7).

Li, S. M., K. P. Pang, S. Y. Zhu, K. Pate and J. Yin (2022). "Perfluorodecalin-based oxygenated emulsion as a topical treatment for chemical burn to the eye." *Nature Communications* **13**(1).

Loretz, L., A. M. Api, L. Barraj, J. Burdick, A. Davis de, W. Dressler, E. Gilberti, G. Jarrett, S. Mann, Y. H. Laurie Pan, T. Re, K. Renskers, C. Scrafford and S. Vater (2006). "Exposure data for personal care products: hairspray, spray perfume, liquid foundation, shampoo, body wash, and solid antiperspirant." Food Chem Toxicol **44**(12): 2008-2018.

Lowe, K. C. and P. K. Bentley (1992). "Retention of Perfluorochemicals in Rat Liver and Spleen." Biomaterials, Artificial Cells and Immobilization Biotechnology **20**(2-4): 1029-1031.

Maghsoudinia, F., H. Akbari-Zadeh, F. Aminolroayaie, F. F. Birgani, A. Shanei and R. K. Samani (2022). "Ultrasound responsive Gd-DOTA/doxorubicin-loaded nanodroplet as a theranostic agent for magnetic resonance image-guided controlled release drug delivery of melanoma cancer." European Journal of Pharmaceutical Sciences **174**.

Maghsoudinia, F., M. B. Tavakoli, R. K. Samani, S. H. Hejazi, T. Sobhani, F. Mehradnia and M. A. Mehrgardi (2021). "Folic acid-functionalized gadolinium-loaded phase transition nanodroplets for dual-modal ultrasound/magnetic resonance imaging of hepatocellular carcinoma." Talanta **228**: 122245.

Malinverno, G., G. Pantini and J. Bootman (1996). "Safety evaluation of perfluoropolyethers, liquid polymers used in barrier creams and other skin-care products." Food Chem Toxicol **34**(7): 639-650.

Matsumoto, S. and Y. Kuroda (2002). "Perfluorocarbon for organ preservation before transplantation." Transplantation **74**(12): 1804-1809.

Meller, D., A. J. Augustin, M. Spitznas, J. Lutz and K. Meller (1998). "Effects of different perfluorochemicals on dorsal root ganglion cells in vitro." Graefes Archive for Clinical and Experimental Ophthalmology **236**(3): 182-187.

Menard, S. and G. D. Porta (1976). "Incidence, growth and antigenicity of fibrosarcomas induced by Teflon disc in mice." Tumori **62**(5): 565-573.

Mitsuno, T., H. Ohyanagi and K. Yokoyama (1984). "Development of a Perfluorochemical Emulsion as a Blood Gas Carrier." Artificial Organs **8**(1): 25-33.

Miyakita, H. and P. Puri (1994). "Particles found in lung and brain following subureteral injection of polytetrafluoroethylene paste are not teflon particles." J Urol **152**(2 Pt 2): 636-640.

Moura, J. M., J. F. Ferreira, L. Marques, L. Holgado, C. F. Graeff and A. Kinoshita (2014). "Comparison of the performance of natural latex membranes prepared with different procedures and PTFE membrane in guided bone regeneration (GBR) in rabbits." J Mater Sci Mater Med **25**(9): 2111-2120.

Moustafa, F., A. Suggs, S. S. Hamill and P. M. Friedman (2020). "Successful Treatment of Cosmetic Eyebrow Tattoos in Fitzpatrick III-IV With Picosecond (1,064, 532-nm) Neodymium-Doped Yttrium Aluminum Garnet Laser With a Perfluorodecalin-Infused Patch: A Pilot Study." Lasers in Surgery and Medicine **52**(7): 586-589.

National Toxicology Program (1997). "NTP Toxicology and Carcinogenesis Studies of Tetrafluoroethylene (CAS No. 116-14-3) in F344 Rats and B6C3F1 Mice (Inhalation Studies)." Natl Toxicol Program Tech Rep Ser **450**: 1-321.

Naughton, G. K., L. I. Jiang, E. T. Makino, R. Chung, A. Nguyen, T. Cheng, K. Kadoya and R. C. Mehta (2023). "Targeting Multiple Hallmarks of Skin Aging: Preclinical and Clinical Efficacy of a Novel Growth Factor-Based Skin Care Serum." Dermatol Ther (Heidelb) **13**(1): 169-186.

Neuwald, I. J., D. Hubner, H. L. Wiegand, V. Valkov, U. Borchers, K. Nodler, M. Scheurer, S. E. Hale, H. P. H. Arp and D. Zahn (2022). "Ultra-Short-Chain PFASs in the Sources of German Drinking Water: Prevalent, Overlooked, Difficult to Remove, and Unregulated." *Environ Sci Technol* **56**(10): 6380-6390.

NICNAS (2006). HFE-7100 : existing chemical secondary notification assessment NA/482S. Available at <https://www.industrialchemicals.gov.au/sites/default/files/HFE%207100.pdf> (Accessed 12/30/2024). N. I. C. N. a. A. S. (NICNAS) and A. D. o. H. a. Ageing, Canberra : NICNAS: 50.

NICNAS. (2019, 08/03/2019). "National Industrial Chemicals Notification and Assessment Scheme. IMAP assessment. 1-Propene, 1,1,2,3,3,3-hexafluoro-, oxidized, polymerized: Human health tier I assessment." Retrieved January 4, 2025, from <https://services.industrialchemicals.gov.au/assessment-detail/?id=2343443e-f36b-1410-8e4e-00f1fcf8411a>.

NICNAS (2020). Indirect precursors of short chain perfluorocarboxylic acids (PFCAs): Human health tier II assessment. IMAP Group Assessment Report. Available at https://www.industrialchemicals.gov.au/sites/default/files/Indirect%20precursors%20of%20short%20chain%20perfluorocarboxylic%20acids%20%28PFCAs%29_Human%20health%20tier%20II%20assessment.pdf (Accessed 12/30/2024). N. I. C. N. a. A. S. (Australia).

Noe, H. N., R. S. Williams, J. Causey and D. P. Smith (1994). "Long-term effects of polytetrafluoroethylene injected into the rat bladder submucosa." *Urology* **43**(6): 852-855; discussion 855-856.

NRC (2007). *National Research Council. Acute Exposure Guideline Levels for Selected Airborne Chemicals: Volume 5.* Washington, DC: The National Academies Press. <https://doi.org/10.17226/11774>.

NSTC (2023). Per-and Polyfluoroalkyl Substances (PFAS) Report: A Report by the Joint Subcommittee on Environment, Innovation, and Public Health, Per-and Polyfluoroalkyl Substances Strategy Team of the National Science and Technology Council.

Oberdorster, G. (2000). "Toxicology of Ultrafine Particles: In vivo Studies." *Philosophical Transactions: Mathematical, Physical and Engineering Sciences* **358**(1775): 2719-2740.

OECD (2021). Reconciling Terminology of the Universe of Per- and Polyfluoroalkyl Substances: Recommendations and Practical Guidance. *OECD Series on Risk Management. No. 61.* OECD Publishing, Paris.

OECD (2024). Organisation for Economic Co-operation and Development. PFASs and alternatives in cosmetics: report on commercial availability and current uses. Series on Risk Management No. 81. [https://one.oecd.org/document/ENV/CBC/MONO\(2024\)4/en/pdf](https://one.oecd.org/document/ENV/CBC/MONO(2024)4/en/pdf).

OECD, I. (2018). "Toward a new comprehensive global database of per-and polyfluoroalkyl substances (PFASs): summary report on updating the OECD 2007 list of per-and polyfluoroalkyl substances (PFASs)." *Organisation for Economic Cooperation and Development (OECD)*.

Ohyanagi, H. and Y. Saitoh (1986). "Development and Clinical Application of Perfluorochemical Artificial Blood." *The International Journal of Artificial Organs* **9**(5): 363-368.

Okawa, M. T. and P. L. Polakoff (1973). Health Hazard Evaluation/Toxicity Determination. Health Hazard Evaluation Report 72-29-28. .

Okawa, M. T. and P. L. Polakoff (1974). "Occupational health case reports--No. 7. Teflon." *J Occup Med* **16**(5): 350-355.

Oppenheimer, B. S., E. T. Oppenheimer, I. Danishefsky, A. P. Stout and F. R. Eirich (1955). "Further studies of polymers as carcinogenic agents in animals." *Cancer Res* **15**(5): 333-340.

Oppenheimer, B. S., E. T. Oppenheimer, A. P. Stout and I. Danishefsky (1953). "Malignant tumors resulting from embedding plastics in rodents." *Science* **118**(3063): 305-306.

Orzalesi, N., L. Migliavacca, F. Bottoni and S. Miglior (1998). "Experimental short-term tolerance to perfluorodecalin in the rabbit eye: a histopathological study." *Curr Eye Res* **17**(8): 828-835.

Pantini, G., R. Forestieri, F. Brunetta and P. L. Bencini (1990). "Preliminary Communication: Treatment of irritant contact dermatitis in workmen with perfluoropolymethylisopropyl ether (Fomblin HC)." *Int J Cosmet Sci* **12**(6): 273-279.

Perkins, M. W., B. Wong, A. Rodriguez, J. Devorak and A. M. Sciuto (2015). "Measurement of various respiratory dynamics parameters following acute inhalational exposure to soman vapor in conscious rats." *Inhal Toxicol* **27**(9): 432-439.

Perkins, M. W., B. Wong, A. Rodriguez, J. L. Devorak, D. A. Alves, G. Murphy and A. M. Sciuto (2013). "Inhalation toxicity of soman vapor in non-anesthetized rats: a preliminary assessment of inhaled bronchodilator or steroid therapy." *Chem Biol Interact* **206**(3): 452-461.

Philipson, K., R. Falk, M. Svartengren, N. Jarvis, M. Bailey, R. Bergmann, W. Hofmann and P. Camner (2000). "Does lung retention of inhaled particles depend on their geometric diameter?" *Exp Lung Res* **26**(6): 437-455.

Pizzorno, J. (2023). "Fluorocarbons (PFAS)-The Forever Chemicals." *Integr Med (Encinitas)* **22**(6): 6-10.

Prata, J. C. (2023). "Microplastics and human health: Integrating pharmacokinetics." *Critical Reviews in Environmental Science and Technology* **53**(16): 1489-1511.

Radulovic, L. L. and Z. W. Wojcinski (2024). PTFE (polytetrafluoroethylene; Teflon®). *Encyclopedia of Toxicology (Fourth Edition)*. P. Wexler. Oxford, Academic Press: 1001-1006.

Ravis, W. R., J. F. Hoke and D. L. Parsons (1991). "Perfluorochemical Erythrocyte Substitutes: Disposition and Effects on Drug Distribution and Elimination." *Drug Metabolism Reviews* **23**(3-4): 375-411.

Reddy, K. K., J. A. Brauer, R. Anolik, L. Bernstein, L. Brightman, E. Hale, J. Karen, E. Weiss and R. G. Geronemus (2013). "Topical perfluorodecalin resolves immediate whitening reactions and allows rapid effective multiple pass treatment of tattoos." *Lasers Surg Med* **45**(2): 76-80.

Riess, J. G. (2002). "Blood substitutes and other potential biomedical applications of fluorinated colloids." *Journal of Fluorine Chemistry* **114**(2): 119-126.

RISE (2022). POPFREE Final Report Promotion of PFAS-free alternatives, Research Institutes of Sweden.

Rojas-Villabona, A., L. Magnaye, A. Jenkins and S. Surash (2021). "Two cases of asymptomatic Teflon granulomas following microvascular decompression mimicking cerebellopontine angle tumours: lessons learnt in the neuro-oncology multidisciplinary team." *Ann R Coll Surg Engl* **103**(10): e324-e326.

Rothe, H., R. Fautz, E. Gerber, L. Neumann, K. Rettinger, W. Schuh and C. Gronewold (2011). "Special aspects of cosmetic spray safety evaluations: principles on inhalation risk assessment." *Toxicol Lett* **205**(2): 97-104.

Rusch, G. M., A. Tveit, H. Muijser, M. M. Tegelenbosch-Schouten and G. M. Hoffman (2013). "The acute, genetic, developmental and inhalation toxicology of trans-1,3,3,3-tetrafluoropropene (HFO-1234ze)." *Drug Chem Toxicol* **36**(2): 170-180.

Russell, F. E., M. H. Simmers, A. E. Hirst and R. H. Pudenz (1959). "Tumors associated with embedded polymers." J Natl Cancer Inst **23**: 305-315.

Sajid, M. and M. Ilyas (2017). "PTFE-coated non-stick cookware and toxicity concerns: a perspective." Environ Sci Pollut Res Int **24**(30): 23436-23440.

SCCS (2011). Opinion of the Scientific Committee on Consumer Safety on HC Yellow n° 13 (B102), Scientific Committee on Consumer Safety.

SCCS (2023). SCCS Notes of Guidance for the Testing of Cosmetic Ingredients and their Safety Evaluation 12th revision, adopted on 15 May 2023, corrigendum 1 on 26 October 2023, corrigendum 2 on 21 December 2023, SCCS/1647/22, Scientific Committee on Consumer Safety.

Schagen, S. K. (2017). "Topical Peptide Treatments with Effective Anti-Aging Results." Cosmetics **4**(2): 16.

Schuster, P., R. Bertermann, G. M. Rusch and W. Dekant (2009). "Biotransformation of trans-1,1,1,3-tetrafluoropropene (HFO-1234ze)." Toxicol Appl Pharmacol **239**(3): 215-223.

Shaffer, T., M. Wolfson, J. Greenspan, R. Hoffman, S. Davis and L. Clark (1996). "Liquid ventilation in premature lambs: uptake, biodistribution and elimination of perfluorodecalin liquid." Reproduction, Fertility and Development **8**(3): 409-416.

Shariati Pour, S. R., S. Oddis, M. Barbalinardo, P. Ravarino, M. Cavallini, J. Fiori, D. Giuri and C. Tomasini (2023). "Delivery of Active Peptides by Self-Healing, Biocompatible and Supramolecular Hydrogels." Molecules **28**(6).

Shrewsbury, R. P., S. R. Oliver and L. G. White (1989). "The Effect of Moderately Severe Hemodilution with Fluosol-DA on Cytochrome P-450 Mediated Antipyrine Metabolism." Biomaterials, Artificial Cells and Artificial Organs **17**(4): 393-402.

Shrewsbury, R. P., S. G. White, G. M. Pollack and W. A. Wargin (1986). "Antipyrine kinetics following partial blood exchange with Fluosol-DA in the rat." Journal of Pharmacy and Pharmacology **38**(12): 883-887.

Simmers, M. H., W. F. Agnew and R. H. Pudenz (1963). "Effects of Plastic Polymers within the Rat's Peritoneal Cavity." Bol Inst Estud Med Biol Univ Nac Auton Mex **21**: 1-13.

Sklifas, A., V. Obraztsov, D. Shekhtman, O. Gudkova, N. Kukushkin and K. Makarov (1991). "Acute toxicity of perfluorodecalin emulsion for rabbits." Journal of Fluorine Chemistry **54**(1): 374.

Stahlhofen, W., J. Gebhart, J. Heyder, K. Philipson and P. Camner (1981). "Intercomparison of regional deposition of aerosol particles in the human respiratory tract and their long-term elimination." Exp Lung Res **2**(2): 131-139.

Stedeford, T., Q. J. Zhao, M. L. Dourson, M. Banasik and C. H. Hsu (2007). "The application of non-default uncertainty factors in the U.S. EPA's Integrated Risk Information System (IRIS). Part I: UF(L), UF(S), and "other uncertainty factors"." J Environ Sci Health C Environ Carcinog Ecotoxicol Rev **25**(3): 245-279.

Suh, G. Y., M. P. Chung, S. J. Park, Y. Koh, K. W. Kang, H. Kim, J. Han, C. H. Rhee and O. J. Kwon (2000). "Partial liquid ventilation shows dose-dependent increase in oxygenation with PEEP and decreases lung injury associated with mechanical ventilation." J Crit Care **15**(3): 103-112.

Surnmerfield, A., F. Meurens and M. E. Ricklin (2015). "The immunology of the porcine skin and its value as a model for human skin." Molecular Immunology **66**(1): 14-21.

Svartengren, K., M. Anderson, M. Svartengren, K. Philipson and P. Camner (1996). "Oropharyngeal deposition of 3.5 microns particles inhaled through an elongated mouthpiece." *Eur Respir J* **9**(7): 1556-1559.

Svartengren, K., P. Lindestad, M. Svartengren, K. Philipson, G. Bylin and P. Camner (1995). "Added external resistance reduces oropharyngeal deposition and increases lung deposition of aerosol particles in asthmatics." *Am J Respir Crit Care Med* **152**(1): 32-37.

Svartengren, K., P. A. Lindestad, M. Svartengren, G. Bylin, K. Philipson and P. Camner (1994). "Deposition of inhaled particles in the mouth and throat of asthmatic subjects." *Eur Respir J* **7**(8): 1467-1473.

Svartengren, K., K. Philipson, M. Svartengren, M. Anderson and P. Camner (1996). "Tracheobronchial deposition and clearance in small airways in asthmatic subjects." *Eur Respir J* **9**(6): 1123-1129.

Svartengren, K., M. Svartengren, K. Philipson, C. Barck, G. Bylin and P. Camner (1999). "Clearance in small ciliated airways in allergic asthmatics after bronchial allergen provocation." *Respiration* **66**(2): 112-118.

Svartengren, M., E. Hassler, K. Philipson and P. Camner (1986). "Spirometric data and penetration of particles to the alveoli." *Br J Ind Med* **43**(3): 188-191.

Svartengren, M., L. Linnman, K. Philipson and P. Camner (1987). "Regional deposition in human lung of 2.5 microM particles." *Exp Lung Res* **12**(4): 265-279.

Svartengren, M., K. Philipson and P. Camner (1989). "Individual differences in regional deposition of 6-micron particles in humans with induced bronchoconstriction." *Exp Lung Res* **15**(1): 139-149.

Svartengren, M., K. Philipson, L. Linnman and P. Camner (1986). "Regional Deposition of Particles in Human Lung after Induced Bronchoconstriction." *Experimental Lung Research* **10**(3): 223-233.

Svartengren, M., K. Sommerer, G. Scheuch, M. Kohlhaeufl, J. Heyder, R. Falk, R. Bergmann, W. Hofmann, M. Bailey, K. Philipson and P. Camner (2001). "Comparison of clearance of particles inhaled with bolus and extremely slow inhalation techniques." *Exp Lung Res* **27**(4): 367-386.

Svartengren, M., K. Svartengren, E. Europe, R. Falk, W. Hofmann, R. Sturm, K. Philipson and P. Camner (2004). "Long-term clearance from small airways in patients with chronic bronchitis: experimental and theoretical data." *Exp Lung Res* **30**(5): 333-353.

Taguchi, T., S. Maeba and T. Sueda (2014). "Prevention of pacemaker-associated contact dermatitis by polytetrafluoroethylene sheet and conduit coating of the pacemaker system." *J Artif Organs* **17**(3): 285-287.

Tamenishi, A., A. Usui, H. Oshima and Y. Ueda (2008). "Entirely polytetrafluoroethylene coating for pacemaker system contact dermatitis." *Interact Cardiovasc Thorac Surg* **7**(2): 275-277.

Tan, C. H., S. Rasool and G. A. Johnston (2014). "Contact dermatitis: allergic and irritant." *Clin Dermatol* **32**(1): 116-124.

Teicher, B. A. and C. M. Rose (1984). "Perfluorochemical Emulsions Can Increase Tumor Radiosensitivity." *Science* **223**(4639): 934-936.

Tomatis, L. (1963). "Studies in Subcutaneous Carcinogenesis with Implants of Glass and Teflon in Mice." *Acta Unio Int Contra Cancrum* **19**: 607-611.

Tomatis, L. (1966). "Subcutaneous carcinogenesis by implants and by 7,12-dimethylbenz[a]anthracene." *Tumori* **52**(1): 1-16.

Tomatis, L. and L. Parmi (1971). "Effect of perinatal administration of 7,12-dimethylbenz(a)anthracene on the later response to a subcutaneous teflon implant." Tumori **57**(1): 55-62.

Tomatis, L. and P. Shubik (1963). "Influence of urethane on subcutaneous carcinogenesis by "Teflon" implants." Nature **198**: 600-601.

Trumpy, I. G., B. Roald and T. Lyberg (1997). "Soft tissue response to polytetrafluoroethylene and silicone rubber in humans: morphological and immunohistochemical observations." Scand J Plast Reconstr Surg Hand Surg **31**(4): 295-301.

Vangipuram, R., S. S. Hamill and P. M. Friedman (2018). "Accelerated tattoo removal with acoustic shock wave therapy in conjunction with a picosecond laser." Lasers in Surgery and Medicine **50**(9): 890-892.

Vangipuram, R., S. S. Hamill and P. M. Friedman (2019). "Perfluorodecalin-infused patch in picosecond and Q-switched laser-assisted tattoo removal: Safety in Fitzpatrick IV-VI skin types." Lasers Surg Med **51**(1): 23-26.

Vodiskar, J., H. Schnoring, J. S. Sachweh, E. Muhler and J. F. Vazquez-Jimenez (2014). "Polytetrafluoroethylene-coated pacemaker leads as surgical management of contact allergy to silicone." Ann Thorac Surg **97**(1): 328-329.

Wahlström, M., E. Pohjalainen, E. Yli-Rantala, D. Behringer, D. Herzke, S. M. Mudge, M. Beekman, A. de Blaeij, J. Devilee, S. Gabbert, M. van Kuppevelt, M. Zare Jeddi, P. Gabrielsen and X. Trier (2021). Fluorinated polymers in a low carbon, circular and toxic-free economy. Eionet Report - ETC/WMGE 2021/9, European Environment Agency

Wang, Z., A. M. Buser, I. T. Cousins, S. Demattio, W. Drost, O. Johansson, K. Ohno, G. Patlewicz, A. M. Richard, G. W. Walker, G. S. White and E. Leinala (2021). "A New OECD Definition for Per- and Polyfluoroalkyl Substances." Environ Sci Technol **55**(23): 15575-15578.

Williams, A. J., L. G. T. Gaines, C. M. Grulke, C. N. Lowe, G. F. B. Sinclair, V. Samano, I. Thillainadarajah, B. Meyer, G. Patlewicz and A. M. Richard (2022). "Assembly and Curation of Lists of Per- and Polyfluoroalkyl Substances (PFAS) to Support Environmental Science Research." Front Environ Sci **10**: 1-13.

Xiao, Z., Y. You, Y. Liu, L. He, D. Zhang, Q. Cheng, D. Wang, T. Chen, C. Shi and L. Luo (2021). "NIR-Triggered Blasting Nanovesicles for Targeted Multimodal Image-Guided Synergistic Cancer Photothermal and Chemotherapy." ACS Appl Mater Interfaces **13**(30): 35376-35388.

Yang, P., D. Li, S. Jin, J. Ding, J. Guo, W. Shi and C. Wang (2014). "Stimuli-responsive biodegradable poly(methacrylic acid) based nanocapsules for ultrasound traced and triggered drug delivery system." Biomaterials **35**(6): 2079-2088.

Yang, Z., H. Chen, P. Yang, X. Shen, Y. Hu, Y. Cheng, H. Yao and Z. Zhang (2022). "Nano-oxygenated hydrogels for locally and permeably hypoxia relieving to heal chronic wounds." Biomaterials **282**: 121401.

Yokoyama, K., K. Yamanouchi, H. Ohyanagi and T. Mitsuno (1978). "Fate of Perfluorochemicals in Animals after Intravenous Injection or Hemodilution with Their Emulsions." CHEMICAL & PHARMACEUTICAL BULLETIN **26**(3): 956-966.

Yu, Q., K. Liu, L. Su, X. Xia and X. Xu (2014). "Perfluorocarbon liquid: its application in vitreoretinal surgery and related ocular inflammation." Biomed Res Int **2014**: 250323.

Zhao, M., H. Liu and J. S. Jahr (2024). "Perfluorocarbon-based oxygen carriers: What is new in 2024?" Journal of Anesthesia and Translational Medicine **3**(1): 10-13.

Zhitnukhin, Y. L., I. V. Litvinenko, G. N. Bisaga and M. M. Odinak (1997). "Perfluorodecalin-induced changes in clinical and immunological parameters of experimental allergic encephalomyelitis." Bulletin of Experimental Biology and Medicine **123**(3): 273-275.

Zhu, Y., C. G. Wilson, D. Meadows, O. Olejnik, M. Frier, N. Washington and R. Musson (1999). "Dry powder dosing in liquid vehicles: ocular tolerance and scintigraphic evaluation of a perfluorocarbon suspension." Int J Pharm **191**(2): 79-85.

Zhurkovich, I. K., V. A. Utsal', E. V. Ostrovidova, V. A. Barinov, N. V. Lugovkina, E. Y. Bonitenko, N. A. Belyakova and V. V. Barinov (2022). "Determination of Perfluororganic Compounds in Whole Blood and Tissues of Laboratory Animals by Gas-Liquid Chromatography–Mass Spectrometry." Journal of Analytical Chemistry **77**(9): 1197-1202.

6 Appendices

Appendix 1. Safety Assessments for Individual PFAS

1. PTFE (Polytetrafluoroethylene)

Introduction

Polytetrafluoroethylene (CAS No. 9002-84-0; PubChem SID: 223914423), with an INCI name of PTFE, is a linear fluoropolymer. It is formed by the polymerization of tetrafluoroethylene (TFE). **Table A.1.1** describes the physical and chemical properties of PTFE. PTFE appears as a white translucent to opaque solid in its typical form and has a molecular weight of 400,000 to 10,000,000 Daltons (Da). PTFE is highly thermally stable. Its melting point ranges from 320-330 °C, decomposing only at high temperatures (315-375 °C). It is highly hydrophobic (or water repellent) and is practically insoluble in most known solvents or chemicals (Johnson, Bergfeld et al. 2023).

PTFE is commercially known as Teflon for its use as a non-stick coating for kitchen pots and pans due to its extraordinary performance in terms of heat, chemical and corrosion resistance. It is also widely used in numerous other commodities, including industrial applications, medical devices and consumer products, including cosmetic products, owing to its exceptional chemical resistance, low-friction, oil and water repellence, thermal stability, durability, and biocompatibility (Radulovic and Wojcinski 2024). PTFE has distinct properties from its monomer, tetrafluoroethylene, which is a gas at room temperature and highly reactive and flammable.

Table A.1.1. Physical and Chemical Properties of PTFE

Element	Description
Name	Polytetrafluoroethylene
INCI name	PTFE
Synonyms	Politef; Teflon; Tetrafluoroethene Homopolymer; Fluoroflex; Fluoroplast; Ftoroplast; Halon; Polyfene; Teflon; etc.
CAS#	9002-84-0
Structure	$[- \begin{array}{c} \text{F} & \text{F} \\ & \\ \text{C} & - \text{C} - \\ & \\ \text{F} & \text{F} \end{array}]_n$
Molecular formula	$(\text{C}_2\text{F}_4)_n$
Molecular weight	400,000 to 10,000,000 Da
Particle size	100-500 μm (powders)
Physical form	White translucent to opaque solid. Three major forms of PTFE are granular, fine powder and aqueous dispersions (Ebnesajjad 2020)
Density	2.25 g/cm^3 (2.1 – 2.3 g/cm^3) ⁴⁸

⁴⁸ [PTFE \(Polytetrafluoroethylene\) - Uses, Structure & Material Properties \(specialchem.com\)](https://www.specialchem.com/ptfe-polytetrafluoroethylene-uses-structure-material-properties) (accessed on July 23, 2024).

Solubility	Virtually insoluble in all common solvents including water
Partition coefficient (Log K _{ow})	NA
Vapor pressure	NA
Melting point	320-330 °C
Boiling point	NA
Topological polar surface area	NA
UV light absorption spectrum	NA
Decomposes	315 to 375 °C; up to 500 °C to a variety of oxidized product. Burning PTFE releases toxic fumes that may contain a variety of toxic chemicals that cause PTFE fume fever when inhaled by humans (Correia and Horowitz 2024)
Additional properties	Low friction coefficient (static 0.08 and dynamic 0.01)

NA: Not available. Sources: CIR (Johnson, Bergfeld et al. 2023); specified otherwise.

Use in Cosmetic Products

According to INCI, PTFE is used as a bulking agent and slip modifier in a variety of cosmetic products, including but not limited to eye shadows, blushers and rouges, lipsticks, face powders, eye lotions, eyeliners, makeup preparations (not eye), moisturizers, shaving preparations, body and hand preparations, eye makeup preparations, eyebrow pencils, face and neck preparations, foundations, makeup bases, mascara, night skin care preparations, and shaving cream (aerosol, brushless and lather).⁴⁹

Based on mandatory cosmetic product listing data submitted to the FDA, PTFE is currently used as an ingredient in 490 cosmetic products (**Table A.1.2**). The majority of these products (69%, n=338) are for eye makeup, with eye shadows being the most common (>65%). Please see **Table S2** for a full list of cosmetic product categories. Other eye makeup products include eyelash and eyebrow adhesives, glues, and sealants, mascaras, eyebrow pencils, eyeliners, and eye lotions. Makeup preparations (not eye) contribute to over 23% of products with blushers and rouges being the most prevalent, followed by lipsticks and lip glosses, face powders and foundations. Hair care preparations account for nearly 4% of these products with shampoo and rinses being the most common. Skin care products account for less than 3% of PTFE-containing products, primarily consisting of leave-on face and neck care products. The remaining 1% fall under the category of other preparations (**Table A.1.2**).

Table A.1.2. Frequency of Use of PTFE in the Mandatory Cosmetic Product Listing Data Submitted to the FDA (as of August 30, 2024)

⁴⁹ INCI ingredients. See <https://incipedia.personalcarecouncil.org/>.

Product Category	Number of Products	Percentage of Total (%) ⁵⁰
Eye makeup		
Eye shadows	322	65.7
Eyelash and eyebrow adhesives, glues, and sealants	6	1.2
Mascaras	5	1.0
Eyebrow pencils	3	0.6
Eyeliners	1	0.2
Eye lotions	1	0.2
Eye makeup total	338	69.0
Hair preparations		
Shampoo	7	1.4
Rinses	5	1.0
Hair conditioners	1	0.2
Other hair preparations, leave-on	5	1.0
Hair preparations total	18	3.7
Makeup preparations (not-eye) (other than makeup preparations for children)		
Blushers and rouges	48	9.8
Face powders	29	5.9
Foundations, traditional applications	8	1.6
Lipsticks and lip glosses	30	6.1
Makeup preparations (not-eye) total	115	23.5
Skin care		
Face and neck, leave-on	10	2.0
Moisturizing	2	0.4
Night	1	0.2
Other skin care preparation, leave-on	1	0.2
Skin care total	14	2.9
Other preparations	5	1.0

⁵⁰ The total numbers for each product may vary due to rounding.

Product Category	Number of Products	Percentage of Total (%) ⁵⁰
Grand total	490	100

Historical data available to the FDA suggests a decreasing trend in the use of PTFE in cosmetic products in recent years. According to the VCRP, PTFE was reported to be used in 249 cosmetic products in the U.S. in 2019, decreasing to 102 in 2021, and 79 in March 2023, prior to the sunsetting of the VCRP (**Table S4**). Information obtained from Mintel's GNPD corroborated this finding. In Mintel's GNPD, there were 222 PTFE-containing cosmetic products that entered the U.S. market over a 5-year period (August 2019 to July 2024), compared to only 4 between August 2023 and July 2024 (**Table S4**). The use trend of PTFE cannot be currently determined using the mandatory cosmetic product listing data submitted to the FDA due to the lack of historical data.

Under the FD&C Act, the concentration of ingredients used in cosmetic products is not required to be submitted to the FDA as part of the product listing data. Therefore, the use concentration for PTFE is not available to the FDA. However, according to the CIR Assessment (Johnson, Bergfeld et al. 2023), PTFE is used at concentrations up to 13% in all leave-on products (mascara), up to 12% in leave-on dermal products (eye shadow), and up to 2.4% in rinse-off products (hair bleaches). In addition, PTFE was reported to be used at approximately 0.005% in a retinol moisturizer and eye cream, and 0.01% in a regenerating cream from one manufacturer, according to a recent FDA survey.

Based on the product types that contain PTFE as an ingredient, ocular exposure to PTFE may occur from its use in products used near the eye, e.g., eye shadow, mascara, eyelash and eyebrow, and other eye makeup preparations. Similarly, mucous membrane exposure and incidental ingestion may occur from PTFE use in lipsticks and lip glosses. In addition, incidental inhalation exposure to PTFE is also possible from its use in face powder formulation. As such, effects relevant to ocular, incidental ingestion, and inhalation exposure will be assessed. Exposure assessment will be performed based on the amount of use of the products containing PTFE, the frequency of use,⁵¹ and the concentration use of PTFE as mentioned above.

Existing Safety Assessments by Government Agencies, Scientific Advisory Groups, and Peer-Reviewed Literature

To evaluate the current state of knowledge regarding the safety of PTFE in cosmetic products, we conducted a comprehensive review of existing assessments published by domestic and international government agencies and assessments done by scientific advisory groups such as SCCS, CIR, and IARC as outlined in **Table S5**. We identified several relevant evaluations, including those by CIR and IARC.

The CIR reviewed the safety of 12 polyfluorinated polymers, including PTFE, in cosmetic products in 2018 and published their review report in 2023 (Johnson, Bergfeld et al. 2023). They concluded that PTFE is safe in cosmetics in the present practices of use and concentration. IARC, which is a part of the

⁵¹ The product use amount and frequency of use information will be obtained from the SCCS Note of Guidance document: https://health.ec.europa.eu/document/download/32a999f7-d820-496a-b659-d8c296cc99c1_en?filename=scs_o_273_final.pdf (see also the citation SCCS 2023).

World Health Organization (WHO), evaluated the available data relating to carcinogenicity of PTFE in 1979 and determined that the evidence was insufficient to assess the carcinogenic risk from exposure to PTFE in humans (IARC 1979).

In addition to published literature, we also independently reviewed and summarized studies cited in both the CIR Assessment and IARC Monograph, if deemed appropriate, for inclusion in the following sections.

ADME/Toxicokinetics

A literature search in PubMed and Web of Science using the query outlined in **Table S6** identified 1,934 publications (searched on 4/22/2024). After title and abstract screening, we identified 31 articles with relevant information on PTFE ADME. Following full text reviews, we deemed 25 publications to be relevant to the ADME of PTFE. Among these 25 publications, two were pharmacokinetic/toxicokinetic studies of PTFE in lab animals, and the rest were studies using radioactive labeled PTFE particles for tests of lung functions and particle deposition.

In one study (Miyakita and Puri 1994), 0.5 mL PTFE paste was administered to mini pigs and dogs through subureteral, intravenous (IV), or intra-arterial injection to investigate the migration of PTFE particles to the lungs and brain. The potential presence of PTFE in lung or brain tissues was determined by histological examination, polarized light microscopy, scanning electron microscopy, and x-ray microanalysis. From this study, PTFE was found only in lung tissues following IV administration, indicating that venous blood returns to lungs carrying PTFE. The presence of PTFE in brain tissues was only seen in animals with PTFE paste injected into the carotid artery which supplies blood to the brain. No PTFE was identified in tissues from animals that underwent subureteral injection. While these administration routes, i.e., IV and intra-arterial injection, are irrelevant to the exposure of cosmetic ingredients, the results provide useful information for PTFE distribution after entering the bloodstream and suggest that the distribution of PTFE to lungs and brain were through the direct blood supply.

Another study reported the pharmacokinetics of PTFE particles in female and male ICR mice (Lee, Kang et al. 2022). Two different sizes of PTFE particles, approximately 5 μm and 10-50 μm , were used for a single dose oral administration in mice. Blood samples were collected at 15, 30, 60, and 120 minutes and analyzed for the presence of PTFE particles. PTFE was not detected in any of the blood samples using Raman spectroscopy analysis, suggesting that the oral absorption of PTFE particles is very low. It is well known that the absorption and distribution of microplastics highly depends on particle size. According to the method of manufacture as summarized in the CIR Assessment (Johnson, Bergfeld et al. 2023), the average particle size of PTFE is 5.58 μm after micronized with jet mill (Oberdorster 2000, Prata 2023). The particle size of PTFE used in this study is close in size to that used in cosmetic products, and therefore, results indicate that the absorption of PTFE particles is low through oral exposure from cosmetic products.

In addition to pharmacokinetic studies, radioactive-labeled PTFE particles have been used to identify the deposition, lung retention and clearance of inhaled particles in animal studies as well as clinical applications. The regional deposition was estimated by measuring the gamma counts after exposure to radioactive-labeled PTFE particles. From these studies, experimental conditions, such as particle sizes (Svartengren, Linnman et al. 1987, Camner, Anderson et al. 1997, Philipson, Falk et al. 2000), the flow rate for inhalation exposure (Falk, Philipson et al. 1999, Svartengren, Sommerer et al. 2001), and physiological parameters such as the forced expiratory volume (Svartengren, Hassler et al. 1986) were

determined to have impacts on the disposition, retention, and clearance of PTFE particles. In contrast, some particle materials such as PTFE versus iron oxide (Stahlhofen, Gebhart et al. 1981), and some exposure devices including the elongated mouthpiece (Svartengren, Anderson et al. 1996) did not have impacts on particle disposition and clearance. Furthermore, people with some diseases and health conditions, including asthma (Svartengren, Lindestad et al. 1994, Svartengren, Lindestad et al. 1995, Svartengren, Philipson et al. 1996, Svartengren, Svartengren et al. 1999), bronchitis (Ericsson, Svartengren et al. 1995, Svartengren, Svartengren et al. 2004) and bronchoconstriction (Svartengren, Philipson et al. 1986, Svartengren, Philipson et al. 1989), have slower clearance and longer retention of PTFE particles. These studies may help to better understand the distribution of PTFE particles in lungs through inhalation exposure.

In summary, available studies showed limited absorption of PTFE through different exposure routes such as subureteral, IV and intra-arterial injection. The animal study with oral administration indicated low absorption of PTFE through oral exposure. In addition, we located no inhalation or dermal exposure PK studies from the literature search.

Hazard Assessment

We conducted a literature search on the acute and repeated dose toxicity of PTFE using the queries outlined in **Table S6**. The search yielded a total of 1,121 publications. After an initial title and abstract screening, 29 were considered relevant. Twenty-five of the 29 articles were confirmed to be relevant following full reviews of the texts. We reviewed and summarized these studies in the following sections. We did not identify a REACH dossier for PTFE in the ECHA database (searched on 4/22/2024).

Acute and Repeated Dose Toxicity

Acute Toxicity

Dermal

We did not identify any published data regarding the acute toxicity of PTFE resulting from acute dermal exposure. However, according to an unpublished study cited in the CIR Assessment (Johnson, Bergfeld et al. 2023), PTFE powder (0.5 g) applied to abraded and intact skin of the trunk of 6 New Zealand White rabbits for 24 hours did not cause lethality of the animals or produce clinical signs or behavioral alteration during the course of the study.

Oral

The acute toxicity of PTFE microplastics was evaluated in ICR mice following OECD guideline 423⁵² (Lee, Kang et al. 2022). Six-week-old specific-pathogen-free ICR mice (3/group/sex) were treated with a single oral dose of two sizes of PTFE microplastics, approximately 5 µm (6.03 ± 2.10 µm) and 10 – 50 µm (31.65 ± 5.64 µm), prepared from PTFE raw materials (TF1641, Dyneon™). A total of four doses were given including control (corn oil), low-dose (500 mg/kg), mid-dose (1000 mg/kg), and high-dose (2000 mg/kg) of PTFE microplastics suspended in corn oil. After 2 weeks of observation following PTFE microplastics administration, no morbidity or death in mice was observed and no specific clinical symptoms were

⁵² OECD Test No. 423: Acute Oral toxicity. https://www.oecd-ilibrary.org/environment/test-no-423-acute-oral-toxicity-acute-toxic-class-method_9789264071001-en.

recorded. In addition, no exposure-associated body weight changes or macroscopic changes were noted upon necropsy. Therefore, the study authors determined that the LD₅₀ (median lethal dose) was 2000 mg/kg or greater.

In addition, according to the manufacturer's material SDS, the LD₅₀ of PTFE fine powder is >11,280 mg/kg in rats (Chemours 2017). No details on how this LD₅₀ was obtained are available.

Inhalation

No data.

In summary, acute toxicity studies of PTFE microplastics or fine powder have limited relevance to cosmetic products safety due to differing exposure routes (ingestion vs. skin contact), exposure duration (short vs. daily), and dosages (low vs. high). Nevertheless, these studies suggest low risk of acute toxicity from PTFE in cosmetic products, supported by the high LD₅₀ values observed in animals.

Repeated Dose Systemic Toxicity

Dermal

No data.

Oral

The subacute toxicity of PTFE microplastics was evaluated in ICR mice in a 4-week repeated oral dose toxicity study, conducted with reference to OECD guideline 408 as noted by the study authors⁵³ (Lee, Kang et al. 2022). It should be noted that OECD 408 is designed for 90-day studies, while this study was conducted for 28 days. Six-week-old specific-pathogen-free ICR mice (5/group/sex) were orally dosed with PTFE microplastics of approximately 5 µm (6.03 ± 2.10 µm) and 10 – 50 µm (31.65 ± 5.64 µm), respectively. Each animal received either corn oil (vehicle control), low-dose (500 mg/kg), mid-dose (1000 mg/kg), or high-dose (2000 mg/kg) of PTFE microplastics suspended in corn oil once daily for 4 weeks. Upon conclusion of the study, no significant differences were observed in clinical signs, body weight, organ weight, water and food consumptions, macroscopic examination at necropsy, or clinical and histopathological changes upon examination. A no observed adverse effect level (NOAEL) for PTFE microplastics in ICR mice could not be established as no effects were seen even at the highest dose (2000 mg/kg). The actual NOAEL is expected to be higher than 2000 mg/kg which in general indicates low toxicity concern. Using this hypothetical mouse NOAEL, the authors estimated the human NOAEL to be 160 mg/kg (or 9.6 g per day) or higher for an adult with a body weight of 60 kg.⁵⁴

In another subacute study, the potential for PTFE microplastics to cause immunotoxicity was evaluated in a subacute study on mice (Jo, Acharya et al. 2023). Six-week-old ICR mice, 4/group/sex, were treated via gastric intubation with two different sizes of PTFE microplastics (MPs) (6.0 ± 2.1 µm or 30.5 ± 10.5 µm) at 0 (corn oil vehicle control), 500, 1000, or 2000 mg/kg bw/day once daily for 4 weeks. Subacute oral

⁵³ Note: the author of the publication provided that the OECD Test No. 408 was followed: Repeated Dose 90-Day Oral Toxicity Study in Rodents. https://www.oecd-ilibrary.org/environment/test-no-408-repeated-dose-90-day-oral-toxicity-study-in-rodents_9789264070707-en.

⁵⁴ Human equivalent dose calculation can be found in Guidance for Industry Estimating the Maximum Safe Starting Dose in Initial Clinical Trials for Therapeutics in Adult Healthy Volunteers. <https://www.fda.gov/media/72309/download> (accessed 6/21/2024).

exposure to either sizes of the PTFE microplastics did not affect major thymic or splenic immune cell populations, including thymic CD4⁺, CD8⁺, CD4⁺/CD8⁺ T lymphocytes, and splenic helper T cells, cytotoxic T cells, and B cells. The ratio of interferon-gamma (IFN γ) to interleukin-4 (IL-4) in culture supernatants from polyclonally activated splenic mononuclear cells ex vivo (48 hour) was dose-dependently decreased in female mice that received small- and large-size PTFE microplastics. The serum IgG2a/IgG1 ratio was dose-dependently increased in female animals dosed with large-size PTFE MPs, and in male animals dosed with small-size PTFE microplastics. These observations indicate PTFE microplastics could disturb immune homeostasis leading to imbalance between type 1 and type 2 immune responses. The consequence of such an imbalance was not stated. An *in vitro* study appears to provide supporting evidence that PTFE may affect immune response (Ding, Sun et al. 2009). In this study, PTFE treatment of lipopolysaccharide (LPS, a potent activator of monocytes and macrophages) stimulated macrophages isolated from young male SD rats resulted in increased production of tumor necrosis factor-alpha (TNF- α) and IL-1 β compared with untreated control. In addition, PTFE treatment increased monocyte chemoattractant protein-1 (MCP-1), also known as C-C motif chemokine ligand 2 (CCL2) that regulates migration and infiltration of monocytes/macrophages, in human umbilical vein endothelial cells cultured in macrophage supernatant containing TNF- α and IL-1 β .

In a subchronic dietary study, male and female rats (strain and number per group were not specified) were fed a diet containing 25% of three types of PTFE resin for up to 90 days (Clayton 1967). No toxicologically significant effects were observed on growth rate, behavior or microscopic evidence of tissue damage, other than a slight shift in the distribution and number of white blood cells. In addition, an increase in the relative size of the liver (relative to body weight) was seen in one group of rats fed with unsintered PTFE resin, without any histological abnormality. This study determined that the increase in liver weight was due to the presence of a dispersing agent in the test materials (Haskell Laboratories 1968).

In non-rodent species, a feeding study conducted on gastropods *Littorina brevicula* (a type of mollusk) aimed to study the effects of different-sized microparticles of plastic PTFE (0.1-10 μ m) fed to mollusks for 7 days. The PTFE did not cause visible changes to their feeding behavior and activities (Chelomin, Slobodskova et al. 2023). While the experimental model is not directly relevant to the human body, the cellular-level findings from this study provided some mechanistic information for PTFE (discussed below under the “Genotoxicity” section).

Inhalation

Occupational exposure to PTFE has been reported to be linked with granulomatous lung disease due to inhalation of PTFE aerosols (Choi, Jung et al. 2014, Lee, Baek et al. 2018, Aoki, Saito et al. 2022).

In a spray inhalation study, rats (n=4) were exposed to 20% PTFE dispersion in CCl₂F-CClF₂ from a pressurized container. Exposure occurred 3 times/day for 9 days, with each session lasting 15 minutes in a sealed jar. A total of 26 exposures were administered. While rats exhibited symptoms of incoordination, labored breathing, and nose irritation during exposure, these effects were attributed to the propellants and dispersing agent (not specified), and they recovered immediately after exposure. No pathological changes linked to PTFE exposure were observed (Clayton 1967).

Of note, acute lung toxicity resulting from exposure to PTFE fumes has been documented. The conditions are commonly known as polymer fume fever or “Teflon flu” when PTFE is heated to higher temperatures causing it to release toxic fumes (Sajid and Ilyas 2017, Correia and Horowitz 2024). Almost all reports of

polymer fume fever were related to occupational exposure typically involving the heating of PTFE to high temperatures. Thus, it is extremely unlikely that this condition could occur from the typical use of PTFE-containing cosmetic products.

Other Routes of Exposure

Studies in animal models and clinical case reports associated with medical and surgical procedures involving PTFE injection or implantation have revealed that PTFE can incite persistent chronic inflammatory response in multiple organ systems, known as foreign-body granulomatous reaction, resulting in what is commonly referred to as a Teflon granuloma or “teflonoma.” While Teflon granulomas are a concern in medical applications involving the injection or implantation of PTFE, they are deemed not relevant to the typical cosmetic use of PTFE by consumers. The risk of developing granulomas from using PTFE-containing cosmetic products is extremely low due to the differences in exposure routes and application methods.

Clinical cases of Teflon granulomas have been reported following endolaryngeal injection of Teflon paste for treating dysphonia, subureteral PTFE injection for vesicoureteral reflux treatment in children, and microvascular decompression using Teflon implants (Benjamin, Robb et al. 1991, Aragona, D'Urso et al. 1997, Deep, Graffeo et al. 2017, Rojas-Villabona, Magnaye et al. 2021). Relevant available studies in animal models are briefly summarized below.

An animal study was performed to evaluate the long-term histopathologic effects of injected PTFE particulates, specifically Polytef Paste brand PTFE, which has been used in patients suffering from recurrent urinary incontinence (Kossovsky, Millett et al. 1991). Four animal groups, each consisting of two mongrel dogs, five New Zealand White rabbits and 10 BALB/c mice, were injected with PTFE (1:1 ratio of Polytef and glycerine) and followed for 1 week, 3 months, 6 months, and 1 year periods. The injection sites (and injection volumes) of the mice, rabbits, and dogs were dorsal skin (0.05 ml), subareolar area (0.25 ml), subareolar area (0.5 ml) and/or periurethral tissue (0.1 ml), respectively. In all three animal species, histologic examination suggested initial acute inflammation consisting of necrosis and primarily neutrophil infiltration after 1 week, and persistent chronic inflammation with macrophages, giant cells and lymphocytes through 3 months to 1 year. Plasma cells were also noted in rabbits. The purity and particle size of PTFE are not provided in this article.

A study using C57BL/6 mice compared the induction of neutrophils, monocytes and macrophages recruitment (characteristics of acute inflammation) by six types of biomaterials, including PTFE, used in prosthetic implants (Busuttil, Drumm et al. 2005). In this study, these biomaterials, in the form of circular disks with a diameter of 12.7 mm and a thickness of 0.127 mm (5/1000 of an inch), were surgically implanted into the peritoneum. A non-surgical control and a sham control (mice underwent surgery without disk implantation) were also included. Mice were euthanized at 18 hours after surgery, and the recruitment of inflammatory cells was monitored. PTFE induced a substantial and similar inflammatory response as polyethylene terephthalate, titanium, and aluminum. In contrast, stainless steel induced a significantly less inflammatory response, while copper incited an overwhelming and fatal response.

Genotoxicity

Genotoxicity comprises all the potential mechanisms by which the DNA and its sequence can be damaged or altered. It is considered an important factor in evaluating the carcinogenicity potential of a

substance and its corresponding mode of action. We conducted a PubMed and Web of Science literature search of the genotoxicity potential of PTFE using the query syntax outlined in **Table S6**. The search yielded a total of 63 publications. After an initial title and abstract screening, we identified two publications, including one research article and one review article, as relevant to the current review. Most of the excluded articles were not studies on PTFE.

In one study (Chelomin, Slobodskova et al. 2023), the authors investigated the formation of oxidative stress and genotoxicity from exposure to microparticles of polymethylmethacrylate (PMMA) and PTFE. DNA damage was detected in the PMMA feeding group but not in the PTFE feeding group. There was also no accumulation of lipid peroxidation product malondialdehyde (MDA) or protein peroxidation product protein carbonyls (PC) in the PTFE-feeding group, indicating a lack of reactive oxygen species (ROS) generation and oxidative stress. These findings suggest that PTFE is devoid of genotoxicity in this experimental system. Although the dietary exposure model in this study is different than that of human exposure from cosmetics, the cellular response of the digestive tract to PTFE particle exposure may provide information for future studies in other biological systems. It should be noted that there was no positive control in any of the experiments in this study to demonstrate its reliability.

In another study, Henry et al. reviewed three standardized genotoxicity studies (an Ames bacterial mutagenesis assay, a mouse lymphoma assay, and an *in vivo* micronucleus study) that were performed with extracts of PTFE device (Henry, Carlin et al. 2018). In these studies, PTFE in three physical forms including ePTFE patch, fiber, and tube were extracted in polar and nonpolar solvents. None of the extracts showed genotoxic potential. Based on the negative response of PTFE in a series of toxicology studies and using PTFE as an example, the authors suggested that PTFE, among many other fluoropolymers, be considered as “polymers of low concern.”

In a CIR Assessment (Johnson, Bergfeld et al. 2023), the genotoxic potential of anti-cohesive coating materials containing PTFE (60%-73%) was evaluated. The materials were considered negative in an Ames test and in an *in vivo* micronucleus test dosed by gavage. Details of the studies are not described in the CIR Assessment. The original study article is also not available for review.

In summary, a limited number of studies have examined the genotoxicity potential of PTFE, and the current evidence suggests that PTFE is not genotoxic.

Carcinogenicity

To identify relevant studies on the carcinogenic potential of PTFE use in cosmetic products, we conducted a literature search using the queries described in **Table S6**. This search yielded 518 articles. To select pertinent studies, we applied inclusion criteria such as PTFE as the testing substance, carcinogenicity endpoint, and relevant exposures (including dermal, oral, or inhalation), and excluded articles that used substances other than PTFE, investigated irrelevant endpoints, or involved irrelevant exposures.

After an initial review of articles by titles and abstracts, followed by a review of full texts, we identified four articles including two research publications, the 2023 CIR Assessment and the 1979 IARC Monograph as relevant to the current review.

Notably, both the CIR Assessment (Johnson, Bergfeld et al. 2023) and the IARC monograph (IARC 1979) have sections dedicated to PTFE carcinogenicity and cite nearly identical studies to evaluate the

carcinogenic potential of PTFE in mice and rats. Therefore, all the referenced studies cited by these two reports are included for review in this section. Studies focused on using PTFE implants for medical purposes to treat diseases, rather than investigating the carcinogenicity of PTFE, were excluded. We attempted to obtain and review the original reports. When these were unavailable, we relied on the summaries from the CIR Assessment and/or the IARC Monograph.

We reviewed those select studies in the CIR Assessment and IARC Monograph to evaluate the carcinogenicity potential of PTFE and categorized them by different exposure routes, including dermal, oral, subcutaneous, intraperitoneal, subcutaneous and submucosal injection, and inhalation.

Dermal

No data.

Oral

No data.

Subcutaneous

For the subcutaneous carcinogenicity of PTFE, multiple studies were conducted by testing various forms and sizes of PTFE subcutaneously implanted in mice and rats. Relevant information was also extracted and summarized in **Table A.1.3**.

The studies employed various strains of mice (including Swiss, C57BL, CTM albino, BALB/c, C3Hf/Dp and C57BL/He) and rats (Wistar, Evans and Sprague Dawley) and included either male, female, or both genders to assess carcinogenic potential of subcutaneously implanted PTFE.

Five studies in mice showed the development of either fibrosarcomas or sarcomas at or around the implant sites, ranging from 2% up to 98% of tumor incidence (Tomatis 1963, Tomatis and Shubik 1963) (Tomatis 1966, Tomatis and Parmi 1971, Menard and Porta 1976).

Four carcinogenicity studies of PTFE were conducted in different strains of rats, including Wistar, Evans, and Sprague Dawley implanted with PTFE subcutaneously. Three studies showed the occurrence of sarcomas, ranging from 3.6% to 26.7% of tumor incidence (Oppenheimer, Oppenheimer et al. 1953, Oppenheimer, Oppenheimer et al. 1955, Russell, Simmers et al. 1959). The fourth study did not show any tumors in PTFE implanted rats (Bryson and Bischoff 1969). Oppenheimer et al. suggested that the risk of carcinogenesis is reduced by perforated PTFE compared to non-perforated (smooth continuous surface) PTFE (Oppenheimer, Oppenheimer et al. 1955). However, the reasons were not specified (**Table A.1.3**).

Table A.1.3. Carcinogenesis of Subcutaneously Implanted PTFE in Animals.

Animals & Test Substances	Methods	Results	Citation(s)*
<ul style="list-style-type: none">• 89 random-bred female Swiss mice• Square sheet of PTFE (12 x 12 x 1.2 mm)	PTFE was implanted subcutaneously in the left flank of 7–9-week-old mice. Survival rate was recorded every 10 weeks up to 100 weeks after implantation and any	Out of 89 mice, a total of 11 (12.5%) sarcomas at implant site was found after an average latent period of 54.5 weeks. The first local tumor developed 25 weeks after implantation.	(Tomatis and Shubik 1963)

Animals & Test Substances	Methods	Results	Citation(s)*
	formation of sarcomas at implant site was evaluated.		
<ul style="list-style-type: none"> • Random-bred Swiss mice • A variety of PTFE implants were used, including: 1) square sheets measuring 12 x 12 x 1.2 mm (89 females, 61 males); 2) 15 mm diameter discs (103 females); 3) fragments of discs (size unspecified) (53 females); 4) 20 mm diameter discs (54 females, 50 males); and 5) a combination of a 15 mm disc and a square PTFE implant (21 females) 	7–9-week-old mice received subcutaneous PTFE implants.	Tumors (all fibrosarcomas) developed around the implant. Tumor incidences are 8/89 (10%) and 1/61 (2%); 23/103 (22.7%); 10/53 (21.2%); 7/54 (15.2%) and 4/50 (8%); and 3/21 (16.3%) in the groups described in the first column, respectively. No tumors were observed in 200 female and 100 male mice (untreated group).	(Tomatis 1963)
<ul style="list-style-type: none"> • Inbred C57BL mice (19 males and 27 females) • PTFE disc (15 x 1.2 mm) 	7–9-week-old mice received subcutaneous PTFE disc implants and were observed for 90 weeks.	Local sarcomas developed in 4 out of 20 (20%) females that retained the implant and 4/15 (26%) males. Tumors were always found around the discs. No sarcomas were found in 30 male and 33 female non-implanted mice (control group) that were observed for 100 weeks.	(Tomatis 1966)
<ul style="list-style-type: none"> • Random-bred CTM albino mice (40 males and 40 females) • PTFE disc (15 x 1.2 mm) 	8-week-old mice received subcutaneous PTFE disc implants into the right flank and were observed for lifespan.	Of the 80 mice, 27 mice (18 females and 9 males) developed sarcomas around the disc, corresponding to an incidence of 39% of the 69 survivors at the time of the appearance of the first tumor. No fibrosarcomas were found in 99 male and 98 female untreated mice (control group) that were observed for lifespan.	(Tomatis and Parmi 1971)
<ul style="list-style-type: none"> • BALB/c mice (38 females), C3Hf/Dp mice (38 females) and C57BL/He mice (39 females) • PTFE disc (15 x 1.2 mm) 	Three groups of 6–7-week-old mice received subcutaneous PTFE disc implants in the dorsal area. All mice were euthanized at 120 weeks of age.	Fibrosarcomas developed around the discs in 17/38 (44%) BALB/c, 36/38 (94%) C3Hf/Dp and 12/39 (30%) C57BL/He mice. The mean latent periods for tumor development were 78, 61, and 82 weeks, respectively.	(Menard and Porta 1976)
<ul style="list-style-type: none"> • Rats (strain and number not specified) • PTFE film (not specified) 	Rats received subcutaneous PTFE film implants.	Malignant tumors (all sarcomas) were produced adjacent to or surrounding the PTFE film. Four sarcomas were produced, at which time 15 rats were still alive. It needs to be noted that the study was published with the results from experiments still in progress.	(Oppenheimer, Oppenheimer et al. 1953)

Animals & Test Substances	Methods	Results	Citation(s)*
<ul style="list-style-type: none"> • 65 Wistar rats (males and females) • PTFE implant (4 x 5 x 0.16 mm) 	Rats received single subcutaneous PTFE implants in the abdominal wall. All rats were euthanized within 800 days after the operation.	Fifty-five rats were alive at the time of appearance of first tumor (i.e., 659 days). Two sarcomas were induced. No tumors were developed in control animals that received glass implants.	(Russell, Simmers et al. 1959)
<ul style="list-style-type: none"> • Wistar rats (2 groups) • PTFE disc (15 x 0.02 mm, 2 types; plain and perforated) 	Rats received subcutaneous plain or perforated PTFE disc implants in the abdominal wall.	34 rats implanted with plain PTFE discs and 32 rats implanted with perforated discs survived the minimum latent period. The groups developed 8 sarcomas (23.5%) and 6 sarcomas (18.8%), respectively. Control groups were imbedded with various nonplastic materials. Among the completed controls (linters, surgical cotton, tin foil, glass coverslip and glass textile), only the glass coverslip control group developed one tumor in one rat out of fifty.	(Oppenheimer, Oppenheimer et al. 1955)
<ul style="list-style-type: none"> • Evans rats (males) • PTFE mesh surgical outflow patch (square, 20 x 20 mm) (39 rats) • PTFE shredded material (40 rats) • Control (41 rats) 	Rats received subcutaneous PTFE patches or shredded PTFE implants. Experiment was terminated 19 months after implantation.	At 19 months after implantation, no local tumors were observed. 28 controls, and 24 and 23 PTFE implanted rats were still alive.	(Bryson and Bischoff 1969)

*All studies are cited in CIR 2023 and IARC 1979.

Intraperitoneal

In one study (Simmers, Agnew et al. 1963), weanling Wistar rats of approximately equal numbers of males and females were implanted intraperitoneally with either rectangular rods of PTFE measuring 10 x 2 x 2 mm (16 rats) or an equal amount of PTFE powder (17 rats). After 1 year, 10 out of 17 rats (treated with PTFE powder) and 13 out of 16 rats (implanted with PTFE rods) were still alive. Surviving rats were euthanized 27 months after operation. No tumors were observed in PTFE rod implanted rats whereas 2 intraperitoneal sarcomas (20%) were induced and became palpable in PTFE powder treated rats at 354- and 476-days post operation. Rats developed extraperitoneal tumors in 3 of 10 (30%) of the powder-treated, and 1 of 13 (7.7%) of the rod-treated groups. In the control group, 2 of 21 (9.5%) rats developed extraperitoneal tumors, while no intraperitoneal tumors were observed (Simmers, Agnew et al. 1963). While these findings suggest that the powder form of PTFE may increase the risk of carcinogenesis at the injection site, the cancer hazard of surgically implanted PTFE is minimal.

Subcutaneous and Submucosal Injection

In one study, Dewan et al. (1995) reported a long-term histological response to a single dose of subcutaneously injected Polytef (a commercial name of PTFE) in rats. Forty-eight infant Sprague Dawley rats (gender unspecified) were injected with 0.1 mL of Polytef, consisting of 50% PTFE particles of which 90% were less than 40 µm in diameter under the skin of the back. Rats were euthanized after 2 years of

injection. At least one tumor was found in 30 (63%) of the 48 Polytef-injected rats and 36 (75%) of the controls. Most of the tumors were breast and pituitary adenomas. The Polytef-injected group had 15 (31%) breast and 18 (38%) pituitary adenomas; the control group had 27 (56%) breast and 20 (42%) pituitary adenomas. No tumors were found at the injection site and no sarcomas were observed in either group. There was no significant difference in the tumor incidence between the PTFE-injected and control groups. The authors concluded that the carcinogenic risk from injected PTFE is low (Dewan, Owen et al. 1995).

A long-term animal study was conducted to histologically evaluate the potential for submucosal PTFE paste injection to induce bladder neoplasia in rats (Noe, Williams et al. 1994). Sixteen young adult female Sprague-Dawley rats were injected with 0.1 to 0.2 ml of PTFE paste into bladder submucosa. Four control rats were injected with equal amount of sterile saline. The animals were euthanized at various intervals: 3 at 3 months, 2 at 6 months, 3 at 9 months, 4 at 12 months, and 4 at 15 months. One control animal was euthanized at 6 months, and the remaining 3 were euthanized at 15 months post-surgery. Gross necropsy revealed no evidence of adenopathy or granuloma formation or tumor development. Histological examination showed chronic inflammation at 3 months and fibrous encapsulation with presence of chronic inflammatory cells at 6 months and later. There was no evidence of epithelial or sarcomatous tumors in any of the experimental or control animals.

Inhalation

No inhalation carcinogenicity studies of PTFE were found in the literature search. PTFE dust has been detected in workplace environments during the thermal processing of fluoroplastics (Okawa and Polakoff 1973, Okawa and Polakoff 1974). As described in the repeated dose toxicity section of this report, several studies reported that occupational exposure to PTFE aerosols by inhalation may have a link with granulomatous lung disease in humans (Choi, Jung et al. 2014, Lee, Baek et al. 2018, Aoki, Saito et al. 2022).

The National Toxicology Program (National Toxicology Program 1997) investigated the carcinogenicity of TFE, the monomer used to synthesize PTFE and found that inhalation exposure to TFE induced tumors in both mice and rats. However, according to the current production methods, trace levels of TFE in PTFE are not detected (detection limit: 75 ppb). Therefore, TFE is unlikely to pose a concern for consumers who use PTFE-containing cosmetic products.

In summary, available studies have not demonstrated a carcinogenic potential for PTFE when exposed through dermal, oral, or inhalation routes. While some studies found that subcutaneous PTFE device implants in mice or rats led to sarcomas at the implant site, some other studies suggested a low cancer risk from subcutaneous or submucosal injection exposure. It is important to note that most of the studies were published between the 1950s and 1970s, and no recent studies could be located. Additionally, the findings from these studies, while informative for surgically implanted PTFE devices, may not be directly applicable or relevant to the use of PTFE in cosmetic products, due to the differences in PTFE forms and exposure routes.

Developmental and Reproductive Toxicity (DART)

The PubMed and Web of Science literature search on DART using the queries outlined in **Table S6** yielded a total of 31 publications. After an initial abstract screening, we identified two publications (one technical report by CIR and one review article by Henry, Carlin et al. (2018)) as relevant to assessing the

DART endpoints of PTFE. Most of the excluded articles are not toxicity studies or on the subject of PTFE toxicity.

The CIR safety assessment of polyfluorinated polymers as used in cosmetics (Johnson, Bergfeld et al. 2023) cited an abstract that reported a toxicity study on PTFE containing anti-cohesive coating materials (containing 60% or 68-73% PTFE). The materials were administered by gavage once daily on gestation days 7–16 at a dose of 6.25 g/kg (60% PTFE) and at a dose of 1.25 g/kg (68 to 73% PTFE) in rats. The CIR concluded that this study indicated that both PTFE materials were found to be non-teratogenic. However, the original abstract was not accessible for review by the FDA. The review article (Henry, Carlin et al. 2018) stated that patients receiving permanently implanted PTFE cardiovascular medical devices demonstrate no reproductive, developmental, or endocrine toxicity. However, no clinical or experimental data were provided in this article to support the author's statement.

In summary, based on very limited information summarized in review articles, there is no evidence of reproductive or developmental toxicity of PTFE in experimental animals or in humans.

Neurotoxicity

A PubMed and Web of Science literature search for neurotoxicity using the queries outlined in **Table S6** yielded a total of 444 publications. After title and abstract review, we did not find any studies to be directly relevant to assessing the neurotoxicity of PTFE. Most PTFE-related studies on neurological systems focus on the efficacy of PTFE coated medical devices or ePTFE material used in neurosurgery, which are not applicable to PTFE use in cosmetic products. Below, we reviewed and summarized two studies that reported the neural responses in animals exposed to these materials .

Cunningham, Hallab et al. (2013) investigated the neural responses to epidural application of PTFE particulate wear debris (0.1–50 µm in diameter) produced from spinal instrumentation. In this study, New Zealand White rabbits were exposed to PTFE particles implanted directly onto the dura, creating interlaminar exposure of the dural sac. After 3 or 6 months, the animals were evaluated for neural and systemic histopathological responses. A chronic histiocytic reaction localized primarily within the epidural fibrous layers was observed. However, no evidence of polymorphonuclear giant cell reaction or other significant pathological changes was noted. Particulate debris remained localized to the epidural application site without intrathecal dissemination. Histopathologically, PTFE particles exhibited pronounced agglomeration. The authors concluded that there was no evidence of an acute neural or systemic histopathological response following exposure (Cunningham, Hallab et al. 2013).

Kim et al. (2011) conducted an *in vivo* study to evaluate the biocompatibility and degradation profile of a biomaterial in the rat spinal cord. ePTFE was used as a control material due to its non-degradable nature. Both materials were implanted in the intrathecal space, between the spinal cord and dura mater, and monitored for 6 months. Results showed no degradation of ePTFE, a minor foreign body response, and no chronic inflammatory response in the central nervous system tissue (Kim, Tator et al. 2011).

In summary, a comprehensive literature search did not identify evidence of neurotoxicity associated with PTFE. Given its widespread use as an implant device in neurosurgery and its inert nature, PTFE's neurotoxicity potential from cosmetic application is expected to be minimal.

Site of Contact Effects:

Dermal Irritation and Sensitization⁵⁵

A PubMed and Web of Science literature search on dermal irritation and sensitization using the queries outlined in **Table S6** yielded a total of 274 publications. After title and abstract review, we did not find any studies to be directly related to assessing the skin irritation and skin sensitization of PTFE. Many articles focus on the use of PTFE material in healthcare products such implants and grafts, or the use of PTFE material in non-healthcare related products such as filters and ear-piercing tubes. These studies are not relevant to skin sensitization and are not applicable to PTFE use in cosmetics. We deemed a few articles relevant to skin sensitization and skin irritation from the use of PTFE as a device or instrument material. Since the articles mentioned dermatitis or hypersensitivity, this can be considered as indirect evidence supporting that PTFE is unlikely to be a skin irritant or skin sensitizer, even though the exposure scenarios are not directly related to cosmetic use and no specific tests for sensitization or irritation were performed.

In these publications, PTFE was widely used for different purposes in the medical field, including as a coating material on medical devices (Ishii, Kodani et al. 2006, Tamenishi, Usui et al. 2008, Taguchi, Maeba et al. 2014, Vodiskar, Schnoring et al. 2014), a liner (Hamilton and Adkinson 1997), or an implanting or grafting material (Trumpy, Roald et al. 1997, Iqbal, Bhandare et al. 2019), due to very low risk of contact dermatitis and to prevent contact dermatitis caused by components of the devices. It was also used as negative controls in studies on subcutaneous tissue or bone tissue, which did not cause hypersensitization or other tissue responses (Gjerdet, Kallus et al. 1987, Moura, Ferreira et al. 2014). While PTFE is generally well-tolerated, a rare case of hypersensitivity to PTFE graft in a patient for hemodialysis access was reported (Iqbal, Bhandare et al. 2019). Overall, PTFE grafts are extensively used in medical applications and show minimal risk of adverse events due to exceptional biocompatibility and chemical inertness. Several studies cited in the CIR Assessment (Johnson, Bergfeld et al. 2023) of polyfluorinated polymers as used in cosmetics demonstrated no evidence of dermal irritation or sensitization. In one study, the skin irritation was observed for a formula containing 7.6% PTFE in a 48-hour semi-occlusive patch test with 26 subjects. In another study, the skin sensitization potential of a formula containing 2.89% PTFE was evaluated in a human repeated insult patch test (HRIFT) using occlusive patches on 107 subjects. The dose per cm² of patch application was not specified in either of the studies. There was no evidence of dermal irritation or sensitization. In the third study, a cosmetic product containing 9% PTFE was applied to 206 subjects using occlusive patches and HRIPT and there was no evidence of skin sensitization. In addition, the skin irritation potential of PTFE (powder) was evaluated using six New Zealand White rabbits, where PTFE was classified as a non-irritant. The studies mentioned above were either unpublished or from anonymous sources as cited in the CIR Assessment (Johnson, Bergfeld et al. 2023).

⁵⁵ While dermal irritation and sensitization are pathologically distinct, their physical and histological differences can be difficult to distinguish. Tan, C. H., S. Rasool and G. A. Johnston (2014). "Contact dermatitis: allergic and irritant." *Clin Dermatol* **32**(1): 116-124. Both irritation and allergic contact dermatitis are common adverse reactions to cosmetic ingredients. A chemical can cause irritation, sensitization, or both simultaneously. Despite the availability of specific assays, many confounding factors, unexpected reactions, and variations in methods and interpretations in both animals and humans can make clear differentiation between an irritant and a sensitizer challenging. Therefore, this section discusses the combined irritation and sensitization effects, as well as other relevant data.

In a 2017 study by Harrison Research Laboratories, also cited in the CIR Assessment, there was no skin sensitization of an eye shadow product containing 6% PTFE in 111 subjects (Johnson, Bergfeld et al. 2023). Clayton (1967) reported a study which assessed the sensitization of PTFE (a 20% dispersion in $\text{CCl}_2\text{F-CClF}_2$) using the skin of 10 guinea pigs. As stated in this publication, when the $\text{CCl}_2\text{F-CClF}_2$ evaporated, the material hardened and produced moderate mechanical irritation. There was no evidence of skin sensitization. The details of the substance application were not reported.

In summary, information on dermal irritation and sensitization potential of PTFE is limited, overall. The available evidence suggests that PTFE is unlikely to be a skin irritant or sensitizer.

Ocular Irritation

A PubMed and Web of Science literature search on ocular irritation using the queries in **Table S6** yielded a total of 12 publications. After title and abstract screening, we considered none of these publications relevant to the current review, mostly due to irrelevant exposure scenarios where PTFE was used as an implanting or grafting material. Unpublished data cited in the CIR Assessment (Johnson, Bergfeld et al. 2023) indicated that a formula containing PTFE (2.89%) and a PTFE powder (0.1 g) had no potential for ocular irritation, based on an *in vitro* EpiOcular eye irritation test, and an *in vivo* study in New Zealand White rabbits, respectively. Similar to the dermal irritation study, Clayton (1967) reported mild conjunctival irritation in the eyes of rabbits, a symptom that disappeared in less than 72 hours, following exposure to PTFE as a 20% dispersion in $\text{CCl}_2\text{F-CClF}_2$. A mild corneal injury was also observed at 24 hours but disappeared at 48 hours. The study authors noted that these transient reactions were no greater than those produced by the $\text{CCl}_2\text{F-CClF}_2$ alone, suggesting PTFE itself is not irritating to the eyes. Details regarding the number and strain of animals were not provided.

Together, the available information suggests that PTFE is unlikely to be an ocular irritation hazard, particularly when the ingredient is used in cosmetic products that are not intended for use in direct contact with the eyes.

Respiratory Irritation

A PubMed and Web of Science literature search on the respiratory irritation potential of PTFE using the queries outlined in **Table S6** yielded 77 publications. After an initial title and abstract screening, we identified 24 as relevant after title and abstract screening. However, after full text review, we identified no articles that contained information relevant to the current review.

Most of the literature focused on acute lung toxicity from exposure to PTFE fumes that are produced when PTFE is heated to temperatures above 260°C. This condition is highly unlikely to occur under the intended use conditions of PTFE-containing cosmetic products as they do not involve exposure to high temperatures. Nevertheless, PTFE particles have frequently been used as negative controls or to estimate the distribution of inhaled particles with various sizes in the human body. These studies can serve as indirect evidence that PTFE-containing cosmetic products are unlikely to cause respiratory irritation.

Photo-induced Toxicity

A PubMed and Web of Science literature search for photo-induced toxicity using the queries outlined in **Table S6** yielded 22 publications. None were considered relevant to the current review after title and

abstract screening. These studies were excluded for reasons such as irrelevant exposure or experimental species, a focus on the defluorination of PTFE, or the discussion of PTFE as materials for devices or instruments.

Review Summary

Uses: PTFE is used in a variety of cosmetic products as bulking agents and slip modifiers. According to the mandatory cosmetic product listing data submitted to the FDA (accessed on August 30, 2024), PTFE is used in 490 product formulations, of which 322 are eye shadows, accounting for 65.7% of the total. This is followed by blushers and rouges (all types), lipsticks and lip glosses, face powders and face and neck products with 48, 30, 29 and 10 products, respectively. The remaining products belong to a total of 15 categories and account for approximately 10% of all PTFE-containing products.

While data obtained from the VCRP and Mintel's GNPD suggested a decline in PTFE use in cosmetic products in recent years, it is currently not possible to determine a definitive trend using the cosmetic product listing data submitted to the FDA due to the lack of baseline or historical data. Moreover, comparing the frequency of use data of PTFE between the VCRP and the mandatory cosmetic product listing data submitted to the FDA is challenging due to the voluntary nature of the VCRP and the significantly higher number of the mandatory cosmetic product listing data submitted to the FDA compared with the VCRP.

Consumers are primarily exposed to PTFE in cosmetic products through dermal contact under the intended use conditions. However, incidental PTFE exposure via ingestion may occur with products such as lipsticks. Similarly, eye exposure may occur with eye cosmetic products, and incidental inhalation exposure may occur with products such as face powders. Other PTFE exposure pathways such as subcutaneous, submucosal, surgery implantation, intraperitoneal, and intravenous administration are not considered relevant to cosmetic product use.

Safety: PTFE is considered among the most chemically inert and nontoxic materials tested under normal use conditions (Henry, Carlin et al. 2018). While no studies have specifically examined the dermal pharmacokinetics of PTFE, it is not expected to be absorbed through the dermis due to its high molecular weight. PTFE is also not absorbed if ingested given the particle size of the ingredient used in cosmetic products, and PTFE is not metabolized, owing to its strong carbon-fluorine bond which is extremely difficult to break down. PTFE remains stable at temperatures below 260°C.

Based on available published hazard information, PTFE does not appear to be acutely toxic by the oral route and does not show subacute or subchronic toxicity following repeated oral exposure in rodents. In mice, a single oral dose of 2000 mg/kg PTFE microplastics (approximately 5 µm in size) did not reveal any signs of clinical and pathological changes for 4 weeks (Lee, Kang et al. 2022). Rats administered with 25% PTFE in their diet for 90 days also did not show toxicologically significant effects (Clayton 1967).

Limited available information suggests that PTFE is not genotoxic. There is also no evidence demonstrating carcinogenicity following dermal, oral or inhalation exposure to PTFE. Some animal studies on PTFE implants reported the formation of localized sarcomas around the implant sites following procedures such as subcutaneous implantation, intraperitoneal injection or submucosal injection, but the results were not consistent. The FDA does not consider these effects to be relevant to PTFE use in cosmetic products.

There is no evidence indicating that PTFE induces developmental and reproductive toxicity, neurotoxicity, or immunotoxicity. While chronic inflammation and granuloma formation have been reported in some animal studies and clinical cases following PTFE injection or implantation, these adverse effects are not considered relevant to cosmetic products uses.

Available data also suggest that PTFE is not a skin irritant or a skin sensitizer in animals or humans. PTFE, as a device material, has a long history of widespread use in medical applications and shows minimal risk of adverse events due to its exceptional biocompatibility and chemical inertness. While ocular exposure to PTFE may occur from products used near the eyes, available information suggests that PTFE is not an ocular irritant, therefore, it is unlikely to pose a health risk to consumers. PTFE is not expected to be phototoxic based on its molecular structure which lacks chromophores. Furthermore, no published scientific literature has identified phototoxicity as a concern for PTFE.

Incidental inhalation exposure to PTFE is possible when using products like face powder. However, current evidence does not suggest that PTFE is an inhalation hazard to the lungs or acts as a respiratory irritant. Workplace exposure to PTFE has been associated with granulomatous lung diseases, typically due to heating PTFE to high temperatures, resulting in the release of toxic pyrolysis products. This scenario, however, is highly unlikely to occur with consumer use of cosmetic products. Conclusion

Based on the review of available data, there is a low concern for safety associated with PTFE when used as an ingredient in cosmetic products under intended conditions of use.

2. Perfluorononyl Dimethicone

Introduction

Perfluorononyl dimethicone (CAS No. 259725-95-6; PubChem SID: 472205417) is a fluorinated siloxane polymer composed of a silicone backbone and perfluorononyl side chains. **Table A.2.1** shows the chemical structure and physicochemical properties. Perfluorononyl dimethicone is a clear to pale yellow liquid that is insoluble in water. It may be odorless or have mild odor. The density and viscosity of perfluorononyl dimethicone can vary depending on the specific molecular weight and degree of polymerization and the manufacturing process. It is generally stable under normal storage and handling conditions, but decomposition may occur at very high temperatures, forming products such as carbon oxides, silicon dioxide, formaldehyde, and traces of incompletely burned carbon compounds.⁵⁶

Table A.2.1. Physical and Chemical Properties of Perfluorononyl Dimethicone

⁵⁶ Safety Data Sheet for Fluorosil D2. <https://www.siltech.com/wp-content/uploads/2017/11/MP5460.pdf> (accessed 2/19/2025).

Element	Description
Name	Perfluorononyl Dimethicone
INCI name	Perfluorononyl Dimethicone
Synonyms	Siloxanes and Silicones, di-Me, Me 3,3,4,4,5,5,6,6,6-nonafluorohexyl Fluoropolymers, di-Me, Me 4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12,12-nonadecafluorododecyl polysiloxane- Fluorosil LF Fluorosil D2 Fluorosil 14 Fluorosil J15
CAS#	259725-95-6
Structure	$ \begin{array}{c} \text{CH}_3 \quad \quad \quad \text{CH}_3 \\ \quad \quad \quad \\ \text{SiO} - \text{SiO} - \text{Si}(\text{CH}_3)_3 \\ \quad \quad \quad \\ (\text{CH}_2)_3 \quad \quad \quad \text{CH}_3 \\ \quad \quad \quad \\ (\text{CF}_2)_8 \\ \\ \text{CF}_3 \end{array} \quad \begin{array}{c} x \quad \quad \quad y \end{array} $
Molecular formula	NA
Molecular weight	NA
Particle size	Not applicable
Physical form	Clear to light yellow Liquid ⁵⁶
Density	Varies. ⁵⁶
Solubility	Insoluble in water ⁵⁶
Partition coefficient (Log K _{ow})	NA
Vapor pressure	NA
Melting point	NA
Boiling point	>100 °C@ 760 mmHg ⁵⁶
Topological polar surface area	NA
UV light absorption spectrum	NA
Decomposes	Stable under normal conditions but decomposition may occur during fire or at very high temperatures and form products such as carbon oxides, silicon dioxide, formaldehyde, and trace of incompletely burned carbon compounds. ⁵⁶
Additional properties	Viscosity: 10-40 cps at 25 °C ⁵⁶

Notes: NA, not available. Source: PubChem; specified otherwise.

Use in Cosmetic Products

According to INCI, perfluorononyl dimethicone is a skin-conditioning agent (miscellaneous or occlusive)⁵⁷ and slip modifier commonly used in cosmetic products such as eye shadows, lipsticks, eyeliners, and miscellaneous non-eye makeup preparations. The ingredient is used in cosmetic products to improve skin appearance, reduce flaking and enhance hydration.

Based on the mandatory cosmetic product listing data submitted to the FDA, perfluorononyl dimethicone is currently used as an ingredient in 231 cosmetic products; 64.5% (n=149) of them are listed in the eye makeup category; 57.6%, (n=133) are eyeliners, followed by other non-eye makeup preparations at 22.9%, (n=53). Other common eye makeup product categories containing this polymer include eye shadows (4.8%), mascaras (0.9%), and other eye makeup preparations (0.9%). The remaining cosmetic products that contain perfluorononyl dimethicone are lipsticks and lip glosses (6.1%), and hair care products (5.2%) (**Table A.2.2**). Please see **Table S2** for a full list of cosmetic product categories.

Table A.2.2. Frequency of Use of Perfluorononyl Dimethicone in the Mandatory Cosmetic Product Listing Data Submitted to the FDA (as of August 30, 2024)

Product Category	Number of Products	Percentage of Total (%)
Eye makeup		
Eyeliners	133	57.6
Eye shadows	11	4.8
Mascaras	2	0.9
Eyelash and eyebrow	1	0.4
Other eye makeup preparations	2	0.9
Eye makeup total	149	64.5
Hair care		
Hair conditioners	2	0.9
Tonics, dressings, and other hair grooming aids	9	3.9
Other hair preparations, leave-on	1	0.4
Hair care total	12	5.2
Makeup preparations (non-eye) (other than makeup preparations for children)		
Foundations	1	0.4
Lipsticks and lip glosses	14	6.1

⁵⁷ The functions for cosmetic ingredients are defined in INCI dictionary and provided in the specific cross-reference section, Reported Functions. More details can be found in the following INCI link: <https://incipedia.personalcarecouncil.org/sub-lists/sub-list-details/?id=157a4551-9c82-ec11-8d21-000d3a98a506&reportedfunctioninitvalue=69072ffb-35bf-48b6-a736-21f87b3bc453>. Note: Membership/login is required to view the content.

Product Category	Number of Products	Percentage of Total (%)
Other makeup preparations (lip liners/pencils)	53	22.9
Makeup (non-eye) total	68	29.4
Shaving creams	1	0.4
Skin care, rinse-off	1	0.4
Grand total	231	100.0

Historical data available to the FDA suggests a decreasing trend in the use of perfluorononyl dimethicone in cosmetic products. For example, the VCRP data indicated a steady decrease in the use of perfluorononyl dimethicone from 65 products in 2019, to 33 products in 2021, and 29 products in 2023 (**Table S4**). Similarly, the Mintel's GNPD shows a decline in use from 61 perfluorononyl dimethicone-containing cosmetic products launched in the U.S. market over a 5-year period (August 2019 to July 2024), starting with an average of 12 products launched per year in 2019, to 6 products launched between August 2023 and July 2024 (**Table S4**). The use trend of perfluorononyl dimethicone cannot be currently determined using the cosmetic product listing data submitted to the FDA, due to the lack of historical data.

Under the FD&C Act, the concentration of ingredients used in cosmetic products is not required to be submitted to the FDA as part of the product listing data. Therefore, the use concentration for perfluorononyl dimethicone is not available to the FDA. A recent publication by Balan, Bruton et al. (2024) reported the use of this ingredient at a concentration range of 0.006% to 1% in skin care products. Additionally, one supplier recommends use at a concentration range of 0.25% to 2% in hair care, skin care, color cosmetics, sun care, and baby products.⁵⁸ It is important to note that different suppliers of raw material may recommend varying concentrations of use, and that manufacturers or formulators ultimately determine the final concentration in their cosmetic products, which may be outside the range of suppliers' recommendations.

Given that over 60% of the products that contain perfluorononyl dimethicone are eye makeup products, such as eyeliners, eye shadows, and mascaras, intended for use near the eye area, there is potential for ocular exposure. Additionally, the presence of perfluorononyl dimethicone in lipsticks and lip glosses indicates a potential for incidental ingestion.

Existing Safety Assessments by Government Agencies, Scientific Advisory Groups, and Peer-Reviewed Literature

⁵⁸ Based on the data sheet of Fluorosil LF by Biosil Technologies, Inc. Available at: <https://www.knowde.com/stores/biosil-technologies-inc/documents/15553> (accessed 2/29/2025. Login is required for access).

A comprehensive search of data sources as listed in **Table S5** did not identify any assessments of perfluorononyl dimethicone by government agencies and other scientific advisory groups such as SCCS, CIR, or IARC.

ADME/Toxicokinetics

A literature search in PubMed and Web of Science using the query outlined in **Table S9** did not identify any published data on the toxicokinetics of perfluorononyl dimethicone. We also did not identify a REACH dossier for perfluorononyl dimethicone in the ECHA database (searched on 09/16/2024).

Hazard Assessment

A literature search in PubMed and Web of Science using the query outlined in **Table S9** yielded no publicly available information regarding the toxicity of perfluorononyl dimethicone. The SDS from the supplier, Siltech Corp.,⁵⁶ indicates that perfluorononyl dimethicone does not pose a known risk of acute toxicity. While direct eye contact may cause temporary redness and discomfort, hazard from ingestion is low under normal or customary conditions of use. In addition, short-term exposure is not expected to cause significant skin or respiratory irritation. However, repeated ingestion or swallowing large amounts could potentially lead to internal injury. Importantly, we note that the specific data regarding these health effects are unavailable for our independent evaluation.

Review Summary/Conclusion

Uses: Based on the mandatory cosmetic product listing data submitted to the FDA, perfluorononyl dimethicone, a fluorinated siloxane polymer, is currently used as an ingredient in 231 cosmetic products, primarily in eye makeup products, and in particular, in eyeliners. Additional data available to the agency, including information from Mintel's GNPD and the VCRP suggests a decline in the use of perfluorononyl dimethicone in cosmetic products. However, due to the lack of baseline or historical data in the mandatory cosmetic product listing data submitted to the FDA, this trend cannot be demonstrated at this time.

Safety: Based on the product types containing perfluorononyl dimethicone, this ingredient may have multiple routes of exposure from its use in certain cosmetic products. In addition to dermal exposure, the use of perfluorononyl dimethicone in eye makeup products may have potential ocular exposure. Use of perfluorononyl dimethicone in other cosmetic products, such as in lipsticks and lip glosses, may also lead to incidental oral exposure. However, there is a lack of publicly available information regarding the toxicokinetics or toxicity of perfluorononyl dimethicone. The FDA does not have enough information to assess the potential for eye irritation, skin irritation or sensitization, and whether it could be absorbed and lead to systemic exposure and toxicity. Given the limited data and information available, the FDA cannot determine the safety of perfluorononyl dimethicone from its use in cosmetic products or risks associated with such use.

While the potential risks associated with the use of perfluorononyl dimethicone in cosmetic products remain to be determined, it is important to note that non-fluorinated alternatives, such as non-fluorinated silicones and fats, have been identified as viable replacements for this PFAS (OECD 2024). These alternatives have demonstrated a comparable level of performance to perfluorononyl dimethicone in lip pencils and are already in commerce for cosmetic product use (RISE 2022). As a result, the FDA expects the use of perfluorononyl dimethicone in cosmetic products to decline in the future.

3. Trifluoroacetyl Tripeptide-2

Introduction

Trifluoroacetyl tripeptide-2 (CAS No. 64577-63-5; PubChem CID: 40785040) is the synthetic product of trifluoroacetic acid and tripeptide-2, a three amino acid biomimetic peptide with a sequence of Tfa-VAL-TYR-VAL-OH. **Table A.3.1** shows the chemical structure and physicochemical properties. It is a white to off-white powder, generally soluble in water and various solvents such as dimethyl sulfoxide (DMSO). Trifluoroacetyl tripeptide-2 is used in the commercial formulation WK Pep® Antiprogerin by Winkey Technology⁵⁹ claimed to improve skin firmness and elasticity by a modulating progerin synthesis. Specifically, it decreases progerin synthesis and accumulation, and inhibits metalloproteinases (Schagen 2017, Naughton, Jiang et al. 2023).

Table A.3.1. Physical and Chemical Properties of Trifluoroacetyl Tripeptide-2

⁵⁹ <https://www.winkey-china.com/products/Anti-aging-and-Repairing/WK Pep%C2%AEAntiprogerin> (accessed 8/13/2025).

Element	Description
Name	Trifluoroacetyl Tripeptide-2
INCI name	Trifluoroacetyl Tripeptide-2
Synonyms	<p>Tfa-VAL-TYR-VAL-OH</p> <p>N-(trifluoroacetyl)-L-valyl-L-tyrosyl-L-valine</p> <p>(2S)-2-[(2S)-3-(4-hydroxyphenyl)-2-[(2S)-3-methyl-2-[(2,2,2-trifluoroacetyl)amino]butanoyl]amino]propanoyl]amino]-3-methylbutanoic acid</p> <p>Progeline</p> <p>ECM-protect</p>
CAS#	64577-63-5
Structure	
Molecular formula	C ₂₁ H ₂₈ F ₃ N ₃ O ₆
Molecular weight	475.5 g/mol
Particle size	NA
Physical form	White to off-white powder
Density	1.299 g/ml ⁶⁰
Solubility	Generally soluble in water and various solvents ⁶¹
Partition coefficient (Log K _{ow})	3.0 (predicted)
Vapor pressure	NA
Melting point	NA
Boiling point	695.4 - 815.4 °C ⁶⁰
Topological polar surface area	145 Å ²
UV light absorption spectrum	NA

Decomposes	NA
Additional properties	Acid dissociation constant: 3.22 - 3.42 pKa ⁶⁰

Notes: NA, not available. Sources: PubChem; specified otherwise.

Use in Cosmetic Products

According to INCI, trifluoroacetyl tripeptide-2 is used as both a skin protectant and skin-conditioning agent in facial and neck products. Based on the FDA's cosmetic product listing data, trifluoroacetyl tripeptide-2 is currently used as an ingredient in 164 cosmetic products (**Table A.3.2**). It is most predominantly used for skin care (86.6%, n=142), in particular, face and neck care (59.1%, n=97). Other significant use categories under skin care include leave-on products for other areas (9.8%), moisturizing (7.3%), cleansing (3.0%), and night products (2.4%). In addition, foundations and other cosmetic preparations contribute to 6.1% and 3.0% of the ingredient's total usage. Other categories such as eye makeup, hair care, and shaving creams represent less than 3% of the total products (**Table A.3.2**). Please see **Table S2** for a full list of cosmetic product categories.

Table A.3.2. Frequency of Use of Trifluoroacetyl Tripeptide-2 in the Mandatory Cosmetic Product Listing Data Submitted to the FDA (as of August 30, 2024)

⁶⁰ <https://www.specialchem.com/cosmetics/product/alfa-chemistry-trifluoroacetyl-tripeptide-2> (accessed 08/13/2025. Login is required for access).

⁶¹ Safety Data Sheet for trifluoroacetyl tripeptide-2 (acetate): <https://cdn.caymanchem.com/cdn/msds/35389m.pdf> (accessed 9/6/2024).

Product Category	Number of Products	Percentage of Total (%)
Eye makeup	4	2.4
Hair care, leave on	2	1.2
Makeup preparations (not eye) (other than makeup preparations for children)		
Foundations	10	6.1
Shaving creams	1	0.6
Skin care		
Cleansing	5	3.0
Face and neck, leave-on	83	50.6
Face and neck, leave-on, moisturizing	14	8.5
Face and neck, rinse-off, moisturizing	1	0.6
Body and hand, leave-on	3	1.8
Moisturizing	12	7.3
Night	4	2.4
Paste masks (mud packs)	2	1.2
Others, leave-on	16	9.8
Others, rinse-off	2	1.2
Skin care total	142	86.6
Other preparations	5	3.0
Grand total	164	100.0

Data from the VCRP and Mintel's GNPD do not indicate a clear trend of the usage change for trifluoroacetyl tripeptide-2 in cosmetic products. There was no reported use of trifluoroacetyl tripeptide-2 in the VCRP in 2019 and 2021, but 21 uses were reported in 2023 (**Table S4**). Mintel's GNPD data revealed that the ingredient was used in 66 products launched in the U.S. market over a 5-year period (August 2019 to July 2024) and 14 products between August 2023 and July 2024 (**Table S4**). The use trend of trifluoroacetyl tripeptide-2 cannot be currently determined using the mandatory cosmetic product listing data submitted to the FDA due to the lack of historical data.

Under the FD&C Act, the concentration of ingredients used in cosmetic products is not required to be submitted to the FDA as part of the product listing data. Therefore, the use concentration for trifluoroacetyl tripeptide-2 is not available to the FDA. A recent publication by Balan, Bruton et al. (2024) reported the use of this ingredient at a concentration range of 0.005% to 0.4% in makeup, skin care and

hair care products. A raw material supplier, Winkey Technology recommends using WK Pep® Antiprogerin, a blend of water, glycerin, dextran and trifluoroacetyl tripeptide-2, at a concentration of 0.05-2%.⁵⁹ The exact amount of trifluoroacetyl tripeptide-2 within this mixture is not specified though.

Due to its skin protecting and conditioning properties, trifluoroacetyl tripeptide-2 containing products are predominantly applied topically to the skin, which makes dermal contact likely the primary route of consumer exposure. In addition, incidental ocular exposure to trifluoroacetyl tripeptide-2 may occur when using eye makeup products.

Existing Safety Assessments by Government Agencies, Scientific Advisory Groups, and Peer-Reviewed Literature

A comprehensive search of data sources as listed in **Table S5** did not identify any assessments of trifluoroacetyl tripeptide-2 by government agencies or other scientific advisory groups such as SCCS, CIR, or IARC.

ADME/Toxicokinetics

A literature search in PubMed and Web of Science using the query outlined in **Table S9** identified one *in vitro* dermal permeation study of trifluoroacetyl tripeptide-2 (searched on 9/6/2024). In this study (Shariati Pour, Oddis et al. 2023), trifluoroacetyl tripeptide-2 was formulated in a hydrogel, consisting of the two peptide components Boc-L-Dopa(Bn)2OH and Boc-L-Ala-Aib-L-Val-OH, at a concentration of 0.1%. Dermal permeation was evaluated using Franz diffusion cells with pig ear skin membranes. After 24 hours, approximately 40% of the applied trifluoroacetyl tripeptide-2 permeated the skin and was detected in the receptor fluid after 24 hours, indicating significant dermal absorption. The actual absorption could be higher considering that the portion of trifluoroacetyl tripeptide-2 retained in the skin during the experiment may eventually pass through the skin and become systemically available in prolonged use scenarios. No other information regarding the toxicokinetics of trifluoroacetyl tripeptide-2 is available.

Hazard Assessment

A literature search in PubMed and Web of Science using the query outlined in **Table S9** yielded no publicly available information regarding the toxicity of trifluoroacetyl tripeptide-2. We also did not identify a REACH dossier for trifluoroacetyl tripeptide-2 in the ECHA database (searched on 09/6/2024). According to the SDS from Cayman Chemical Company,⁶¹ trifluoroacetyl tripeptide-2 is not considered a skin or eye irritant and has no known sensitizing effects. Additionally, it is not listed as a carcinogen by IARC, NTP or OSHA. Importantly, we note that the specific data regarding these health effects are unavailable for our independent evaluation.

Review Summary/Conclusion

Uses: Based on the mandatory cosmetic product listing data submitted to the FDA, trifluoroacetyl tripeptide-2 is used as a cosmetic ingredient in 164 cosmetic products, in particular skin care products for improving skin firmness and elasticity. The ingredient is also used in eye makeup such as lotions, and non-eye makeup such as liquid foundations. Additionally, it is used in hair care products and shaving

creams. The use concentration of trifluoroacetyl tripeptide-2 may vary depending on the specific product formulations and their intended uses.

Data from the VCRP and Mintel's GNPD do not indicate a clear trend of the usage change for trifluoroacetyl tripeptide-2. In addition, due to the lack of a baseline in the mandatory cosmetic product listing data submitted to the FDA, a trend cannot be demonstrated at this time.

Safety: Based on the type of products that contain trifluoroacetyl tripeptide-2, dermal contact is expected to be the primary route of consumer exposure to this ingredient. However, ocular exposure may also occur due to its presence in eye makeup products. Ingestion and inhalation are less likely exposure routes due to the ingredient's typical use in topical products.

The toxicokinetics of trifluoroacetyl tripeptide-2 have not been extensively investigated. One *in vitro* study examined the dermal permeation of trifluoroacetyl tripeptide-2 using Franz diffusion cells with pig ear skin (Shariati Pour, Oddis et al. 2023). When formulated in a hydrogel at a concentration of 0.1%, approximately 40% of the trifluoroacetyl tripeptide-2 permeated through the skin, indicating a significant absorption. Considering the structure, composition and mechanical similarities between pigs and humans (Surnmerfield, Meurens et al. 2015), it is reasonable to anticipate that upon dermal exposure a substantial portion of trifluoroacetyl tripeptide-2 can be absorbed into the bloodstream leading to systemic exposure, especially in the presence of absorption enhancers.

The actual level of systemic exposure to trifluoroacetyl tripeptide-2 would be influenced by the product type, e.g., leave-on products generally pose a higher risk compared to rinse-off products due to prolonged skin contact, amount of application, frequency and duration of use, and the product concentration.

While a raw material supplier's SDS indicates that trifluoroacetyl tripeptide-2 is not a skin or eye irritant, or a skin sensitizer, published or publicly available toxicity data is substantially lacking. Additionally, the potential for long-term organ toxicity, reproductive and development toxicity, or increased risk of cancer from prolonged exposure to trifluoroacetyl tripeptide-2 from using cosmetic products remains unknown.

Due to the lack of sufficient toxicity data and high-quality exposure information, the FDA cannot determine the safety of trifluoroacetyl tripeptide-2 from its use in cosmetic products or risks associated with such use.

4. Tetradecyl Aminobutyroylvalylaminobutyric Urea Trifluoroacetate

Introduction

Tetradecyl aminobutyroylvalylaminobutyric urea trifluoroacetate (CAS No. 934368-60-2; PubChem CID: 137528195) is a synthetic tripeptide. **Table A.4.1** shows the chemical structure and physicochemical properties. According to a single raw material supplier, it appears as a white powder.⁶² It is soluble in water and reportedly stable at room temperature. Other physicochemical properties, such as particle size, potential impurities, partition coefficient, vapor pressure, melting point and boiling point are currently unknown or have not been reported in the available literature.

Table A.4.1. Physical and Chemical Properties of Tetradecyl Aminobutyroylvalylaminobutyric Urea Trifluoroacetate

Element	Description
Name	Tetradecyl Aminobutyroylvalylaminobutyric Urea Trifluoroacetate
INCI name	Tetradecyl Aminobutyroylvalylaminobutyric Urea Trifluoroacetate
Synonyms	(2S)-4-amino-2-[[[2S]-2-[[[2S)-4-amino-2-(tetradecylcarbamoylamino)butanoyl]amino]-3-methylbutanoyl]amino]butanoic acid;2,2,2-trifluoroacetic acid Tetradecyl aminocarbonyl-Dab-Val-Dab Tetradecylaminocarbonyl-dab-Val-dab bistrifluoroacetate Syn-Hycan 2,8-bis(2-aminoethyl)-5-(1-methylethyl)-4,7,10-trioxo-3,6,9,11-tetraazapentacosanoate 2,2,2-trifluoroacetate (1:1), (2S,5S,8S)-3,6,9,11-Tetraazapentacosanoic acid, 2,8-bis(2-aminoethyl)-5-(1-methylethyl)-4,7,10-trioxo-, (2S,5S,8S)-, 2,2,2-trifluoroacetate (1:2)
CAS#	934368-60-2

⁶² https://www.chemicalbook.com/ProductDetail_EN_tetradecyl-aminocarbonyl-dab-val-dab-1758195.htm (accessed 9/23/2024).

Element	Description
Structure	$ \begin{array}{c} \text{O} \\ \parallel \\ \text{CH}_3(\text{CH}_2)_{13}\text{NH} - \text{C} - \text{NHCH}(\text{CH}_2)_2\text{NH}_2 + \text{CF}_3\text{COOH} \\ \\ \text{C} = \text{O} \\ \\ \text{NHCHCH}(\text{CH}_3)_2 \\ \\ \text{C} = \text{O} \\ \\ \text{NHCH}(\text{CH}_2)_2\text{NH}_2 \\ \\ \text{COOH} \end{array} $
Molecular formula	$\text{C}_{32}\text{H}_{58}\text{F}_6\text{N}_6\text{O}_9$ or $\text{C}_{28}\text{H}_{56}\text{N}_6\text{O}_5 \cdot 2\text{C}_2\text{HF}_3\text{O}_2$
Molecular weight	784.8 g/mol
Particle size	NA
Physical form	White powder ⁶²
Density	NA
Solubility	Soluble in water ⁶²
Partition coefficient (Log K_{ow})	NA
Vapor pressure	NA
Melting point	NA
Boiling point	NA
Topological polar surface area	263 \AA^2
UV light absorption spectrum	NA
Decomposes	NA
Additional properties	NA

Notes: NA, not available. Sources: PubChem; specified otherwise.

Use in Cosmetic Products

According to INCI, tetradecyl aminobutyroylvalylaminobutyric urea trifluoroacetate is used as a skin-conditioning agent in face and neck preparations (excluding shaving preparations) and moisturizing preparations.

Based on the mandatory cosmetic product listing data submitted to the FDA, tetradecyl aminobutyroylvalylaminobutyric urea trifluoroacetate is currently used in 156 cosmetic products, 142 (91.0%) of which fall under the skin care product category, particularly those for face and neck care (66.0%, n=103), followed by moisturizing products (9.6%, n=15). Eye lotions comprise 4.5% of the total products. Makeup products, including various facial cosmetics such as blushers and rouges, foundations, lipsticks and lip glosses, represent a smaller portion (1.9%). Other categories like suntan preparations

and other preparations each account for a minor percentage (0.6% and 1.9%, respectively) (**Table A.4.2**). Please see **Table S2** for a full list of cosmetic product categories.

Table A.4.2. Frequency of Use of Tetradecyl Aminobutyroylvalylaminobutyric Urea Trifluoroacetate in the Mandatory Cosmetic Product Listing Data Submitted to the FDA (As of August 30, 2024)

Product Category	Number of Products	Percentage of Total (%)
Eye makeup		
Eye lotions	7	4.5
Makeup preparations (not eye) (other than makeup preparations for children)		
Blushers and rouges	1	0.6
Foundations	1	0.6
Lipsticks and lip glosses	1	0.6
Makeup (not eye) total	3	1.9
Skin care		
Moisturizing	15	9.6
Night	3	1.9
Paste masks (mud packs)	5	3.2
Cleansing, leave-on	8	5.1
Cleansing, rinse-off	2	1.3
Face and neck, leave-on	100	64.1
Face and neck, rinse-off	3	1.9
Body and hand, leave-on	3	1.9
Skin fresheners	1	0.6
Other makeup preparations, leave-on	2	1.3
Skin care total	142	91.0
Suntan, indoor tanning preparations	1	0.6
Other preparations	3	1.9
Grand total	156	100.0

There was no reported use of tetradecyl aminobutyroylvalylaminobutyric urea trifluoroacetate in cosmetic products between 2019 and 2021 in the VCRP, but there were 39 uses in 2023 in the VCRP (**Table S4**). Mintel's GNPD data revealed that the ingredient was used in 69 products in the U.S. market over a 5-year period (August 2019 to July 2024) and 11 products between August 2023 and July 2024, suggesting a possible decline in use (**Table S4**). The use trend of tetradecyl aminobutyroylvalylaminobutyric urea trifluoroacetate cannot be currently determined using the mandatory cosmetic product listing data submitted to the FDA due to the lack of historical data.

Under the FD&C Act, the concentration of ingredients used in cosmetic products is not required to be submitted to the FDA as part of the product listing data. Therefore, the use concentration for tetradecyl aminobutyroylvalylaminobutyric urea trifluoroacetate is not available to the FDA. A recent publication by Balan, Bruton et al. (2024) reported the use of this ingredient at a concentration range of 0.00025% to 0.025% in skin care products. In addition, based on information obtained from UL Prospector, the ingredient is used in SYN®-HYCAN CB, a mixture of tetradecyl aminobutyroylvalylaminobutyric urea trifluoroacetate, glycerin, water, and magnesium chloride by DSM-Firmenich.⁶³ SYN®-HYCAN CB is recommended to be used at 2.5% in cosmetic formulations. However, manufacturers or formulators may use a higher or lower concentration than suppliers' recommendations at their discretion.

Given the prevalence of tetradecyl aminobutyroylvalylaminobutyric urea trifluoroacetate in leave-on skin care products, consumer exposure is likely to occur through daily skin care routines, particularly to the facial and neck regions. Exposure to the eyes may occur when using eye makeup cosmetics. Incidental ingestion through lip makeup is also possible. Inhalation exposure is unlikely due to the absence of reported use of tetradecyl aminobutyroylvalylaminobutyric urea trifluoroacetate in powders, sprays, nail polishes, dry shampoos or fragrances. Prolonged exposure from skin contact remains a potential primary concern.

Existing Safety Assessments by Government Agencies, Scientific Advisory Groups, and Peer-Reviewed Literature

A comprehensive search of data sources as outlined in **Table S5** did not identify any assessments of tetradecyl aminobutyroylvalylaminobutyric urea trifluoroacetate by government regulatory bodies or other scientific advisory groups such as SCCS, CIR, or IARC.

ADME/Toxicokinetics

A literature search in PubMed and Web of Science using the query outlined in **Table S9** did not identify any published data on the toxicokinetics of tetradecyl aminobutyroylvalylaminobutyric urea trifluoroacetate (searched on 9/11/2024). We also did not identify a REACH dossier for tetradecyl aminobutyroylvalylaminobutyric urea trifluoroacetate in the ECHA database (searched on 09/11/2024). However, based on the ingredient's molecular weight of 784 g/mol, which is relatively large for passive skin penetration, some absorption may still be expected to occur, particularly in the presence of skin penetration enhancers such as glycerin.

Hazard Assessment

⁶³ SYN®-HYCAN CB is a trade name by DSM-Firmenich Company. See the following link for more information regarding this product: <https://www.ulprospector.com/documents/1188113.pdf?bs=473&b=302762&st=20&r=na&ind=personalcare> (accessed 9/23/2024. Login is required for access).

A literature search in PubMed and Web of Science using the query outlined in **Table S9** revealed no publicly available information regarding the toxicity of tetradecyl aminobutyroylvalylaminobutyric urea trifluoroacetate.

According to the DSM-Firmenich's SDS⁶⁴ for SYN®-HYCAN CB (product code 5017794), tetradecyl aminobutyroylvalylaminobutyric urea trifluoroacetate is not acutely toxic, with an LD₅₀ >5000 mg/kg body weight. While it may irritate eyes, it is neither a skin irritant nor a skin sensitizer based on human patch tests. It is not mutagenic based on an Ames test conducted in accordance with OECD TG 471. Further, the SDS does not indicate any concerns regarding carcinogenicity or reproductive toxicity, and no information is available for specific target organ toxicity following repeat exposure. Importantly, we note that the specific data regarding these health effects are unavailable for our independent evaluation.

Review Summary/Conclusions

Uses: Based on the mandatory cosmetic product listing data submitted to the FDA, tetradecyl aminobutyroylvalylaminobutyric urea trifluoroacetate, a synthetic tripeptide, is currently used as a cosmetic ingredient in 156 cosmetic products, primarily for skin care, in particular face and neck care. It is also used in eye area cosmetic product such as eye lotions, and non-eye makeup such as lipsticks and lip glosses.

Mintel's GNPD data suggests a declining trend in the use of tetradecyl aminobutyroylvalylaminobutyric urea trifluoroacetate in cosmetic products. However, due to the lack of baseline or historical data in the mandatory cosmetic product listing data submitted to the FDA, this trend cannot be demonstrated at this time.

Safety: Based on the types of products containing tetradecyl aminobutyroylvalylaminobutyric urea trifluoroacetate, consumers can be exposed to the ingredient via multiple routes. Dermal contact is expected to be the primary route of consumer exposure to this ingredient from the use of skin care products. Ocular exposure is also possible due to the ingredient's presence in eye makeup. In addition, oral exposure may occur through incidental ingestion of lipsticks that contain tetradecyl aminobutyroylvalylaminobutyric urea trifluoroacetate.

Despite its common use in cosmetic products, there is a significant lack of publicly available studies regarding the systemic or local toxicity of tetradecyl aminobutyroylvalylaminobutyric urea trifluoroacetate.

An SDS from a raw material supplier suggests that while tetradecyl aminobutyroylvalylaminobutyric urea trifluoroacetate is not acutely toxic, doesn't cause skin irritation or sensitization, and is not mutagenic, it may potentially irritate the eyes. However, as the FDA does not have premarket authority over cosmetic ingredients or products, other than color additives which are subject to FDA approval before use, we do not have specific data to review or evaluate the test information included in this supplier's SDS. Additionally, the FDA does not have sufficient information to assess the toxicokinetics, including its potential for absorption, and subsequent systemic exposure and toxicity.

⁶⁴ Obtained from UL prospector website:

<https://www.ulprospector.com/documents/1188114.pdf?bs=473&b=302762&st=1&sl=495353986&crit=a2V5d29yZDpbU3luLUH5Y2FuXQ%3d%3d&k=Syn-Hycan&r=na&ind=personalcare> (accessed 9/23/2024. Login is required for access).

Given the insufficient data, the FDA cannot determine the safety of tetradecyl aminobutyroylvalylaminobutyric urea trifluoroacetate from its use in cosmetic products or risks associated with such use.

5. Perfluorohexylethyl Triethoxysilane

Introduction

Perfluorohexylethyl triethoxysilane, also known as perfluoroctyl triethoxysilane (CAS No. 51851-37-7; PubChem CID: 103991) is a fluorinated alkyl silane. **Table A.5.1** shows the chemical structure and physicochemical properties. Under normal conditions, it is a colorless liquid, with a density of 1.34 g/ml. The very high partition coefficient (Log K_{ow}) of 7.2 indicates that perfluoroctyl triethoxysilane is highly hydrophobic and poorly soluble in water. Perfluorohexylethyl triethoxysilane has a relatively low volatility as indicated by its vapor pressure and boiling point. It is chemically stable under standard room temperature, however, perfluorohexylethyl triethoxysilane will hydrolyze moderately rapidly in contact with water to produce [2-(perfluorohexyl)ethyl]silanetriol and ethanol (ECHA 2018).

Table A.5.1. Physical and Chemical Properties of Perfluorohexylethyl Triethoxysilane

Element	Description
Name	Perfluoroctyl Triethoxysilane
INCI name	Perfluorohexylethyl Triethoxysilane
Synonyms	2-(Perfluorohexyl)ethyl Triethoxysilane Fluoro Silane (FS) 1H,1H,2H,2H-Perfluoroctyltriethoxysilane Perfluoroctyltriethoxysilane Triethoxy(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluoroctyl)silane 3,3,4,4,5,5,6,6,7,7,8,8,8- <i>Tridecafluoroctyltriethoxysilane</i>
CAS#	51851-37-7
Structure	$ \begin{array}{c} \text{OCH}_2\text{CH}_3 \\ \\ \text{CH}_3\text{CH}_2\text{O} - \text{Si} - (\text{CH}_2)_2(\text{CF}_2)_5\text{CF}_3 \\ \\ \text{OCH}_2\text{CH}_3 \end{array} $
Molecular formula	$\text{C}_{14}\text{H}_{19}\text{F}_{13}\text{O}_3\text{Si}$
Molecular weight	510.36 g/mol
Particle size	Not applicable
Physical form	Colorless liquid
Density	1.34 g/ml at 20 °C
Solubility	<2 mg/L at 20 °C and pH 6.29 in water
Partition coefficient (Log K_{ow})	7.2 at 20 °C (predicted)
Vapor pressure	9.8 Pa at 25 °C (predicted)
Melting point	<-100 °C
Boiling point	225°C at 1007 hPa

Element	Description
Topological polar surface area	27.7 Å ² ⁶⁵
UV light absorption spectrum	NA
Decomposes	NA
Additional properties	It is chemically stable under standard ambient conditions (room temperature). In contact with water under dilute conditions, it produces [2-(perfluorohexyl)ethyl]silanetriol and ethanol.

Notes: NA, not available. Sources: REACH registration dossier for perfluorohexylethyl triethoxysilane (ECHA 2018); specified otherwise.

Use in Cosmetic Products

According to INCI, perfluorohexylethyl triethoxysilane is a cosmetic ingredient that functions as a binder and skin-conditioning agent. The ingredient is used in various makeup formulations including eye shadows, lipsticks, foundations, and other miscellaneous makeup preparations (excluding eyes) such as nose shadow maker and bronzer.

Based on the mandatory cosmetic product listing data submitted to the FDA, perfluorohexylethyl triethoxysilane is currently used in a total of 124 cosmetic products (**Table A.5.2**). Nearly 70% of its applications are in makeup categories such as face powders, foundations, blushers and rouges, lipstick and lip glosses. Additionally, perfluorohexylethyl triethoxysilane is used in 14 types of eye makeup, 20 skin care products, one bath soap and body wash, and three suntan products. Please see **Table S2** for a full list of cosmetic product categories.

Table A.5.2. Frequency of Use of Perfluorohexylethyl Triethoxysilane in the Mandatory Cosmetic Product Listing Data Submitted to the FDA (as of August 30, 2024)

Product Category	Number of Products	Percentage of Total (%)
Makeup		
Face powders	53	42.7
Foundations	12	9.7
Blushers and rouges	8	6.5
Lipstick and lip glosses	2	1.6
Others	11	8.9
Makeup total	86	69.4

⁶⁵ Available at: <https://pubchem.ncbi.nlm.nih.gov/compound/103991#section=Computed-Properties> (accessed 9/12/2024).

Product Category	Number of Products	Percentage of Total (%)
Eye makeup		
Eye shadows	6	4.9
Eyebrow pencils	5	4.0
Eyeliners	2	1.6
Other eye makeup preparations	1	0.8
Eye makeup total	14	11.3
Skin care		
Moisturizing	8	6.5
Face and neck	6	4.8
Cleansing	1	1.6
Others	5	4.0
Skin care total	20	16.1
Bath soaps and body washes	1	0.8
Suntan	3	2.4
Grand total	124	100.0

In contrast to PTFE and perfluorononyl dimethicone, which showed a steady decline in their usage in cosmetic products from 2019 to 2023 according to the VCRP data, the usage of perfluorohexylethyl triethoxysilane seems to have increased during the same period, rising from only 19 in 2019, to 105 in 2021, and 172 in 2023 before the discontinuation of the VCRP (**Table S4**). However, data obtained from Mintel's GNPD suggests a possible decline in its use, with 33 perfluorohexylethyl triethoxysilane containing products launched in the U.S. market over a 5-year period (August 2019 to July 2024) and only 1 product launched between August 2023 to July 2024 (**Table S4**). The use trend of perfluoroctyl triethoxysilane cannot be currently determined using the mandatory cosmetic product listing data submitted to the FDA due to the lack of historical data.

Under the FD&C Act, the concentration of ingredients used in cosmetic products is not required to be submitted to the FDA as part of the product listing data. Therefore, the use concentration for perfluorohexylethyl triethoxysilane is not available to the FDA. A recent publication by Balan, Bruton et al. (2024) reported the use concentration of perfluorohexylethyl triethoxysilane at a range between 0.06% and 0.82% in cosmetic products. However, actual use concentrations may vary depending on the raw material suppliers and the specific formulation.

The product categories indicate that consumers can be exposed to perfluorohexylethyl triethoxysilane via dermal, inhalation (incidental), and oral (incidental ingestion) routes. Ocular exposure is also possible when using perfluorohexylethyl triethoxysilane-containing products, such as eye shadows and eyebrow pencils.

Existing Safety Assessments by Government Agencies, Scientific Advisory Groups, and Peer-Reviewed Literature

A comprehensive search of data sources as listed in **Table S5** did not identify any assessments of perfluorohexylethyl triethoxysilane by government agencies or other scientific advisory groups such as SCCS, CIR, or IARC.

ADME/Toxicokinetics

An extensive literature search in PubMed and Web of Science did not identify any published data on the toxicokinetics of perfluorohexylethyl triethoxysilane (searched on 9/18/2024).

Based on the limited publicly available information from a registrant dossier submitted to ECHA (2018) (accessed on 9/18/2024), perfluorohexylethyl triethoxysilane hydrolyzes moderately in water to 2-(perfluorohexyl)ethylsilanetriol and ethanol with a hydrolysis half-life of 12.5 hours at pH 7 and 20 °C. The toxicokinetics of perfluorohexylethyl triethoxysilane through oral, inhalation, or dermal routes has been evaluated using computational models. Significant oral absorption is not expected for perfluorohexylethyl triethoxysilane based on prediction using computational models (details are not available for review in the REACH dossier). However, an oral repeated dose toxicity study confirms that oral absorption occurs, leading to systemic effects. The low water solubility and high log K_{ow} of perfluorohexylethyl triethoxysilane are unfavorable for dermal absorption. Therefore, dermal absorption into the blood is likely minimal. In addition, the predicted blood:air partition coefficient for perfluorohexylethyl triethoxysilane is extremely low (1.6E-06:1), indicating negligible to no systemic uptake via lung exposure. This could be supported by an acute inhalation test that did not reveal signs of systemic toxicity as stated in the REACH dossier. However, the report of the inhalation study is not publicly available and cannot be reviewed by the FDA.

Based on the Log K_{ow} of 7.2 and predicted much higher fat to blood partition coefficients of perfluorohexylethyl triethoxysilane compared to tissue to blood partition coefficients of other tissues, the ingredient would primarily distribute into adipose tissue. There is no direct data on metabolism of perfluorohexylethyl triethoxysilane, and if it is likely to accumulate due to low solubility in blood.

In summary, while direct data is lacking, the physicochemical properties suggest limited but possible oral absorption supported by experimental study results. Dermal and inhalation absorption are expected to be minimal. Systemic distribution is predicted to be primarily into adipose tissue, while no metabolism data exists. Excretion is limited for perfluorohexylethyl triethoxysilane, while the hydrolysis product is likely eliminated via the kidneys.

Hazard Assessment

A literature search in PubMed and Web of Science using the query outlined in **Table S9** yielded no publicly available information regarding the toxicity of perfluorohexylethyl triethoxysilane. However, a registrant's dossier on the ECHA website provides some relevant information, which is summarized below in the corresponding subsections (ECHA 2018).

It is important to note that the REACH dossier provides only limited publicly available information and the original study reports were inaccessible for review. Thus, the quality of the data cannot be independently and fully evaluated.

Acute and Repeated Dose Toxicity

Acute Toxicity

Dermal

An acute dermal toxicity study was conducted in 5 male and 5 female rats according to good laboratory practice (GLP) and current OECD TG 403 (ECHA 2018). Rats were exposed to 2000 mg/kg bw undiluted perfluorohexylethyl triethoxysilane for 24 hours. There were no signs of systemic reaction to treatment and no local dermal irritations at the treatment site following removal of the dressings. The LD₅₀ value was determined to be >2000 mg/kg.

Oral

An acute oral toxicity study was conducted in 3 male and 3 female rats according to OECD TG 423 and in compliance with GLP (ECHA 2018). Rats were given a single dose (2000 mg/kg bw) of undiluted perfluorohexylethyl triethoxysilane via gavage and observed for 14 days. There were no deaths and no signs of systemic reaction to treatment. The LD₅₀ value was determined to be >2000 mg/kg.

Inhalation

No data.

In summary, the results of the acute studies indicated a low risk of acute toxicity from exposure to perfluorohexylethyl triethoxysilane in cosmetics.

Repeated Dose Systemic Toxicity

Dermal

No data.

Oral

A combined repeated dose toxicity study with the reproduction/developmental toxicity screening test was conducted according to OECD TG 422 and in compliance with GLP (ECHA 2018). Wistar rats (10-11 weeks old), 10/group/sex (additional 6 rats/sex were used in the control and high dose recovery groups), were treated with perfluorohexylethyl triethoxysilane in liquid paraffin (vehicle) via oral gavage 7 days/week for 28 days (males) or up to 54 days (females) at 50, 100, 150 mg/kg bw/day. Due to observed morbidity and mortality in 150 mg/kg bw/day group, the dose was reduced to 125 mg/kg bw/day after premating day 14/mating day 1.

Clinical signs, such as progressive ataxia, paresis, and hypotonia in hind limbs related to the neuromuscular system, were observed dose-dependently in males and females of the two higher dose groups. Males appear to have been affected earlier and more severely when compared to females, leading to an earlier interim euthanasia of males than females. These signs partially remained in surviving animals in the high dose group (125 mg/kg bw) during the recovery period (14 days for males

and 16 days for females) except for one female rat. Upon histopathological examination, polyneuropathy was noted in peripheral nerves including the brachial, femoral, and sciatic nerves and distal extensions (tibial, peroneus, and soleus nerves). There were no clinical signs of toxicological relevance in the low dose group (50 mg/kg bw/day) during the treatment period of this study. In addition, significant treatment-related body weight loss was also observed in the two higher dose groups. The NOAEL was therefore reported to be 50 mg/kg bw/day based on effects on the peripheral nervous system.

Inhalation

No data.

Genotoxicity

Two Ames tests were performed according to OECD 471 and in compliance with GLP (ECHA 2018). Perfluorohexylethyl triethoxysilane was tested up to 1000 µg/plate in one test and 5000 µg/plate in another test in *Salmonella typhimurium* (ECHA 2018). No test substance-related increase in the number of revertants was observed with and without metabolic activation. The dossier concludes that the ingredient is negative for mutagenicity to bacteria under the conditions of the test.

An *in vitro* chromosome aberration study in mammalian cells was conducted according to OECD Guideline 473 and in compliance with GLP (ECHA 2018). Chinese hamster lung fibroblasts (V79) were exposed to perfluorohexylethyl triethoxysilane up to 200 µg/mL without metabolic activation and up to 500 µg/mL with metabolic activation. The ingredient is negative for the induction of chromosome aberrations under the conditions of this study.

A mammalian cell gene mutation assay was conducted according to OECD 490 and in compliance with GLP (ECHA 2018). Mouse lymphoma L5178Y cells were exposed to perfluorohexylethyl triethoxysilane at 0.05, 0.10, 0.25, 0.50, 1.00, 1.50, 1.75 and 2.0 mg/mL. No increase in the number of mutations was observed. The dossier concludes that the ingredient is negative for mutagenicity to mammalian cells under the conditions of the study.

Carcinogenicity

No data.

Developmental and Reproductive Toxicity (DART)

We identified a reproductive toxicity study in the REACH dossier for perfluorohexylethyl triethoxysilane (ECHA 2018). This was a combined repeated dose oral toxicity study with the reproduction/developmental toxicity screening test as described under the “Repeated Dose Systemic Toxicity” section. Perfluorohexylethyl triethoxysilane was administered daily via gavage at doses of 50, 100 and 125 mg/kg bw/day for a treatment period of up to 54 days. After 14 days of treatment, male and female rats were mated (1:1) for a maximum of 14 days, potential effects on their reproduction and development were also evaluated. The fertility index (number of pregnant females/number of copulated females x 100) was lower in the mid-dose group (100 mg/kg bw/day) but not in the low (50 mg/kg bw/day) or the high dose (125 mg/kg bw/day) groups when compared to the control group. No histological findings in reproductive organs were observed. Sperm staging did not reveal abnormalities in maturation. The copulation index (no. of animals copulated/no. of pairs x 100) was markedly reduced in the high dose group when compared to control. However, the authors concluded that the reduced copulation index was secondary to the more generalized physical debilitation (polyneuropathy) and was not considered as an adverse reproductive effect. There were no adverse effects observed in F1 offsprings. The study authors reported a NOAEL value of ≥125 mg/kg bw/day for reproductive toxicity for perfluorohexylethyl triethoxysilane.

In this study, a slightly and not statistically significantly higher percentage of pre-implantation loss was noted in the high dose group, but the effect was considered not toxicologically relevant. No adverse effects were noted on male and female fertility at any dose tested. Slightly lower mean total litter weight was observed in the two higher dose groups. Since values for litter weight in these two groups were within the normal range of biological variation and historical control data, the slight differences to controls were not considered toxicologically relevant. There were no treatment-related changes in fetus survival, pregnancy duration, and number of pregnancies. No adverse developmental effects were observed in F1 offspring. The study authors reported a NOAEL value of ≥ 125 mg/kg bw/day for developmental toxicity for perfluorohexylethyl triethoxysilane.

Neurotoxicity

Neurotoxicity was observed in rats in the combined repeated dose toxicity study with the reproduction/developmental toxicity screening test (see previous description under Repeated Dose Systemic Toxicity). The NOAEL and LOAEL are 50 and 100 mg/kg bw/day, respectively after 28 days (males) or 54 days (females), based on polyneuropathy in the peripheral nerves including the brachial, femoral, and sciatic nerves and distal extensions (tibial, peroneus, and soleus nerves) (ECHA 2018).

Site of Contact Effects

No studies on the dermal irritation or sensitization, ocular irritation, respiratory irritation, or phototoxicity of perfluorohexylethyl triethoxysilane were found in the public literature. Available studies regarding dermal sensitization, irritation, and ocular irritation in the REACH dossier are summarized below.

Dermal Sensitization

The skin sensitization potential of perfluorohexylethyl triethoxysilane was tested in guinea pigs using Buehler method according to OECD Test Guideline 406 and in compliance with GLP. After the induction phase of three weekly occlusive applications of undiluted perfluorohexylethyl triethoxysilane, the animals were challenged with a 50% solution of perfluorohexylethyl triethoxysilane in corn oil. Observations were made at 30 and 54 hours after the challenge. No sensitization reactions were observed in any of the 20 test animals or the 10 negative control animals. The dossier concludes that perfluorohexylethyl triethoxysilane is not sensitizing under the conditions of the Buehler test (ECHA 2018).

Dermal Irritation

Perfluorohexylethyl triethoxysilane was also evaluated for acute skin irritation in a semi-occlusive study conducted in accordance with OECD TG 404 and GLP guidelines. In two of the three small white Russian rabbits exposed to undiluted perfluorohexylethyl triethoxysilane for 4 hours, very slight erythema was observed at 30-60 minutes, as well as at 2, 48, and 72 hours. One animal developed a very slight edema 48 and 72 hours after the bandage was removed. All signs of irritation were resolved within 6 days after application. One animal showed no signs of skin irritation throughout the observation period. Based on these findings, perfluorohexylethyl triethoxysilane was determined to be non-irritating to the skin (ECHA 2018).

Ocular Irritation

In an eye irritation study performed in compliance with OECD 405 guidelines and GLP standards, perfluorohexyl ethyl triethoxysilane (undiluted) caused only minimal and temporary irritation to the eyes of small white Russian rabbits. Within one hour of application, pronounced hyperemia in several blood vessels was observed in all animals. In one animal, this redness in the connective tissue was

accompanied by mild swelling, including the nictitating membrane. The cornea and iris remained unaffected. At the 24-hour mark, only one animal displayed slight redness in the connective tissue, marked by distinct hyperemia of the blood vessels. No additional changes in the eye or conjunctiva were observed. By 48 and 72 hours, the eyes of all three animals appeared normal. As a result, perfluorohexylethyl triethoxysilane was not classified as an eye irritant (ECHA 2018).

Potential Hazard on Workers and General Population

By using the NOAEL value of 50 mg/kg bw/day determined from the repeated dose toxicity study, the REACH dossier also calculated the derived no effect level (DNEL) for both workers and the general population. The DNELs for workers were estimated to be 1.17 mg/m³ and 0.17 mg/kg bw/day for inhalation and dermal exposure respectively. For the general population, it was 0.083 mg/kg bw/day for both oral and dermal exposure routes, and 0.29 mg/m³ for inhalation exposure (ECHA 2018).

Summary of Hazard Assessment

According to the REACH dossier, perfluorohexylethyl triethoxysilane exhibits low acute toxicity based on the oral and dermal studies in rats, both showing LD₅₀ values >2000 mg/kg. *In vitro* mutagenicity testing was negative. In addition, perfluorohexylethyl triethoxysilane was not found to be a skin sensitizer or irritant in a guinea pig Buehler test (OECD TG 406) or a rabbit acute dermal irritation/corrosion test (OECD TG 404). Eye irritation was not observed following exposure to undiluted perfluorohexylethyl triethoxysilane (OECD TG 405). However, data on respiratory effects, phototoxicity, and carcinogenicity is lacking.

A combined repeated dose oral toxicity study with reproduction/developmental toxicity screening tests in rats revealed peripheral nervous system toxicity after 28 days (males) or 54 days (females), with a NOAEL and LOAEL of 50 and 100 mg/kg bw/day, respectively. Additionally, no treatment related reproductive or developmental toxicity was observed. The NOAEL was determined to be ≥125 mg/kg bw/day, which was the highest dose tested.

Dermal contact is expected to be the primary and most relevant route of consumer exposure to perfluorohexylethyl triethoxysilane from the use of cosmetic products containing it. However, due to the lack of relevant dermal studies, the NOAEL derived from the only available oral toxicity study is used as the POD (point of departure) for risk characterization.

For systemic endpoints, the POD needs to be converted from an external exposure dose to an internal (systemic) POD by considering exposure duration and bioavailability. While no oral absorption study exists for perfluorohexylethyl triethoxysilane, the REACH dossier suggests low oral exposure based on computational models. However, the observed peripheral nervous system toxicity in the repeated dose toxicity study indicates some oral absorption. SCCS recommends “in the absence of data, 50% of the administered dose is used as the default oral absorption value for a cosmetic ingredient and the PODsys [systemic POD] is derived from the POD by dividing with a factor 2. If there is information to suggest poor oral bioavailability, a default value of 10% oral absorption could be considered.” (SCCS 2023).

Given the lack of experimental oral absorption data and an animal study’s support for oral absorption, we assume 50% oral absorption for perfluorohexylethyl triethoxysilane. Therefore, the systemic POD (PODsys) is calculated as 25 mg/kg bw/day (50 mg/kg bw/day divided by 2), which is used for risk characterization described after the Exposure Assessment section below.

Since the existing data suggests that perfluorohexylethyl triethoxysilane is not sensitizing, a No Expected Sensitization Induction Level (NESIL) was not identified. Similarly, due to the lack of data or non-irritating properties, no POD was derived for site-of contact irritation or phototoxicity.

Exposure Assessment

Exposure Scenario

Based on the product categories (**Table A.5.2**), a consumer can be exposed to perfluorohexylethyl triethoxysilane via multiple exposure routes including dermal, oral, inhalation, and potentially ocular. Given that these cosmetic products are intended to be used topically, dermal contact is considered the primary exposure route and likely leads to the most significant exposure.

Oral, inhalation, and ocular exposures, while possible, are considered incidental. The REACH dossier indicates that there is negligible systemic uptake through inhalation considering the extremely low predicted blood:air partition coefficient (1.6E-06:1) for perfluorohexylethyl triethoxysilane (ECHA 2018). As such, an inhalation exposure assessment is not warranted. Similarly, while oral exposure is possible, the daily exposure to a product that may be ingested such as lipstick is 100 fold lower than exposure through using a body lotion (0.90 mg/kg bw/day vs 123.2 mg/kg bw/day) based on data in the SCCS Notes of Guidance, 12 revision (SCCS 2023). In addition, due to the lack of toxicity data for ocular exposure, the potential risk via this route cannot be determined. Furthermore, because none of these products appear to be intended for babies or children, only adults are considered in this assessment.

Considering all the above, the current exposure assessment will focus on dermal applications, which represents the most significant exposure route for perfluorohexylethyl triethoxysilane in these cosmetic products. Body lotion is selected as a conservative exposure scenario for this ingredient due to its high application frequency, full-body coverage, prolonged contact time and maximum application amount, leading to significant and repeated exposure.

Calculation of Systemic Exposure Dose (SED)

Under the body lotion exposure scenario, the level of systemic exposure from dermal application can be calculated using the following formula:

$$\text{SED} = \text{CRDE} * \text{C} * \text{DAF}$$

Where:

CRDE represents calculated relative daily exposure, i.e. the amount of body lotion applied that is available for dermal exposure

C represents concentration of perfluorohexylethyl triethoxysilane in the body lotion

DAF represents the dermal absorption factor (rate)

For adults, a default CRDE value of 123.2 mg/kg bw/day for body lotion, as established by the SCCS Notes of Guidance (SCCS 2023), is used in this calculation. This CRDE value has incorporated factors including the amount of product per use, frequency of use per day, and a retention factor (RF)⁶⁶ (RF=1 for leave-on products). Additionally, it has been adjusted based on body weight.

Due to the fact that information on ingredient use concentration is not required to be submitted to the FDA as part of the product listing data, the specific concentration of perfluorohexylethyl triethoxysilane in this product category is unknown. As such, we apply a conservative approach and assume the highest

⁶⁶ Retention factor (RF) represents the fraction (ranges from 0.01 to 1) of applied ingredient available for uptake. A retention factor of 1.0 may be incorporated if the product is applied directly to the skin and left on after use (such as body lotion, deodorant, or makeup), 0.1 if the product is rinsed shortly after use (such as mouthwash) or left on but not applied directly to the skin (hair styling products), or 0.01 if the product is rinsed off immediately after use (such as shampoo or shower gel).

recommended concentration of 0.82%, as described in the “Use in Cosmetic Products” section (Balan, Bruton et al. 2024), is used in the body lotion. This assumption is supported by a reported concentration of only 0.03% in a leave-on product.

Given the absence of experimental data, the DAF for perfluorohexylethyl triethoxysilane is undetermined. In the absence of experimentally determined dermal absorption data, we adopt a DAF of 50%, as recommended by the SCCS (SCCS 2023). Considering the results from computational modeling in the REACH dossier that suggests minimal dermal absorption due to the compound’s relatively high molecular weight (510.36 g/mol), low water solubility, and high partition coefficient ($\log K_{ow}=7.2$), the assumption of 50% DAF is conservative.

Therefore, the systemic exposure to perfluorohexylethyl triethoxysilane is determined to be 0.505 mg/kg bw/day based on the following calculation:

$$\text{SED} = 123.2 \text{ mg/kg bw/day} * 0.0082 \text{ (equivalent to 0.82\%)} * 0.5 \text{ (equivalent to 50\%)} = 0.505 \text{ mg/kg bw/day}$$

Risk Characterization

Risk characterization is the final step of a risk assessment, quantitatively evaluating whether the level of exposure to a specific ingredient in a product or product type of interest poses potential health risks to the consumers. As noted in the hazard assessment section, the potential of acute toxicity for perfluorohexylethyl triethoxysilane is low. In addition, it does not appear to be sensitizing to skin or irritating to the skin or eyes. Due to lack of data, the potential for phototoxicity cannot be determined. Therefore, this current risk characterization focuses solely on the potential risk of systemic toxicity.

In risk characterization, Margin of Exposure (MOE) is used as a tool to assess possible health concerns. MOE is the ratio between a safety-based POD and the estimated exposure level, i.e., SED. The larger the margin, the lower the risk. Typically, a calculated MOE smaller than the target MOE (e.g. the default of 100) indicates a concern for potential health risk, while a calculated MOE larger than the target MOE does not indicate a health concern.

The target MOE and the calculated MOE for perfluorohexylethyl triethoxysilane are derived as described below.

Target MOE

Target MOEs are determined by the composite uncertainty factor (UF) applied in a risk assessment, i.e. the multiplication of all individual applicable UFs. The default target MOE for non-cancer endpoints is typically set at 100 when the POD is a NOAEL derived from high quality 90-day animal studies. This MOE equals a composite UF that is made up of a factor of 10 for interspecies variability, i.e., animal to human extrapolation, and a factor of 10 for intraspecies variability, i.e., interindividual variation in the human population. However, modifications to the default value of 100 can be applied. For example, an UF of 10 is applied for animal to human, or human to human extrapolation. If a LOAEL, rather than a NOAEL, is derived from a toxicity study, a default UF of 3 to 10 may be applied when using a LOAEL. Similarly, if a key toxicity study is a 28-day study, instead of the desired 90-day study, an UF of 3 may be applied (SCCS 2023). Typically, a composite UF of 3,000 is considered to be a maximum that should be used in an assessment (Stedeford, Zhao et al. 2007).

Given that the POD in this assessment was derived from a relatively short-term animal study of 28-54 days as opposed to a 90-day repeated dose toxicity study, an additional uncertainty factor of 3 is applied. Thus, the target MOE for perfluorohexylethyl triethoxysilane is determined to be ≥ 300 . A calculated MOE of 300 or higher is indicative of low concern for health risk for perfluorohexylethyl triethoxysilane.

Calculated MOE

To characterize the risk of systemic toxicity endpoints, an MOE is calculated by dividing a POD (specifically, PODsys) with an estimated exposure, i.e., SED. Based on the PODsys and SED values calculated in the hazard assessment and exposure assessment sections, respectively, the MOE for perfluorohexylethyl triethoxysilane used in body lotion by adults is determined to be 50 as calculated below.

$$\text{MOE} = \text{PODsys/SED} = 25 \text{ mg/kg bw/day} \div 0.505 \text{ mg/kg bw/day} = 50$$

In this conservative use scenario, the calculated MOE (50) is smaller than the target MOE of ≥ 300 , indicating a potential safety concern regarding the use of this ingredient in cosmetic products under this use scenario (body lotion).

Characterization of Uncertainty

This risk assessment for perfluorohexylethyl triethoxysilane was carried out based on a worst-case scenario and is subject to significant uncertainties due to limited data availability. First, the actual concentration of perfluorohexylethyl triethoxysilane in cosmetic products is unknown, and the assumed concentration of 0.82% may be an overestimation. Second, there is a lack of experimental data on oral or dermal absorption. While the toxicity effects from the repeated dose study support oral absorption, the actual absorption rate was not reported. The default absorption rate of 50% for both oral and dermal absorption could be an overestimate. Third, there is no dermal toxicity study which is most relevant to the exposure of cosmetic products. The extrapolation from oral to dermal introduces uncertainty as dermal toxicokinetics, in particular, absorption, distribution, and metabolism, may differ significantly from oral exposure, potentially affecting the toxicity profile. Fourth, the quality for the only available oral toxicity study used to derive the NOAEL, cannot be independently evaluated due to lack of a full report. The additional uncertainty factor of 3 may not be necessary or it could be reduced depending on the quality of the toxicity data. Fifth, the mechanism or mode of action by which perfluorohexylethyl triethoxysilane induced peripheral nervous system toxicity is not known, making it impossible to evaluate whether the observed effects in rats would also occur in humans, i.e., its human relevance cannot be assessed. Finally, the assessment considered exposure to one cosmetic product (body lotion), which could underestimate exposure because individuals may use more than one cosmetic product containing perfluorohexylethyl triethoxysilane given that the mandatory cosmetic product listing data submitted to the FDA indicates there are about 124 cosmetic products that contain this ingredient sold in the U.S. and available data indicates an increasing market over time in the VCRP.

By addressing these knowledge gaps, we can refine this assessment and ensure the safety of perfluorohexylethyl triethoxysilane containing cosmetic products.

Review Summary and Conclusion

Uses: Perfluorohexylethyl triethoxysilane, a fluorinated alkyl silane, is a cosmetic ingredient currently reported to be used in 124 products according to the mandatory cosmetic product listing data submitted to the FDA as of August 30, 2024. It is primarily used in makeup, in particular face powders and foundations. While limited data from the VCRP suggests an increasing trend and Mintel's GNPD suggests a possible decline in the use of perfluorohexylethyl triethoxysilane in cosmetic products, a trend cannot be demonstrated at this time due to the lack of baseline or historical data in the mandatory cosmetic product listing data submitted to the FDA.

Safety: Based on the product types, consumers may be exposed to perfluorohexylethyl triethoxysilane through various routes when using cosmetic products. While dermal contact is likely the primary route of consumer exposure, the presence of perfluorohexylethyl triethoxysilane in face powders, foundations, lipstick, lip glosses, and eye makeup, such as eye shadow, could also lead to potential inhalation, oral, or ocular exposure.

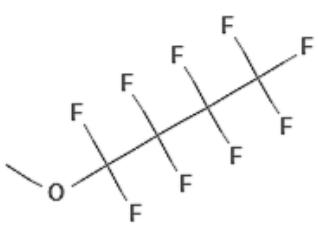
The toxicokinetics of perfluorohexylethyl triethoxysilane remain largely unstudied. Limited information publicly available in a REACH dossier suggests perfluorohexylethyl triethoxysilane is absorbed orally, while dermal absorption is minimal, and inhalation absorption is negligible (ECHA 2018).

We did not identify any published and peer reviewed toxicity data for perfluorohexylethyl triethoxysilane via a literature search. However, a REACH dossier that summarizes unpublished toxicity studies is available. The available REACH data indicates that perfluorohexylethyl triethoxysilane is not acutely toxic, skin sensitizing, or irritating to the skin or eyes (ECHA 2018). A combined repeated dose and reproduction/developmental toxicity study revealed peripheral nervous system toxicity in rats with a NOAEL and LOAEL of 50 and 100 mg/kg bw/day, respectively. No reproductive or developmental toxicity was observed at the highest dose (125 mg/kg bw/day) tested. Assuming oral absorption of 50%, the NOAEL (i.e., POD) was converted to a PODsys of 25 mg/kg bw/day.

Systemic exposure (i.e., SED) to perfluorohexylethyl triethoxysilane from using cosmetic products was estimated to be 0.505 mg/kg bw/day for a worst-case use scenario. This estimation assumed the highest recommended use level of 0.82% perfluorohexylethyl triethoxysilane in body lotion, a dermal absorption rate of 50%, and the SCCS recommended product use amount of 123.2 mg/kg bw/day (SCCS 2023).

The calculated MOE of 50 in body lotion is below the target MOE of ≥ 300 , which considers a factor of 10 for interspecies variation, 10 for intraspecies variation, and 3 for extrapolating toxicity data from a 28–54-day short-term study to 90-day subchronic study. This indicates a potential safety concern for perfluorohexylethyl triethoxysilane in body lotion under the most conservative or worst-case use scenario.

It is important to note that this assessment is preliminary and subject to significant uncertainties. These uncertainties stem from limited data on use concentration, lack of dermal and oral absorption, insufficient mechanistic information, absence of dermal toxicity data, and lack of co-exposure information (i.e., exposure to the ingredient from multiple cosmetic products).


As more data becomes available, this assessment could be refined to provide a more accurate evaluation of the safety and potential risks of perfluorohexylethyl triethoxysilane's use in cosmetic products.

6. Methyl Perfluorobutyl Ether

Introduction

Methyl perfluorobutyl ether (CAS No. 163702-07-6; PubChem CID: 164514) is an asymmetric fluorinated ether compound with the chemical formula $C_5H_3F_9O$. It is also known as methyl nonafluorobutyl ether. It consists of a methyl group attached to a perfluorobutyl ether backbone. **Table A.6.1** shows the chemical structure and physicochemical properties. Methyl perfluorobutyl ether is typically a clear, colorless liquid with a mild ethereal odor. Its water solubility is not reported. However, the relatively high partition coefficient of 4.67 indicates that methyl perfluorobutyl ether is highly hydrophobic and poorly soluble in water. The high vapor pressure of 202 mmHg and a relatively low boiling point of 60 °C suggest that this chemical is highly volatile. While flammable, methyl perfluorobutyl ether is chemically stable. It is resistant to oxidation and does not readily react with common reagents under normal storage conditions.

Table A.6.1. Physical and Chemical Properties of Methyl Perfluorobutyl Ether

Element	Description
Name	Methyl Perfluorobutyl Ether
INCI name	Methyl Perfluorobutyl Ether
Synonyms	Methyl Nonafluorobutyl Ether Nonafluorobutyl methyl ether Perfluorobutyl Methyl Ether 1,1,1,2,2,3,3,4,4-nonafluoro-4-methoxybutane 1-methoxynonafluorobutane 1H,1H,1H-Nonafluoro-2-oxahexane Butane, 1,1,1,2,2,3,3,4,4-nonafluoro-4-methoxy-
CAS#	163702-07-6
Structure	
Molecular formula	$C_5H_3F_9O$ (or $C_5H_3F_9O$)
Molecular weight	250.06 g/mol
Particle size	Not applicable
Physical form	Liquid, clear colorless with a mild ethereal odor

Element	Description
Density	1.529 g/ml at 20 °C; 1.52 g/ml at 25 °C ⁶⁷
Solubility	NA
Partition coefficient (Log K _{ow})	3.3 (predicted)
Vapor pressure	202 mmHg
Melting point	-135 °C ⁶⁷
Boiling point	60 °C ⁶⁷
Topological polar surface area	9.2 Å ²
UV light absorption spectrum	NA
Decomposes	NA
Additional properties	Chemically stable. Resistant to oxidation and does not react readily with common reagents under normal condition. ⁶⁷

Notes: NA, not available. Sources: PubChem; specified otherwise.

Use in Cosmetic Products

According to INCI, methyl perfluorobutyl ether, like its isomer methyl perfluoroisobutyl ether, is used as solvents and viscosity decreasing agents. The ingredient is used in three main product categories including cleansing products (cold creams, cleansing lotions, liquids and pads), face and neck preparations (excluding shaving preparations), and miscellaneous skin care preparations. According to a cosmetic ingredient supplier AE Chemie, methyl perfluorobutyl ether and its isomer, methyl perfluoroisobutyl ether, are used in AE CosmoFluor® 61, a brand name by AE Chemie, functioning as a fragrance enhancer, foam booster and cleansing agent for use in skin- and hair care formulations.⁶⁸

Based on the mandatory cosmetic product listing data submitted to the FDA, methyl perfluorobutyl ether is currently used as an ingredient in 112 cosmetic products (**Table A.6.2**). Similar to its isomer methyl perfluoroisobutyl ether, methyl perfluorobutyl ether is predominantly used in skin care products, accounting for 96.4% (n=108) of the ingredient's total usage in cosmetic products. It is commonly found in face and neck care products, both rinse-off (n=51, 45.5%) and leave-on (n=20, 17.9%). Cleansing products constitute 24.1% (n=27) of methyl perfluorobutyl ether's usage, while paste masks and other rinse-off skin care preparations represent 2.7% and 6.3%, respectively. Hair care products and non-eye makeup contribute to a smaller portion of its usage, at 2.7% and 0.9%, respectively (**Table A.6.2**). Please see **Table S2** for a full list of cosmetic product categories.

Table A.6.2. Frequency of Use of Methyl Perfluorobutyl Ether in the Mandatory Cosmetic Product Listing Data Submitted to the FDA (as of August 30, 2024)

Product Category	Number of Products	Percentage of Total (%)
------------------	--------------------	-------------------------

⁶⁷ Obtained from Chemical Book at https://www.chemicalbook.com/ProductChemicalPropertiesCB1328596_EN.htm (accessed 11/20/2024)

⁶⁸ See: <https://cosmetics.specialchem.com/product/i-ae-chemie-ae-cosmofluor-61> (accessed 11/20/2024).

Skin care		
Face and neck, rinse-off	51	45.5
Face and neck, leave-on	20	17.9
Cleansing	27	24.1
Paste masks (mud packs)	3	2.7
Other skin care preparations, rinse-off	7	6.3
Skin care total	108	96.4
Hair care		
Hair conditioners, leave-on	1	0.9
Other hair preparations, leave-on	1	0.9
Other hair preparations, rinse-off	1	0.9
Hair care total	3	2.7
Makeup (not eye, traditional applications)	1	0.9
Grand total	112	100.0

Historical data from the VCRP revealed a slight increase in the use of methyl perfluorobutyl ether in cosmetic products, from 13 in 2019 to 17 in 2021 and 23 in 2023 (**Table S4**). However, the Mintel GNPD indicated a relatively stable use, with 28 products containing methyl perfluorobutyl ether launched in the U.S. market over a 5-year period (August 2019 to July 2024), including 5 launched in between August 2023 and July 2024 (**Table S4**). The use trend of methyl perfluorobutyl ether cannot be currently determined using the mandatory cosmetic product listing data submitted to the FDA due to the lack of historical data.

Under the FD&C Act, the concentration of ingredients used in cosmetic products is not required to be submitted to the FDA as part of the product listing data. Therefore, the use concentration for methyl perfluorobutyl ether is not available to the FDA. A recent publication by Balan, Bruton et al. (2024) reported the use of methyl perfluorobutyl ether at a range of 2% to 9% in cosmetic products. Additionally, a company reported using methyl perfluorobutyl ether at a concentration of 6.75% in facial masks according to a recent FDA survey.

Due to its predominant use in skin care products, consumers can be exposed to methyl perfluorobutyl ether primarily via dermal exposure from using cosmetic products. Oral and inhalation exposure are considered less likely based on the products in which this ingredient is used.

Existing Safety Assessments by Government Agencies, Scientific Advisory Groups, and Peer-Reviewed Literature

A comprehensive search of data sources as listed in **Table S5** did not identify any assessments of methyl perfluorobutyl ether by government agencies or other scientific advisory groups such as SCCS, CIR, or IARC.

One previous assessment, conducted by the Australian National Industrial Chemicals Notification and Assessment Scheme (NICNAS) in 2020 appears to be relevant to the safety of methyl perfluorobutyl ether (NICNAS 2020). This assessment, following the Inventory Multi-tiered Assessment and Prioritisation (IMAP) framework, is a tier II assessment of the human and environmental health of methyl perfluorobutyl ether along with a group of 15 other short chain perfluorocarboxylic acids (PFCAs) precursors. This NICNAS assessment concluded that the risk to the public from use of methyl perfluorobutyl ether is not considered to be unreasonable based on the low toxicity profile for this chemical (NICNAS 2020).

However, upon further examination of the citations used to support the safety of this ingredient, it was noted that all studies were conducted using HFE-7100 (or Cosmetic Fluid CF-61, a marketing name of HFE-7100 by 3M) as presented in another assessment (NICNAS 2006). As described earlier in this review, HEF-7100 is a mixture of methyl perfluorobutyl ether and methyl perfluoroisobutyl ether at a ratio of 40%: 60% (NRC 2007).

Given that this review is for a discrete individual chemical, i.e., methyl perfluorobutyl ether, these reports are not adopted for supporting the safety of either methyl perfluorobutyl ether or methyl perfluoroisobutyl ether in the current report.

ADME/Toxicokinetics

A literature search in PubMed and Web of Science using the query outlined in **Table S9** yielded no results in PubMed and 63 publications in Web of Science. After a title/abstract screening, we did not identify any publications relevant to the toxicokinetics of methyl perfluorobutyl ether. We also did not identify a REACH dossier for methyl perfluorobutyl ether in the ECHA database (9/16/2024).

Hazard Assessment

A literature search in PubMed and Web of Science using the query outlined in **Table S9** yielded no publicly available information regarding the toxicity of methyl perfluorobutyl ether. However, we reviewed SDS from several raw material suppliers^{69,70,71}. While these SDS reveal a general lack of toxicity data on acute toxicity, genotoxicity, repeated dose toxicity, carcinogenicity, and developmental and reproductive toxicity for this chemical, the SDS from AK Scientific Inc.⁷² mentions a potential for health hazards associated with methyl perfluorobutyl ether exposure. These include skin, eye, and respiratory irritation. It may also cause drowsiness or dizziness as indicated by another supplier, SynQuest Laboratories, Inc.⁷³ Importantly, we note that the specific data regarding these health effects are unavailable for our independent evaluation.

Review Summary/Conclusion

⁶⁹ <https://www.chemicalbook.com/msds/methyl-nonafluorobutyl-ether.pdf> (accessed 1/2/2025).

⁷⁰ https://www.spectrumchemical.com//media/sds/M3112_AGHS.pdf (accessed 1/2/2025).

⁷¹ https://www.tcichemicals.com/JP/ia/sds/M1345_JP_EN.pdf (accessed 1/2/2025).

⁷² https://aksci.com/sds/J57155_SDS.pdf (accessed 1/2/2025).

⁷³ <https://www.chemblink.com/MSDS/MSDSFiles/163702-07-6Syn-Quest.pdf> (accessed 1/0/2025).

Uses: Based on the mandatory cosmetic product listing data submitted to the FDA, methyl perfluorobutyl ether is currently used in 112 cosmetic products. It is primarily used in skin care products, in particular face and neck care, including both rinse-off and leave-on types of products. The use of methyl perfluorobutyl ether in cosmetic products has shown a slight increase according to the VCRP data and stable usage trend per Mintel's GNPD. However, due to the lack of baseline or historical data in the mandatory cosmetic product listing data submitted to the FDA, these trends cannot be demonstrated at this time.

Safety: Based on the products that use methyl perfluorobutyl ether as an ingredient, consumers may be exposed to this ingredient primarily via dermal contact. In addition, due to the volatile nature of the chemical, inhalation exposure is possible. However, there is a significant lack of publicly available information regarding the toxicokinetics and toxicity of methyl perfluorobutyl ether. The FDA lacks the necessary information to assess its potential for eye and skin irritation, its ability to cause skin sensitization, and whether it can be absorbed into blood circulation and cause systemic toxicity. Due to these significant data gaps, the FDA cannot determine the safety of methyl perfluorobutyl ether from its use in cosmetic products or risks associated with such use.

7. Methyl Perfluoroisobutyl Ether

Introduction

Methyl perfluoroisobutyl ether, also known as methyl nonafluoroisobutyl ether (CAS No. 163702-08-7; PubChem CID: 4156734) is a fluorinated solvent used in various applications. It is synthesized from dimethyl ether and perfluoro(2-methylpropanoyl) fluoride. Methyl perfluoroisobutyl ether is the isomer of methyl perfluorobutyl ether that is reviewed in the previous section of this report (CAS No. 163702-07-6). **Table A.7.1** shows the chemical structure and physicochemical properties. Methyl perfluoroisobutyl ether is a clear, colorless liquid with a mild ethereal odor. It is slightly water soluble but is highly volatile owing to its high vapor pressure and low boiling point. In addition, methyl perfluoroisobutyl ether is highly stable chemically under normal laboratory conditions. It is also resistant to hydrolysis and oxidation.

Table A.7.1. Physical and Chemical Properties of Methyl Perfluoroisobutyl Ether

Element	Description
Name	Methyl Perfluoroisobutyl Ether
INCI name	Methyl Perfluoroisobutyl Ether
Synonyms	Methyl Nonafluoroisobutyl Ether Perfluoroisobutyl Methyl Ether 2-[difluoro(methoxy)methyl]-1,1,1,2,3,3,3-heptafluoropropane 2-(difluoromethoxymethyl)-1,1,1,2,3,3,3-heptafluoropropane 1,1,1,2,3,3,3-hexafluoro-3-methoxy-2-(trifluoromethyl)propane Propane, 2(difluoromethoxymethyl)1,1,1,2,3,3,3heptafluoro 1,1,2,3,3,3-hexafluoro-1-methoxy-2-(trifluoromethyl)propane
CAS#	163702-08-7
Structure	
Molecular formula	$\text{CF}_3\text{CF}(\text{CF}_3)\text{CF}_2\text{OCH}_3$ (or $\text{C}_5\text{H}_3\text{F}_9\text{O}$)
Molecular weight	250.06 g/mol
Particle size	Not applicable
Physical form	Liquid, clear colorless with a mild ethereal odor
Density	1.53 g/cm ³ at 20 °C (ECHA 1997)
Solubility	8.47 mg/L (ECHA 1997)
Partition coefficient (log K_{ow})	3.54 (ECHA 1997)
Vapor pressure	202.0 mmHg

Element	Description
Melting point	<0 °C (ECHA 1997)
Boiling point	≥60.5 °C ~ ≤62 °C at 101.3 kPa (ECHA 1997)
Topological polar surface area	9.2 Å ²
UV light absorption spectrum	NA
Decomposes	NA
Additional properties	Highly stable under normal laboratory conditions; resistant to hydrolysis and oxidation. ⁷⁴ Reflective index 1.27 ⁷⁵

Notes: NA, not available. Sources: PubChem; specified otherwise.

Use in Cosmetic Products

According to INCI, methyl perfluoroisobutyl ether is used as solvents and viscosity decreasing agents in two main cosmetic product categories including cleansing products (cold creams, cleansing lotions, liquids and pads), and face and neck preparations (excluding shaving preparations). Methyl perfluoroisobutyl ether and its isomer methyl perfluorobutyl ether are used in AE CosmoFluor® 61, a brand name by AE Chemie, acting as a fragrance enhancer, foam booster and cleansing agent. AE CosmoFluor® 61 is used in skin- and hair care formulations.⁶⁸

Based on FDA's cosmetic product listing data, methyl perfluoroisobutyl ether is currently used as an ingredient in 106 cosmetic products. A substantial majority (n=105, 97.2%) of these products were categorized under the skin care product category (**Table A.7.2**). Within the skin care product category, face and neck care products, including both rinse-off (n=49, 46.2%) and leave-on (n=13, 12.3%), are the most common, followed by cleansing products (n=27, 25.5%). While less common, methyl perfluoroisobutyl ether is also found in paste masks (2.8%), body and hand products (0.9%), and other miscellaneous skin care products (9.4%). Hair care products represent a small fraction (2.8%) of total use of methyl perfluoroisobutyl ether in cosmetic products as shown in **Table A.7.2**. Please see **Table S2** for a full list of cosmetic product categories.

Table A.7.2. Frequency of Use of Methyl Perfluoroisobutyl Ether in the Mandatory Cosmetic Product Listing Data Submitted to the FDA (as of August 30, 2024)

Product Category	Number of Products	Percentage of Total (%)
Skin care		
Face and neck, rinse-off	49	46.2
Face and neck, leave-on	13	12.3
Cleansing	27	25.5

⁷⁴ Obtained from <https://www.evitachem.com/product/evt-333518> (accessed 11/20/2024).

⁷⁵ Obtained from <https://www.bocsci.com/product/methyl-perfluoroisobutyl-ether-cas-163702-08-7-72292.html> (accessed 11/20/2024).

Paste masks (mud packs)	3	2.8
Body and hand	1	0.9
Other skin care preparations, rinse-off	10	9.4
Skin care total	103	97.2
Hair care		
Tonics, dressings, and other hair grooming aids	1	0.9
Other hair preparations, leave-on	1	0.9
Other hair preparations, rinse-off	1	0.9
Hair care total	3	2.8
Grand total	106	100.0

Like methyl perfluorobutyl ether, the use of methyl perfluoroisobutyl ether in cosmetic products saw a slight uptick in the VCRP before its sunsetting, increasing from 11 products in 2019 to 16 products in 2021, and to 22 products in 2023 (**Table S4**). According to the Mintel GNPD, 20 products containing methyl perfluoroisobutyl ether were launched in the U.S. market over a 5-year period (August 2019 to July 2024), with 4 products launched between August 2023 and July 2024 (**Table S4**). The use trend of methyl perfluoroisobutyl ether cannot be currently determined using the mandatory cosmetic product listing data submitted to the FDA due to the lack of historical data.

Under the FD&C Act, the concentration of ingredients used in cosmetic products is not required to be submitted to the FDA as part of the product listing data. Therefore, the use concentration for methyl perfluoroisobutyl ether is not available. However, a recent publication by Balan, Bruton et al. (2024) reported a use range of 1% to 8% for methyl perfluoroisobutyl ether in cosmetic products. This was calculated based on a recommended use of 10% of AE CosmoFluor® 61, which contains methyl perfluoroisobutyl ether at a concentration of 10-80%. The actual concentration of methyl perfluoroisobutyl ether in a final product will vary depending on the specific product type and usage.

Given that the majority of the methyl perfluoroisobutyl ether-containing products (>97%) are used for skin care, dermal contact is expected to be the primary route of exposure to this ingredient from cosmetic use. Inhalation exposure is also possible due to the volatile nature of this ingredient. Other exposure routes, such as oral and ocular, are less likely.

Existing Safety Assessments by Government Agencies, Scientific Advisory Groups, and Peer-Reviewed Literature

A comprehensive search of data sources as listed in **Table S5** did not identify any assessments of methyl perfluoroisobutyl ether by government agencies or other scientific advisory groups such as SCCS, CIR, or IARC.

ADME/Toxicokinetics

A comprehensive literature search in PubMed and Web of Science did not identify any published data on the toxicokinetics of methyl perfluoroisobutyl ether (searched on 9/16/2024). We identified two REACH dossiers for methyl perfluoroisobutyl ether with limited publicly available information in the ECHA database (searched on 9/16/2024). However, no ADME/toxicokinetics data appears in these dossiers (ECHA 1997, ECHA 2011). The REACH dossiers (ECHA 1997, ECHA 2011) included toxicokinetic analyses of methyl perfluoroisobutyl ether based on the physicochemical properties such as molecular weight, lipophilicity, water solubility and vapor pressure. The dossiers stated that the absorption of methyl perfluoroisobutyl ether is expected to be high via inhalation, moderate via the oral, and low via the dermal routes. However, the FDA is unable to evaluate the quality and validity of the study due to the lack of critical details.

Hazard Assessment

A literature search in PubMed and Web of Science using the query outlined in **Table S9** yielded no publicly available information regarding the toxicity of methyl perfluoroisobutyl ether. Relevant information pertaining to this review, as found in the two REACH dossiers, is summarized below in the corresponding sections.

Acute and Repeated Dose Toxicity

Acute Toxicity

Dermal

No data.

Oral

An oral LD₅₀ of >5,000 mg/kg bw was reported in one REACH dossier for methyl perfluoroisobutyl ether (ECHA 2011). The acute oral toxicity study, conducted in accordance with OECD TG 401 and GLP principles, involved 5 male and 5 female Crl:CD (SD)BR rats administered a single oral dose of 5,000 mg/kg bw undiluted methyl perfluoroisobutyl ether. Neither mortality nor visible lesions were observed during a 14-day observation period.

Inhalation

An inhalation LC₅₀ of >361.8 mg/L air was reported in a 4-hour whole body inhalation exposure study in male and female Sprague-Dawley rats, as detailed in the REACH dossier for methyl perfluoroisobutyl ether (ECHA 1997). The dossier did not provide specific information on the number of animals, effects observed, or adherence to guidelines. Another study in the same dossier (ECHA 1997) reported an inhalation LC₅₀ of >1,022.7 mg/L air in a 4-hour inhalation study in male Sprague-Dawley rats. No other details of the study were provided.

In summary, the above information indicates the acute toxicity for methyl perfluoroisobutyl ether is low.

Repeated Dose Systemic Toxicity

Dermal

No data.

Oral

No data.

Inhalation

A NOAEL of 77.1 mg/L in air was reported in a repeated dose inhalation toxicity study in rats in the REACH dossier for methyl perfluoroisobutyl ether (ECHA 1997). However, the dossier did not provide specific information on animal age and gender, dose levels, treatment duration, guideline compliance, or the critical effect (and the affected organ) associated with the NOAEL or a LOAEL.

Genotoxicity

An *in vitro* chromosome aberration test in V79 cells and an *in vivo* mammalian erythrocyte micronucleus test in mice were noted in the REACH dossier for methyl perfluoroisobutyl ether (ECHA 1997). Both studies reported negative in genotoxicity. However, details of the studies (e.g. concentration/dose, exposure route) were not reported.

An *in vitro* gene mutation study in bacteria was performed in accordance with OECD Guideline 471 (Bacterial Reverse Mutation Assay) and GLP principles (ECHA 2011). This study reported negative genotoxicity for methyl perfluoroisobutyl ether as well.

Carcinogenicity

No data.

Developmental and Reproductive Toxicity (DART)

The REACH dossier for methyl perfluoroisobutyl included a one-generation reproductive toxicity study in rats via nose only inhalation according to OECD TG 415, and a developmental toxicity study in rats via whole body inhalation according to OECD TG 414 (ECHA 1997). A NOAEL of 129.1 mg/L for parental rats (P0) and the first generation offsprings (F1), and a NOAEL of 304.5 mg/L for maternal and fetuses were determined. The study designs were not specified.

It is important to note that only very limited details regarding the studies were provided. Notably, the key effects associated with the NOAELs are missing, making it challenging to use these NOAELs for a quantitative risk assessment for this ingredient.

Neurotoxicity

The FDA did not identify any neurotoxicity data in the public literature. However, the information in the PubChem for methyl perfluoroisobutyl ether indicates it's a neurotoxin and may cause acute solvent syndrome. However, no citations were provided to support this claim.⁷⁶

Site of Contact Effects

Dermal Irritation

An *in vivo* skin irritation study was conducted, according to OECD TG 404 (Acute Dermal Irritation / Corrosion) and GLP principles, in 3 male rabbits. Results of this study indicated that methyl perfluoroisobutyl ether was not a skin irritant (ECHA 2011).

⁷⁶ <https://pubchem.ncbi.nlm.nih.gov/compound/4156734#section=Toxicity> (accessed 11/21/2024).

Dermal Sensitization

Two skin sensitization tests, i.e., Guinea Pig Maximization Test and Buehler Test, were performed according to OECD 406 and GLP principles using undiluted methyl perfluoroisobutyl ether. Both studies reported negative results. Therefore, methyl perfluoroisobutyl ether was not classified as a skin sensitizer (ECHA 2011).

Ocular Irritation

An eye irritation test, according to OECD TG405 (Acute Eye Irritation / Corrosion) and GLP principles, was conducted in 3 male rabbits using undiluted methyl perfluoroisobutyl ether. Results indicated that methyl perfluoroisobutyl ether was not an eye irritant (ECHA 2011).

Respiratory irritation

No data.

Photo-induced toxicity

No data.

Others

None identified.

Review Summary/Conclusion

Uses: Methyl perfluoroisobutyl ether, an isomer of methyl perfluorobutyl ether, is used as an ingredient in 106 cosmetic products, according to the mandatory cosmetic product listing data submitted to the FDA. These products are predominantly for skin care (particularly face and neck care). Like methyl perfluorobutyl ether, the VCRP data indicated a slight increase in the use of methyl perfluoroisobutyl ether in cosmetic products, while Mintel's GNPD data suggested relatively stable usage in recent years. However, due to the lack of a baseline or historical data in the mandatory cosmetic product listing data submitted to the FDA, a trend cannot be demonstrated at this time.

Safety: Given the primary use of methyl perfluoroisobutyl ether in skin care products, dermal contact is likely the most significant route of consumer exposure to this ingredient. In addition, due to its volatility, inhalation exposure may also be a potential exposure pathway.

However, there is no publicly available information on the toxicokinetics of methyl perfluoroisobutyl ether. Therefore, the potential for this ingredient to be absorbed via either dermal or inhalation routes cannot be determined. Furthermore, no published data relevant to the toxicity of methyl perfluoroisobutyl ether is available.

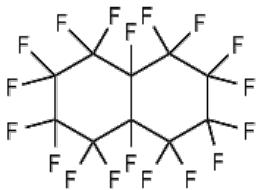
Limited information in the two REACH dossiers for this compound indicates a low concern for acute toxicity via either oral or inhalation exposure. It is not classified as a skin sensitizer, skin or ocular irritant. Additionally, both *in vitro* and *in vivo* genotoxicity studies did not produce any positive genotoxicity findings. There are no data available on respiratory irritation, phototoxicity, repeated dose dermal or oral toxicity, or carcinogenicity. While NOAELs were identified for a repeated dose inhalation study and developmental and reproductive studies, they cannot be used for a quantitative risk assessment. This is because the available REACH dossiers lack significant study details, such as critical effects related to the NOAELs, which prevents a proper assessment of study quality and reliability.

Given the limited data available, particularly related to toxicokinetic and long-term effects, the FDA cannot determine the safety of methyl perfluoroisobutyl ether from its use in cosmetic products or risks associated with such use.

8. Perfluorodecalin

Introduction

Perfluorodecalin (CAS No. 306-94-5; PubChem ID 9836) is a fluorocarbon, a derivative of decalin in which all of the hydrogen atoms are replaced by fluorine atoms. **Table A.8.1** shows the chemical structure and physicochemical properties. It is a colorless, odorless and tasteless liquid and is insoluble in water but soluble in low polar solvents like acetone and ethanol. It has a melting point of -5 °C, boiling point of 142 °C at 101 kPa and a vapor pressure of 0.88 kPa at 25 °C, indicating a low tendency to evaporate. In addition, perfluorodecalin is heat-resistant and stable up to 400 °C (ECHA 2016). The relatively high partition coefficient of 5.7 indicates that perfluorodecalin is highly hydrophobic and poorly soluble in water.


Perfluorodecalin has many medical applications. It is known for its exceptional ability to dissolve oxygen, making it a potential blood substitute for oxygen transport in the body. Perfluorodecalin was an ingredient in Fluosol-DA, an artificial blood substitute that was developed in the 1970s. It was approved for use in the U.S. in 1989 but discontinued due to side effects in 1994 (Zhao, Liu et al. 2024). It is also an ingredient in Perftoran, an emulsion of perfluorocarbons in a surfactant and electrolyte mixture, approved for use in some countries for hemorrhagic anemia and ischemic conditions (Latson 2019). However, it is not currently approved for human use in the U.S., and its long-term benefits and risks remain to be established with more extensive studies.

Highly purified perfluorodecalin has been extensively used in vitreoretinal surgery, particularly for retinal detachment treatment by acting as an ocular tamponade agent, holding the retina in place. Perfluorodecalin is generally well tolerated by patients, however, complete removal of perfluorodecalin is recommended at the end of surgical procedures to minimize the risk of potential retinal toxicity (Orzalesi, Migliavacca et al. 1998, Yu, Liu et al. 2014, Chehade, Guo et al. 2021). In addition, perfluorodecalin has been evaluated for use as a liquid ventilation agent for treating acute lung injury and respiratory failure (Suh, Chung et al. 2000, Dimmitt, Beckman et al. 2002, Guo, Lu et al. 2009); in cancer therapy for delivering oxygen to hypoxic tumors and enhancing the efficacy of radiotherapy and photodynamic therapy (Teicher and Rose 1984, Cheng, Cheng et al. 2015); in wound healing by topical application to provide extra oxygen to a specific location and accelerate the wound healing process (Li, Pang et al. 2022, Yang, Chen et al. 2022); and other uses such as organ preservation (Matsumoto and Kuroda 2002) and medical imaging as a contrast agent (Holman, Lorton et al. 2021).

In addition, perfluorodecalin has emerged as a promising clearing agent in laser tattoo removal procedures, showing notable safety and benefits over conventional methods. Reported advantages include better tolerability, increased efficacy, reduced particle emission, and fewer and less severe adverse effects such as epidermal whitening, thermal injury to epidermis, pain, swelling and scarring (Reddy, Brauer et al. 2013, Biesman and Costner 2017, Vangipuram, Hamill et al. 2019, Danysz, Becker et al. 2020). However, the long-term safety of using perfluorodecalin in tattoo removal requires further investigation.

Table A.8.1. Physical and Chemical Properties of Perfluorodecalin

Element	Description
Name	Perfluorodecalin

Element	Description
INCI name	Perfluorodecalin
Synonyms	Perflunafene Octadecafluorodecalin Naphthalene, octadecafluorodecahydro- Octadecafluorodecahydronaphthalene Decalin Perfluoride Perfluorodecahydronaphthalene Octadecafluorodecaline 1,1,2,2,3,3,4,4a,5,5,6,6,7,7,8,8a- Octadecafluorodecahydronaphthalene
CAS#	306-94-5
Structure	
Molecular formula	C ₁₀ F ₁₈
Molecular weight	462.08 g/mol
Particle size	Not applicable
Physical form	Clear colorless, odorless liquid
Density	1.941 g/cm ³ at 25 °C
Solubility	Insoluble in water; soluble in low polarity solvents such as acetone and ethanol.
Partition coefficient (Log K _{ow})	5.7 (predicted)
Vapor pressure	0.88 kPa at 25 °C
Melting point	-5 °C at 101 kPa
Boiling point	142 °C at 101 kPa
Topological polar surface area	0 Å ² (computed)
UV light absorption spectrum	NA
Decomposes	NA
Additional properties	Stable up to 400 °C.

Notes: NA, not available. Sources: REACH registration dossier for perfluorodecalin (ECHA 2016); specified otherwise.

Use in Cosmetic Products

According to INCI, perfluorodecalin is a cosmetic ingredient functioning as miscellaneous skin-conditioning agents and solvents. It is reported to be used in various categories of cosmetic products including miscellaneous eye makeup preparations, moisturizing preparations, miscellaneous skin care preparations, face and neck preparations (excluding shaving preparations), and nail polish and enamels.

Based on the mandatory cosmetic product listing data submitted to the FDA, perfluorodecalin is currently used in 71 cosmetic products (**Table A.8.2**). Skin care products make up the largest category, accounting for 67.6% (N=48) of the total. Eye makeup is the second-largest category at 14.1% (N=10). Other categories include hair care, makeup (not eye), manicuring, and suntan, each representing less than 10% of the total products. Within skin care, face and neck leave-on products are the most prevalent, comprising 35.2% (N=25) of the total (**Table A.8.2**). Please see **Table S2** for a full list of cosmetic product categories.

Table A.8.2. Frequency of Use of Perfluorodecalin in the Mandatory Cosmetic Product Listing Data Submitted to the FDA (as of August 30, 2024)

Product Category	Number of Products	Percentage of Total (%)
Eye makeup		
Eye shadows	7	9.9
Eye lotions	1	1.4
Other eye makeup	2	2.8
Eye makeup total	10	14.1
Hair care		
Other hair preparations, leave-on	3	4.2
Makeup preparations (not eye) (other than makeup preparations for children)		
Foundations, traditional application	2	2.8
Foundations, airbrush application	1	1.4
Fixatives	2	2.8
Makeup (not eye) total	5	7.0
Manicuring		
Basecoats and undercoats	1	1.4
Nail polishes and enamels	1	1.4
Manicuring total	2	2.8
Skin care		
Cleansing	1	1.4
Moisturizing	5	7.0
Face and neck, leave-on	25	35.2

Product Category	Number of Products	Percentage of Total (%)
Face and neck, rinse-off	4	5.6
Body and hand, leave-on	1	1.4
Body and hand, rinse-off	1	1.4
Paste masks (mud packs)	1	1.4
Other skin care, leave-on	6	8.5
Other skin care, rinse-off	4	5.6
Skin care total	48	67.6
Suntan		
Indoor tanning	2	2.8
Other suntan preparations	1	1.4
Suntan total	3	4.2
Grand total	71	100.0

Data from the VCRP and Mintel's GNPD indicated that the use of perfluorodecalin in cosmetic products in the U.S. market has remained relatively consistent. There were 36 perfluorodecalin-containing products in 2019 in the VCRP and 35 in 2021, decreasing to 28 in 2023 before the VCRP's discontinuation (**Table S4**). Mintel's GNPD data revealed that a total of 29 perfluorodecalin containing cosmetic products were launched in the U.S. market over a 5-year period (August 2019 to July 2024), with 6 of these launched between August 2023 and July 2024 (**Table S4**). The use trend of perfluorodecalin cannot be currently determined using the mandatory cosmetic product listing data submitted to the FDA due to the lack of historical data.

Under the FD&C Act, the concentration of ingredients used in cosmetic products is not required to be submitted to the FDA as part of the product listing data. Therefore, the use concentration for perfluorodecalin is not available to the FDA. A recent publication by Balan, Bruton et al. (2024) and a cosmetic ingredient supplier's datasheet,⁷⁷ reported the use concentration of 0.02% to 3.75% for perfluorodecalin in cosmetic products. It is important to note that this is the recommendation from one supplier; the actual use concentrations likely vary depending on specific suppliers and product types. As an example, one company reported using perfluorodecalin at 0.001% in a shave cream product, according to a recent FDA survey.

⁷⁷ <https://cosmetics.specialchem.com/selectors?q=%20perfluorodecalin> (accessed 10/10/2024). Based on information on the webpage, Innovation Company's Fiflow® products contain 1-25% perfluorodecalin. The suggested use concentration of these ingredients in final products is 2-15%. The use concentration for perfluorodecalin is thus calculated to be in the range of (1-25%)*(2-15%) = 0.02-3.75%.

Consumers can be exposed to perfluorodecalin primarily through dermal contact from using skin care products. Other routes of exposure, such as ingestion of lip products, inhalation of face powders, and ocular contact with eye makeup (including eye shadows and eyebrow pencils) are considered incidental.

Existing Safety Assessments by Government Agencies, Scientific Advisory Groups, and Peer-Reviewed Literature

A comprehensive search of data sources as listed in **Table S5** did not identify any assessments of perfluorodecalin by government agencies or other scientific advisory groups such as SCCS, CIR, or IARC.

ADME/Toxicokinetics

We conducted a literature search for the ADME/toxicokinetics of perfluorodecalin using the query outlined in **Table S7** (searched on 10/15/2024). The search yielded 336 publications. After the title, abstract and full text screening, 25 studies were deemed relevant. In addition, three extra publications were included from the review for the general toxicity of perfluorodecalin. We did not identify any toxicokinetic studies in the REACH dossier for perfluorodecalin (ECHA 2016). The REACH dossier (ECHA 2016) included a read-across study to evaluate ADME properties of perfluorodecalin based on a category approach using perfluorocarbons as analog. The study authors stated that saturated perfluorocarbons are well established as a class of compounds with very similar toxicological properties. The study authors concluded that perfluorodecalin is not expected to be absorbed significantly and tends to distribute to the liver and spleen. In addition, perfluorodecalin is not metabolized and is rapidly excreted by exhalation without bioaccumulation. However, we were unable to evaluate the quality and validity of the study due to the lack of critical details.

Animal studies are available for the distribution of perfluorodecalin through pulmonary and non-pulmonary exposure. For pulmonary administration routes, an animal study with male Wistar rats and rabbits indicated perfluorodecalin had extremely low bioavailability (no more than 0.2%), following the route of endotracheal administration (Zhurkovich, Utsal' et al. 2022). The lungs were identified as the main depot organ for perfluorodecalin. The study also shows that perfluorodecalin is rapidly eliminated through exhaled air with more than 200-fold decrease of perfluorodecalin concentration in the lungs (Zhurkovich, Utsal' et al. 2022). Similar results were found in another study with pre-term lambs, which also showed that the highest levels of the perfluorodecalin were found in the lungs (Shaffer, Wolfson et al. 1996). For non-pulmonary administration routes, a rat study using perfluorodecalin emulsions in a partial blood exchange procedure reported extensive uptake by the reticuloendothelial system, with preferential distribution to the liver and spleen (Shrewsbury, White et al. 1986). Similar findings were observed in a study involving dogs, where perfluorodecalin emulsion particles were taken up by phagolysosomes in various tissues. In the liver, particles were captured predominantly in Kupffer cells and macrophages (Mitsuno, Ohyanagi et al. 1984). In another study, the distribution of perfluorodecalin emulsions was observed to be primarily to the liver and spleen, followed by the kidney, bone marrow and lungs (Shrewsbury, Oliver et al. 1989). In a rat study with intraperitoneal administration of perfluorodecalin emulsions, the maximal concentration of perfluorodecalin in the spleen was identified 24 hours after treatment and the maximal concentration in the liver occurred 72 hours after treatment (Lowe and Bentley 1992).

Most perfluorodecalin is eliminated through the lungs by expiration, and small amounts are eliminated through the skin. Perfluorodecalin particles are mostly captured in the reticuloendothelial system and

then return to the blood vessels and transfer to the lungs for expiration with a half-life of 7.2 days in rats (Ohyanagi and Saitoh 1986). Based on a mouse study with intravenous injection of perfluorodecalin, the half-life of perfluorodecalin is 9 days, which is comparable to the half-life from rats (Jacoby, Temme et al. 2014). Another rat study with perfluorodecalin emulsion administered intravenously to rats suggested that perfluorodecalin is mainly eliminated through exhalation (Audran, Krafft et al. 2000). The biological half-life was reported to be 7 days in male rats following intravenous administration (Yokoyama, Yamanouchi et al. 1978). A review paper (Ravis, Hoke et al. 1991) analyzing the distribution and elimination of perfluorochemicals stated that perfluorodecalin is engulfed by phagocytic cells in the blood, liver, spleen, lymph nodes, lungs, and bone marrow. Perfluorodecalin does not undergo renal excretion due to its water insolubility and particle size.

In summary, perfluorodecalin exhibits minimal absorption according to available toxicokinetic studies discussed above. Once absorbed, perfluorodecalin distributes to tissues through the reticuloendothelial system. It is quickly eliminated from the body through exhalation without undergoing significant metabolic processing, as confirmed by studies and medical application investigations.

Hazard Assessment

We conducted a literature search on the acute and repeated dose toxicity of perfluorodecalin using the query outlined in **Table S7**. The search yielded 179 publications. After an initial title and abstract screening, we selected two of these publications deemed pertinent to the hazard assessment for inclusion in this section. In addition, we consulted a REACH dossier for perfluorodecalin available on the ECHA website (ECHA 2016) to supplement the existing literature. Relevant information from both the literature and the REACH dossier is summarized in the corresponding sections of this review. It is important to note that the REACH dossier provides only limited publicly available information and the original study reports were inaccessible for review. Thus, the quality of the data cannot be independently and fully evaluated.

Acute and Repeated Dose Toxicity

Acute Toxicity

Dermal

The REACH dossier (ECHA 2016) included a read-across study to evaluate the acute dermal toxicity of perfluorodecalin using perfluoroperhydrofluorene as an analogue based on their justification that saturated perfluorocarbons are well established as a class of compounds with very similar toxicological properties. The study authors concluded that perfluorodecalin is not acutely toxic via dermal exposure. However, we were unable to evaluate the quality and validity of the study due to the lack of critical details.

Oral

The REACH dossier (ECHA 2016) includes two acute oral studies in rats. In one study, male and female Crj: CD(SD) rats (5/sex) were administered a single dose of 2,000 mg/kg bw perfluorodecalin by oral gavage, according to OECD TG420. No deaths or significant clinical signs of toxicity were observed in either sex. Based on these results, the LD₅₀ was determined to be >2,000 mg/kg body weight, indicating a low concern for acute oral toxicity. In the second study, male and female Sprague-Dawley rats (5/sex) were treated with a single dose of 100 ml/kg bw perfluorodecalin following OECD TG401 and observed for 2 weeks. No deaths, clinical signs, or gross pathological abnormalities were observed in either male

or female rats. The LD₅₀ was estimated to be >100 ml/kg (equivalent to 160,000 mg/kg, or more than 16% of rats' body weight), indicating very low acute oral toxicity.

Inhalation

The REACH dossier (ECHA 2016) presents an acute inhalation toxicity study conducted in Sprague-Dawley rats (guideline not specified). Rats (5/sex) were exposed to 8,647 ppm of perfluorodecalin vapor for approximately 60 minutes. No deaths, clinical signs, or adverse effects on body weight were observed. Post-mortem examinations revealed no abnormalities attributed to perfluorodecalin exposure. The acute inhalation LC₅₀ was estimated to be >8,647 ppm. These results indicate that perfluorodecalin is considered to have no significant acute inhalation toxicity in rats at the tested concentration. The REACH dossier (ECHA 2016) also included a read-across study to evaluate the acute inhalation toxicity of perfluorodecalin using perfluoroperhydrofluorene as an analogue. The study authors concluded that perfluorodecalin is not acutely toxic via inhalation exposure. However, the FDA was unable to evaluate the quality and validity of the study due to the lack of critical details.

Other routes

A published abstract reported an LD₅₀ of 13 ml/kg in rabbits for intravenously injected perfluorodecalin emulsion (10% v/v) stabilized with 4% Proxanol 268 (Sklifas, Obraztsov et al. 1991). The authors suggested that the observed animal death was likely due to pulmonary thrombosis resulting from the emulsion's instability in the circulatory system. However, specific methodology and detailed findings of the study were not provided.

In summary, the available data indicate that perfluorodecalin has low acute toxicity potential. The findings from studies involving intravenously administered perfluorodecalin are considered irrelevant to cosmetics use scenarios due to significant difference in exposure routes and extremely high dose levels used, which would not be encountered from typical use of cosmetic products.

Repeated Dose Systemic Toxicity

Dermal

No data.

Oral

No data.

Inhalation

The REACH dossier (ECHA 2016) included a read-across study to evaluate repeated dose inhalation toxicity of perfluorodecalin using octafluoropropane as an analogue. This study concluded that octafluoropropane is not chronically toxic, even at high concentrations, suggesting a low risk of chronic toxicity for perfluorodecalin based on the read-across approach. However, the FDA was unable to evaluate the quality and validity of the study due to the lack of critical details.

Other Routes of Exposure

In an animal study, emulsified perfluorodecalin was intravenously administered to male Wistar rats (average body weight 180-240 g), at doses of 0.1, 1 or 3 g/kg body weight (4-5 animals/group). Results showed a dose-dependent decrease in cytoplasmic motility of hepatic macrophages, attributing to

alterations in the cytoskeleton. The effect was not observed in rats receiving the lowest dose (0.1 g/kg bw) (Augustin, Spitznas et al. 1995).

Genotoxicity

We conducted a literature search on the genotoxicity potential of perfluorodecalin using the query outlined in **Table S7**. The search yielded five publications. After an initial abstract screening, we identified one paper as relevant to the current review.

Perfluorochemicals are generally considered biologically inert and can carry oxygen to organs and tissues. A study examined the effect of Perfторан® (perfluorodecalin) on the resistance of human lung cancer A549 cells to a chemotherapy drug (Gamal-Eldeen, Alrehaili et al. 2022). Perfторан (oxygenated) alone was found to not induce a significant increase in cell death and DNA damage in A549 cells when compared to control.

The REACH dossier for perfluorodecalin includes an Ames test that was performed four decades ago. The test showed that perfluorodecalin is not mutagenic (ECHA 2016).

Carcinogenicity

No data.

Developmental and Reproductive Toxicity (DART)

We conducted a literature search on the DART of perfluorodecalin using the query outlined in **Table S7**. The search yielded three publications with a focus on the efficacy of perfluorodecalin as an oxygen carrier. After an initial abstract screening, we identified one paper as relevant to the current review.

This study investigated the effect of perfluorodecalin on testicular endocrine function by determining the testosterone secretion rate (Chubb and Draper 1987). The testes of rats and mice were removed and perfused *in vitro* with medium containing perfluorodecalin. The testosterone secretion rate was not significantly different compared to control.

Neurotoxicity

We conducted a literature search on the neurotoxicity of perfluorodecalin using the query outlined in **Table S7**. The search yielded 22 publications. However, most of the studies focused on the therapeutic effects of perfluorodecalin in neurological diseases or injury. There was only one study that reported a potential neurotoxicity effect. This study investigated toxic effects of perfluorodecalin on ganglion cells *in vitro* (Meller, Augustin et al. 1998). Dorsal root ganglion (DRG) cells from chicken embryos were exposed to perfluorodecalin emulsion (consisted of 19% perfluorodecalin (w/v)) at 0.5%, 1% and 10% with particle size between 0.18 and 0.25 µm. The cells were evaluated after 30 hours and 120 hours for 0.5 and 1% and after 5 hours for 10%. Emulsified perfluorodecalin was shown to alter neuronal cell populations after brief exposure. Perfluorodecalin at concentrations of 0.5% and 1% did not change immunohistochemical labeling of DRG cells. A concentration of 10% led to degenerative alterations with a markedly reduced number of DRG cells and macrophages within 5 hours. The authors speculated that the toxicity may be caused by mechanical alteration and other pathophysiological mechanisms. The authors noted certain limitations of the study, such as physiological differences between the cell model and target tissue. This exposure route is not considered relevant to cosmetics usage.

Site of Contact Effects

Dermal Irritation

A PubMed and Web of Science literature search on dermal irritation, using the queries outlined in **Table S7** yielded a total of six publications. A thorough review of the full text identified no direct toxicity studies or reports of perfluorodecalin toxicity relevant to cosmetics use. However, four publications described the benefit of using perfluorodecalin, such as attenuating atopic dermatitis and reducing side effects in different dermal procedures, including tattoo removal. These studies provide indirect evidence to support that perfluorodecalin is unlikely to be a skin irritant. (Kim, Kim et al. 2014, Biesman and Costner 2017, Vangipuram, Hamill et al. 2018, Moustafa, Suggs et al. 2020).

Perfluorodecalin was evaluated for acute skin irritation in a semi-occlusive study conducted in accordance with OECD TG 404. In the three New Zealand White rabbits exposed to 0.5 ml of the undiluted test substance for 4 hours, no erythema or edema were observed throughout the 72-hour observation period (ECHA 2016).

Dermal Sensitization

We conducted a literature search on the skin sensitization of perfluorodecalin using the query outlined in **Table S7**. The search yielded 50 publications and after a title and abstract screening, none of the publications were identified as relevant to the current review. In most of the studies, perfluorodecalin emulsions, due to their favorable oxygen transporting properties, were proposed as a tumor sensitizer for application in radiation therapy (Zhitnukhin, Litvinenko et al. 1997).

The REACH dossier (ECHA 2016) included read-across studies to evaluate the skin sensitization of perfluorodecalin based on a category approach. It claimed that saturated perfluorocarbons, used as analogs, are well established as a class of compounds with very similar toxicological properties, and concluded that perfluorodecalin does not cause skin sensitization. However, the FDA was unable to evaluate the quality and validity of the studies due to the lack of critical details.

Ocular Irritation

A PubMed and Web of Science literature search on ocular irritation using the queries in **Table S7** yielded a total of two publications. Only one publication was identified as relevant after title and abstract screening. This study (Zhu, Wilson et al. 1999) tested a carbon-perfluorodecalin suspension in human eyes, finding it non-irritating and significantly better at retaining particles on the ocular surface than a saline suspension.

In an eye irritation study performed in compliance with OECD 405 guidelines, 0.1 ml perfluorodecalin (undiluted) did not cause irritation to the eyes of three New Zealand White rabbits throughout the 72-hour observation period (ECHA 2016).

The above information suggests that perfluorodecalin is non-irritating to the eyes.

Respiratory irritation

No data.

Photo-induced toxicity

No data.

Others:

The effects of perfluorodecalin were tested in an *in vitro* system using human peripheral leukocytes, erythrocytes, umbilical cord venous endothelial cells (ECV 304) and acute monocytic leukemia cells (MonoMac6). Perfluorodecalin did not cause hemolysis and had only mild effects on cell proliferation. Specifically, perfluorodecalin slightly increased the proliferation of endothelial cells (ECV 304) but decreased proliferation of monocytic cells (MonoMac6). In addition, it slightly suppressed the production of interleukin-1 β (by 26%) and interleukin-6 (by 22%). Perfluorodecalin induced a low toxicity toward monocytes and granulocytes, causing approximately 20% and 12% cell death, respectively (Dinkelmann, Röhlike et al. 2001). These *in vitro* findings indicate that perfluorodecalin, under the tested conditions, exhibited minimal hemolytic activity, mild effects on cell proliferation and cytokine modulation, and relatively low toxicity in the specific cell types examined. It is important to note that these *in vitro* findings cannot be directly extrapolated to *in vivo* responses or used to predict the effects of perfluorodecalin in humans using cosmetics.

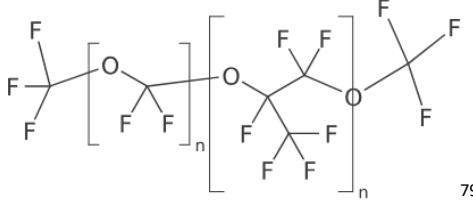
Review Summary/Conclusion

Uses: Based on the mandatory cosmetic product listing data submitted to the FDA, perfluorodecalin is currently used in 71 cosmetic products as skin-conditioning agents and solvents. It is primarily used in skin care products, particularly for face and neck care, followed by eye cosmetic products such as eye shadows and lotions. The use concentration of perfluorodecalin in cosmetic products has been reported to range from 0.02% to 3.75%. Its frequency of use in cosmetic products has remained largely stable during the last several years, based on historical data from the VCRP and Mintel's GNPd. However, due to the lack of baseline or historical data in the mandatory cosmetic product listing data submitted to the FDA, this trend cannot be demonstrated at this time.

Safety: Because the majority of the products containing perfluorodecalin are for skin care, dermal contact is considered the primary route for consumer exposure to this ingredient. Incidental exposure through ingestion, inhalation or ocular contact is also possible when using lip products, face powders, or eye makeup, respectively.

The dermal absorption rate of perfluorodecalin has not been previously reported but is expected to be minimal. Studies from other exposure routes, such as endotracheal and intravenous injection, indicate that any absorbed perfluorodecalin distributes to tissues through the reticuloendothelial system. Available data indicates that perfluorodecalin has no bioaccumulation potential and is quickly eliminated from the body through exhalation without undergoing significant metabolism. Notably, perfluorodecalin activates detoxification pathways, including the induction of xenobiotic transformation enzymes, such as CYP450 and glutathione-S-transferase. It also stimulates antioxidant defense mechanisms, such as activation of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase.

Based on available toxicity data, perfluorodecalin does not exhibit acute toxicity via dermal, oral or inhalation exposure routes. It is neither a skin sensitizer nor an irritant to the skin or eyes. We did not identify any relevant studies related to developmental, reproductive, or neurotoxic effects. Further, we did not identify any studies suggesting that perfluorodecalin is genotoxic. While limited to no data pertaining to repeated dose toxicity, respiratory irritation, phototoxicity, or carcinogenicity were identified in the available literature, the fact of low bioavailability in combination with rapid elimination suggests minimal concerns in these areas.


In summary, perfluorodecalin is a fluorocarbon skin-conditioning agent and solvent commonly used in skin care products. Its hydrophobic and lipophobic nature limit systemic absorption following dermal, oral or inhalation exposures. Available data indicate low concerns of acute, systemic and local toxicity.

Therefore, based on the limited data available, there is a low concern for safety associated with perfluorodecalin when used as an ingredient in cosmetic products under intended conditions of use.

9. Polyperfluoromethylisopropyl Ether

Introduction

Polyperfluoromethylisopropyl ether (CAS No. 69991-67-9; PubChem SID: 481176525), formerly known as perfluoropolymethylisopropyl ether, is a fluorine-based synthetic polymer. **Table A.9.1** shows the chemical structure and major physicochemical properties. Polyperfluoromethylisopropyl ether is a clear colorless liquid that is insoluble in water, highly hydrophobic due to a high Log K_{ow} (8.26) and is essentially involatile. Its molecular weight, density, viscosity, melting point and boiling points vary depending on the number of repeating units. It is stable under normal storage conditions and may decompose at temperatures above 350°C (662°F), forming hazardous fluorinated compounds. **Table A.9.1. Physical and Chemical Properties of Polyperfluoromethylisopropyl Ether**

Element	Description
Name	Polyperfluoromethylisopropyl Ether
INCI name	Polyperfluoromethylisopropyl Ether
Synonyms	1,1,2,3,3,3-Hexafluoro-1-Propene, Oxidized, Polymd 1-Propene, 1,1,2,3,3,3-hexafluoro-, oxidized, polymd Poly(1,1,2,3,3,3-hexafluoro-1-propene) ⁷⁸ Perfluoropolymethylisopropyl ether ⁷⁹ GALDENR HT230 ⁷⁸ GALDEN HT70 ⁷⁸ FOMBLIN YM-2700 ⁷⁸ FOMBLIN YR-1800 ⁷⁸ FOMBLIN HC (Trade Name) ⁸⁰
CAS#	69991-67-9
Structure	<p style="text-align: right;">79</p>
Molecular formula	$[CF(CF_3)CF_2O]_x(CF_2O)_y$ ⁸¹
Molecular weight	Vary based on number of repeating units

⁷⁸ MOLBASE | Chemical Search and Share: <https://www.molbase.com/cas/69991-67-9.html> (accessed 1/4/2025).

⁷⁹ FDA's Global Substance Registration System (GSRS): <https://gsrs.fda.gov/ginias/app/ui/substances/dbb769df-50a9-4eaa-b302-656d551dcc2b> (accessed 1/4/2025)

⁸⁰ https://www.solvay.com/sites/g/files/srpnd221/files/2018-10/Fomblin-HC-Transformative-Specialty-Ingredient_EN-v1.5_0.pdf (accessed 1/4/2025).

⁸¹ Chemical Book-Product information for GALDEN HT70 from [GALDEN \(TM\) HT70 CAS#: 69991-67-9](https://www.molbase.com/cas/69991-67-9.html) (accessed 1/4/2025).

Element	Description
Particle size	Not applicable
Physical form	Clear colorless liquid, Clear viscous odorless liquid ⁸²
Density	1.90-1.92 g/cm ³ at 0 °C ⁸³
Solubility	Insoluble in water ⁸²
Partition coefficient (Log K _{ow})	8.26 ⁷⁸
Vapor pressure	0.00000004 mmHg
Melting point	-20 °C ⁷⁸
Boiling point	70 °C ⁷⁸
Topological polar surface area	NA
UV light absorption spectrum	NA
Decomposes	Thermal decomposition: 350°C (662 °F) ⁸²
Additional properties	Flash point >230 °F ⁷⁸

Notes: NA, not available. Sources: PubChem; Specified otherwise.

Use in Cosmetic Products

According to INCI, polyperfluoromethylisopropyl ether functions as occlusive skin-conditioning agents and other miscellaneous skin-conditioning agents in cosmetic products. It is reported to be used in a variety of product categories including blushers (all types), eye lotions and shadows, face powders, indoor tanning preparations, makeup bases, miscellaneous manicuring preparations, miscellaneous skin care preparations, body and hand preparations (excluding shaving preparations), miscellaneous eye makeup preparations, face and neck preparations (excluding shaving preparations), foundations, lipsticks, miscellaneous makeup preparations (not eye), moisturizing preparations, suntan gels, creams, and liquids.

We note that Fomblin-HC is a commonly used trade name for polyperfluoromethylisopropyl ether of varying chain length. Based on raw material suppliers' information, Fomblin-HCs including HC/04, HC/25, HC/R, etc., are used in skin care and color cosmetics.⁸⁰

Based on the mandatory cosmetic product listing data submitted to the FDA, polyperfluoromethylisopropyl ether is currently used as an ingredient in 54 cosmetic products (**Table A.9.2**). The 54 products are categorized in the following four main product categories: eye makeup preparations (other than children's eye makeup preparations) (n=21, 38.9%); makeup preparations (not eye) (other than makeup preparations for children) (n=18, 33.3%); skin care preparations (creams, lotions, powder, and sprays) (n=14, 25.9%); and suntan preparations (n=1, 1.9%). Please see **Table S2** for a full list of cosmetic product categories.

⁸² Material Safety Data Sheet for PFPE Oil TOPDA C Grades from <https://www.fluorochemie.com/download/2469/?tmstv=1736255512> (accessed 1/4/2025).

⁸³ Technical Data Sheet for PFPE Oil TOPDA C Grades (C40, C250, C1250) from <https://www.fluorochemie.com/products/pfpe-lubricants/fluorinated-oil-for-cosmetics> (accessed 1/4/2025).

Table A.9.2. Frequency of Use of Polyperfluoromethylisopropyl Ether in the Mandatory Cosmetic Product Listing Data Submitted to the FDA (as of August 30, 2024)

Product Category	Number of Products	Percentage of Total (%)
Eye makeup preparations (other than children's eye makeup preparations)		
Eyebrow pencils	4	7.4
Eyeliners	5	9.3
Eye shadows	11	20.4
Other eye makeup preparations	1	1.9
Eye makeup total	21	38.9
Makeup preparations (not eye) (other than makeup preparations for children)		
Blushers and rouges (all types)	1	1.9
Face powders	8	14.8
Foundations, traditional applications	2	3.7
Lipsticks and lip glosses	2	3.7
Makeup bases, traditional applications	1	1.9
Other makeup preparations, traditional applications	4	7.4
Makeup (not eye) total	18	33.3
Skin care preparations		
Cleansing	1	1.9
Face and neck, leave-on	11	20.4
Face and neck, rinse-off	1	1.9
Other skin care preparations, leave-on	1	1.9
Skin care total	14	25.9
Suntan preparations		
Suntan gels, creams, and liquids	1	1.9
Grand total	54	100.0

Available historical data suggests a stable use of polyperfluoromethylisopropyl ether in cosmetic products in the last several years. For example, it was present in 11 products in 2019, 10 in 2021 and 12

in 2023, according to the VCRP (**Table S4**). In addition, it appeared in 11 products launched in the U.S. market over a 5-year period (August 2019 to July 2024) and 3 products launched between August 2023 and July 2024 (**Table S4**). The use trend of polyperfluoromethylisopropyl ether cannot be demonstrated currently using the mandatory cosmetic product listing data submitted to the FDA due to the lack of historical data.

Under the FD&C Act, the concentration of ingredients used in cosmetic products is not required to be submitted to the FDA as part of the product listing data. Therefore, the use concentration for polyperfluoromethylisopropyl ether is not available to the FDA. However, a recent publication by Balan, Bruton et al. (2024) reported a use concentration of 0.05-3% in cosmetic products.

Depending on the product categories, consumers can be exposed to polyperfluoromethylisopropyl ether through various routes. While dermal contact is considered the primary concern, ocular exposure can occur with products such as eye shadows applied near the eyes. Incidental ingestion is possible with products such as lipsticks and lip glosses. Similarly, incidental inhalation may occur during the use of face powders.

Existing Safety Assessments by Government Agencies, Scientific Advisory Groups, and Peer-Reviewed Literature

In 2019, NICNAS of the Australian government conducted a Tier I assessment of the use of polyperfluoromethylisopropyl ether in cosmetic products following their IMAP (Inventory Multi-tiered Assessment and Prioritization) framework. They concluded that this ingredient is a low concern polymer and poses no unreasonable risk to human health based on a Tier I assessment under the NICNAS IMAP assessment framework (NICNAS 2019). The actual report is not accessible for review.

ADME/Toxicokinetics

We conducted a literature search in PubMed and Web of Science using the query outlined in **Table S9** (searched on 8/24/2024). The search retrieved six publications in both databases. None of these publications directly addressed the toxicokinetics of polyperfluoromethylisopropyl ether. However, the authors of one study concluded that Fomblin HC/25 might not be absorbed orally based on the negative results in a repeated dose toxicity study in rats (Malinverno, Pantini et al. 1996). Based on this, the authors speculated that dermal absorption in humans would also be minimal (Malinverno, Pantini et al. 1996). We did not identify a REACH dossier for polyperfluoromethylisopropyl ether in the ECHA database (searched on 8/24/2024).

Hazard Assessment

Using the literature search method described under the ADME/toxicokinetics section, we identified two articles relevant to the toxicity endpoints pertaining to polyperfluoromethylisopropyl ether. Relevant information is summarized in the corresponding sections below.

Acute and Repeated Dose Toxicity

Acute Toxicity

Dermal

An acute dermal toxicity study was conducted in 5 male and 5 female rats according to EC guidelines (Annex to Commission Directive 92/69/EEC, part B: methods for the determination of toxicity) (Malinverno, Pantini et al. 1996). Undiluted Fomblin HC products, HC/25 (MW 3200) and HC/01 (MW 650), were dermally administered to the rats at a dose of 5 g/kg for 24 hours under occlusive dressings (HC/25) or semi-occlusive dressings (HC/01). Animals were observed for 14 days after dosing. Neither HC/25 nor HC/01 produced significant signs of reaction (clinical signs, body weight change or macroscopic abnormality at autopsy). This indicates a low acute dermal toxicity concern for polyperfluoromethylisopropyl ether.

Oral

An acute oral toxicity study was conducted in 5 male and 5 female rats according to EC guidelines (Malinverno, Pantini et al. 1996). Undiluted Fomblin HC products, HC/25 and HC/01, were given to the rats at doses of 15 g/kg orally. Animals were observed for 14 days after dosing. Neither HC/25 nor HC/01 produced significant signs of reaction (clinical signs, body weight change or macroscopic abnormality at autopsy). This indicates a low acute oral toxicity concern for polyperfluoromethylisopropyl ether.

Inhalation

No data.

Other Exposure Route

An acute toxicity study was conducted in 5 male and 5 female rats according to EC guidelines (Malinverno, Pantini et al. 1996). Fomblin HC/25, without dilution, at a dose of 5 g/kg, was intraperitoneally injected (IP) to animals and observed for 14 days after dosing. HC/25 did not produce significant signs of reaction (clinical signs, body weight change or macroscopic abnormality at autopsy). This indicates polyperfluoromethylisopropyl ether is not acutely toxic via IP injection.

Repeated Dose Systemic Toxicity

Dermal

No data.

Oral

A 28-day repeated dose toxicity test was conducted in 5 male and 5 female rats according to EC guidelines (Malinverno, Pantini et al. 1996). Fomblin HC/25 was dosed without dilution orally by gavage each day for 28 days at a dose of 1000 mg/kg bw/day. The animals showed no visible changes in behavior after daily dosing. The authors did not observe any clinical signs. Biochemical and hematological measurements showed no significant changes compared to the controls. Autopsy examination and microscopic examination of the selected organs and macroscopic abnormalities also revealed no changes considered to be treatment related, except that microscopic finding in the kidney tubules of four out of five test group males showed some basophilic and/or dilated tubules, compared to none in control. However, the study authors concluded that the observed kidney tubule effect was of no toxicological importance because it was for one sex only, without accompanying effects on kidney weight and blood chemistry parameters indicating kidney damage (Malinverno, Pantini et al. 1996).

Inhalation

No data

Genotoxicity

The mutagenicity of Fomblin HC/25 and HC/01 was tested using Ames assay at concentrations of 50 to 5000/ μ g/plate according to EC guidelines. Both chemicals were negative for mutagenicity (Malinverno, Pantini et al. 1996).

Carcinogenicity

No data.

Developmental and Reproductive Toxicity (DART)

No Data.

Neurotoxicity

No data.

Site of Contact Effects:

Dermal Irritation

The skin irritancy of polyperfluoromethylisopropyl ether in Fomblin HC/25 and HC/01 was investigated in New Zealand White rabbits (number and sex not specified). Results showed the two Fomblins tested are non-irritating to rabbit skin (Malinverno, Pantini et al. 1996). Two repeated-dose dermal irritation tests performed on human volunteers in Japan and Europe confirmed the non-irritancy of Fomblin HC/25 and HC/01 (Malinverno, Pantini et al. 1996). The fact that Fomblin HC are protective of irritant contact dermatitis further supports the non-irritancy of this ingredient (Pantini, Forestieri et al. 1990).

Dermal Sensitization

The skin sensitizing potential of four different Fomblin HC products (HC/25, HC/01, HC/04 and HC/R) was evaluated in guinea pigs. No evidence of skin sensitization was observed. Fomblin products were also tested in human volunteers to investigate the effects of prolonged skin contact, and the authors did not observe any sensitization (Malinverno, Pantini et al. 1996).

Ocular Irritation

Ocular irritancy of Fomblin HC/25 and HC/01 was investigated in six and three New Zealand White rabbits, respectively. No reactions to test materials were noted and examinations at 1 to 72 hours after treatment found no conjunctival, iridial or corneal changes, indicating the two Fomblins tested were non-irritating to rabbit eyes.

Respiratory irritation

No data.

Photo-induced toxicity

The photosensitizing potentials of Fomblin HC/25 and HC/R were evaluated in Dunkin-Hartley albino guinea pigs. Results indicated the two Fomblins were negative for photosensitization (Malinverno, Pantini et al. 1996).

Others

None identified.

Review Summary/Conclusion

Use: Based on the mandatory cosmetic product listing data submitted to the FDA, polyperfluoromethylisopropyl ether is currently used as an ingredient in 54 cosmetic products, predominantly makeup preparations and skin care products. Available information from the VCRP and Mintel's GNPD indicates a relative stable use of polyperfluoromethylisopropyl ether in cosmetic products in the past several years. However, due to the lack of baseline or historical data in the mandatory cosmetic product listing data submitted to the FDA, a definitive trend cannot be demonstrated at this time.

Safety: Given the primary use of polyperfluoromethylisopropyl ether in eye makeup and skin care products, ocular and dermal exposures are likely the most significant routes of consumer exposure to this ingredient. In addition, incidental ingestion, such as from using lipsticks and lip glosses, and incidental inhalation exposure from using face powders may also be potential exposure pathways. Limited data suggests polyperfluoromethylisopropyl ether may not be absorbed orally and dermal absorption is minimal.

Available animal toxicity studies conducted via dermal, oral and IP routes indicate polyperfluoromethylisopropyl ether does not exhibit acute toxicity. It has been observed to be non-mutagenic in bacteria assays, non-irritating to the skin or eyes of rabbits, and non-sensitizing to human skin. Further, oral administration of polyperfluoromethylisopropyl ether at a dose of 1,000 mg/kg bw/day for 28 days did not reveal any significant toxicity in rats. These data collectively suggest a low potential for toxicity of this ingredient. However, available data is limited. In particular, there is insufficient information regarding the long-terms effects, including potential developmental and reproductive toxicity. Therefore, the FDA cannot determine the safety of polyperfluoromethylisopropyl ether from its use in cosmetic products or risks associated with such use based on the currently available data.

10. HC Yellow No. 13

Introduction

HC Yellow No. 13 (CAS No. 10442-83-8; PubChem CID: 2799157) is a secondary alkanolamine which is prone to nitrosation. **Table A.10.1** shows its chemical structure and limited information on physicochemical properties. HC Yellow No. 13 is a yellow crystalline powder with moderate solubility in water and high solubility in DMSO. It is generally stable in aqueous and organic solutions at room temperature. HC Yellow No. 13 consists of more than 99% of N-(2-hydroxyethyl)-2-nitro-4-trifluoromethylaniline. The chemical has trade names including Fluorgelb II, Cos 128, and COLIPA B102 (SCCS 2011).

Table A.10.1. Physical and Chemical Properties of HC Yellow No. 13

Element	Description
Name	HC Yellow No. 13
INCI name	HC Yellow No. 13
Synonyms	2-((2-Nitro-4-(trifluoromethyl)phenyl)amino)ethanol 2-[2-nitro-4-(trifluoromethyl)anilino]ethanol 2-{{2-nitro-4-(trifluoromethyl)phenyl}amino}ethanol N-(2-Hydroxyethyl)-2-nitro-5-(trifluoromethyl)aniline 4-(2-Hydroxyethylamino)-3-nitrobenzotrifluoride
CAS#	10442-83-8
Structure	
Molecular formula	C9H9F3N2O3
Molecular weight	250.17 g/mol
Particle size	NA

Element	Description
Physical form	Yellow crystalline powder ⁸⁴
Density	Relative: 1.45 (20 °C) ⁸⁴ , 1.486±0.06 g/cm ³ (Predicted) ⁸⁵
Solubility	Water solubility: 506 mg/L (20 °C) determined by EC –A.6 method DMSO solubility: 50 mg/ml ⁸⁴
Partition coefficient (Log K _{ow})	2.54 (pH 6.5 -7.1, 23 °C) determined by EC –A.8 method, ⁸⁴ 2.520 (est), ⁸⁵ 2.614 ⁸⁶
Vapor pressure	3.1 x 10-8 hPa (20 °C), ⁸⁴ 1.52E-05 mmHg at 25 °C ⁸⁶
Melting point	74.7 °C, ⁸⁴ 78-79 °C ⁸⁵
Boiling point	227.1 °C, ⁸⁴ 351.5±42.0 °C (predicted) ⁸⁵
Topological polar surface area	78.08 Å ² ⁸⁶
UV light absorption spectrum	Absorption maxima at 240 nm and 408 nm ⁸⁴
Decomposes	NA
Additional properties	pKa: 14.54±0.10 (predicted), ⁸⁵ flash point 166.4 °C, ⁸⁶ reflective index 1.549 ⁸⁶

Notes: NA, not available. Sources: PubChem; specified otherwise.

Use in Cosmetic Products

According to INCI, HC Yellow No. 13 functions as hair colorants in cosmetic products. Based on the mandatory cosmetic product listing data submitted to the FDA, HC Yellow No. 13 is used as an ingredient in 40 cosmetic products (**Table A.10.2**). All 40 products are categorized in the hair coloring preparations product category. Please see **Table S2** for a full list of cosmetic product categories.

According to the Mintel GNPD, no product containing HC Yellow No. 13 was launched in the past 5 years (August 2019 to July 2024). There was no reported use of HC Yellow No. 13 in cosmetic products in the VCRP in 2019 and 2021, but there were 6 reported uses in the VCRP before its sunsetting in 2023 (**Table S4**). The use trend of HC Yellow No. 13 cannot be currently determined using the mandatory cosmetic product listing data submitted to the FDA due to the lack of historical data.

Within the hair coloring preparations product category, HC Yellow No. 13 is predominantly used in hair dyes and colors, accounting for 75.0% of the ingredient's total usage in cosmetic products. It is also used in hair tints, hair rinses (coloring), and hair bleaches as shown in **Table A.10.2**.

⁸⁴ SCCS, 2010: https://ec.europa.eu/health/scientific_committees/consumer_safety/docs/scs_o_044.pdf (accessed 12/4/2024).

⁸⁵ https://www.chemicalbook.com/ProductChemicalPropertiesCB4946856_EN.htm (accessed 12/4/2024)..

⁸⁶ <https://m.molbase.com/moldata/133431.html> (accessed 12/4/2024)..

Table A.10.2. Frequency of Use of HC Yellow No. 13 in the Mandatory Cosmetic Product Listing Data Submitted to the FDA (as of August 30, 2024)

Product Category	Number of Products	Percentage of Total (%)
Hair coloring preparations		
Hair dyes and colors	30	75.0
Hair tints	2	5.0
Hair rinses (coloring), rinse-off	1	2.5
Hair bleaches	7	17.5
Total	40	100.0

Under the FD&C Act, the concentration of ingredients used in cosmetic products is not required to be submitted to the FDA as part of the product listing data. Therefore, the use concentration for HC Yellow No. 13 is not available to the FDA. SCCS reported a maximum on-head concentration of 2.5% in non-oxidative and oxidative hair dye formulations in its opinion report (SCCS 2011). According to the SCCS report, for non-oxidative hair dye formulations, it is common to apply 35 to 50 g of the product over a period of 30 minutes followed by rinsing off with water and shampoo. The application may be repeated at weekly intervals. For oxidative hair dye formulations, the coloring component and a developer (hydrogen peroxide) are mixed in ratios between 1:1 to 1:3 and up to 100 g of the finished mixed product is applied for a period of 30 to 45 minutes followed by rinsing off with water and shampoo. The application may be repeated at monthly intervals.

According to the product categories, HC Yellow No. 13 is used in hair coloring preparations. Thus, the primary exposure route to HC Yellow No. 13 for consumers would be dermal contact.

Existing Safety Assessments by Government Agencies, Scientific Advisory Groups, and Peer-Reviewed Literature

A comprehensive search within data sources listed in **Table S5** identified an SCCS opinion on HC Yellow No. 13. The SCCS committee assessed the use of HC Yellow No. 13 as a direct dye with a maximum on-head concentration of 2.5% in oxidative and non-oxidative hair dye formulations and concluded it does not pose a risk to the health of the consumer (SCCS 2011).

ADME/Toxicokinetics

A literature search in PubMed and Web of Science did not identify any published data on the toxicokinetics of HC Yellow No. 13 (searched on 12/4/2024). There was no ADME/Toxicokinetics information in the REACH dossier for HC Yellow No. 13 in the ECHA database (ECHA 2002) (accessed on 12/4/2024). Studies for the toxicokinetics of HC Yellow No. 13 were identified in the report from the SCCS of the European Commission (SCCS 2011). An *in vivo* study was conducted to investigate the absorption, distribution, and excretion of HC Yellow No. 13 in Sprague Dawley rats after both oral and dermal exposure. For oral administration, HC Yellow No. 13 was quickly absorbed and excreted within 72 hours, with the majority eliminated within 24 hours after application, mainly via urine (82% of the applied dose within 72 hours) and to a minor extent via feces (18%). Following dermal exposure, the absorption of HC Yellow No. 13 was low, ranging from 0.121% to 0.147% of the applied dose. The majority of the absorbed dose was excreted via urine (63-75%) and to a lesser extent via feces (25-37%).

The radioactivity remaining in the skin and other tissues was low, with the highest concentrations found in the thyroid, adrenals, and fat. The excretion pattern after dermal exposure was similar to that observed for the oral route, with the majority excreted via urine within 24 hours after administration. The low tissue residue levels and minimal skin retention suggest that bioaccumulation of HC Yellow No. 13 is unlikely.

In summary, while HC Yellow No. 13 is well-absorbed after oral exposure, it is poorly absorbed through the skin, with rapid excretion via urine and feces. The low tissue residue levels and minimal skin retention indicate that bioaccumulation is unlikely for HC Yellow No. 13.

Hazard Assessment

A literature search in PubMed and Web of Science using the queries outlined in **Table S9** yielded no published toxicity data for HC Yellow No. 13. We identified a dossier for HC Yellow 13 in ECHA, which contains the same toxicity information as mentioned in a report from SCCS (2011). The relevant toxicity information is summarized below. Note that the FDA does not have access to any of the original study reports.

Acute and Repeated Dose Toxicity

Acute Toxicity

Dermal

An acute dermal toxicity study was conducted in 5 male and 5 female rats according to OECD TG 402 and in compliance with GLP (SCCS 2011). Fluorgelb II (Trade name of HC Yellow No. 13) was administered at a dose of 2000 mg/kg bw under an occlusive patch on the back of the rats for 24 hours. The animals were observed twice daily for 14 days. No mortalities were observed. The treatment caused chromodacryorrhea (red lacrimal secretion from the eyes) in 3 males and in 2 females. The LD₅₀ was reported to be >2000 mg/kg bw.

Oral

An acute oral toxicity study was conducted in 5 male and 5 female rats according to OECD TG 401 and in compliance with GLP (SCCS 2011). The rats received a single oral dose of 2000 mg/kg bw Fluorgelb II in 2% gum Arabic and were observed daily for 14 days. No mortalities were observed. The treatment caused lethargy, piloerection, abnormal posture and reduced righting reflex for up to 6 hours after dosing. The LD₅₀ was >2000 mg/kg bw.

Inhalation

No data.

Repeated Dose Systemic Toxicity

Dermal

No data.

Oral

A sub-chronic oral toxicity study was conducted in 15 male and 15 female rats according to OECD TG 408 and in compliance with GLP. Fluorgelb II in 0.5% aqueous sodium carboxymethylcellulose was administered by oral gavage at doses of 10, 30 and 90 mg/kg bw/day, 5 days per week for 90-92 days. No mortalities were observed during the study. Islet cell degeneration, accompanied by inflammation or fibrosis of the endocrine pancreas was observed in two of the male rats treated with 90 mg/kg bw/day.

A high but not statistically significant blood glucose level was also observed and considered to be treatment related. No other treatment related effects were reported. The authors suggested a dose of 90 mg/kg bw/day as the LOAEL and 30 mg/kg bw/day as the NOAEL. However, the NOAEL was adjusted to 21 mg/kg bw/day after considering that the rats only received treatment 5 days per week (SCCS 2011).

Inhalation

No data.

Genotoxicity

An Ames test was conducted in accordance with OECD TG 471 and GLP (SCCS 2011). HC Yellow 13 was tested at up to 5,000 µg/plate with and without S9-mix (a liver enzyme system for metabolic activation). The study authors concluded that this ingredient was not mutagenic after conducting the Ames test.

An *in vitro* study for induction of chromosomal aberrations in V79 cells was conducted in accordance with OECD TG 471 and in compliance with GLP (SCCS 2011). The cells were treated with Fluorgelb II at 50, 100, and 150 µg/ml in the presence and absence of S9-mix for 4 hours. A biologically relevant, statistically significant and dose-dependent increase in the number of cells with chromosome aberrations was found in the presence of S9-mix. No biologically relevant increase in the number of polyploid metaphases was recorded. Fluorgelb II was considered genotoxic in the *in vitro* test.

An *in vivo* study for the induction of micronuclei in bone marrow cells of mice was conducted in accordance with OECD TG 474 and in compliance with GLP (SCCS 2011). The mice were exposed to Fluorgelb II orally three times at 24-hour intervals at dose levels of 0, 375, 750 and 1500 mg/kg bw/day. An increased number of bone marrow cells with micronuclei was not found. Fluorgelb II was not considered genotoxic in bone marrow cells of mice. Although the study did not demonstrate that bone marrow was reached, clinical signs indicated systemic distribution and thus bioavailability of Fluorgelb II.

Carcinogenicity

No data.

Developmental and Reproductive Toxicity (DART)

A teratogenicity study was conducted in rats in accordance with OECD TG 414 and in compliance with GLP (SCCS 2011). Fluorgelb II dissolved in 0.5% sodium carboxymethylcellulose was administered by gavage to pregnant rats at dose levels of 10, 30 and 90 mg/kg bw/day on days 6-15 of gestation. The dams were euthanized on day 20 of gestation and the abdominal and thoracic cavities were examined. The fetuses were examined for external abnormalities, skeletal defects and visceral abnormalities. No treatment related adverse effects were observed in the dams. A slight decrease of viable fetuses per female and an increase in the number of post implantation losses were observed at 30 and 90 mg/kg bw/day. No gross, skeletal or visceral malformations were observed in fetuses, but there was delayed skeletal ossification of metacarpals and the sternum in fetuses at 30 and 90 mg/kg bw/day. The reproductive performance was not affected but slight increased embryo lethality was observed. Based on the results, the study authors identified a NOAEL of 90 mg/kg bw/day for maternal toxicity, embryotoxicity and teratogenicity, and a NOAEL of 10 mg/kg bw/day and a LOAEL of 30 mg/kg bw/day for developmental anomalies.

Neurotoxicity

No data.

Site of Contact Effects:

Dermal Irritation

The SCCS report in 2010 cited a study in compliance with OECD TG 404, where a 5% solution of HC Yellow No. 13 did not cause skin irritation in rabbits (SCCS 2011). A 0.5 ml sample of a 5% HC Yellow No. 13 in propylene glycol was applied to the clipped backs of 6 New Zealand white rabbits under occlusion for 4 hours before the solution was washed off. Skin reactions were evaluated at 30–60 minutes and 24-, 48-, and 72-hours post-exposure. No erythema or edema was observed.

Dermal Sensitization

SCCS concluded in 2010 that a possible sensitizing effect of HC Yellow No. 13 cannot be excluded based on a Guinea pig maximization test of Magnusson and Kligman (SCCS 2011). However, the study was not fully in compliance with OECD guideline 406, which specifies that, when testing a non-irritating material, local irritation should be included 24 hours before the topical induction. The sensitization data in this study was generated without irritation during induction.

Ocular Irritation

SCCS concluded in 2010 that HC Yellow No. 13 is not an eye irritant under the cited experimental conditions (SCCS 2011). In a study performed in compliance with OECD TG 405, a 0.1 ml dose of a 5% solution of HC Yellow No. 13 in propylene glycol was instilled into the left eye of 6 New Zealand White rabbits, with 3 of the animals having the solution rinsed out after 4 seconds. The untreated right eye served as a control. Eye reactions were assessed at 1-, 24-, 48-, and 72-hours post-treatment. Mild redness and conjunctival chemosis were observed, but based on 83/467/EEC criteria, 5% HC Yellow No. 13 in propylene glycol was classified as a non-irritant. In another study under similar experimental conditions on three female New Zealand White rabbits using undiluted HC Yellow No. 13, only mild reactions were observed, including slight effects on the cornea, iris, and conjunctiva, where the undiluted material was also classified as a non-irritant.

Respiratory irritation

No data.

Photo-induced toxicity

No data.

Others

None identified.

Review Summary/Conclusion

Use: HC Yellow No. 13 functions as hair colorants in cosmetic products. Based on the mandatory cosmetic product listing data submitted to the FDA, the ingredient is used in 40 products, all categorized

in the hair coloring preparations product category. It is predominantly used in hair dyes and colors (75%). Other usages include hair tints, hair rinses (coloring), and hair bleaches. SCCS reported a maximum on-head concentration of 2.5% in both non-oxidative and oxidative hair dye formulations.

Available information from the VCRP and Mintel's GNPD does not reveal a trend of use in cosmetic products. Due to the lack of baseline or historical data, a definitive trend also cannot be demonstrated using the mandatory cosmetic product listing data submitted to the FDA.

Safety: Given that HC Yellow No. 13 is primarily used in hair dye products, dermal contact is expected to be the main route of consumer exposure from using products containing this ingredient. A skin penetration study indicated a maximum penetration of 0.15% (2.5 $\mu\text{g}/\text{cm}^2$) or 0.121% (2.9 $\mu\text{g}/\text{cm}^2$) for the formulation with or without oxidative H_2O_2 , respectively, suggesting a low skin absorption. Incidental inhalation or ocular exposure may occur with a negligible level.

Based on the 2010 SCCS report, HC Yellow No. 13 exhibited low acute toxicity in rats following dermal or oral exposure. A NOAEL of 21 mg/kg bw/day for sub-chronic oral toxicity study, a NOAEL of 90 mg/kg bw/day for maternal toxicity, embryotoxicity and teratogenicity, and a NOAEL of 10 mg/kg bw/day for developmental anomalies were determined with HC Yellow No. 13 via oral gavage exposure. No dermal or ocular irritation was observed in laboratory animals. HC Yellow No. 13 was not mutagenic in a bacterial test. It was positive for clastogenicity in an *in vitro* chromosomal aberration test but gave negative results in the mammalian erythrocyte micronucleus test. We did not identify any cancer or neurotoxicity studies in the literature. SCCS concluded that the use of HC Yellow No. 13 as a direct dye with a maximum on-head concentration of 2.5% in oxidative and non-oxidative hair dye formulations does not pose a risk to the health of the consumers (SCCS 2011).

11. Perfluorohexane

Introduction

Perfluorohexane (CAS No. 355-42-0; PubChem CID: 9639), also known as perflexane or tetradecafluorohexane, is a fluorocarbon. It is a derivative of hexane in which all the hydrogen atoms are replaced by fluorine atoms. **Table A.11.1** shows the chemical structure and physicochemical properties. Perfluorohexane is a clear colorless liquid. It is very poorly water soluble but soluble in lipophilic reagents such as ethyl ether, benzene, and chloroform. The relatively high partition coefficient of 5.1 indicates that perfluorohexane is highly hydrophobic. Perfluorohexane exhibits a moderate evaporation rate with a melting point of -86.1 °C, boiling point of 57.2 °C, and a vapor pressure of 29.067 kPa at 25 °C. Compared to other perfluorinated alkanes, perfluorohexane has a relatively low boiling point and vapor pressure. Like perfluorodecalin, perfluorohexane demonstrates heat-resistance and can remain stable at temperatures as high as 450 °C (Arnold, Hartman et al. 2007).

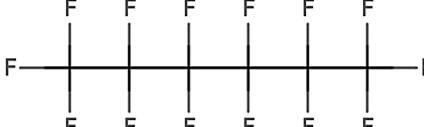

Perfluorohexane is one of the candidate fluids for blood substitute because of its high affinity for oxygen and it's not metabolized in the human body (Riess 2002, Dias, Bonifácio et al. 2003, Graziano 2017). Perfluorohexane has been recently investigated as a component of theranostic agents, which combines both diagnostic and therapeutic functions, through incorporation into nanodroplets or nanoemulsions (Yang, Li et al. 2014, Xiao, You et al. 2021, Abdipour, Abbasi et al. 2024). These formulations have been explored for cancer imaging and chemotherapeutic drug delivery for various types of cancers including melanoma (Maghsoudinia, Akbari-Zadeh et al. 2022), breast cancer (Cui, He et al. 2020, Fernandes, Fernandes et al. 2021), gastric cancer (Li, Fan et al. 2023), hepatocellular carcinoma (Maghsoudinia, Tavakoli et al. 2021), and ovarian cancer (Huang, Dong et al. 2019). Perfluorohexane is an active ingredient of an FDA approved drug, perfluorohexane-lipid microspheres (AFO150 or Imagent®, NDA 21-191), an ultrasound imaging contrast agent for use in echocardiograms for cardiac function and perfusion, and as an enhancer of the images of prostate, liver, kidney and other organs (2002).⁸⁷ It is also a component of an FDA-approved food additive at a concentration of 1% (21 CFR 173.342).⁸⁸

Table A.11.1. Physical and Chemical Properties of Perfluorohexane

Element	Description
Name	Perfluorohexane
INCI name	Perfluorohexane
Synonyms	Perflexane Tetradecafluorohexane Perfluoro-n-hexane n-Perfluorohexane Flutec PP1 AF 0150

⁸⁷ See also drug approval package for Imagent: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2002/21-191_Imagenet.cfm (accessed 10/23/2024).

⁸⁸ 21 CFR 173.342. <https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfCFR/CFRSearch.cfm?fr=173.342>. (accessed 10/23/2024).

Element	Description
	Perfluoro-compound FC-72 1,1,1,2,2,3,3,4,4,5,5,6,6,6-Tetradecafluorohexane
CAS#	355-42-0
Structure	
Molecular formula	C_6F_{14}
Molecular weight	338.04 g/mol
Particle size	Not applicable
Physical form	Colorless, odorless liquid
Density	1.6910 g/cm ³ at 20 °C
Solubility	≤0.1 mg/L in water at 20 °C (ECHA 2018); Soluble in ethyl ether, benzene, chloroform.
Partition coefficient (Log K _{ow})	5.1 (predicted)
Vapor pressure	218 mm Hg (equivalent to 29.067 kPa) at 25 °C
Melting point	-86.1 °C
Boiling point	57.2 °C
Topological polar surface area	0 Å ² (computed)
UV light absorption spectrum	NA
Decomposes	NA
Additional properties	Chemically stable, nonflammable, and physiologically inert. Stable up to 450 °C (Arnold, Hartman et al. 2007).

Notes: NA, not available. Sources: PubChem; specified otherwise.

Use in Cosmetic Products

According to INCI, perfluorohexane is a cosmetic ingredient used as a solvent in several categories of products including miscellaneous eye makeup preparations, moisturizing preparations, face and neck preparations (excluding shaving preparations), and miscellaneous skin care preparations.

Based on the mandatory cosmetic product listing data submitted to the FDA, perfluorohexane is used in 40 cosmetic products of various product categories as shown in **Table A.11.2**. The ingredient is most commonly used in skin care products, particularly for face and neck care including both leave-on and rinse-off types. While less prevalent, perfluorohexane is also used in hair care products, primarily in leave-on treatments, accounting for 7.5% of all the ingredient's uses. Additionally, it is used in one eye lotion. Please see **Table S2** for a full list of cosmetic product categories.

Table A.11.2. Frequency of Use of Perfluorohexane in the Mandatory Cosmetic Product Listing Data Submitted to the FDA (as of August 30, 2024)

Product Category	Number of Products	Percentage of Total (%)
Eye makeup		
Eye lotions	1	2.5
Hair care		
Other hair preparations, leave-on	3	7.5
Skin care		
Face and neck, leave-on	16	40.0
Face and neck, rinse-off	7	17.5
Body and hand, rinse-off	1	2.5
Moisturizing	1	2.5
Paste mask (mud packs), rinse-off	2	5.0
Other skin care preparations, leave-on	4	10.0
Other skin care preparations, rinse-off	5	12.5
Skin care total	36	90.0
Grand total	40	100.0

VCRP data revealed that the usage of perfluorohexane in cosmetic products in the U.S. market has remained largely stable over the past several years, fluctuating between 18 and 23 products from 2019 to 2023 (**Table S4**). Mintel's GNPD data demonstrated that the ingredient was used in a total of 21 products launched in the U.S. market over a 5-year period (August 2019 to July 2024), including 3 products introduced between August 2023 and July 2024 (**Table S4**). The use trend of perfluorohexane cannot be currently determined using the mandatory cosmetic product listing data submitted to the FDA due to the lack of historical data.

Under the FD&C Act, the concentration of ingredients used in cosmetic products is not required to be submitted to the FDA as part of the product listing data. Therefore, the use concentration of perfluorohexane is not available to the FDA. A recent publication by Balan, Bruton et al. (2024) and a cosmetic ingredient supplier's datasheet⁸⁹ reported the typical use concentration of perfluorohexane

⁸⁹ <https://cosmetics.specialchem.com/selectors?q=perfluorohexane> (accessed on October 23, 2024). Based on information on the webpage, Innovation Company's Fiflow® products contain 45-95% perfluorohexane. The suggested use concentration of these ingredients in final products is 2-15%. The use concentration for perfluorohexane is therefore calculated to be in the range of (45-95%)*(2-15%) = 0.9-14.25%.

from 0.9% to 14.25% in cosmetic products. However, recommended levels may vary depending on the specific product type and supplier.

Since the majority of products are intended for skin care, consumers are expected to be primarily exposed to perfluorohexane through skin contact. There is also a potential for incidental eye exposure when using eye makeup.

Existing Assessments by Government Agencies, Scientific Advisory Groups, and Peer-Reviewed Literature

Upon a comprehensive search of the data sources as listed in **Table S5**, we found that perfluorohexane is an active ingredient in an FDA approved drug, AF0150 or Imagent (NDA 21-191), which is a perfluorohexane-lipid microsphere (FDA 2002), and a component of a secondary direct food additive permitted in food for human consumption (FR 1990). These represent FDA safety assessments conducted for drug and food additive approvals, which provide relevant toxicological data for understanding perfluorohexane's safety profile. It has not been assessed by other government agencies or scientific advisory groups such as SCCS, CIR, or IARC.

ADME/Toxicokinetics

A literature search for ADME and toxicokinetics of perfluorohexane using the query from **Table S8** yielded 156 publications (searched on 8/24/2024). After abstract and full text screening, we deemed one publication relevant and included it in the review. In addition, since FDA approved perfluorohexane as a contrast agent for ultrasound imaging, its pharmacokinetic information is included in the drug label (FDA 2002). Furthermore, we identified a REACH dossier for perfluorohexane in the ECHA chemicals database which contain some toxicokinetic information on perfluorohexane (ECHA 2018) (accessed on 8/24/2024). Relevant information is reviewed and summarized below.

Following inhalation exposure in rats, perfluorohexane was detected in various tissues immediately after exposure, but after 24 hours, perfluorohexane was found only in the adipose tissue (Dodd, Brashear et al. 1993). In a study with rats following a single intravenous dose of 20 mg/kg, expired air analysis revealed that approximately 94% of perfluorohexane was excreted within the first 3 hours (ECHA 2018). In addition, its low solubility and low affinity for albumin binding indicates low protein binding potential (FDA 2002, ECHA 2018). The REACH dossier estimates the absorption of perfluorohexane to be 10% by oral and dermal routes, and 100% by the inhalation route (ECHA 2018).

Results from a clinical trial with volunteers suggest that perfluorohexane may be metabolized in the gastrointestinal tract and liver and excreted through bile and urine and can also be eliminated through exhaled air. Approximately 75% of an administered dose was eliminated within 3 hours, and 87% within 24 hours (FDA 2002).

No metabolite was identified in rat urine or tissues following inhalation exposure (Dodd, Brashear et al. 1993). The primary elimination route is exhalation, with a mean terminal elimination half-life of approximately 5.3 hours in blood and 9 hours in expired air. Females appear to eliminate perfluorohexane more slowly than males, with a longer terminal elimination half-life (13 ± 4 hours) compared to males (6 ± 3 hours) (FDA 2002).

Overall, systemic uptake of perfluorohexane following exposure is expected to be minimal due to its low solubility in blood and rapid elimination. Studies suggest that perfluorohexane is primarily eliminated through expired air. The clearance of perfluorohexane is rapid, with a terminal elimination half-life of 5.3 hours in blood.

Hazard Assessment

Acute and Repeated Dose Toxicity

We conducted a literature search on the acute and repeated dose toxicity of perfluorohexane using the query outlined in **Table S8**. The search yielded 44 publications. After an initial title and abstract screening, we selected four of these publications for inclusion in this review. Several articles discussing the application of perfluorohexane are cited in the introduction section. In addition, we consulted the REACH dossier for perfluorohexane available on the ECHA website (ECHA 2018) to supplement the existing literature. Relevant information from both the literature and the REACH dossier is summarized in the corresponding sections of this review.

It is important to note that the REACH dossier provides only limited publicly available information and the original study reports were inaccessible for review. Thus, the quality of the data cannot be independently and fully evaluated.

Acute Toxicity

Dermal

We did not identify any acute dermal toxicity studies for perfluorohexane in published literature. The REACH dossier for perfluorohexane indicates an acute dermal toxicity study was not necessary because the physicochemical and toxicological properties suggest no potential for a significant rate of absorption through the skin (ECHA 2018).

Oral

We did not identify any acute oral toxicity studies for perfluorohexane in published literature.

The REACH dossier for perfluorohexane includes an acute oral toxicity study (ECHA 2018). In this study, female Wistar rats (n=6) were administered a single oral (by gavage) dose of 2000 mg/kg bw undiluted perfluorohexane following OECD TG 423 under GLP. No mortality occurred; body weights were unaffected over a 2-week observation period and no abnormalities were observed upon macroscopic examination. Based on these findings, the dossier concluded that the LD₅₀ value for perfluorohexane was >2,000 mg/kg bw, indicating a low oral toxicity concern.

Inhalation

In a study using female sheep (Bleyl, Ragaller et al. 2002), exposure to 18% perfluorohexane vapor for 30 minutes improved lung function in animals with oleic acid-induced lung. The vapor increased lung compliance, decreased peak inspiratory pressure, and led to better oxygen exchange in injured animals (n=7 for injury control group and n=7 for injury + perfluorohexane group). Importantly, there were no significant adverse effects on healthy animals (n=5). During the experiment, all animals were under anesthesia and ventilated in a volume-controlled intermittent positive pressure mode by using an anesthetic ventilator.

Perfluorohexane vapor-exposed rats were used as a control group (n=6) in a study aimed to examine the respiratory toxicity of soman, a chemical warfare nerve agent, diluted in perfluorohexane (Perkins, Wong et al. 2013, Perkins, Wong et al. 2015). All animals were exposed for 15 minutes and observed for 24 hours post exposure. The control animals showed no signs of toxicity, changes in breathing pattern, or abnormalities upon gross or histopathology examination following inhalation exposure to perfluorohexane (concentration unspecified).

Other Routes of Exposure

Extensive toxicity data on perfluorohexane is available for the intravenous route (IV) in the context of new drug application 21-191 (AF0150) for perfluorohexane in phospholipid microsphere (FDA 2002). Intravenous injection of AF0150 at doses of 50-400 mg/kg to Crj: CD(SD) rats did not result in treatment related mortality, signs of acute toxicity or effects on body weight gain and food consumption. Additionally, based on an estimated oral absorption rate of 10% (ECHA 2018), acute oral toxicity is not expected to occur at 4000 mg/kg.

Repeated Dose Systemic Toxicity

We did not identify any repeated dose systemic toxicity studies for dermal, oral or inhalation routes of exposure.

Other routes of exposure

A short-term repeated dose toxicity study by the intravenous route was conducted to support the approval of the drug AF0150 (FDA 2002). Male and female Crl:CD (SD) rats (20/sex/group) were intravenously given AF0150 at doses of 50, 200 or 400 mg/kg bw/day for 29 days followed by a 14-day recovery. The study was conducted in compliance with OECD TG407 and GLP. No mortality or significant clinical signs of toxicity were observed at any dose level. Body weight and food consumption were not affected. Macrophage vacuolation was observed at all dose levels upon histopathologic examination, which was deemed to be caused by the lipid-component in AF0150, rather than perfluorohexane (FDA 2002). In addition, increased eosinophil infiltration and extramedullary hematopoiesis were observed. The NOAEL was determined to be 50 mg/kg bw/day. Based on an estimated dermal absorption rate of 10% (ECHA 2018), the dermal NOAEL is estimated to be 500 mg/kg bw/day.

Genotoxicity

We conducted a literature search on the genotoxicity potential of perfluorohexane using the query outlined in **Table S8**. The search yielded one paper relevant to the current review.

The study authors investigated the possible application of perfluorocarbons (PFCs) as oxygen "reservoirs" for harvested organs in pancreas organ transplantation. Purified rat islets were cultured with or without oxygen-saturated PFCs, perfluorohexane and perfluorooctane, for 1 or 7 days. Caspase 3/7 activity and histone associated DNA fragments were measured as markers of apoptosis. After 1 day in culture, caspase activity and DNA fragmentation did not significantly differ between control and perfluorohexane islets. After 7 days in culture, however, the authors observed a significant increase of DNA fragmentation in the perfluorohexane islet group (Bergert, Knoch et al. 2005).

The REACH dossier for perfluorohexane included an Ames test at the doses of 1-20 mg/plate and a mammalian erythrocyte micronucleus test via IV injection of a single dose up to 800 mg/kg of AF0150, perfluorohexane in phospholipids. Both tests showed negative results. The dossier concluded that perfluorohexane has no genetic toxicity properties given the negative responses in standard genotoxicity battery tests (ECHA 2018).

Carcinogenicity

No data.

Developmental and Reproductive Toxicity (DART)

We conducted a literature search on the DART potential of perfluorohexane using the query outlined in **Table S8**. The search yielded three publications. After an initial abstract screening, we did not identify any publications relevant to the current review.

The REACH dossier for perfluorohexane included reproductive and developmental toxicity studies assessing the effects of AF0150 (perfluorohexane-lipid microspheres) via intravenous injection: (1) on pregnant/lactating female rats and on development of the conceptus and the offspring; (2) a developmental toxicity study assessing the teratogenicity of AF0150 in rabbits and rats; and (3) a reproduction toxicity study assessing effects of AF0150 on fertility and early embryonic development in rats (ECHA 2018). AF0150 (at 50, 100 or 200 mg/kg bw/day) did not significantly affect maternal toxicity, pregnancy rate or gestation duration at any dose level. No differences in fertility, physical and functional development were observed in offsprings. A NOAEL of 100 mg/kg bw/day for neonate toxicity in rats was determined based on decreased live birth index and increased stillbirth at 200 mg/kg bw/day. The NOAELs were determined to be 50 mg/kg bw/day based on slight increased fetal malformations, and 200 mg/kg bw/day (highest dose tested) for maternal toxicity in both rabbits and rats. Slight decreases in male fertility were observed at 200 mg/kg bw/day. A NOAEL of 100 mg/kg bw/day was determined for fertility and early embryonic development. However, the authors concluded that since AF0150 was administered by IV route in these studies (which dramatically increased systemic exposure), and only 10% is absorbed by oral exposure and then rapidly eliminated from the body, these DART effects are considered irrelevant for oral exposure.

Neurotoxicity

No data.

Site of Contact Effects:

Dermal Irritation

In the REACH dossier for perfluorohexane, the skin irritation potential of perfluorohexane was assessed using a human 3D epidermal model (EPIISKIN-SMTM). Following OECD guideline 439, 25 µL of undiluted perfluorohexane was applied to the skin tissue for 15 minutes, with a post-incubation period of 42 hours. Cytotoxicity, measured by mitochondrial dehydrogenase activity (MTT assay), was used to assess cell viability. Perfluorohexane resulted in 108% cell viability, well above the 50% threshold for irritation. Thus, the study authors concluded that perfluorohexane is a non-irritant under the GHS guidelines (ECHA 2018).

Dermal Sensitization

As discussed in the REACH dossier for perfluorohexane, two GLP *in vivo* studies were conducted in guinea pigs, according to OECD TG 406 and GLP principles, to test the antigenicity and delayed hypersensitivity of AF0150 when injected intradermally. No indication of antigenicity or delayed hypersensitivity was observed in these studies (ECHA 2018).

Ocular Irritation

The REACH dossier for perfluorohexane notes that the eye irritation potential of perfluorohexane was evaluated using the Bovine Corneal Opacity and Permeability (BCOP) test. Following OECD guideline 437, 750 µL of perfluorohexane was applied to isolated bovine corneas for 10 minutes. Results showed no significant increase in opacity or permeability, with a mean irritancy score of -0.5. As perfluorohexane scored below the threshold for irritation (IVIS ≤3), it was not classified as an eye irritant or as causing serious eye damage in the study (ECHA 2018).

Respiratory irritation

No data.

Photo-induced toxicity

No data.

Others

An *in vitro* study investigated the potential effects of perfluorohexane on innate host defense (Haufe, Koenigshausen et al. 2008). Neutrophils and peripheral blood mononuclear cells isolated from whole blood were exposed to 25% (v/v) perfluorohexane for 1~4 hours and tested for phagocytosis activity toward bacteria (*Escherichia coli*). Results demonstrated that perfluorohexane did not impair the ability of human leukocytes to fight bacteria in *in vitro* settings. The treatment did not result in reduced phagocytosis capacity and reduced bacteria-induced respiratory burst, suggesting that key functions of the innate host defense are not compromised by perfluorohexane treatment.

Review Summary/Conclusion

Uses: Based on the mandatory cosmetic product listing data submitted to the FDA, perfluorohexane, a fluorocarbon solvent that moderately evaporates, is currently used in 40 cosmetic products, primarily in skin care products, and particularly face and neck care. Available information indicates perfluorohexane is used in cosmetic products at concentrations ranging from 0.9% to 14.25%. Historical data from Mintel's GNPD and the VCRP suggests the use of perfluorohexane in cosmetic products has remained stable during the last several years. However, due to the lack of baseline or historical data in the mandatory cosmetic product listing data submitted to the FDA, this trend cannot be demonstrated at this time.

Safety: Given that perfluorohexane is primarily used in skin care cosmetic products, dermal contact is expected to be the main route of consumer exposure from using products containing this ingredient. Eye exposure is also possible when using eye lotions containing perfluorohexane.

The absorption rates of perfluorohexane are estimated to be 10% for oral and dermal exposure, and 100% for inhalation exposure. However, due to its poor solubility in blood and rapid elimination via exhalation, systemic uptake of perfluorohexane following various exposure routes is expected to be minimal. In addition, the clearance of perfluorohexane is rapid and bioaccumulation potential is low. The relatively high partition coefficient of 5.1 indicates that perfluorohexane is highly lipophilic and will partition into fat tissue.

Based on limited published literature, the REACH dossier, and the data on AFO150, perfluorohexane is not a skin sensitizer, dermal or eye irritant, or acutely toxic via oral or inhalation exposure. Due to its physicochemical properties which suggest low skin absorption, an acute dermal toxicity study was deemed unnecessary. It is also not genotoxic.

We did not identify any data for respiratory irritation, phototoxicity, oral, dermal or inhalation repeated dose toxicity, carcinogenicity or neurotoxicity.

The REACH dossier for perfluorohexane reports a NOAEL of 50 mg/kg bw/day based on a short-term repeated dose toxicity study with AFO150 (perfluorohexane-lipid microsphere) administered intravenously to rats. In addition, NOAELs were determined for various reproductive and developmental endpoints following intravenous injection, including neonate toxicity (100 mg/kg bw/day), fetal malformations (50 mg/kg bw/day), maternal toxicity (200 mg/kg bw/day, highest dose tested), and fertility and early embryonic development (100 mg/kg bw/day). Based on an estimated dermal absorption rate of 10%, the dermal NOAEL is expected to be 500 mg/kg bw/day or higher.

While the intravenous studies of AF0150 provide valuable insight into the potential toxicity of perfluorohexane, their relevance to cosmetic use is considered limited due to the significant difference between intravenous administration and topical application. Additionally, it's important to note that AF0150 is a complex formulation of perfluorohexane, which includes 1,2-dimyristoyl-sn-glycero-3-phosphocholine, a phospholipid, hydroxyethyl starch, poloxamer 188, sodium chloride and sodium phosphate compared with pure perfluorohexane substance. Given this information, these NOAELs reported in the REACH dossier are not considered for risk characterization of perfluorohexane as an ingredient in cosmetic products.

In summary, perfluorohexane is a fluorocarbon solvent primarily used in skin care products. Due to its low blood solubility and rapid elimination via exhalation, systemic uptake of perfluorohexane following various exposure routes, in particular skin contact, is expected to be low. Additionally, perfluorohexane's low water solubility and moderate molecular weight limit its potential for bioaccumulation, although the partition coefficient indicates it is lipophilic. Based on the limited available data, there is a low concern for safety associated with perfluorohexane when used as an ingredient in cosmetic products under intended use conditions.

12. Diethylaminoethyl Methacrylate/HEMA/Perfluorohexylethyl Methacrylate Crosspolymer

Introduction

Diethylaminoethyl methacrylate/HEMA/perfluorohexylethyl methacrylate crosspolymer is a copolymer of three chemicals: diethylaminoethyl methacrylate, HEMA, and perfluorohexylethyl methacrylate, crosslinked with PEG-3 dimethacrylate.⁹⁰ **Table A.12.1** shows the chemical structure and limited physicochemical properties. Diethylaminoethyl methacrylate/HEMA/perfluorohexylethyl methacrylate crosspolymer is a pale amber liquid that is dispersible in water, and it is chemically stable under normal storage conditions.

Table A.12.1. Physical and Chemical Properties of Diethylaminoethyl Methacrylate-HEMA-Perfluorohexylethyl Methacrylate Crosspolymer

Element	Description
Name	Diethylaminoethyl Methacrylate/HEMA/Perfluorohexylethyl Methacrylate Crosspolymer
INCI name	Diethylaminoethyl Methacrylate/HEMA/Perfluorohexylethyl Methacrylate Crosspolymer
Synonyms	Diethylaminoethyl Methacrylate/Hydroxyethyl Methacrylate/Perfluorohexylethyl Methacrylate Crosspolymer Trade name: Salus FP-100 ⁹¹
CAS#	NA
Structure	NA
Molecular formula	NA
Molecular weight	NA
Particle size	Not applicable
Physical form	Pale amber liquid solution with a mild characteristic glycol odor ⁹¹
Density	1.08 g/ml (25 °C) ⁹¹
Solubility	Water solubility: dispersible ⁹¹
Partition coefficient (Log K _{ow})	NA
Vapor pressure	NA
Melting point	NA
Boiling point	NA
Topological polar surface area	NA
UV light absorption spectrum	NA

⁹⁰ The information can be found in the following INCI link: [Monograph](#). Note: Membership/login is required to view the content.

⁹¹ <https://graybeardllc.com/wp-content/uploads/2022/07/Salus-FP-100-SDS-20180813.pdf> (accessed 2/20/2025).

Element	Description
Decomposes	Chemical stability: stable under normal conditions ⁹¹
Additional properties	Flash Point >100 °C closed cup pH: 2-6 Low viscosity ⁹¹

Notes: NA, not available. Sources: See footnotes in the Table.

Use in Cosmetic Products

According to INCI, diethylaminoethyl methacrylate/HEMA/perfluorohexylethyl methacrylate crosspolymer functions as binders and surface modifiers in cosmetic products.⁹¹

Based on the mandatory cosmetic product listing data submitted to the FDA, diethylaminoethyl methacrylate/HEMA/perfluorohexylethyl methacrylate crosspolymer is used as an ingredient in 35 cosmetic products that are all categorized as manicuring preparations. The ingredient is primarily used in nail polishes and enamels, accounting for 65.7% (n=23) of the ingredient's total usage in cosmetic products as shown in **Table A.12.2**. Please see **Table S2** for a full list of cosmetic product categories.

Table A.12.2. Frequency of Use of Diethylaminoethyl Methacrylate/HEMA/Perfluorohexylethyl Methacrylate Crosspolymer in the Mandatory Cosmetic Product Listing Data Submitted to the FDA (as of August 30, 2024)

Product Category	Number of Products	Percentage of Total (%)
Manicuring preparations		
Basecoats and undercoats	1	2.9
Nail creams and lotions	1	2.9
Nail extenders	2	5.7
Nail polishes and enamels	23	65.7
Other manicuring preparations	8	22.9
Total	35	100.0

To assess the trend of diethylaminoethyl methacrylate/HEMA/perfluorohexylethyl methacrylate crosspolymer use in cosmetic products, we searched historical data in the VCRP and the Mintel GNPD. We did not find any reported use of this ingredient in the VCRP or Mintel's GNPD over the past 5 years (August 2019 to July 2024) (**Table S4**). The use trend of diethylaminoethyl methacrylate/HEMA/perfluorohexylethyl methacrylate crosspolymer cannot be currently determined using the mandatory cosmetic product listing data submitted to the FDA due to the lack of historical data.

Under the FD&C Act, the concentration of ingredients used in cosmetic products is not required to be submitted to the FDA as part of the product listing data. Therefore, the use concentration for diethylaminoethyl methacrylate/HEMA/perfluorohexylethyl methacrylate crosspolymer is not available

to the FDA. However, the SDS for Salus FP-100 from a supplier indicates its concentration ranges between 10-15%.⁹¹

According to the product types containing diethylaminoethyl methacrylate/HEMA/perfluorohexylethyl methacrylate crosspolymer, consumers can be exposed to this ingredient primarily through dermal exposure. Other exposure routes such as incidental oral ingestion or inhalation may also occur.

Existing Safety Assessments by Government Agencies, Scientific Advisory Groups, and Peer-Reviewed Literature

A comprehensive search of data sources listed in **Table S5** did not identify any assessments of diethylaminoethyl methacrylate/HEMA/perfluorohexylethyl methacrylate crosspolymer by government agencies or other scientific advisory groups such as SCCS, CIR, or IARC.

ADME/Toxicokinetics

A literature search in PubMed and Web of Science did not identify any publications on the toxicokinetics of diethylaminoethyl methacrylate/HEMA/perfluorohexylethyl methacrylate crosspolymer. We did not identify a REACH dossier for diethylaminoethyl methacrylate/HEMA/perfluorohexylethyl methacrylate crosspolymer in the ECHA database (searched on 12/6/2024).

Hazard Assessment

A literature search in PubMed and Web of Science using the query outlined in **Table S9** yielded no publications on the toxicity of diethylaminoethyl methacrylate/HEMA/perfluorohexylethyl methacrylate crosspolymer. The SDS from the supplier Gray Beard Solutions,⁹¹ notes that diethylaminoethyl methacrylate/HEMA/perfluorohexylethyl methacrylate crosspolymer may cause skin irritation with repeated or prolonged contact, and it may cause eye irritation. According to the SDS, this ingredient is classified as GHS Eye damage/irritation Category 2B at concentrations of 10-15%, however, it is not classified as sensitizing by skin contact. Importantly, we note that the specific data regarding these health effects are unavailable for our independent evaluation.

Review Summary/Conclusion

Use: Based on the mandatory cosmetic product listing data submitted to the FDA, diethylaminoethyl methacrylate/HEMA/perfluorohexylethyl methacrylate crosspolymer is currently used as an ingredient in 35 cosmetic products in the manicuring preparations product category. There was no reported use of diethylaminoethyl methacrylate/HEMA/perfluorohexylethyl methacrylate crosspolymer in cosmetic products in the VCRP or Mintel's GNPD in the past several years (2019-2024). Although there are 35 registered products in the mandatory cosmetic product listing data submitted to the FDA, due to its lack of baseline or historical data, a trend in use cannot be demonstrated at this time.

Safety: Given that diethylaminoethyl methacrylate/HEMA/perfluorohexylethyl methacrylate crosspolymer is used in manicuring preparations, dermal contact is considered the primary route of consumer exposure. However, there is a lack of publicly available information regarding the toxicokinetics or toxicity of diethylaminoethyl methacrylate/HEMA/perfluorohexylethyl methacrylate crosspolymer. Given the limited data and information available to us, the FDA cannot determine the safety of diethylaminoethyl methacrylate/HEMA/perfluorohexylethyl methacrylate crosspolymer from its use in cosmetic products or risks associated with such use.

13. Pentapeptide-34 Trifluoroacetate

Introduction

Pentapeptide-34 trifluoroacetate (PubChem SID: 472421453) is a synthetic peptide compound composed of a chain with five amino acids. Pentapeptide-34 trifluoroacetate contains trifluoroacetate, which features multiple fluorine atoms attached to a carbon atom, making it a PFAS compound. **Table A.13.1** shows the chemical structure and physicochemical properties. Pentapeptide-34 trifluoroacetate is an odorless white powder⁹³ with the molecular weight of 430 Da. It is soluble in water or 1% acetic acid. According to a manufacturer, heavy metal impurities are not expected in the powder of pentapeptide-34 trifluoroacetate.⁹²

Table A.13.1. Physical and Chemical Properties of Pentapeptide-34 Trifluoroacetate

Element	Description
Name	Pentapeptide-34 Trifluoroacetate
INCI name	Pentapeptide-34 Trifluoroacetate
Synonyms	Glycinamide, L-alanyl-L-valyl-L-leucyl-L-alanyl-, 2,2,2-trifluoroacetate (1:2) SQS1FA1FGW (UNII) PEPTIDE Q10 (trade name) PCEQ
CAS#	NA
Structure	
Molecular formula	C ₁₉ H ₃₆ N ₆ O ₅ .2C ₂ HF ₃ O ₂ ⁹³
Molecular weight	430 Da
Particle size	NA
Physical form	White powder, ⁹³ no odor ⁹⁴
Density	NA

⁹² <https://cosmetics.alfa-chemistry.com/product/pentapeptide-trifluoroacetate-371921.html> (accessed 12/19/2024).

⁹³ Product Specification for Pentapeptide-34 Trifluoroacetate: <https://experchem.com/files/files/file/05a16a3d-6a1c-4f28-920e-95cf919c450b/Pentapeptide-34-Trifluoroacetate-ProductInformation-ExperChem.pdf> (accessed 12/19/2024).

⁹⁴ Chemical Book: Pentapeptide-34 Trifluoroacetate: https://www.chemicalbook.com/ProductDetail_EN_pentapeptide-34-trifluoroacetate_1791772.htm (accessed 12/19/2024).

Element	Description
Solubility	Soluble in water or 1% acetic acid ⁹³
Partition coefficient (Log K _{ow})	NA
Vapor pressure	NA
Melting point	NA
Boiling point	NA
Topological polar surface area	NA
UV light absorption spectrum	NA
Decomposes	NA
Additional properties	NA

Notes: NA, not available. Sources: FDA-GSRS; specified otherwise.

Use in Cosmetic Products

According to INCI, pentapeptide-34 trifluoroacetate functions as a skin-conditioning agent in cosmetic products.

Based on the mandatory cosmetic product listing data submitted to the FDA, pentapeptide-34 trifluoroacetate is used in 33 cosmetic products as shown in **Table A.13.2**. The 33 products are categorized in the following two main product categories: hair preparations (non-coloring) (n=3, 9.1%) and skin care preparations (creams, lotions, powder, and sprays) (n=30, 90.9%). Please see **Table S2** for a full list of cosmetic product categories. Within the skin care preparations (creams, lotions, powder, and sprays) product category, pentapeptide-34 trifluoroacetate is predominantly used in the face and neck (excluding shaving preparations) leave-on product category, accounting for 72.7% (n=24) of the ingredient's total usage in cosmetic products (**Table A.13.2**).

Table A.13.2. Frequency of Use of Pentapeptide-34 Trifluoroacetate in the Mandatory Cosmetic Product Listing Data Submitted to the FDA (as of August 30, 2024)

Product Category	Number of Products	Percentage of Total (%)
Hair preparations (non-coloring)		
Hair conditioners, rinse-off	1	3.0
Shampoos (non-coloring), rinse-off	1	3.0
Other hair preparations, rinse-off	1	3.0
Hair preparations total	3	9.1
Skin care preparations (creams, lotions, powder, and sprays)		
Face and neck (excluding shaving preparations), leave-on	24	72.7
Moisturizing	1	3.0

Product Category	Number of Products	Percentage of Total (%)
Night	2	6.1
Other skin care preparations, leave-on	3	9.1
Skin care preparations total	30	90.9
Grand total	33	100.0

To assess the trend of pentapeptide-34 trifluoroacetate use in cosmetic products, we conducted a search of the historical data in the VCRP and Mintel's GNPD. No use data of pentapeptide-34 trifluoroacetate was reported in the VCRP from 2019 to 2023 (**Table S4**). Data from Mintel's GNPD do not show a clear trend for change of use for pentapeptide-34 trifluoroacetate. In Mintel's GNPD, 9 products were launched in the U.S. market over a 5-year period (August 2019 to July 2024), and 4 of those products were launched between August 2023 and July 2024 (**Table S4**). There are significantly more products in the mandatory cosmetic product listing data submitted to the FDA compared to the VCRP and Mintel's GNPD. However, due to the lack of historical data, the use trend of pentapeptide-34 trifluoroacetate cannot be determined at this time.

Under the FD&C Act, the concentration of ingredients used in cosmetic products is not required to be submitted to the FDA as part of the product listing data. Therefore, the use concentration for pentapeptide-34 trifluoroacetate is not available to the FDA. A recent publication by Balan, Bruton et al. (2024) reported the use of this ingredient at a concentration range of 0.001% to 1% in hair and skin care preparations.

Based on the product types that contain pentapeptide-34 trifluoroacetate, dermal contact is expected to be the primary route of exposure for this ingredient from use of cosmetic products, such as creams and lotions for skin care, and hair care products.

Existing Safety Assessments by Government Agencies, Scientific Advisory Groups, and Peer-Reviewed Literature

A comprehensive search of data sources as listed in **Table S5** did not identify any assessments of pentapeptide-34 trifluoroacetate by government agencies and other scientific advisory groups such as SCCS, CIR, or IARC.

ADME/Toxicokinetics

A literature search in PubMed and Web of Science using the queries outlined in **Table S9** did not identify any published data on the toxicokinetics of pentapeptide-34 trifluoroacetate. We did not identify a REACH dossier for pentapeptide-34 trifluoroacetate in the ECHA database (searched on 12/6/2024).

Hazard Assessment

A literature search in PubMed and Web of Science using the query outlined in **Table S9** yielded no publicly available information regarding the toxicity of pentapeptide-34 trifluoroacetate. As the FDA does not have premarket authority over cosmetic ingredients or products, other than color additives which are subject to FDA approval before use, we do not have specific data to review.

Review Summary/Conclusion

Use: According to INCI, pentapeptide-34 trifluoroacetate functions as a skin-conditioning agent in cosmetic products. Based on the mandatory cosmetic product listing data submitted to the FDA, pentapeptide-34 trifluoroacetate, a synthetic peptide compound, is currently used as an ingredient in 33 cosmetic products, primarily in products for hair and skin care preparations. A recent publication reported a concentration range of 0.001% to 1% in hair and skin care preparations. The Mintel GNPD does not show a clear trend in use for pentapeptide-34 trifluoroacetate in the past several years, and usage was not reported in the VCRP. Due to the lack of baseline or historical data in the mandatory cosmetic product listing data submitted to the FDA, a trend in use cannot be demonstrated at this time.

Safety: Based on the product types containing pentapeptide-34 trifluoroacetate, the main route of consumer exposure is through dermal contact. However, there is a lack of publicly available information regarding the toxicokinetics or toxicity of pentapeptide-34 trifluoroacetate. The FDA does not have information to assess the potential for skin irritation or sensitization, and whether it can be absorbed or could lead to systemic exposure and toxicity. Given the limited data and information available, the FDA cannot determine the safety of pentapeptide-34 trifluoroacetate from its use in cosmetic products or risks associated with such use.

14. Trifluoropropyldimethyl(trimethylsiloxy)silicate

Introduction

Trifluoropropyldimethyl(trimethylsiloxy)silicate is a co-condensed silica material prepared by the simultaneous reaction of condensable inorganic silica and silylated organic compound. This process is similar to random co-polymer synthesis, but it is non-linear (Becker, Bergfeld et al. 2013). **Table A.14.1** shows the chemical structure and limited physicochemical properties. According to the CIR, trifluoropropyldimethyl(trimethylsiloxy)silicate is amorphous and practically insoluble in most common solvents much like un-modified silica (Becker, Bergfeld et al. 2013). It is generally stable under normal storage and handling conditions.

Table A.14.1. Physical and Chemical Properties of Trifluoropropyldimethyl(trimethylsiloxy)silicate

Element	Description
Name	Trifluoropropyldimethyl(trimethylsiloxy)silicate
INCI name	Trifluoropropyldimethyl(trimethylsiloxy)silicate
Synonyms	NA
CAS#	NA
Structure	$ \begin{array}{c} \left[\text{SiO}_{4/2} \right]_a \quad \left[\begin{array}{c} \text{CH}_3 \\ \\ \text{CF}_3(\text{CH}_2)_2\text{SiO}_{1/2} \\ \\ \text{CH}_3 \end{array} \right]_b \quad \left[\begin{array}{c} \text{CH}_3 \\ \\ \text{CH}_3\text{SiO}_{1/2} \\ \\ \text{CH}_3 \end{array} \right]_c \end{array} $
Molecular formula	$\text{C}_8\text{H}_{17}\text{F}_3\text{O}_4\text{Si}_2$
Molecular weight	290.38
Particle size	NA
Physical form	NA
Density	NA
Solubility	NA
Partition coefficient (Log K_{ow})	NA
Vapor pressure	NA
Melting point	NA
Boiling point	NA
Topological polar surface area	NA
UV light absorption spectrum	NA
Decomposes	NA

Element	Description
Additional properties	Stable after five 2-day cycles of -10 °C and 45 °C for 24 hours at each temperature. Stable after 3 months storage at 45 °C.

Notes: NA, not available. Sources: (Becker, Bergfeld et al. 2013).

Use in Cosmetic Products

According to INCI, trifluoropropyldimethyl(trimethylsiloxy)silicate functions as binders and skin-conditioning agents – emollient in cosmetic products.

Based on the mandatory cosmetic product listing data submitted to the FDA, trifluoropropyldimethyl(trimethylsiloxy)silicate is used in 28 products as shown in **Table A.14.2**. The 28 products are categorized in the following two main product categories: eye makeup preparations (other than children's eye makeup preparations) (n=3, 10.7%) and makeup preparations (not eye) (other than makeup preparations for children) (n=25, 89.3%). Please see **Table S2** for a full list of cosmetic product categories.

Within the makeup preparations (not eye) (other than makeup preparations for children) product category, trifluoropropyldimethyl(trimethylsiloxy)silicate is predominantly used in foundations (traditional applications), accounting for 78.6% (n=22) of the ingredient's total usage in cosmetic products as shown in **Table A.14.2**.

Table A.14.2. Frequency of Use of Trifluoropropyldimethyl(trimethylsiloxy)silicate in the Mandatory Cosmetic Product Listing Data Submitted to the FDA (as of August 30, 2024)

Product Category	Number of Products	Percentage of Total (%)
Eye makeup preparations (other than children's eye makeup preparations)		
Eyeliners	3	10.7
Makeup preparations (not eye) (other than makeup preparations for children)		
Foundations, traditional applications	22	78.6
Lipsticks and lip glosses	3	10.7
Makeup (not eye) total	25	89.3
Grand total	28	100.0

To assess the trend of trifluoropropyldimethyl(trimethylsiloxy)silicate use in cosmetic products, we searched the historical data in the VCRP and the Mintel GNPD. For example, the VCRP data included 4 trifluoropropyldimethyl(trimethylsiloxy)silicate-containing cosmetic products in 2023 (**Table S4**). The Mintel GNPD data showed a decline in use from 6 trifluoropropyldimethyl(trimethylsiloxy)silicate-containing cosmetic products launched in the U.S. market over a 5-year period (August 2019 to July 2024) to 0 products launched between August 2023 and July 2024 (**Table S4**). Because these numbers are very low, a trend of use cannot be determined over time. A use trend of

trifluoropropyldimethyl(trimethylsiloxy)silicate also cannot be currently demonstrated using the mandatory cosmetic product listing data submitted to the FDA due to the lack of historical data.

Under the FD&C Act, the concentration of ingredients used in cosmetic products is not required to be submitted to the FDA as part of the product listing data. Therefore, the use concentration for trifluoropropyldimethyl(trimethylsiloxy)silicate is not available to the FDA. CIR (Becker, Bergfeld et al. 2013) and a recent publication by Balan, Bruton et al. (2024) reported the use of this ingredient at a concentration range of 2.0% to 20% in leave-on products with the highest level in eyeliner products. It is important to note that different suppliers of raw material may recommend varying concentrations of use, and that manufacturers or formulators ultimately determine the final concentration in their cosmetic products, which may be outside the range of suppliers' recommendations.

Given that over 89% of the products that contain trifluoropropyldimethyl(trimethylsiloxy)silicate are makeup preparation (not eye) products, the potential for dermal exposure is higher than for other routes of exposure. Additionally, the presence of trifluoropropyldimethyl(trimethylsiloxy)silicate in eye makeup preparation products indicates a potential ocular exposure.

Existing Safety Assessments by Government Agencies, Scientific Advisory Groups, and Peer-Reviewed Literature

A comprehensive search of data sources as listed in **Table S5** identified a 2013 CIR Assessment document on the safety of trifluoropropyldimethyl(trimethylsiloxy)silicate (Becker, Bergfeld et al. 2013). CIR assessed the safety of trifluoropropyldimethyl(trimethylsiloxy)silicate as used in cosmetics and concluded that trifluoropropyldimethyl(trimethylsiloxy)silicate is "safe as used when formulated and delivered in the final product not to be irritating or sensitizing to the respiratory tract." As the FDA does not have premarket authority over cosmetic ingredients or products, other than color additives which are subject to FDA approval before use, we do not have the full study report to review.

ADME/Toxicokinetics

Through a literature search in PubMed and Web of Science using the query outlined in **Table S9**, we found the CIR safety assessment of silylates and surface-modified siloxysilicates (searched on 12/6/2024). The CIR Assessment (Becker, Bergfeld et al. 2013) does not include information for ADME/toxicokinetics of trifluoropropyldimethyl(trimethylsiloxy)silicate. We did not identify a REACH dossier for trifluoropropyldimethyl(trimethylsiloxy)silicate in the ECHA database (searched on 12/6/2024).

Hazard Assessment

A literature search in PubMed and Web of Science using the query outlined in **Table S9** yielded the same CIR safety assessment of silylates and surface-modified siloxysilicates with unpublished data submitted by the Personal Care Products Council on the local effects of this ingredient (Becker, Bergfeld et al. 2013). No information was provided for other endpoints except for acute oral toxicity and local effects.

The CIR Assessment (Becker, Bergfeld et al. 2013) reported an oral LD₅₀ of >2 g/kg for trifluoropropyldimethyl(trimethylsiloxy)silicate in mice, based on unpublished data submitted by the PCPC. We did not identify any acute toxicity data for the dermal or inhalation routes. Additionally, we were unable to locate any repeated dose systemic toxicity, genotoxicity, carcinogenicity, DART or reproductive toxicity data for this ingredient.

Site of Contact Effects:

Dermal Irritation:

The CIR Assessment (Becker, Bergfeld et al. 2013) reported that in a cumulative dermal irritation test conducted on Japanese white rabbits (n = 3), trifluoropropyldimethyl(trimethylsiloxy)silicate (50%) showed no signs of irritation when applied to normal, clipped skin for four consecutive days.

Skin sensitization:

In the unpublished study cited by CIR (Becker, Bergfeld et al. 2013), trifluoropropyldimethyl(trimethylsiloxy)silicate (100%) was determined to be a weak sensitizer in a guinea pig maximization test using five subjects. A mixture containing 50% trifluoropropyldimethyl(trimethylsiloxy)silicate was not sensitizing in a human patch test.

Ocular Irritation:

Trifluoropropyldimethyl(trimethylsiloxy)silicate (100%; 0.1 ml) received a Draize score of 0 in a test conducted on Japanese white rabbits (n = 3), indicating no ocular irritation.

Respiratory irritation:

No data.

Photo-induced toxicity

No data.

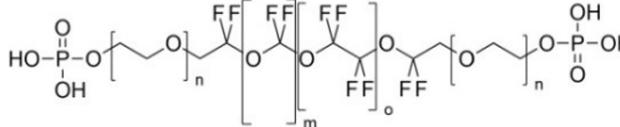
Review Summary/Conclusion

Use: Based on the mandatory cosmetic product listing data submitted to the FDA, trifluoropropyldimethyl(trimethylsiloxy)silicate is currently used as an ingredient in 28 cosmetic products, primarily in makeup preparation (not eye) products, and has lesser use in eye makeup preparation products. A trend of use could not be determined in Mintel's GNPD due to the low number of new products launched in the past 5 years. Due to the lack of baseline or historical data in the mandatory cosmetic product listing data submitted to the FDA, a trend of use cannot be demonstrated at this time.

Safety: Based on the product types containing trifluoropropyldimethyl(trimethylsiloxy)silicate, this ingredient may have multiple routes of exposure from its use in certain cosmetic products. In addition to dermal contact, which is the primary route of consumer exposure, the ingredient's use in eye makeup products may lead to ocular exposure. Use of trifluoropropyldimethyl(trimethylsiloxy)silicate in other cosmetic products, such as lipsticks and lip glosses, may also lead to oral exposure. However, there is a lack of publicly available information regarding the toxicokinetics or toxicity of trifluoropropyldimethyl(trimethylsiloxy)silicate.

According to the CIR Assessment, trifluoropropyldimethyl(trimethylsiloxy)silicate did not cause skin or eye irritation in rabbits. It was considered a weak skin sensitizer in guinea pigs at a 100% concentration but not sensitizing in humans at 50%. However, given the limited data and information available, the FDA cannot determine the safety of trifluoropropyldimethyl(trimethylsiloxy)silicate from its use in cosmetic products or risks associated with such use.

15. Polyperfluoroethoxymethoxy Difluoroethyl PEG Phosphate


Introduction

Polyperfluoroethoxymethoxy difluoroethyl PEG phosphate (CAS No. 200013-65-6; PubChem SID: 472213584) has a long chain of fluorinated carbon atoms (perfluoroethoxymethoxy) attached to a difluoroethyl group, which is then linked to a PEG (polyethylene glycol) chain and finally esterified with phosphoric acid. **Table A.15.1** shows the chemical structure and physicochemical properties.

Polyperfluoroethoxymethoxy difluoroethyl PEG phosphate is a viscous liquid with an amber color and odorless. Due to its high fluorination leading to extreme hydrophobicity, it is insoluble in water, mineral oil, dimethicone, and polar oils but highly soluble in alcohol, isopropanol, acetone, methylal, and propylene glycol. It has high thermal stability, remaining stable under normal storage and handling conditions while withstanding high temperatures with minimal degradation.

As polyperfluoroethoxymethoxy difluoroethyl PEG phosphate acts as a skin protectant, anti-irritant, skin feel improver, conditioning agent, emulsifier and water-proofing ingredient, it is recommended for use in hair care, skin care, makeup, creams, lotions, and gels.⁹⁵

Table A.15.1. Physical and chemical properties of Polyperfluoroethoxymethoxy Difluoroethyl PEG Phosphate

Element	Description
Name	Polyperfluoroethoxymethoxy Difluoroethyl PEG Phosphate
INCI name	Polyperfluoroethoxymethoxy Difluoroethyl PEG Phosphate
Synonyms	Diphosphoric acid, polymers with ethoxylated reduced Me esters of reduced polymd. oxidized tetrafluoroethylene DTXSID601026493 Fomblin® HC/P2-1000 ⁹⁵
CAS#	200013-65-6 ⁹⁵
Structure	 (Harris 2022)
Molecular formula	$\text{PO}_4\text{H}_2(\text{C}_2\text{H}_4\text{O})_n\text{C}_2\text{H}_2\text{F}_2(\text{OCF}_2)_m(\text{OC}_2\text{F}_4)_o\text{OC}_2\text{H}_2\text{F}_2(\text{OC}_2\text{H}_4)_n\text{PO}_4\text{H}_2$ (Harris 2022)
Molecular weight	2500 (average) ⁹⁵
Particle size	Not applicable
Physical form	Amber liquid, viscous
Density	1.9 g/cm ³ at 20 °C ⁹⁵

⁹⁵ Fomblin® HC/P2-1000: Technical Datasheet from: <https://cosmetics.specialchem.com/product/i-syensqo-fomblin-hc-p2-1000> (accessed 9/16/2024. Login is required for access).

Element	Description
Solubility	Insoluble in water, mineral oil, dimethicone, and polar oils. Soluble in alcohol, isopropanol, acetone, methylal, and propylene glycol. Dispersible in glycerin. ⁹⁵
Partition coefficient (Log K _{ow})	NA
Vapor pressure	NA
Melting point	NA
Boiling point	NA
Topological polar surface area	NA
UV light absorption spectrum	NA
Decomposes	NA
Additional properties	Odorless, thermal stability <250 °C, viscosity: 35000 cP at 20 °C, surface tension: 32 mN/m at 20 °C, difunctional content: 93% ⁹⁵

Notes: NA, not available. Sources: PubChem; specified otherwise.

Use in Cosmetic Products

According to INCI, polyperfluoroethoxymethoxy difluoroethyl PEG phosphate functions as hair conditioning agents and miscellaneous skin-conditioning agents in cosmetic products.

Based on the mandatory cosmetic product listing data submitted to the FDA, polyperfluoroethoxymethoxy difluoroethyl PEG phosphate is used in 27 cosmetic products. The 27 products are categorized in the following six main product categories: eye makeup preparations (other than children's eye makeup preparations) (n=10, 37.0%), predominantly in eye shadows (n=7, 25.9%), hair preparations (non-coloring) (n=5, 18.5%), makeup preparations (not eye) (face powders, n=8, 29.6%), personal cleanliness (n=1, 3.7%), shaving preparations (n=2, 7.4%), and skin care preparations (creams, lotions, powder, and sprays) (n=1, 3.7%) as shown in **Table A.15.2**. Please see **Table S2** for a full list of cosmetic product categories.

Table A.15.2. Frequency of Use of Polyperfluoroethoxymethoxy Difluoroethyl PEG Phosphate in the Mandatory Cosmetic Product Listing Data Submitted to the FDA (as of August 30, 2024)

Product Category	Number of Products	Percentage of Total (%)
Eye makeup preparations (other than children's eye makeup preparations)		
Eye shadows	7	25.9
Mascaras	2	7.4
Eyelash and eyebrow preparations (primers, conditioners, serums, fortifiers)	1	3.7
Eye makeup total	10	37.0

Product Category	Number of Products	Percentage of Total (%)
Hair preparations (non-coloring)		
Hair conditioners, rinse-off	1	3.7
Shampoos (non-coloring), rinse-off	1	3.7
Tonics, dressings, and other hair grooming aids	2	7.4
Other hair preparations, leave-on	1	3.7
Hair preparations total	5	18.5
Makeup preparations (not eye) (other than makeup preparations for children)		
 Face powders	8	29.6
Personal cleanliness		
Deodorants (underarm), sticks, roll-ons, gels, creams, and wipes	1	3.7
Shaving preparations		
 Aftershave lotions	2	7.4
Skin care preparations (creams, lotions, powder, and sprays)		
Face and neck (excluding shaving preparations), leave-on	1	3.7
Grand total	27	100.0

To assess the trend of the ingredient's use in cosmetic products, we searched the historical data in the VCRP and the Mintel GNPD. The retrieved data from both databases show declining trends of its use in cosmetic products. For example, the VCRP data showed that polyperfluoroethoxymethoxy difluoroethyl PEG phosphate was used in 29 products in 2019, 2 products in 2021, and further decreased to 1 product in 2023 (**Table S4**). According to Mintel's GNPD, the ingredient was used in 9 products that launched in the U.S. market over a 5-year period (August 2019 to July 2024) and 0 products launched between August 2023 and July 2024 (**Table S4**). However, the use trend of polyperfluoroethoxymethoxy difluoroethyl PEG phosphate cannot be currently determined using the mandatory cosmetic product listing data submitted to the FDA due to the lack of historical data.

Under the FD&C Act, the concentration of ingredients used in cosmetic products is not required to be submitted to the FDA as part of the product listing data. Therefore, the concentration of polyperfluoroethoxymethoxy difluoroethyl PEG phosphate used in listed cosmetic products is not available to the FDA. A recent publication by Balan, Bruton et al. (2024) reported a use concentration of 0.1%-2% in various cosmetic products, including eye shadow, face powder, foundation and concealer,

hair care, lotions and moisturizers, and mascara. It is important to note that different raw material suppliers may recommend different usage concentrations and the final concentration in cosmetic products is ultimately determined by manufacturers or formulators, which may be outside the range of suppliers' recommendations.

Given that the majority of the products containing polyperfluoroethoxymethoxy difluoroethyl PEG phosphate are eye makeup products and face powders, dermal contact is expected to be the primary route of consumer exposure to this ingredient. Eye exposure may occur with eye cosmetic products, and incidental inhalation exposure may occur with products such as face powders.

Existing Safety Assessments by Government Agencies, Scientific Advisory Groups, and Peer-Reviewed Literature

A comprehensive search of data sources as listed in **Table S5** did not identify any assessments of polyperfluoroethoxymethoxy difluoroethyl PEG phosphate by government agencies or other scientific advisory groups such as SCCS, CIR, or IARC.

ADME/Toxicokinetics

A literature search in PubMed and Web of Science using query outlined in **Table S9** did not identify any publications on the ADME/toxicokinetics of polyperfluoroethoxymethoxy difluoroethyl PEG phosphate (searched on 9/16/2024). We did not identify a REACH dossier for polyperfluoroethoxymethoxy difluoroethyl PEG phosphate in the ECHA database (searched on 9/16/2024).

Hazard Assessment

A literature search in PubMed and Web of Science using the query outlined in **Table S9** yielded no publications on the toxicity of polyperfluoroethoxymethoxy difluoroethyl PEG phosphate. Based on limited information from the ECHA's Classification and Labelling Inventory (which we understand to be based on the Classification, Labelling, and Packaging (CLP) Regulation), polyperfluoroethoxymethoxy difluoroethyl PEG phosphate is classified under Category 2, Eye Irritation with Hazard Statement Code (H319), indicating that the ingredient causes serious eye irritation. However, no specific data is provided to support the classification. Other hazard classification is not available.⁹⁶

Review Summary/Conclusion

Use: Based on the mandatory cosmetic product listing data submitted to the FDA, polyperfluoroethoxymethoxy difluoroethyl PEG phosphate is currently used as an ingredient in 27 cosmetic products, primarily in eye makeup products, and particularly in eye shadows and face powders. Additional data available to the agency, including information from the VCRP and Mintel's GNPD suggests a declining trend in the use of polyperfluoroethoxymethoxy difluoroethyl PEG phosphate in cosmetic products. However, due to the lack of baseline or historical data in the mandatory cosmetic product listing data submitted to the FDA, this trend cannot be demonstrated at this time.

Safety: Based on the product types containing polyperfluoroethoxymethoxy difluoroethyl PEG phosphate observed in the mandatory cosmetic product listing data submitted to the FDA, this

⁹⁶ Classification and Labelling Inventory from ECHA website: <https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/108615> (accessed 9/16/2024).

ingredient may have multiple routes of exposure from its use in certain cosmetic products. The use of polyperfluoroethoxymethoxy difluoroethyl PEG phosphate in eye makeup products may lead to dermal exposure in addition to potential ocular exposure. Additionally, the ingredient's use in face powders not only involves dermal exposure but also poses potential inhalation exposure. However, there is a lack of publicly available information regarding the toxicokinetics or toxicity of polyperfluoroethoxymethoxy difluoroethyl PEG phosphate. The FDA does not have information to assess the potential for eye irritation, skin irritation or sensitization, and whether it can be absorbed and could lead to systemic exposure and toxicity. Given the limited data and information available, the FDA cannot determine the safety of polyperfluoroethoxymethoxy difluoroethyl PEG phosphate from its use in cosmetic products or risks associated with such use.

16. Perfluoroperhydrophenanthrene

Introduction

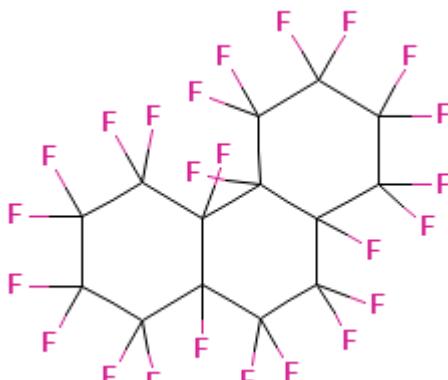

Perfluoroperhydrophenanthrene, also known as perfluorophenanthrene (CAS No. 306-91-2; PubChem CID: 78972), is a clear, colorless liquid with low surface tension. It has a high density of 2.03 g/ml and a boiling point of 215 °C. It is insoluble in water but dissolves in aliphatic and chlorinated hydrocarbons.

Table A.16.1 shows the chemical structure and physicochemical properties.

Perfluoroperhydrophenanthrene is highly stable chemically under normal storage and handling conditions. Medically, it can be used as a surgical adjunct tool during ophthalmological operations. It has been used to manage certain cases of nonexpulsive suprachoroidal hemorrhages (Desai, Peyman et al. 1992).

Table A.16.1. Physical and chemical properties of Perfluoroperhydrophenanthrene

Element	Description
Name	Perfluoroperhydrophenanthrene
INCI name	Perfluoroperhydrophenanthrene
Synonyms	Perfluorophenanthrene PERFLUORINATED TETRADECAHYDROPHENANTHRENE Flutec PP11 Flutec PC-11 Fiflow 180 Fiflow 220 1,1,2,2,3,3,4,4,4a,4b,5,5,6,6,7,7,8,8a,9,9,10,10,10a-tetracosafluorophenanthrene Perfluorotetradecahydrophenanthrene Phenanthrene, tetracosafluorotetradecahydro- Phenanthrene,1,1,2,2,3,3,4,4,4a,4b,5,5,6,6,7,7,8,8a,9,9,10,10a-tetracosafluorotetradecahydro- ZZ3T53GWV9 (UNII) DTXSID1047029 Tetracosafluorotetradecahydrophenanthrene
CAS#	306-91-2

Structure	
Molecular formula	$C_{14}F_{24}$
Molecular weight	624.11 g/mol
Particle size	Not applicable
Physical form	Clear, colorless liquid ⁹⁷
Density	2.03 g/ml ⁹⁷ ; vapor density: 0.016 g/ml ⁹⁷
Solubility	Soluble in aliphatic hydrocarbons. Soluble in chlorinated hydrocarbons. Insoluble in water. ⁹⁷
Partition coefficient (Log K_{ow})	NA
Vapor pressure	0 kPa ⁹⁷
Melting point	-31 °C ⁹⁷
Boiling point	215 °C ⁹⁷
Topological polar surface area	0 Å ²
UV light absorption spectrum	NA
Decomposes	Decomposition temperature: 400 °C ⁹⁷
Additional properties	XLogP3-AA: 7.2, viscosity (dynamic): 28.4 mPas, ⁹⁷ viscosity (kinematic): 13.99 mm ² /s, ⁹⁷ surface tension: 19 mN/m, ⁹⁷ not flammable, refractive index: 1.3348 ⁹⁷

Notes: NA, not available. Sources: PubChem; specified otherwise.

Use in Cosmetic Products

⁹⁷ Safety datasheet for Flutec P11, [https://f2chemicals.com/pdf/sds/FLUTEC%20PP11\(306-91-2\).pdf](https://f2chemicals.com/pdf/sds/FLUTEC%20PP11(306-91-2).pdf) (accessed 12/26/2024).

According to INCI, perfluoroperhydrophenanthrene functions as miscellaneous skin-conditioning agents and solvents in cosmetic products.

Based on the mandatory cosmetic product listing data submitted to the FDA, perfluoroperhydrophenanthrene is used as an ingredient in 25 cosmetic products. The 25 products are categorized in the following four main product categories: eye makeup preparations (other than children's eye makeup preparations) (n=1, 4.0%), hair preparations (non-coloring) (n=2, 8.0%), hair coloring preparations (n=1, 4.0%), and skin care preparations (creams, lotions, powder, and sprays) (n=21, 84.0%) (**Table A.16.2**). Please see **Table S2** for a full list of cosmetic product categories.

Table A.16.2. Frequency of Use of Perfluoroperhydrophenanthrene in the Mandatory Cosmetic Product Listing Data Submitted to the FDA (as of August 30, 2024)

Product Category	Number of Products	Percentage of Total (%)
Eye makeup preparations (other than children's eye makeup preparations)		
Eye lotions	1	4.0
Hair preparations (non-coloring)		
Other hair preparations, leave-on	2	8.0
Hair coloring preparations		
Other hair coloring preparations, leave-on	1	4.0
Skin care preparations (creams, lotions, powder, and sprays)		
Face and neck (excluding shaving preparations), leave-on	14	56.0
Face and neck (excluding shaving preparations), rinse-off	2	8.0
Body and hand (excluding shaving preparations), rinse-off	1	4.0
Moisturizing	1	4.0
Other skin care preparations, leave-on	3	12.0
Skin care total	21	84.0
Grand total	25	100.0

Historical data from the VCRP suggests a decline in the use of perfluoroperhydrophenanthrene in cosmetic products over the past several years. In the VCRP 2019 dataset, this ingredient was reported in 20 formulations, decreasing to 13 in 2021, and further to 7 in 2023 (**Table S4**). Mintel's GNPD does not

indicate a significant number of new products launched in the U.S. market containing perfluoroperhydrophenanthrene in recent years, with 10 in total over a 5-year period (August 2019 to July 2024) and only 3 introduced between August 2023 and July 2024 (**Table S4**). The use trend of perfluoroperhydrophenanthrene cannot be currently determined using the cosmetic product listing data due to the lack of historical data.

Under the FD&C Act, the concentration of ingredients used in cosmetic products is not required to be submitted to the FDA as part of the product listing data. Therefore, the use concentration for perfluoroperhydrophenanthrene is not available to the FDA. A recent publication by Balan, Bruton et al. (2024) reported the use of perfluoroperhydrophenanthrene at concentrations of 0.02% to 7.5% in cosmetic products.

Given its application in products used on the skin, dermal contact is expected to be the primary route of consumer exposure to perfluoroperhydrophenanthrene. Incidental inhalation may also occur when applying powder and spray-based products, particularly those designed for facial use.

Existing Safety Assessments by Government Agencies, Scientific Advisory Groups, and Peer-Reviewed Literature

A comprehensive search of data sources as listed in **Table S5** did not identify any assessments of perfluoroperhydrophenanthrene by government agencies or other scientific advisory groups such as SCCS, CIR, or IARC.

ADME/Toxicokinetics

We conducted a literature search for ADME/toxicokinetics of perfluoroperhydrophenanthrene using the query outlined in **Table S9**. The search yielded 66 publications in PubMed and 112 publications from Web of Science (searched on 12/26/2024). After abstract screening, we did not identify any publications containing data on the toxicokinetics of perfluoroperhydrophenanthrene. Additionally, a search of the ECHA database for a REACH dossier on perfluoroperhydrophenanthrene found no toxicokinetic information (ECHA 1985) (searched on 12/26/2024).

Hazard Assessment

We conducted a literature search on the acute and repeated dose toxicity of perfluoroperhydrophenanthrene using the query outlined in **Table S9**. The search yielded no publicly available information regarding the toxicity of perfluoroperhydrophenanthrene. However, a registrant's dossier on the ECHA website provides some relevant information, which is summarized below in the corresponding subsections (ECHA 1985).

It is important to note that the REACH dossier provides only limited publicly available information and the original study reports were inaccessible for review. Thus, the quality of the data cannot be independently and fully evaluated.

Acute and Repeated Dose Toxicity

Acute Toxicity

Dermal

An acute dermal toxicity study was conducted in rats under occlusive conditions according to OECD Guideline 402. An LD₅₀ of >2000 mg/kg bw was determined (ECHA 1985).

The REACH dossier (ECHA 1985) also included a read-across study to evaluate the acute dermal toxicity of perfluoroperhydrophenanthrene based on a category approach. The study authors determined a LD₅₀ of >2000 mg/kg bw in rats. However, we were unable to evaluate the quality and validity of the read-across study due to the lack of critical details.

Oral

Acute oral toxicity studies were conducted in mice and rats via gavage according to OECD Guideline 401. An LD₅₀ of >5000 mg/kg bw in mouse and rat was determined (ECHA 1985).

The REACH dossier (ECHA 1985) also included a read-across study to evaluate the acute oral toxicity of perfluoroperhydrophenanthrene based on a category approach. The study authors determined an LD₀ (lowest lethal dose) of >2000 mg/kg bw in rats. However, we were unable to evaluate the quality and validity of the read-across study due to the lack of critical details.

Inhalation

No data.

Repeated Dose Systemic Toxicity

We did not locate any data regarding the dermal route, the inhalation route, carcinogenicity, DART, or neurotoxicity.

Oral

A 28-Day oral toxicity study was conducted in rats according to OECD Guideline 407. The study authors did not observe any mortality or critical effects. The study authors determined a no observed effect level (NOEL) of >1000 mg/kg bw/day (actual dose received) (ECHA 1985).

Genotoxicity

A mammalian erythrocyte micronucleus test was conducted in mice following oral gavage exposure according to OECD Guideline 474. Dose levels were not provided. A negative response was reported (ECHA 1985).

The REACH dossier (ECHA 1985) also included read-across studies to evaluate the genetic toxicity of perfluoroperhydrophenanthrene based on a category approach. The study authors concluded that the ingredient is negative in *in vitro* genetic toxicity studies. However, the FDA was unable to evaluate the quality and validity of the study due to the lack of critical details.

Site of Contact Effects

We did not locate any data for dermal, ocular or respiratory irritation, or photo-induced toxicity.

Dermal Sensitization

We did not find any studies on the skin sensitization of perfluoroperhydrophenanthrene in the public literature. The REACH dossier summarized a study on the skin sensitization potential of

perfluoroperhydrophenanthrene that evaluated female Dunkin-Hartley guinea pigs using a maximization test according to OECD Test Guideline 406. The authors concluded that perfluoroperhydrophenanthrene was not sensitizing under the test conditions (ECHA 1985).

Review Summary/Conclusion

Use: Perfluoroperhydrophenanthrene is used as a skin-conditioning agent and solvent in cosmetic products. Based on the mandatory cosmetic product listing data submitted to the FDA, the ingredient is used in 25 cosmetic products. Its most common application is in leave-on face and neck products. VCRP data shows that the use of perfluoroperhydrophenanthrene in cosmetic products has been declining, and Mintel's GNPD does not indicate a significant number of new products introduced to the market containing perfluoroperhydrophenanthrene in recent years. Due to the lack of baseline or historical data in the mandatory cosmetic product listing data submitted to the FDA, this trend cannot be demonstrated at this time.

Safety: Based on the product types containing perfluoroperhydrophenanthrene, dermal contact is expected to be the primary route of consumer exposure for its use in cosmetic products. The use of perfluoroperhydrophenanthrene in eye makeup may also lead to ocular exposure. A hazard assessment of perfluoroperhydrophenanthrene revealed limited data across various toxicological endpoints, mainly from the REACH dossier for this chemical. Acute toxicity studies in rats and mice and a 28-day oral toxicity study in rats indicate low systemic toxicity potential. An *in vivo* genotoxicity test and read-across studies suggest this ingredient is not genotoxic, and we did not identify any carcinogenicity data in the literature. There were also no data available for dermal or ocular irritation, but the substance was not sensitizing in a guinea pig dermal sensitization test. However, the FDA does not have access to the full study reports to assess the quality of the studies presented in the REACH dossier and therefore cannot fully evaluate and determine the safety of perfluoroperhydrophenanthrene from its use in cosmetic products or risks associated with such use.

17. Dimethiconol Fluoroalcohol Dilinoleic Acid

Introduction

Dimethiconol fluoroalcohol dilinoleic acid is a complex blend of silicones and siloxanes, combined with fluoroalcohol and dilinoleic acid. **Table A.17.1** shows the chemical structure and limited information on physicochemical properties. Dimethiconol fluoroalcohol dilinoleic acid is a soft, off-white paste with faint odor. It is insoluble in water. When applied to fiber, hair and skin, it is hydrophobic, non-occlusive and highly lubricious. It provides barrier properties when applied to these substrates. This substance is generally stable under normal storage and handling conditions.⁹⁸

Table A.17.1. Physical and chemical properties of Dimethiconol Fluoroalcohol Dilinoleic Acid

Element	Description
Name	Dimethiconol Fluoroalcohol Dilinoleic Acid
INCI name	Dimethiconol Fluoroalcohol Dilinoleic Acid
Synonyms	Silwax F (trade name)
CAS#	NA
Structure	NA
Molecular formula	NA
Molecular weight	NA
Particle size	NA
Physical form	Mixture, soft paste, ⁹⁹ wax/paste, ⁹⁸ off-white ⁹⁹
Density	NA
Solubility	Insoluble in water ⁹⁹
Partition coefficient (Log K _{ow})	NA
Vapor pressure	NA
Melting point	48 °C ⁹⁸
Boiling point	NA
Topological polar surface area	NA
UV light absorption spectrum	NA
Decomposes	NA
Additional properties	Odor: faint, ⁹⁸ flash point (PMCC): >100 °C

Notes: NA, not available. Sources: See footnotes.

⁹⁸ Safety datasheet for Silwax F, https://www.siltech.com/wp-content/uploads/2024/01/SDS-5702-Silwax-F_GHS.pdf (accessed 12/6/2024).

⁹⁹ Technical datasheet for Silwax F, <https://www.siltech.com/wp-content/uploads/2017/11/TP5702.pdf> (accessed 12/6/2024).

Use in Cosmetic Products

According to INCI, dimethiconol fluoroalcohol dilinoleic acid functions as an occlusive skin-conditioning agent in cosmetic products.

Based on the mandatory cosmetic product listing data submitted to the FDA, dimethiconol fluoroalcohol dilinoleic acid is used as an ingredient in 24 products. All 24 products are categorized in the makeup preparations (not eye) (other than makeup preparations for children) product category, which includes face powders (n=11, 45.8%) and foundations (traditional applications) (n=13, 54.2%), as shown in **Table A.17.2**. Please see **Table S2** for a full list of cosmetic product categories.

Table A.17.2. Frequency of Use of Dimethiconol Fluoroalcohol Dilinoleic Acid in the Mandatory Cosmetic Product Listing Data Submitted to the FDA (as of August 30, 2024)

Product Category	Number of Products	Percentage of Total (%)
Makeup preparations (not eye) (other than makeup preparations for children)		
Face powders	11	45.8
Foundations, traditional applications	13	54.2
Total	24	100.0

To assess the trend of dimethiconol fluoroalcohol dilinoleic acid use in cosmetic products, we searched the historical data in the VCRP and Mintel's GNPD. We did not identify any reported use of this ingredient in the U.S. in the VCRP or Mintel's GNPD over the past 5 years (**Table S4**). The use trend of dimethiconol fluoroalcohol dilinoleic acid cannot be currently determined using the mandatory cosmetic product listing data submitted to the FDA due to the lack of historical data.

Under the FD&C Act, the concentration of ingredients used in cosmetic products is not required to be submitted to the FDA as part of the product listing data. Therefore, the use concentration for dimethiconol fluoroalcohol dilinoleic acid is not available to the FDA. A manufacturer's technical data sheet reported that the typical usage levels are between 1.0-3.0% wt when used in cosmetic products.⁹⁹

According to the product categories, consumers can be exposed to dimethiconol fluoroalcohol dilinoleic acid through various routes. While dermal contact is expected to be the primary concern, inhalation exposure could occur with products such as face powders.

Existing Safety Assessments by Government Agencies, Scientific Advisory Groups, and Peer-Reviewed Literature

A comprehensive search of data sources as listed in **Table S5** did not identify any assessments of dimethiconol fluoroalcohol dilinoleic acid by government agencies and other scientific advisory groups such as SCCS, CIR, or IARC.

ADME/Toxicokinetics

A literature search in PubMed and Web of Science did not identify any published data on the toxicokinetics of dimethiconol fluoroalcohol dilinoleic acid. We did not identify a REACH dossier for dimethiconol fluoroalcohol dilinoleic acid in the ECHA database (searched on 12/6/2024).

Hazard Assessment

A literature search in PubMed and Web of Science using the query outlined in **Table S9** yielded no publicly available information regarding the toxicity of dimethiconol fluoroalcohol dilinoleic acid. An SDS from a raw material supplier⁹⁸ provided toxicological information such as potential irritation after ingestion or skin and ocular exposure. The SDS also noted suspicions that the ingredient may be damaging to fertility. It also suggested low toxicity following inhalation under normal conditions of handling and use. Importantly, we note that the specific data regarding these health effects are unavailable for our independent evaluation.

Review Summary/Conclusion

Use: Based on the mandatory cosmetic product listing data submitted to the FDA, dimethiconol fluoroalcohol dilinoleic acid is currently used as an ingredient in 24 products that are categorized in the makeup preparations (not eye) (other than makeup preparations for children) product category. It functions as an occlusive skin-conditioning agent in cosmetic products. Dimethiconol fluoroalcohol dilinoleic acid is mainly used in face powders and traditionally applied foundation product categories. There was no reported use in either the VCRP or Mintel's GNPD. Due to the lack of baseline or historical data in the mandatory cosmetic product listing data submitted to the FDA, a trend in use cannot be demonstrated at this time.

Safety: Based on the product types containing dimethiconol fluoroalcohol dilinoleic acid, this ingredient may have multiple routes of exposure from its use in cosmetic products. In addition to dermal exposure, the use of dimethiconol fluoroalcohol dilinoleic acid in face powder may lead to potential inhalation exposure or incidental oral exposure. However, there is a lack of publicly available information regarding the toxicokinetics or toxicity of dimethiconol fluoroalcohol dilinoleic acid. The FDA does not have enough information to assess the potential for dermal and inhalation irritation or sensitization, and whether it can be absorbed and could lead to systemic exposure and toxicity. Given the limited data and information available to us, the FDA cannot determine the safety of dimethiconol fluoroalcohol dilinoleic acid from its use in cosmetic products or risks associated with such use.

18. Tetrafluoropropene

Introduction

Tetrafluoropropene, also known as (1E)-1,3,3,3-tetrafluoroprop-1-ene (CAS No. 29118-24-9; PubChem CID: 5708720) is commonly used as a refrigerant and propellant due to its low global warming potential and favorable thermodynamic properties. It is a colorless liquefied gas (aerosol), has a slight ether-like odor, and exhibits a density of 1.17 g/cm³ at 21 °C in its liquid state. Tetrafluoropropene is only slightly soluble in water but is miscible with dimethyl ether, isobutane, lower alcohols, and ketones. **Table A.18.1** shows the chemical structure and physicochemical properties.

Table A.18.1. Physical and Chemical Properties of Tetrafluoropropene

Element	Description
Name	(1E)-1,3,3,3-tetrafluoroprop-1-ene
INCI name	Tetrafluoropropene
Synonyms	1,3,3,3-tetrafluoroprop-1-ene 1-Propene, 1,3,3,3-tetrafluoro-, (1E)- (E)-1,3,3,3-tetrafluoropropene (1E)-1H,2H-Perfluoroprop-1-ene trans-1,3,3,3-Tetrafluoroprop-1-ene HFO-1234ze Solstice Propellant (trade name)
CAS#	29118-24-9
Structure	
Molecular formula	C ₃ H ₂ F ₄
Molecular weight	114.04 g/mol
Particle size	NA
Physical form	Liquefied gas (aerosol), ¹⁰⁰ colorless
Density	1.17 g/cm ³ at 21 °C (liquid state) ¹⁰¹
Solubility	Solubility in water: 0.037 at 21.1 °C, ¹⁰¹ miscible in DME, isobutane, lower alcohols, and ketones ¹⁰⁰

¹⁰⁰ Technical datasheet for Solstice 1234ze, <https://cosmetics.specialchem.com/product/i-honeywell-solstice-1234ze> (accessed 12/11/2024).

¹⁰¹ <https://advancedmaterials.honeywell.com/us/en/products/propellant-and-solvents/industrial-propellant/solstice-propellant#specifications> (accessed 12/11/2024).

Partition coefficient (Log K _{ow})	NA
Vapor pressure	3.4 bar at 21 °C, 10 bar at 54 °C ¹⁰⁰
Melting point	NA
Boiling point	-19 °C ¹⁰⁰
Topological polar surface area	NA
UV light absorption spectrum	NA
Decomposes	NA
Additional properties	Odor: slight, ether-like, ¹⁰⁰ photochemical reactivity: 0.09 g O ₃ /g, dielectric strength: 0.12 kV/mil (vapor at 1 atm), dipole moment: 1.44 Debye, Global Warming Potential (GWP) vs. CO ₂ , 100 year ITH: <1, Volatile Organic Compound (VOC): no, expansion ratio: 247 at 1 ATM and 15.6 °C (liquid to gas), heat of gas: 0.224 Cp at 15.6 °C, cal/g, heat of vaporization: 195 KJ/g at BP, Kaurl-Butanol (KB) value: 12, liquid viscosity: 0.171 cP at 37.8 °C, specific gravity: 1.17 at 21 °C, surface tension: 8.95, vapor volume: 0.25 per liter of liquid at 16.6 °C, m ³ , flashpoint: non-flammable ¹⁰¹

Notes: NA, not available. Sources: PubChem; specified otherwise.

Use in Cosmetic Products

According to INCI, tetrafluoropropene functions as a propellant in cosmetic products.

Based on the mandatory cosmetic product listing data submitted to the FDA, tetrafluoropropene is used in 23 products as shown in **Table A.18.2**. The 23 products are categorized in the following three main product categories: hair preparations (non-coloring) (n=16, 69.6%), makeup preparations (not eye) (other than makeup preparations for children) (n=4, 17.4%), and personal cleanliness (n=3, 13.0%). Please see **Table S2** for a full list of cosmetic product categories.

Within the three main product categories, tetrafluoropropene is predominantly used in hair sprays (aerosol fixatives), lip care products and deodorant sprays, respectively (**Table A.18.2**).

Table A.18.2. Frequency of Use of Tetrafluoropropene in the Mandatory Cosmetic Product Listing Data Submitted to the FDA (as of August 30, 2024)

Product Category	Number of Products	Percentage of Total (%)
Hair preparations (non-coloring)		
Hair sprays (aerosol fixatives)	9	39.1
Shampoos (non-coloring), leave-on	3	13.0
Tonics, dressings, and other hair grooming aids	1	4.3
Other hair preparations, leave-on	2	8.7

Product Category	Number of Products	Percentage of Total (%)
Other hair preparations, rinse-off	1	4.3
Hair preparations total	16	69.6
Makeup preparations (not eye) (other than makeup preparations for children)		
Lipsticks and lip glosses	2	8.7
Makeup bases, traditional applications	1	4.3
Other makeup preparations, traditional applications	1	4.3
Makeup (not eye) total	4	17.4
Personal cleanliness		
Deodorants (underarm), sprays	3	13.0
Grand total	23	100.0

To assess the trend of tetrafluoropropene use in cosmetic products, we searched the historical data in the VCRP and the Mintel GNPD. In the VCRP database, tetrafluoropropene was identified in only 1 registered product in 2023. Mintel's GNPD shows that 21 cosmetic products containing tetrafluoropropene were launched in the U.S. market over a 5-year period (August 2019 to July 2024), with 4 of these introduced between August 2023 and July 2024 (**Table S4**). The use trend of tetrafluoropropene cannot be currently determined using the mandatory cosmetic product listing data submitted to the FDA due to the lack of historical data.

Under the FD&C Act, the concentration of ingredients used in cosmetic products is not required to be submitted to the FDA as part of the product listing data. Therefore, the use concentration for tetrafluoropropene is not available to the FDA. However, in China, our understanding is that regulatory guidelines specify that the maximum allowable concentration of tetrafluoropropene in cosmetics is 90%. This limit appears to apply to both leave-on and rinse-off skin and hair care cosmetic products.¹⁰²

According to the product categories that contain tetrafluoropropene, consumers may be exposed to this ingredient through multiple routes including dermal, inhalation, oral and ocular routes.

Existing Safety Assessments by Government Agencies, Scientific Advisory Groups, and Peer-Reviewed Literature

¹⁰² <https://www.cirs-group.com/en/cosmetics/the-spring-of-new-cosmetic-ingredients-filing-in-china> (accessed 8/20/2025)

A comprehensive search of data sources as listed in **Table S5** did not identify any assessments of tetrafluoropropene by government agencies or other scientific advisory groups such as SCCS, CIR, or IARC.

ADME/Toxicokinetics

We performed a literature search in PubMed and Web of Science using the query outlined in **Table S9**. The search yielded 55 publications in PubMed and 375 from Web of Science (searched on 12/11/2024). After screening the abstracts, we identified two papers relevant to the toxicokinetics of tetrafluoropropene. In addition, we found a REACH dossier containing animal studies related to toxicokinetics of tetrafluoropropene in the ECHA database (ECHA 2007) (accessed on 12/11/2024).

In an animal study (Schuster, Bertermann et al. 2009), male Sprague-Dawley rats were exposed to concentrations of 2000, 10,000, and 50,000 ppm of tetrafluoropropene through inhalation for 6 hours and male B6C3F1 mice were only exposed to a single concentration of 50,000 ppm through inhalation for 6 hours. Urine samples were collected and analyzed at alternating 6- and 12-hour intervals post exposure for 48 hours to identify tetrafluoropropene metabolites. The results identified S-(3,3,3-trifluoro-trans-propenyl)-mercaptolactic acid as the predominant metabolite in the urine of rats exposed to tetrafluoropropene, and 3,3,3-trifluoropropionamide as the predominant metabolite in the urine samples of mice. This study suggests that tetrafluoropropene undergoes a low extent of biotransformation, with less than 1% of the dose being metabolized, and the majority of metabolites being excreted within 18 hours after exposure.

Giffen, Kilgour et al. (2024) reported on toxicokinetic studies in mice, rats and dogs through inhalation exposure of tetrafluoropropene. The mouse study involved a 13-week inhalation exposure of CD-1 mice to tetrafluoropropene, 2 hours/day, at 5350, 11,900, 22,000 and 50,700 ppm with blood samples collected immediately after dosing and at 30, 60, and 120 minutes after each exposure during weeks 4, 9 and 13. Tetrafluoropropene was only detectable in blood samples immediately after dosing and increased with dose. The C_{max} values were higher in later weeks 9 and 13 than during week 4. The rat study consisted of a 7-day inhalation exposure of Wistar Han rats to tetrafluoropropene, 4 hours/day, at 1550, 5280, and 15,900 ppm with blood samples collected immediately after dosing, and at 15, 30, 60 and 90 minutes after exposure on days 1 and 7. Similarly to the mouse study, blood concentration of tetrafluoropropene was only detectable immediately after dosing and blood concentrations increased with dose. The blood concentrations declined rapidly and became undetectable after 30 minutes. The dog study involved 39 weeks of repeated inhalation exposure of Beagle dogs to tetrafluoropropene, 2 hours/day, at 1680, 4850 and 14,700 ppm with blood samples collected immediately after dosing and at 15, 30, 60, and 90 minutes after each exposure during weeks 2, 7, 14, 28, and 38 or 39.

Tetrafluoropropene was detectable in blood samples for up to 30 minutes at two lower doses or 90 minutes at the highest dose after exposure. Blood concentrations increased proportionally with dose, and mean concentrations remained similar across different weeks. In all studies, tetrafluoropropene was rapidly eliminated from the blood, and its concentrations were generally not detectable after a short period following exposure. These studies suggest that tetrafluoropropene has a short half-life and is quickly cleared from the body.

The REACH dossier for tetrafluoropropene (ECHA 2007) describes an *in vitro* study that was conducted to evaluate the biotransformation of tetrafluoropropene using rat hepatocytes. The results showed that very little to no metabolism of tetrafluoropropene occurred *in vitro*, and none of the metabolites found

in vivo were detected. Another *in vitro* study was conducted to determine the tissue-to-air partition coefficients for tetrafluoropropene in rat and rabbit tissues and in human blood. The results showed that tetrafluoropropene had lower blood-to-air partition coefficients. Among all tissues, fat shows the highest tissue-to-air partition coefficient, which means tetrafluoropropene tends to distribute to the adipose tissue. The results suggested that tetrafluoropropene had relatively low solubility in blood and tissues, and that its partitioning between tissues was similar across different species. A PBPK modeling study was used to evaluate the concentrations of tetrafluoropropene in the arterial blood of adult female humans, pregnant rabbits, and rats following inhalation exposure. The models predicted rapid uptake and distribution of the chemical in humans, with a peak concentration in arterial blood of 45.7-74.8 mg/L after exposure times of 0.5-60 minutes. The area under the concentration curve (AUC) was approximately linear with the time of exposure, indicating rapid uptake and clearance of the chemical from blood.

Overall, available evidence indicates that tetrafluoropropene undergoes a low extent of biotransformation, with less than 1% of the dose being metabolized, and most metabolites being excreted within 18 hours after exposure. It has relatively low solubility in blood and tissues. Following inhalation exposure, a PBPK model predicted that the AUC for tetrafluoropropene is approximately linear with the time of exposure, indicating rapid uptake and clearance from blood. Tetrafluoropropene has a high fat to air partition coefficient, indicating it distributes to the adipose tissue.

Hazard Assessment

A literature search in PubMed and Web of Science using the query outlined in **Table S9** yielded two relevant publications regarding the toxicity of tetrafluoropropene. In addition, a REACH dossier on the ECHA website provides some relevant information (ECHA 2007). Relevant information from both the literature and the REACH dossier is summarized in the corresponding sections of this review.

Acute and Repeated Dose Toxicity

Acute Toxicity

Dermal

No data.

Oral

No data.

Inhalation

An acute inhalation toxicity study (ECHA 2007, Rusch, Tveit et al. 2013) was conducted in rats according to OECD TG 403 and in compliance with GLP. The rats were exposed to tetrafluoropropene at 103,300 ppm (481,378 mg/m³) and 207,000 ppm (964,620 mg/m³) via nose-only inhalation for 4 hours. The animals were observed for 14 days. No mortalities were observed. No clinical signs of toxicity and gross pathology were observed. The authors concluded that the LC₅₀ was >207,000 ppm.

In addition, acute inhalation toxicity was assessed by exposing mice to 10000 ppm tetrafluoropropene via whole body inhalation for 4 hours. The study authors concluded that the ingredient is not toxic to mice following acute inhalation exposure (ECHA 2007, Rusch, Tveit et al. 2013).

Repeated Dose Systemic Toxicity

Dermal

No data.

Oral

No data.

Inhalation

A sub-chronic (90 day) inhalation toxicity study (ECHA 2007, Rusch, Tveit et al. 2013) was conducted in Sprague-Dawley rats according to OECD TG 413 and in compliance with GLP. The rats were exposed to tetrafluoropropene at 1,500, 5,000 and 15,000 ppm via nose-only inhalation for 6 hours/day, 5 days a week for 63 or 64 exposure days over a 91-92-day period. No mortalities were observed. Slight adverse effects in animals of the 15,000 ppm concentration group were observed, such as: (1) a number of monocytes and thrombocytes were increased in male animals; (2) Aspartate aminotransferase (AST), a liver function biomarker, was increased in males; and (3) urea, a kidney function biomarker, was increased in females. Treatment-related cell damage in the heart (multifocal mononuclear cell infiltrates, accompanied by increased eosinophilia and pyknotic nuclei) was observed in the 15,000 ppm concentration group. A histopathological exam did not find tumors. The study authors concluded that the No Observed Adverse Effect Concentration (NOAEC) for this study was 5,000 ppm, based on the cell damage in the heart of the 15,000 ppm animals.

A subacute inhalation toxicity study was conducted according to OECD TG 412 and in compliance with GLP. Rats were exposed to tetrafluoropropene at 0, 5,000, 20,000 and 50,000 ppm via nose-only inhalation for 6 hours/day, 5 days a week for 28 days. Treatment-related hematological effects were observed at 50,000 ppm. Treatment-related effects in the heart and liver in rats of the 20,000 ppm and 50,000 ppm groups and in the nasal passages of rats of the 50,000-ppm group were observed. A NOAEC of 5,000 ppm was determined (Rusch, Tveit et al. 2013).

In another study, rats were exposed to levels of 0, 1,000, 5,000, 10,000 or 15,000 ppm of tetrafluoropropene for 6 hours/day, 5 days/week for 4 weeks. Slight to moderate inflammation in male rats was observed in the hearts at 15,000 ppm. Thus, a NOAEC (referred to as NOAEL in the REACH dossier) of 10,000 ppm was determined (Rusch, Tveit et al. 2013).

A 14-day study and a 13-week study were reported in a recent publication by Giffen, Kilgour et al. (2024). In these studies, mice were exposed to tetrafluoropropene via nose-only inhalation at 6000, 12,500, 25,000, and 50,000 ppm for 2 hours/day for 14 days and 13 weeks. There were no exposure-related effects, including any microscopic findings, up to the highest estimated doses in the 14-day (28,000 mg/kg bw/day) and 13-week (29,000 mg/kg bw/day) studies in mice. The authors identified a NOEL of 29,000 mg/kg bw/day.

Giffen, Kilgour et al. (2024) reported a repeated dose study in rats that were exposed to tetrafluoropropene via nose-only inhalation at 1500, 5000 and 15,000 ppm (estimated achieved dose: 1,220, 4,280, and 12,000 mg/kg bw/day, respectively) for 4 hours/day for 26 weeks. Rats at the highest dose (12,000 mg/kg bw/day) showed effects in the heart, such as an increased incidence/severity of rodent progressive cardiomyopathy, with an increase in severity seen in males compared to females. No other adverse effects related to the exposure were observed. Based on the heart effects, the authors identified a NOAEL of 4,280 mg/kg bw/day.

Repeated dose toxicology studies in dogs were also reported by Giffen, Kilgour et al. (2024). In these studies, Beagle dogs were exposed to tetrafluoropropene via inhalation (whole body) at concentrations of 1,500, 5,000 and 15,000 ppm for 1 hour/day for 14 days, and 2 hours/day for 13 weeks and 39 weeks. There were no toxicology findings, including any microscopic findings, and no findings of effects on functional respiratory or cardiovascular safety pharmacology parameters at the highest estimated doses in the 14-day (1,740 mg/kg bw/day (15,000 ppm)), 13-week (3,620 mg/kg bw/day (15,000 ppm)) or 39-week studies (3,647 mg/kg bw/day (15,000 ppm)). The authors identified a NOEL of 3,647 mg/kg bw/day (15,000 ppm).

Genotoxicity

An *in vitro* human lymphocyte chromosome aberration test (ECHA 2007, Rusch, Tveit et al. 2013) was conducted according to OECD TG 473 and in compliance with GLP. Human lymphocytes were exposed to tetrafluoropropene (as a gas) in a modular incubator chamber to 0, 10, 20, 40, 60, and 76% in the atmosphere for 4 hours, with and without S9-mix. Tetrafluoropropene did not induce a statistically significant increase in the number of aberrant cells with or without metabolic activation. The test substance was considered not clastogenic in cultured human lymphocytes. An *in vitro* gene mutation study in bacteria was conducted following Japan Guidelines for Screening Mutagenicity Testing of Chemicals (ECHA 2007). Bacteria were exposed to 0.05, 0.1, 0.5, 1, 5, 10 and 50% tetrafluoropropene in the atmosphere in a gas exposure chamber for 24-48 hours. The authors concluded that the test substance was not mutagenic under the test conditions with or without metabolic activation.

A mammalian erythrocyte micronucleus test (ECHA 2007, Rusch, Tveit et al. 2013) was conducted according to OECD TG 474 and in compliance with GLP. Mice were exposed via nose-only inhalation to tetrafluoropropene for 4 hours at 10,000 ppm. 24-48 hours after the treatment, mouse bone marrow cells were collected for the micronucleus analysis. No cytotoxicity to the bone marrow cells was observed. This ingredient did not cause an increase in micronuclei in bone marrow cells.

A mammalian erythrocyte micronucleus test (ECHA 2007, Rusch, Tveit et al. 2013) was conducted in rats according to OECD TG 474 and in compliance with GLP. Male rats were exposed to tetrafluoropropene at 0, 5,000, 10,000 and 15,000 ppm via nose-only inhalation for 6 hours/day, 5 days a week for 4 weeks. No damage to the chromosomes and/or mitotic spindle apparatus (micronuclei) in the bone marrow cells of male rats was observed.

An unscheduled DNA synthesis test (ECHA 2007, Rusch, Tveit et al. 2013) was performed in male rats according to OECD TG 486 and in compliance with GLP. The rats were exposed via nose-only inhalation to 5,000 and 15,000 ppm tetrafluoropropene for 6 hours/day, 5 days a week for 4 weeks. Within 24 hours of the last exposure, rat hepatocytes were isolated and tested for DNA damage. The test substance yielded net nuclear grains (NNG) <0, indicating it did not induce unscheduled DNA synthesis in rat hepatocytes. In this study, the positive control did not give a positive response but did show a higher NNG and % cells in repair compared to negative controls or test substance-tested cells.

Carcinogenicity

No data.

Developmental and Reproductive Toxicity (DART)

A two-generation reproductive toxicity study (ECHA 2007, Giffen, Kilgour et al. 2024) was conducted according to OECD TG 416 and in compliance with GLP. Rats were exposed to tetrafluoropropene gas via whole-body inhalation at concentrations of 2,000, 5,000, and 20,000 ppm (estimated achieved dose: 2400, 5800, and 23,000 mg/kg bw/day). The F0 generation (parental animals) were exposed to tetrafluoropropene gas 6 hours/day, 7 days/week for 10 weeks during the time before pairing, throughout pairing, gestation, lactation and until termination, except that exposure of pregnant females was not performed from gestation day 20 to lactation day 4. However, the authors did not provide justifications for the change of dosing schedule. For the F0 generation, there were 9 female decedents, 1 at 2,000 ppm and 8 at 20,000 ppm. The cause of death at 2,000 ppm was not determined and it was considered unrelated to the test article since no other effect was observed. Most of the deaths at 20,000 ppm were considered test article-related and all occurred in late lactation. Brain lesions were determined as the factor that contributed to one of the deaths in this treatment group.

Histopathological examination found non-neoplastic effects in the heart, brain and spinal cord at 20,000 ppm. There were no effects on any reproductive parameters in the F0 generation. The NOEC (referred to as NOEL in the REACH dossier) for paternal (systemic) toxicity was therefore considered to be 5,000 ppm.

The F1 generation (litters) were also exposed to tetrafluoropropene gas from weaning through pairing, gestation and lactation, except that pregnant females were not exposed from gestation day 20 to lactation day 4. However, the authors did not provide justifications for the change of dosing schedule. There were 3 female decedents in the F1 generation at 20,000 ppm, all occurring in the lactation phase. The cause of death was not determined. There were no effects on development, sexual maturation, litter size, litter survival, litter sex ratio, clinical observations, organ weights or macroscopic findings in the pups from either generation. The NOEC (referred to as NOEL in the REACH dossier) for fertility and development was 20,000 ppm because no adverse effects on fertility parameters or offspring were observed.

A prenatal developmental toxicity (ECHA 2007, Rusch, Tveit et al. 2013) study was conducted in rats according to OECD guideline 414 and in compliance with GLP. The pregnant rats were exposed to tetrafluoropropene gas via nose-only inhalation at gestation days 6-19 for 6 hours/day at doses up to 15,000 ppm. For maternal rats, no mortality or remarkable clinical signs were observed in treated animals compared to controls. Non-treatment-related body weight loss during pregnancy was observed during gestation days 6-9 and 19-21. For maternal rats, no differences were noted in female fecundity index and corpora lutea. Weights of gravid uterus, carcass, empty uterus, and ovaries were not different from controls. The authors identified a NOEC of >15,000 ppm for maternal toxicity.

For fetuses, no statistically significant differences in the incidence of external observations and visceral malformations, anomalies, or variations were observed among the groups. Enlarged placenta was seen in all live fetuses in one high dose dam but no abnormalities were observed with microscopical evaluation. Placental weights were not different. A NOAEC of >15,000 ppm was identified for developmental toxicity due to absence of adverse toxic effects.

A prenatal developmental toxicity (ECHA 2007, Rusch, Tveit et al. 2013) study was conducted in rabbits in compliance with GLP and according to OECD guideline 414 and EPA OPPTS 870.3700. Pregnant rabbits were exposed to tetrafluoropropene gas via whole-body inhalation at gestation days 6-28 for 6 hours/day at doses of 0, 4,000, 10,000, and 15,000 ppm. For maternal rabbits, no treatment-related

effects on pregnancy rate, number of corpora lutea, number of implantations or sex ratio were reported. A decrease in pre-implantation loss at concentrations >4,000 ppm was noted but according to the authors, the observation was not considered to be treatment related since these parameters were established prior to exposure. An increase in post implantation loss was noted (dose level was not specified), however, the authors claimed that the effect was not dose dependent and was within historical controls, thus it was considered to not be treatment related. For fetuses, no adverse effects were observed. Thus, the authors identified a NOAEC of >15,000 ppm for both maternal systemic toxicity and for reproductive and developmental toxicity.

Another prenatal developmental toxicity (ECHA 2007) study was conducted in rabbits in compliance with GLP and according to OECD guideline 414. The rabbits were exposed to tetrafluoropropene gas via whole-body inhalation at gestation days 6-28 for 6 hours/day at doses of 0, 1,500, 5,000, and 15,000 ppm. No maternal toxic or embryotoxic/teratogenic effects were observed. A NOAEC of 15,000 ppm was determined for maternal toxicity and embryotoxicity.

Neurotoxicity

No data.

Site of Contact Effects:

Dermal Irritation

In a skin irritation study (ECHA 2007) conducted in compliance with GLP and OECD Guideline 404, three New Zealand White rabbits were exposed to tetrafluoropropene under semi-occlusive conditions. The results indicated that the test substance did not cause irritation to rabbit skin after exposure durations of 1 minute, 3 minutes, or 4 hours.

Dermal Sensitization

No data.

Ocular Irritation

No data.

Respiratory irritation

No data.

Photo-induced toxicity

No data.

Others

None identified.

Summary of Hazard Assessment

According to the REACH dossier, tetrafluoropropene exhibits low acute toxicity via inhalation. No oral or dermal data are available for acute and repeated dose toxicity. It was not genotoxic according to *in vitro* and *in vivo* studies. A skin irritation study in rabbits showed negative results. No studies are available on skin sensitization, ocular and respiratory irritation, phototoxicity or carcinogenicity.

A 90-day repeated dose nose-only inhalation toxicity study in rats reported a NOAEC of 5,000 ppm (or 4542.9 mg/kg bw/day)¹⁰³ based on heart cell damage at 15,000 ppm. In addition, a subacute (28-day) inhalation study in rats reported effects in the heart, liver, and nasal passages at 20,000–50,000 ppm, with a NOAEC of 5,000 ppm. Another subacute rat study found inflammation in the hearts at 15,000 ppm, resulting in a NOAEC of 10,000 ppm.

Giffen, Kilgour et al. (2024) studied the toxicology of tetrafluoropropene inhalation in mice, rats, and dogs. In 14-day and 13-week mouse studies via nose-only inhalation, no exposure-related effects were observed at doses up to 29,000 mg/kg bw/day, establishing a NOEL of 29,000 mg/kg bw/day. In a 26-week rat study via nose-only inhalation, the highest dose (12,000 mg/kg bw/day) led to increased severity of rodent progressive cardiomyopathy, particularly in males, resulting in a NOAEL of 4,280 mg/kg bw/day. In dog studies lasting up to 39 weeks, no toxicological effects were found at doses up to 3,647 mg/kg bw/day, the highest dose tested for 2 hours/day, leading to a NOEL of 3,647 mg/kg bw/day. While mice and dogs showed no effects at high doses, rats exhibited heart-related toxicity at the highest exposure level.

Developmental and reproductive toxicity studies in rats via nose-only inhalation and rabbits via whole-body inhalation determined NOAECs of >15,000 ppm, as no adverse effects on maternal health, fertility, or fetal development were observed at the highest test dose of 15,000 ppm. However, in another study in rats via whole-body inhalation, a NOEC of 5,000 ppm was determined for paternal systemic toxicity based on observed mortality at the highest dose (20,000 ppm) following a 6 hours/day exposure regimen.

Inhalation and dermal exposures represent the most relevant exposure routes for the cosmetic products containing tetrafluoropropene. Based on the available information, from Giffen, Kilgour et al. (2024), we selected the lowest NOEL of 3,647 mg/kg bw/day (15,000 ppm) from dog studies to derive a POD for risk characterization purposes. This value is the smallest across all NOAELs and was chosen due to the conservative nature of the current assessment.

Given the lack of experimental inhalation absorption data for inhalation absorption, we assume 100% inhalation absorption for tetrafluoropropene. Therefore, the systemic POD (PODsys) is considered to be 3,647 mg/kg bw/day, which is used for risk characterization described after the Exposure Assessment section below.

Since no information is available on skin sensitization, a No Expected Sensitization Induction Level (NESIL) could not be identified.

Exposure Assessment

¹⁰³ This unit was converted ppm to mg/kg bw/day based on species-specific inhalation rate and body weight and adjusted for the treatment duration.

Exposure Scenario

Based on the product categories (**Table A.18.2**), a consumer may be exposed to tetrafluoropropene via multiple exposure routes including inhalation, dermal, oral and ocular routes. Based on the use information of tetrafluoropropene, we developed three exposure scenarios for estimating systemic exposure dose (SED): 1) inhalation-only exposure from aerosol hair sprays, 2) combined exposure from inhalation and dermal contact of aerosol hair sprays, and 3) dermal-only exposure from traditional applications of makeup preparations.

Scenario 1 – Inhalation-only exposure from aerosol hair sprays

This scenario assumes 100% sprayed hair product is airborne. Rothe, Fautz et al. (2011) described a two-box model for inhalation risk assessment in cosmetic spray safety evaluations, which estimates airborne substance distribution by dividing space into a near-field and far-field. For hair sprays, Rothe, Fautz et al. (2011) assumed a 1–2 m³ cloud around the user in the first 2 minutes, followed by distribution into a 10 m³ volume within 18 minutes, approximating a bathroom size. Using the two-box model, the level of systemic exposure can be calculated using the following formula:

$$\text{SED} = (\text{CRDE}/V_1 \times C \times \text{BR} \times T_1 + \text{CRDE}/V_2 \times C \times \text{BR} \times T_2) \times I_p$$

Where:

CRDE represents the calculated relative daily exposure to the cosmetic product, i.e., the amount of hair spray used that is available for exposure (mg/kg bw/day)

V₁ represents the distribution volume of hair spray in a facial/body near cloud (L)

C is the concentration of tetrafluoropropene in the hair spray

BR is the breathing rate (L/min)

T₁ represents duration of exposure in the near field, min

V₂ represents the size of the whole room (L)

T₂ represents duration of exposure in the far field, min

I_p is the exchange factor for the inhaled portion

For adults, a default CRDE value of 129 mg/kg bw/day for aerosol hair spray derived from Loretz, Api et al. (2006) is used in this calculation. This CRDE value has incorporated factors including the amount of product per use, frequency of use per day, and an airborne fraction of 100% (Bremmer, Prud'homme de Lodder et al. 2006). Additionally, it has been adjusted based on body weight.

The distribution volume of hair spray in a facial/body near cloud (V₁) is assumed to be 1 m³ (1,000 L), and the size of the whole room (V₂) is assumed for a conventional default small bathroom for hair products as 10 m³ (10,000 L).

As the specific use concentration (C) of tetrafluoropropene is unknown, we apply a conservative approach and assume the 90% tetrafluoropropene concentration in the hair spray product based on our understanding of the limit in regulatory guidelines in China.¹⁰²

Breathing rate (BR) is set at the conventional default value of 19 m³/day for adults in Rothe, Fautz et al. (2011) and SCCS (2023), which converts to 13 L/min.

Exposure time in the near field (T_1) and far field (T_2) are set as 2 min and 18 min respectively as described in Rothe, Fautz et al. (2011).

Since scientists estimate that 25% of inhaled air and airborne particles are exhaled without being retained in the lungs, an exchange factor for the inhaled portion ($Ip = 75\%$) is applied to the calculation (European Commission 1996, Rothe, Fautz et al. 2011).

Therefore, the systemic exposure to tetrafluoropropene is determined to be 4.30 mg/kg bw/day based on the calculation below:

$$\text{SED} = [(129 \text{ mg/kg bw/day})/1000L \times 0.9 \times 13 \text{ L/min} \times 2\text{min} + (129 \text{ mg/kg bw/day})/10000L \times 0.9 \times 13 \text{ L/min} \times 18 \text{ min}] \times 0.75 = 4.30 \text{ mg/kg bw/day}$$

Scenario 2 – combined exposure from inhalation and dermal contact of aerosol hair sprays

This scenario assumes that 85% of the sprayed product stays on the hair and head, while 15% becomes airborne. Of the product retained on the hair and head, 10% is available for dermal exposure, meaning it can come into direct contact with the skin or scalp (Bremmer, Prud'homme de Lodder et al. 2006).

Incorporating these assumptions, the systemic exposure resulting from dermal contact ($\text{SED}_{\text{dermal}}$) can be calculated as:

$$\text{SED}_{\text{dermal}} = \text{CRDE} \times C \times \text{DAF} \times 0.85 \times 0.1$$

Where:

CRDE represents the calculated relative daily exposure to the cosmetic product, i.e., the amount of hair spray used that is available for exposure (mg/kg bw/day)

C is the concentration of tetrafluoropropene in the hair spray

DAF represents the dermal absorption factor

The same values in Scenario 1 are used for calculating relative daily exposure to hair spray and the concentration of tetrafluoropropene in the hair spray. In the absence of experimentally measured dermal absorption, a default value of 50% is applied for DAF as recommended by SCCS (2023). Thus, the dermal exposure to tetrafluoropropene is determined to be 4.93 mg/kg bw/day based on the following calculation:

$$\text{SED}_{\text{dermal}} = 129 \text{ mg/kg bw/day} \times 0.9 \times 0.5 \times 0.85 \times 0.1 = 4.93 \text{ mg/kg bw/day}$$

While the systemic exposure resulting from inhalation ($\text{SED}_{\text{inhalation}}$) of the 15% airborne hair spray can be calculated as:

$$\text{SED}_{\text{inhalation}} = 4.30 \text{ mg/kg bw/day} \text{ (calculated from Scenario 1)} \times 0.15 = 0.65 \text{ mg/kg bw/day}$$

As a result, the total exposure ($\text{SED}_{\text{total}}$) combined from inhalation and dermal contact of the aerosol hair spray is determined to be 5.58 mg/kg bw/day:

$$\text{SED}_{\text{total}} = \text{SED}_{\text{dermal}} + \text{SED}_{\text{inh}} = 4.93 \text{ mg/kg bw/day} + 0.65 \text{ mg/kg bw/day} = 5.58 \text{ mg/kg bw/day}$$

Scenario 3 – dermal-only exposure from traditional applications of makeup preparations

Under the makeup product exposure scenario, the level of systemic exposure from dermal application can be calculated using the following formula:

$$\text{SED} = \text{CRDE} \times C \times \text{DAF}$$

Where:

CRDE represents calculated relative daily exposure, i.e., the amount of the makeup product applied that is available for dermal exposure

C represents concentration of tetrafluoropropene in the makeup

DAF represents the dermal absorption factor

For adults, a default CRDE value of 7.90 mg/kg bw/day for makeup liquid foundation, as established by the SCCS Notes of Guidance (SCCS 2023), is used in this calculation, which represents the highest amount of use under the makeup category. This CRDE value has incorporated factors including the amount of product per use, frequency of use per day, and a retention factor (RF) (RF=1 for leave-on products). Additionally, it has been adjusted based on body weight.

As the specific use concentration (C) of tetrafluoropropene is unknown, we apply a conservative approach and assume a 90% tetrafluoropropene concentration in the makeup product based on our understanding of the limit in regulatory guidelines in China.¹⁰²

With the same default value of 50% in Scenario 2 applied for DAF, we determined the systemic exposure to tetrafluoropropene from makeup preparations to be 3.56 mg/kg bw/day based on the following calculation:

$$\text{SED} = 7.90 \text{ mg/kg bw/day} \times 0.9 \times 0.5 = 3.56 \text{ mg/kg bw/day}$$

Since Scenario 2 yields the highest SED value of 5.58 mg/kg bw/day, we selected it for the MOE calculation to ensure the most conservative analysis.

Risk Characterization

Risk characterization is the final step of a risk assessment, quantitatively evaluating whether the level of exposure to a specific ingredient in a product or product type of interest poses potential health risks to the consumers. As noted in the hazard assessment section, the potential of acute inhalation toxicity for tetrafluoropropene is low. Due to a lack of data, the potential for skin sensitization and phototoxicity cannot be determined. Therefore, this current risk characterization focuses solely on the potential risk of systemic toxicity.

In risk characterization, MOE is used as a tool to assess possible health concerns. MOE is the ratio between a safety-based POD and the estimated exposure level, i.e., SED. The larger the margin, the lower the risk. Typically, a calculated MOE smaller than the target MOE (e.g. the default of 100) indicates a concern for a potential health risk, while a calculated MOE larger than the target MOE does not indicate a potential health risk.

The target MOE and the calculated MOE for tetrafluoropropene are calculated as described below.

Target MOE

Given that the POD in this assessment was derived from a 39-week repeated dose toxicity study in dogs, the target MOE for tetrafluoropropene is determined to be ≥ 100 . Thus, a calculated MOE of ≥ 100 is indicative of low concern for health risks from tetrafluoropropene.

Calculated MOE

Based on the PODsys and SED values calculated in the hazard assessment and exposure assessment sections, respectively, we determined the MOE for tetrafluoropropene used in hair care products by adults (considering both inhalation and dermal exposure) to be 654, as calculated below:

$$\text{MOE} = \text{PODsys/SED} = 3647 \text{ mg/kg bw/day (15,000 ppm)} \div 5.58 \text{ mg/kg bw/day} = 654$$

In this most conservative use scenario (Scenario 2), the calculated MOE (654) is greater than the target MOE of 100, indicating a low safety concern regarding the use of tetrafluoropropene in cosmetic products under this use scenario. The result also indicates low safety concerns with the use of this ingredient under other presented scenarios with lower exposure doses.

Characterization of Uncertainty

This risk assessment for tetrafluoropropene is subject to uncertainties due to limited data availability. First, the actual concentration of tetrafluoropropene in cosmetic products on the U.S. market is unknown, and the assumed concentration of 90% may be an overestimation. Second, there is a lack of experimental data on inhalation absorption. While the toxicity effects from the repeated dose study support inhalation absorption, the actual absorption rate was not reported. The default absorption rate of 100% for inhalation absorption could be an overestimate. Finally, the mechanism or mode of action by which tetrafluoropropene induced organ damage is not known, making it impossible to evaluate whether the observed effects in animals would also occur in humans, i.e., its human relevance cannot be assessed.

By addressing these knowledge gaps, we can refine this assessment and ensure the safety of tetrafluoropropene-containing cosmetic products. However, considering the conservative nature of the assessment, the use of this ingredient in cosmetic products under the assessed scenarios is of low safety concern despite the uncertainties.

Review Summary/Conclusion

Use: According to the INCI database, tetrafluoropropene functions as a propellant in cosmetic products. As of August 30, 2024, the ingredient was used in 23 registered cosmetic products categorized into hair preparations, makeup preparations, and personal cleanliness products, based on the mandatory cosmetic product listing data submitted to the FDA. It is primarily used in hair sprays and other hair products, followed by deodorant sprays and lip care products. Historical data in the VCRP shows only 1 use by 2023, and Mintel's GNPD shows that 21 new cosmetic products containing the ingredient were launched in the past 5 years (August 2019 to July 2024), including 4 in the past year (August 2023 to July 2024). However, due to the lack of baseline or historical data in the mandatory cosmetic product listing data submitted to the FDA, a trend cannot be demonstrated at this time.

Safety: Based on the product types containing tetrafluoropropene, inhalation and dermal contact are expected to be the main exposure routes for its use in cosmetic products, followed by potential oral and ocular exposures.

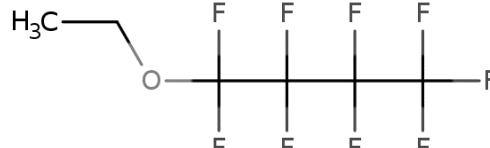
According to the REACH dossier, tetrafluoropropene exhibits low acute toxicity via inhalation. No oral or dermal toxicity data is available. *In vitro* and *in vivo* studies showed it is not genotoxic. It's not a skin irritant. No studies are available on skin sensitization, ocular and respiratory irritation, phototoxicity or carcinogenicity. A 90-day repeated dose inhalation toxicity study and subacute inhalation studies in rats reported cell damage and inflammation in hearts at 15,000 ppm, and effects in the heart, liver, and nasal passages at 20,000–50,000 ppm. Developmental and reproductive toxicity studies in rats (nose-only inhalation) and rabbits (whole-body inhalation) established NOAECs exceeding 15,000 ppm, as no adverse effects on maternal health, fertility, or fetal development were observed at the highest tested dose. However, a separate rat study using whole-body inhalation resulted in a NOEC of 5,000 ppm for paternal systemic toxicity, based on mortality observed at the highest dose of 20,000 ppm.

Giffen, Kilgour et al. (2024) investigated the toxicological effects of tetrafluoropropene inhalation in mice (nose-only), rats (nose-only), and dogs. In 14-day and 13-week studies on mice, no exposure-related effects were detected at doses up to 29,000 mg/kg bw/day, establishing a NOEL at this level. In a 26-week study on rats, the highest dose (12,000 mg/kg bw/day) resulted in increased severity of rodent progressive cardiomyopathy, particularly in males, leading to a NOAEL of 4,280 mg/kg bw/day. In dogs, studies lasting up to 39 weeks revealed no toxicological effects at doses up to 3,647 mg/kg bw/day (15,000 ppm), establishing a NOEL at this level.

A systemic POD of 3,647 mg/kg bw/day was derived from the results of the dog inhalation study in Giffen, Kilgour et al. (2024).

We estimated systemic exposure (i.e., SED) to tetrafluoropropene from cosmetic use for three use scenarios of cosmetic products. For a conservative analysis, the highest exposure dose among these scenarios of 5.58 mg/kg bw/day was selected under our use scenario of aerosol hair sprays combining the exposure from inhalation and dermal contact.

The calculated MOE of 654 for hair spray use is greater than the target MOE of 100, which indicates a low concern for safety associated with tetrafluoropropene when used as an ingredient in cosmetic products under the exposure conditions in the assessment.


It is important to note that this assessment is preliminary and subject to significant uncertainties. Limited data on use concentration, lack of inhalation absorption studies, insufficient mechanistic understanding of toxicity for human relevance, and restricted access to full study reports contribute to these uncertainties. As more data becomes available, this assessment could be refined to provide a more accurate evaluation of the safety and potential risks of tetrafluoropropene's use in cosmetic products.

19. Ethyl Perfluorobutyl Ether

Introduction

Ethyl perfluorobutyl ether (CAS No. 163702-05-4; PubChem CID: 206000), also known as ethyl nonafluorobutyl ether, is a hydrofluoroether with the chemical formula $C_4F_9OCH_2CH_3$. **Table A.19.1** below presents the key physical and chemical properties related to ethylperfluorobutyl ether. It is a clear colorless liquid with low odor. It has a negligible water solubility but can be soluble in nonpolar organic solvents. Ethyl perfluorobutyl ether's vapor pressure indicates potential for evaporation. Ethyl perfluorobutyl ether is primarily used as a solvent and viscosity decreasing agent in various industries including cosmetic products.

Table A.19.1. Physical and chemical properties of Ethyl Perfluorobutyl Ether

Element	Description
Name	Ethyl Perfluorobutyl Ether
INCI name	Ethyl Perfluorobutyl Ether
Synonyms	1-Ethoxy-1,1,2,2,3,3,4,4,4-Nonafluorobutane Eethyl Nonafluorobutyl Ether 1-(Ethoxy)nonafluorobutane Ethoxynonafluorobutane Nonafluorobutyl Ethyl Ether NOVEC HFE 7200 3M Cosmetic Fluid CF-76
CAS#	163702-05-4
Structure	
Molecular formula	$C_4F_9OCH_2CH_3$ (or $C_6H_5F_9O$)
Molecular weight	264.09 g/mol
Particle size	Not applicable
Physical form	Clear colorless liquid; low odor
Density	1.46 g/cm ³
Solubility	3.01e-4 mol/L (or 79.5 mg/L) in water
Partition coefficient (Log K _{ow})	3.7 (predicted)
Vapor pressure	109 mmHg
Melting point	-69.3 °C
Boiling point	68.4 °C

Element	Description
Topological polar surface area	9.2 Å ²
UV light absorption spectrum	NA
Decomposes	NA
Additional properties	NA

Notes: NA, not available. Sources: PubChem; and EPA's CompTox Chemicals Dashboard for ethyl perfluorobutyl ether.

Use in Cosmetic Products

According to INCI, ethyl perfluorobutyl ether functions as solvents and viscosity decreasing agents in cosmetic products.

Based on the mandatory cosmetic product listing data submitted to the FDA, ethyl perfluorobutyl ether is used in 22 cosmetic products (**Table A.19.2**). The 22 products are categorized in the following two main product categories: personal cleanliness (n=3, 13.6%) and skin care preparations (creams, lotions, powder, and sprays) (n=19, 86.4%). Please see **Table S2** for a full list of cosmetic product categories.

Within skin care preparations (creams, lotions, powder, and sprays), ethyl perfluorobutyl ether is used in cleansing (cold creams, cleansing lotions, liquids, and pads) (n=4, 18.2%), face and neck (excluding shaving preparations), leave-on (n=1, 4.5%), face and neck (excluding shaving preparations), rinse-off (n=1, 4.5%), moisturizing (n=6, 27.3%), paste masks (mud packs) (n=4, 18.2%), and other skin care preparations, leave-on (n=3, 13.6%) product categories as shown in **Table A.19.2**.

Table A.19.2. Frequency of Use of Ethyl Perfluorobutyl Ether in the Mandatory Cosmetic Product Listing Data Submitted to the FDA (as of August 30, 2024)

Product Category	Number of Products	Percentage of Total (%)
Personal cleanliness		
Other personal cleanliness products, leave-on	2	9.1
Other personal cleanliness products, rinse-off	1	4.5
Personal cleanliness total	3	13.6
Skin care preparations (creams, lotions, powder, and sprays)		
Cleansing (cold creams, cleansing lotions, liquids, and pads)	4	18.2
Face and neck (excluding shaving preparations), leave-on	1	4.5
Face and neck (excluding shaving preparations), rinse-off	1	4.5

Product Category	Number of Products	Percentage of Total (%)
Moisturizing	6	27.3
Paste masks (mud packs)	4	18.2
Other skin care preparations, leave-on	3	13.6
Skin care total	19	86.4
Grand total	22	100.0

To assess the trend of ethyl perfluorobutyl ether's use in cosmetic products, we searched the historical data in the VCRP and the Mintel GNPD. The retrieved data from both databases do not show clear trends of the ingredient's use in cosmetic products. In the VCRP database, ethyl perfluorobutyl ether was used in 4 products in 2019, 5 products in 2021, and 5 products in 2023 (**Table S4**). The Mintel GNPD shows that the ingredient was used in 2 products launched in the U.S. market over a 5-year period (August 2019 to July 2024) and 0 products launched between August 2023 and July 2024 (**Table S4**). The use trend of ethyl perfluorobutyl ether cannot be currently determined using the mandatory cosmetic product listing data submitted to the FDA due to the lack of historical data.

Under the FD&C Act, the concentration of ingredients used in cosmetic products is not required to be submitted to the FDA as part of the product listing data. Therefore, the use concentration for ethyl perfluorobutyl ether is not available to the FDA. A recent publication by Balan, Bruton et al. (2024) reported a use concentration of 2% to 9% in various cosmetic products including facial cleanser, hair care, and lotions and moisturizers.

Based on the product types that contain ethyl perfluorobutyl ether, dermal contact is expected to be the primary route of consumer exposure to this ingredient from the use of cosmetic products, such as creams and lotions for skin care, and products for personal cleanliness.

Existing Safety Assessments by Government Agencies, Scientific Advisory Groups, and Peer-Reviewed Literature

A comprehensive search of data sources as listed in **Table S5** did not identify any assessments of ethyl perfluorobutyl ether by government agencies or other scientific advisory groups such as SCCS, CIR, or IARC.

ADME/Toxicokinetics

We conducted a literature search on the toxicokinetics of ethyl perfluorobutyl ether in PubMed and Web of Science using the query outlined in **Table S9**. The search identified one publication in PubMed and 16 publications in Web of Science (searched on 12/10/2024). However, after abstract screening, we did not identify any publications relevant to the toxicokinetics of ethyl perfluorobutyl ether. We did not identify a REACH dossier for ethyl perfluorobutyl ether in the ECHA database (searched on 12/10/2024).

Hazard Assessment

A literature search in PubMed and Web of Science using the query outlined in **Table S9** yielded no publicly available information regarding the toxicity of ethyl perfluorobutyl ether. As the FDA does not have premarket authority over cosmetic ingredients or products other than color additives which are subject to FDA approval before use, we do not have specific data to review.

Review Summary/Conclusion

Use: Based on the mandatory cosmetic product listing data submitted to the FDA, ethyl perfluorobutyl ether, a hydrofluoroether, is currently used as an ingredient in 22 cosmetic products, primarily in skin care preparations and personal cleanliness. Data from Mintel's GNPD and the VCRP do not provide a trend for the use of ethyl perfluorobutyl ether in cosmetic products. In addition, due to the lack of baseline or historical data in the mandatory cosmetic product listing data submitted to the FDA, a trend cannot be demonstrated at this time.

Safety: Based on the product types containing ethyl perfluorobutyl ether, dermal contact is expected to be the primary route of consumer exposure to this ingredient. However, there is a lack of publicly available information regarding the toxicokinetics or toxicity of ethyl perfluorobutyl ether. The FDA does not have relevant information to assess the potential for skin irritation or sensitization, and whether it can be absorbed and could lead to systemic exposure and toxicity. Given the limited data and information available, the FDA cannot determine the safety of ethyl perfluorobutyl ether from its use in cosmetic products or risks associated with such use.

20. Trifluoromethyl C1-4 Alkyl Dimethicone

Introduction

Trifluoromethyl C1-4 alkyl dimethicone (CAS/CID numbers unavailable) is a clear fluoro silicone fluid containing trifluoroalkyl groups along the silicone backbone in its structure. **Table A.20.1** below presents the known physical and chemical properties of trifluoromethyl C1-4 alkyl dimethicone. Due to the trifluoroalkyl organic branch distribution, it exhibits excellent lubricity, conditioning, water repellency, and anti-foam characteristics and forms a protective barrier when formulated in skin and hair care products.

Trifluoromethyl C1-4 alkyl dimethicone can be used in a wide variety of cosmetic applications including protective creams, suntan creams, body lotions, shampoos, conditioners, and wherever conditioning, lubricity, and water resistance are desired.¹⁰⁴

Table A.20.1. Physical and Chemical Properties of Trifluoromethyl C1-4 Alkyl Dimethicone

Element	Description
Name	Trifluoromethyl C1-4 Alkyl Dimethicone
INCI name	Trifluoromethyl C1-4 Alkyl Dimethicone
Synonym	Gransil DM-100 ¹⁰⁵
CAS#	NA
Structure	$ \begin{array}{c} \text{CH}_3 \quad \text{CH}_3 \\ \quad \\ \text{SiO} - \text{SiO} - \text{SiO} - \text{Si}(\text{CH}_3)_3 \\ \quad \\ \text{CH}_3 \quad \text{R} - \text{CF}_3 \end{array} $ ¹⁰⁶
Molecular formula	$\text{SiOC}_3\text{H}_9(\text{SiOC}_2\text{H}_6)_x(\text{SiOC}_2\text{H}_3\text{F}_3\text{C}_n\text{H}_{2n})_y\text{SiC}_3\text{H}_9$ ¹⁰⁶
Molecular weight	NA
Particle size	Not applicable
Physical form	Clear colorless liquid
Density	NA
Solubility	NA
Partition coefficient (Log K _{ow})	NA
Vapor pressure	NA
Melting point	NA
Boiling point	NA

¹⁰⁴ [Trifluoromethyl C1-4 Alkyl Dimethicone | Ingredient | INCI Guide](#) (accessed 12/12/2024).

¹⁰⁵ [Gransil DM-100: Technical Datasheet](#) (accessed 12/12/2024).

¹⁰⁶ [Trifluoromethyl C1-4 Alkyl Dimethicone - ICID raw ingredient: EZCOS](#) (accessed 12/12/2024).

Element	Description
Topological polar surface area	NA
UV light absorption spectrum	NA
Decomposes	NA
Additional properties	Specific gravity: 0.89-1 at 25 °C, non-volatile matter: 95-100%, refractive index: 1.395-1.405, viscosity: 90-120 cP ¹⁰⁵

Notes: NA, not available. Sources: See footnotes.

Use in Cosmetic Products

According to INCI, trifluoromethyl C1-4 alkyl dimethicone functions as an occlusive skin-conditioning agent in cosmetic products.

Based on the mandatory cosmetic product listing data submitted to the FDA, trifluoromethyl C1-4 alkyl dimethicone is used in 21 cosmetic products (**Table A.20.2**). The 21 products are categorized in two main product categories: makeup preparations (not eye) (other than makeup preparations for children) (n=17, 81.0%) and skin care preparations (creams, lotions, powder, and sprays) (n=4, 19.0%). Please see **Table S2** for a full list of cosmetic product categories.

Within the two main product categories, trifluoromethyl C1-4 alkyl dimethicone is predominantly used in foundations (traditional applications), accounting for 42.9% (n=9) of the ingredient's total usage in cosmetic products as shown in **Table A.20.2**.

Table A.20.2. Frequency of Use of Trifluoromethyl C1-4 Alkyl Dimethicone in the Mandatory Cosmetic Product Listing Data Submitted to the FDA (as of August 30, 2024)

Product Category	Number of Products	Percentage of Total (%)
Makeup preparations (not eye) (other than makeup preparations for children)		
Face powders	4	19.0
Foundations, traditional applications	9	42.9
Makeup bases, traditional applications	3	14.3
Makeup bases, traditional applications/Makeup bases, airbrush applications	1	4.8
Makeup (not eye) total	17	81.0
Skin care preparations (creams, lotions, powder, and sprays)		
Face and neck (excluding shaving preparations), leave-on	4	19.0

Product Category	Number of Products	Percentage of Total (%)
Grand total	21	100.0

To assess the trend of trifluoromethyl C1-4 alkyl dimethicone's use in cosmetic products, we searched historical data in the VCRP and the Mintel GNPD. VCRP data shows that trifluoromethyl C1-4 alkyl dimethicone was not used in cosmetic products in 2019 and 2021 but was used in 2 products in 2023, while Mintel's GNPD does not show any record of use in cosmetic products launched in the U.S. market over a 5-year period (August 2019 to July 2024) (**Table S4**). The use trend of trifluoromethyl C1-4 alkyl dimethicone cannot be currently determined using the mandatory cosmetic product listing data submitted to the FDA due to the lack of historical data.

Under the FD&C Act, the concentration of ingredients used in cosmetic products is not required to be submitted to the FDA as part of the product listing data. Therefore, the use concentration for trifluoromethyl C1-4 alkyl dimethicone is not available to the FDA. A recent publication by Balan, Bruton et al. (2024) reported the use concentration of 3% in various cosmetic products, including bronzer and highlighter, foundation and concealer, hair care, lotions and moisturizers, and sun care.

Given that the majority of the products containing trifluoromethyl C1-4 alkyl dimethicone are makeup and skin care products, dermal contact is expected to be the primary route of consumer exposure to this ingredient. Incidental inhalation may occur when using face powders or makeup base that is applied using an airbrush.

Existing Safety Assessments by Government Agencies, Scientific Advisory Groups, and Peer-Reviewed Literature

A comprehensive search of data sources as listed in **Table S5** did not identify any assessments for trifluoromethyl C1-4 alkyl dimethicone by government agencies or other scientific advisory groups such as SCCS, CIR, or IARC.

ADME/Toxicokinetics

A literature search in PubMed and Web of Science using the query outlined in **Table S9** did not identify any publications on the toxicokinetics of trifluoromethyl C1-4 alkyl dimethicone. We did not identify a REACH dossier for trifluoromethyl C1-4 alkyl dimethicone in the ECHA database (searched on 12/10/2024).

Hazard Assessment

A literature search in PubMed and Web of Science using the query outlined in **Table S9** yielded no publications on the toxicity of trifluoromethyl C1-4 alkyl dimethicone.

Review Summary/Conclusion

Use: Based on the mandatory cosmetic product listing data submitted to the FDA, trifluoromethyl C1-4 alkyl dimethicone is currently used as an ingredient in 21 cosmetic products, predominantly in face foundations, face powder, and makeup bases, followed by in face and neck leave on products. Available

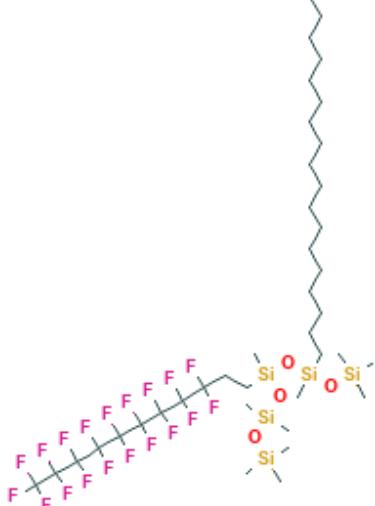
information from the VCRP and Mintel's GNPD indicates that trifluoromethyl C1-4 alkyl dimethicone was rarely used in cosmetic products in the past several years. Although there are significantly more registered products in the mandatory cosmetic product listing data submitted to the FDA, due to the lack of baseline or historical data, a use trend cannot be demonstrated at this time.

Safety: Based on the product types using trifluoromethyl C1-4 alkyl dimethicone, consumers may be exposed to the ingredient through multiple routes. Dermal contact is expected to be the primary route of exposure for the ingredient, as it is predominantly used in makeup and skin care preparations. Additionally, exposure may occur through incidental inhalation when face powders are applied, or when makeup base is applied using an airbrush. As the FDA does not have any relevant information to assess the potential toxicity of trifluoromethyl C1-4 alkyl dimethicone, we cannot determine the safety of trifluoromethyl C1-4 alkyl dimethicone from its use in cosmetic products or risks associated with such use.

21. Perfluorononylethyl Stearyl Dimethicone

Introduction

Perfluorononylethyl stearyl dimethicone (CAS No. 882878-48-0; PubChem CID: 121235922) is a soft paste fluorinated and alkylated silicone; the fluoro pendant gives excellent softness and slip while the alkyl pendant groups make it more compatible with many organic systems.¹⁰⁷ **Table A.21.1** shows the chemical structure and physicochemical properties. Perfluorononylethyl stearyl dimethicone is an off-white soft solid that is insoluble in water but soluble in mineral oil.


Table A.21.1. Physical and Chemical Properties of Perfluorononylethyl Stearyl Dimethicone

Element	Description
Name	Perfluorononylethyl Stearyl Dimethicone
INCI name	Perfluorononylethyl Stearyl Dimethicone
Synonyms	Perfluorononylethyl Stearyl Dimethicone (25-35% nonafluorohexylmethylsiloxane) (65-75% dimethylsiloxane) copolymer, 8-12 cSt dimethyl-[methyl-(methyl-octadecyl-trimethylsilyloxsilyl)oxy- (3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11- nonadecafluoroundecyl)silyl]oxy-trimethylsilyloxsilane 1858250-39-1 Fluorosil L-118 (trade name) ¹⁰⁷ SF-30W ¹⁰⁸ Siloxanes and Silicones, di-Me, Me 3,3,4,4,5,5,6,6- nonafluorohexyl, Me stearyl ¹⁰⁹
CAS#	882878-48-0

¹⁰⁷ [Fluorosil® L118 by Siltech Corporation - Personal Care & Cosmetics](#) (accessed 12/10/2024)

¹⁰⁸ <https://cosmetics.specialchem.com/product/i-basel-chemie-elkem-sf-30w> (accessed 12/10/2024)

¹⁰⁹ Safety datasheet for Fluorosil L118, https://www.siltech.com/wp-content/uploads/2024/04/SDS-5515-Fluorosil-L118_GHS.pdf (accessed 12/10/2024)

Element	Description
Structure	
Molecular formula	C ₃₉ H ₇₁ F ₁₉ O ₄ Si ₅
Molecular weight	1105.4 g/mol
Particle size	NA
Physical form	Liquid, ¹⁰⁸ wax, ^{108,109} soft solid, ¹¹⁰ off-white, ¹⁰⁹ Gardner Color Scale 4 Max ¹¹⁰
Density	NA
Solubility	Insoluble in water, insoluble in IPA, soluble in mineral oil, dispersible to insoluble in cyclopentasiloxane, dispersible to insoluble in 350 viscosity silicone fluid ¹⁰⁸
Partition coefficient (Log K _{ow})	NA
Vapor pressure	NA
Melting point	30-40 °C, ¹⁰⁸ 27 °C ¹¹⁰
Boiling point	NA
Topological polar surface area	36.9 Å ²
UV light absorption spectrum	NA
Decomposes	NA
Additional properties	Viscosity: 400-1000 cP, ¹⁰⁸ flash point: 200 °C ¹⁰⁸ odor: faint, ¹⁰⁹ flash point (PMCC) >100 °C ¹⁰⁷

¹¹⁰ Technical datasheet for Fluorosil L118, <https://www.siltech.com/wp-content/uploads/2017/11/TP5515.pdf> (accessed 12/10/2024).

Notes: NA, not available. Sources: PubChem; specified otherwise.

Use in Cosmetic Products

According to INCI, perfluorononyl ethyl stearyl dimethicone functions as film formers and occlusive skin-conditioning agents in cosmetic products.

Based on the mandatory cosmetic product listing data submitted to the FDA, perfluorononyl ethyl stearyl dimethicone is used in 18 cosmetic products. All 18 products are in the skin care preparations (creams, lotions, powder, and sprays) or leave-on face and neck (excluding shaving preparations) product category as shown in **Table A.21.2**. Please see **Table S2** for a full list of cosmetic product categories.

Table A.21.2. Frequency of Use of Perfluorononyl Ethyl Stearyl Dimethicone in the Mandatory Cosmetic Product Listing Data Submitted to the FDA (as of August 30, 2024)

Product Category	Number of Products	Percentage of Total (%)
Skin care preparations (creams, lotions, powder, and sprays)		
Face and neck (excluding shaving preparations), leave-on	18	100.0
Total	18	100.0

To assess the trend of perfluorononyl ethyl stearyl dimethicone use in cosmetic products, we searched the historical data in the VCRP and the Mintel GNPD. We found no reported use of this ingredient in the VCRP or Mintel's GNPD over the past 5 years (August 2019 to July 2024) (**Table S4**). The use trend of perfluorononyl ethyl stearyl dimethicone cannot be currently determined using the mandatory cosmetic product listing data submitted to the FDA due to the lack of historical data.

Under the FD&C Act, the concentration of ingredients used in cosmetic products is not required to be submitted to the FDA as part of the product listing data. Therefore, the use concentration for perfluorononyl ethyl stearyl dimethicone is not available to the FDA. Suppliers recommend usage at a variety of concentration ranges of 0.2% to 3.0%¹⁰⁹ and 0.5% to 50%¹¹¹ of the formulation. It is important to note that different suppliers of raw material may recommend varying concentrations of use, and that manufacturers or formulators ultimately determine the final concentration in their cosmetic products, which may be outside the range of suppliers' recommendations.

Given that all the 18 perfluorononyl ethyl stearyl dimethicone-containing cosmetic products are leave-on skin care preparation products, intended for use in face and neck areas, dermal contact is considered the primary route of consumer exposure to this ingredient. Oral and inhalation exposure are less likely.

¹¹¹ <https://cosmetics.specialchem.com/product/i-basel-chemie-elkem-sf-30w> (accessed 12/10/2024)

Existing Safety Assessments by Government Agencies, Scientific Advisory Groups, and Peer-Reviewed Literature

A comprehensive search of data sources as listed in **Table S5** did not identify any assessments for perfluorononyl ethyl stearyl dimethicone by government agencies or other scientific advisory groups such as SCCS, CIR, or IARC.

ADME/Toxicokinetics

A literature search in PubMed and Web of Science using the query outlined in **Table S9** did not identify any publications on the toxicokinetics of perfluorononyl dimethicone. We did not identify a REACH dossier for perfluorononyl ethyl stearyl dimethicone in the ECHA database (searched on 12/10/2024).

Hazard Assessment

A literature search in PubMed and Web of Science using the query outlined in **Table S9** yielded no publications on the toxicity of perfluorononyl ethyl stearyl dimethicone. The SDS from the supplier Siltech Corp.¹⁰⁷ indicates that perfluorononyl ethyl stearyl dimethicone poses low acute toxicity under normal conditions of handling and use through ingestion and inhalation routes of exposure. The supplier does not report any classification for other toxicities such as skin irritation, eye irritation, skin sensitization, carcinogenicity or reproductive toxicity. Importantly, we note that the specific data regarding these health effects are unavailable for our independent evaluation.

Review Summary/Conclusion

Use: Based on the mandatory cosmetic product listing data submitted to the FDA, perfluorononyl ethyl stearyl dimethicone, a fluorinated and alkylated silicone, is currently used as an ingredient in 18 cosmetic products, in face and neck skin care preparations (excluding shaving preparations) and leave-on products. However, due to the lack of baseline or historical data in the mandatory cosmetic product listing data submitted to the FDA, a use trend cannot be demonstrated at this time. Suppliers recommend the use at a variety of concentration ranges of up to 50% of the formulation.

Safety: Based on the product types containing perfluorononyl ethyl stearyl dimethicone, consumers are expected to be primarily exposed to this ingredient via dermal contact. However, there is a lack of publicly available information regarding the toxicokinetics or toxicity of perfluorononyl ethyl stearyl dimethicone. The FDA does not have information to assess the potential for eye irritation, skin irritation or sensitization, and whether it can be absorbed and could lead to systemic exposure and toxicity. Given the limited data and information available, the FDA cannot determine the safety of perfluorononyl ethyl stearyl dimethicone from its use in cosmetic products or risks associated with such use.

22. Acetyl Trifluoromethylphenyl Valylglycine

Introduction

Information regarding acetyl trifluoromethylphenyl valylglycine (CAS No. 379685-96-8) is very limited. **Table A.22.1** shows the chemical structure and limited information on physicochemical properties. The water solubility of acetyl trifluoromethylphenyl valylglycine is generally low. Higher solubility has been reported in certain organic solvents. The predicted potential functional uses include skin conditioners, antimicrobials and antioxidants.¹¹²

Table A.22.1. Physical and Chemical Properties of Acetyl Trifluoromethylphenyl Valylglycine

Element	Description
Name	Acetyl Trifluoromethylphenyl Valylglycine
INCI name	Acetyl Trifluoromethylphenyl Valylglycine
Synonyms	UNII-95SP8380V9 (+/-)-Acetyl Trifluoromethylphenyl Valylglycine Acetyl Trifluoromethylphenyl Valylglycine,dl- Glycine, <i>N</i> -acetyl- <i>N</i> -(3-(trifluoromethyl)phenyl)valyl 2-[(2S)-2-[<i>N</i> -acetyl-3-(trifluoromethyl)anilino]-3- methylbutanoyl]amino]acetic acid <i>N</i> -Acetyl- <i>N</i> -(3-(trifluoromethyl)phenyl)valylglycine Mexoryl SAR (trade name)
CAS#	379685-96-8
Structure	
Molecular formula	C ₁₆ H ₁₉ F ₃ N ₂ O ₄
Molecular weight	360.33 g/mol
Physical form	NA
Density	1.311±0.06 g/cm ³
Solubility	Water: predicted range 1.26e-3 to 5.10e-3 mol/L ¹¹²
Partition coefficient (Log K _{ow})	2.5 (predicted)
Vapor pressure	2.21e-12 to 2.51e-10 mmHg

¹¹² [2-\[\(2-\[*N*-Acetyl-3-\(trifluoromethyl\)anilino\]-3-methylbutanoyl\]amino\]acetic acid - Chemical Details](#) (accessed 12/10/2024)

Melting point	169 °C
Boiling point	537.448±50.00 °C ¹¹³
Topological polar surface area	86.7 Å ²
UV light absorption spectrum	NA
Decomposes	NA
Additional properties	pKa: 3.297±0.10, ¹¹³ PSA: 90.2

Notes: NA, not available. Sources: PubChem; specified otherwise.

Use in Cosmetic Products

According to INCI, acetyl trifluoromethylphenyl valylglycine functions as miscellaneous skin-conditioning agents in cosmetic products.

Based on the mandatory cosmetic product listing data submitted to the FDA, acetyl trifluoromethylphenyl valylglycine is used as an ingredient in 17 cosmetic products that are all categorized in the leave-on skin care preparations (creams, lotions, powder, and sprays) product category and used in the face and neck (excluding shaving preparations) leave-on product category, accounting for 64.7% (n= 11) of the ingredient's total usage in cosmetic products as shown in **Table A.22.2**. Please see **Table S2** for a full list of cosmetic product categories.

Table A.22.2. Frequency of Use of Acetyl Trifluoromethylphenyl Valylglycine in the Mandatory Cosmetic Product Listing Data Submitted to the FDA (as of August 30, 2024)

Product Category	Number of Products	Percentage of Total (%)
Skin care preparations (creams, lotions, powder, and sprays)		
Cleansing (cold creams, cleansing lotions, liquids, and pads)	1	5.9
Face and neck (excluding shaving preparations), leave-on	11	64.7
Moisturizing	4	23.5
Other skin care preparations, leave-on	1	5.9
Total	17	100.0

¹¹³ CAS: <https://scifinder-n.cas.org/search/all/6760a63db831fb243139c79d> (accessed 12/10/2024. Login is required for access).

To assess the trend of acetyl trifluoromethylphenyl valylglycine use in cosmetic products, we searched the historical data in the VCRP and the Mintel GNPD. We found no reported use of this ingredient in the VCRP (**Table S4**). Mintel's GNPD data shows that acetyl trifluoromethylphenyl valylglycine was used in 9 products launched in the U.S. market over a 5-year period (August 2019 to July 2024) but 0 products between August 2023 and July 2024 (**Table S4**). The total number was too low to determine a trend. In addition, a use trend of acetyl trifluoromethylphenyl valylglycine cannot be currently determined using the mandatory cosmetic product listing data submitted to the FDA due to the lack of historical data.

Under the FD&C Act, the concentration of ingredients used in cosmetic products is not required to be submitted to the FDA as part of the product listing data. Therefore, the use concentration for acetyl trifluoromethylphenyl valylglycine is not available to the FDA. A recent publication by Balan, Bruton et al. (2024) reported the use concentrations of 0.5-1.17% in lotion and moisturizer and sun care products. One of the manufacturers indicated usage of 1% to 25% of acetyl trifluoromethylphenyl valylglycine in their skin care products.¹¹⁴ In addition, the Australian Industrial Chemicals Introduction Scheme (AICIS) assessed this chemical as a component of dermal cosmetic products at concentrations of no more than 0.5% (not intended for the eye).¹¹⁵

Given that the majority of the 17 cosmetic products that contain acetyl trifluoromethylphenyl valylglycine are leave-on skin care preparation products, dermal contact is considered the primary route of consumer exposure to this ingredient. Potential inhalation exposure could occur with products such as face powders.

Existing Safety Assessments by Government Agencies, Scientific Advisory Groups, and Peer-Reviewed Literature

A comprehensive search of data sources as listed in **Table S5** did not identify any assessments of acetyl trifluoromethylphenyl valylglycine by government agencies or other scientific advisory groups such as SCCS, CIR, or IARC.

ADME/Toxicokinetics

A literature search in PubMed and Web of Science using the query outlined in **Table S9** did not identify any published data on the toxicokinetics of acetyl trifluoromethylphenyl valylglycine. We did not identify a REACH dossier for acetyl trifluoromethylphenyl valylglycine in the ECHA database (searched on 12/10/2024).

Hazard Assessment

A literature search in PubMed and Web of Science using the query outlined in **Table S9** yielded no publicly available information regarding the toxicity of acetyl trifluoromethylphenyl valylglycine. In addition, a review of SDS from a raw material supplier also revealed no toxicity data.¹¹⁶

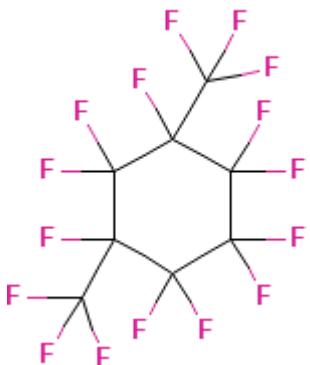
Review Summary/Conclusion

¹¹⁴ <https://patentimages.storage.googleapis.com/35/bf/3e/c9e25fe3719783/US10449133.pdf> (accessed 12/10/2024).

¹¹⁵ <https://services.industrialchemicals.gov.au/chemical-details-page/?id=53358c5d-15b0-ec11-8108-005056a07365> (accessed 12/10/2024).

¹¹⁶ <https://www.lookchem.com/sds379685-96-8.html> (accessed 12/10/2024).

Use: Based on the mandatory cosmetic product listing data submitted to the FDA, acetyl trifluoromethylphenyl valylglycine is used as an ingredient in 17 cosmetic products. All 17 products are categorized in the skin care preparations (creams, lotions, powder, and sprays) product category. The ingredient serves as a skin conditioning agent. It is used primarily in leave-on skin care products on the face and neck. The potential concentrations of use range from 0.5%-25%. Due to the lack of baseline or historical data in the mandatory cosmetic product listing data submitted to the FDA, a trend cannot be demonstrated at this time.


Safety: Based on the product types containing acetyl trifluoromethylphenyl valylglycine, consumers are expected to be primarily exposed to this ingredient through dermal contact. However, there is a lack of publicly available information regarding the toxicokinetics or toxicity of acetyl trifluoromethylphenyl valylglycine. The FDA does not have information to assess the potential for dermal and inhalation irritation or sensitization, and whether it can be absorbed and could lead to systemic exposure and toxicity. Given the limited data and information available, the FDA cannot determine the safety of acetyl trifluoromethylphenyl valylglycine from its use in cosmetic products or risks associated with such use.

23. Perfluorodimethylcyclohexane

Introduction

Perfluorodimethylcyclohexane, also known as perfluoro-1,3-dimethylcyclohexane (CAS No. 335-27-3; PubChem CID: 78975) is a clear, colorless liquid characterized by its chemical inertness. **Table A.23.1** shows the chemical structure and physicochemical properties. The compound has a high density and a low surface tension, making it useful in specialized applications such as coolants and lubricants. It is highly insoluble in water and organic solvents but mixes freely with other fluorocarbon liquids and freons. With a boiling point of 101.5 °C and a melting point of -70 °C, perfluorodimethylcyclohexane remains stable under normal storage conditions but it evaporates rapidly.

Table A.23.1. Physical and Chemical Properties of Perfluorodimethylcyclohexane

Element	Description
Name	Perfluorodimethylcyclohexane
INCI name	Perfluorodimethylcyclohexane
Synonyms	Perfluoro-1,3-dimethylcyclohexane 1,1,2,2,3,3,4,5,5,6-Decafluoro-4,6-bis(trifluoromethyl)cyclohexane Decafluoro-1,3-bis(trifluoromethyl)cyclohexane Cyclohexane, decafluoro-1,3-bis(trifluoromethyl) Cyclohexane, 1,1,2,2,3,3,4,5,5,6-decafluoro-4,6-bis(trifluoromethyl)- Cyclohexane, perfluoro-1,3-dimethyl- Hexadecafluoro-1,3-dimethylcyclohexane Flutec PC3 (trade name) Fiflow 100 (trade name) Carbohal (trade name)
CAS#	335-27-3
Structure	
Molecular formula	C ₈ F ₁₆
Molecular weight	400.06 g/mol

Particle size	Not applicable
Physical form	Clear colorless liquid ¹¹⁷
Density	1.8560 g/cm ³ at 20 °C, 1.829 g/cm ³ at 25 °C, 1.828 g/cm ³ (liquid) at 102 °C, 760 Torr, 0.01310 g/cm ³ (gas) at 102 °C, 760 Torr ¹¹⁸
Solubility	It doesn't dissolve in water, it doesn't dissolve in organic solvents, but mixes with fluorocarbon liquids and freons unrestrictedly ¹¹⁹
Partition coefficient (Log K _{ow})	NA
Vapor pressure	NA
Melting point	-70 °C ¹¹⁸
Boiling point	101.5 °C ¹¹⁸
Topological polar surface area	0 Å ²
UV light absorption spectrum	NA
Decomposes	NA
Additional properties	Surface tension: 9.9 mN/m at Temp 375.2 K, Press 1x 10 ⁵ Pa, ¹¹⁸ viscosity: 1.93 mPa.s (dynamic) at 296 K, ¹¹⁸ refractive index: 1.2908 at 20 °C, ¹¹⁸ enthalpy of vaporization: 37.4 kJ/mol ¹²⁰

Notes: NA, not available. Sources: PubChem; specified otherwise.

Use in Cosmetic Products

According to INCI, perfluorodimethylcyclohexane functions as a solvent in cosmetic products.

Based on the mandatory cosmetic product listing data submitted to the FDA, perfluorodimethylcyclohexane is used as an ingredient in 17 cosmetic products (**Table A.23.2**). The 17 products are categorized in two main product categories: hair preparations (non-coloring) (n=3, 17.6%) and skin care preparations (creams, lotions, powder, and sprays) (n=14, 82.4%). Please see **Table S2** for a full list of cosmetic product categories.

Within the two main product categories, perfluorodimethylcyclohexane is predominantly used in leave-on hair preparations and leave-on face and neck products, respectively.

Table A.23.2. Frequency of Use of Perfluorodimethylcyclohexane in the Mandatory Cosmetic Product Listing Data Submitted to the FDA (as of August 30, 2024)

¹¹⁷ Technical information for Perfluoro-1,3-dimethylcyclohexane, <https://www.scbt.com/p/perfluoro-1-3-dimethylcyclohexane-335-27-3?srsltid=AfmBOoq2Dtk6uWN4gCdjzKUnsHE4zBQMBME3Vx4CzkPJEKKNqJp> (accessed 12/12/2024)

¹¹⁸ <https://scifinder-n.cas.org/searchDetail/substance/67631f5d38673f014ece070d/substanceDetails> (access 12/12/2024. Login is required for access)

¹¹⁹ Product information for "Carbohal," <https://halopolymer.com/upload/iblock/7bd/7bd0570c3471913eac7125ff63af077d.pdf> (accessed 12/12/2024).

¹²⁰ <https://webbook.nist.gov/cgi/cbook.cgi?ID=C335273&Mask=4#ref-1> (accessed 12/12/2024).

Product Category	Number of Products	Percentage of Total (%)
Hair preparations (non-coloring)		
Other hair preparations, leave-on	3	17.6
Skin care preparations (creams, lotions, powder, and sprays)		
Face and neck (excluding shaving preparations), leave-on	8	47.1
Face and neck (excluding shaving preparations), rinse-off	2	11.8
Body and hand (excluding shaving preparations), rinse-off	1	5.9
Other skin care preparations, leave-on	3	17.6
Skin care total	14	82.4
Grand total	17	100.0

Available data indicate a generally low use of perfluorodimethylcyclohexane in cosmetic products. The VCRP database showed its use in 7 products in 2019, 9 in 2021 and 5 in 2023 (**Table S4**). Additionally, data from Mintel's GNPD showed that 4 cosmetic products containing perfluorodimethylcyclohexane entered the U.S. market over a 5-year period (August 2019 to July 2024), with 3 of these introduced between August 2023 and July 2024 (**Table S4**). A use trend of perfluorodimethylcyclohexane cannot be currently determined using the mandatory cosmetic product listing data submitted to the FDA due to the lack of historical data.

Under the FD&C Act, the concentration of ingredients used in cosmetic products is not required to be submitted to the FDA as part of the product listing data. Therefore, the use concentration for perfluorodimethylcyclohexane is not available to the FDA. A recent publication by Balan, Bruton et al. (2024) reported a use concentration of 0.02% to 2.25% in cosmetic products.

Given its use in face and makeup products, dermal contact is considered the most significant route of consumer exposure to this ingredient, with incidental inhalation also possible when applied as a fine mist or powder.

Existing Safety Assessments by Government Agencies, Scientific Advisory Groups, and Peer-Reviewed Literature

A comprehensive search of data sources as listed in **Table S5** did not identify any assessments of perfluorodimethylcyclohexane by government agencies or other scientific advisory groups such as SCCS, CIR, or IARC.

ADME/Toxicokinetics

A literature search in PubMed and Web of Science using the query outlined in **Table S9** identified 14 publications in PubMed and 63 publications from Web of Science (searched on 12/12/2024). After abstract screening, we did not identify any published data relevant to the toxicokinetics of perfluorodimethylcyclohexane. Additionally, a search of the ECHA database for a REACH dossier on perfluorodimethylcyclohexane found no toxicokinetic studies (ECHA 2017) (searched on 12/12/2024). The REACH dossier (ECHA 2017) included a read-across study to evaluate ADME properties of perfluorodimethylcyclohexane based on a category approach using perfluorocarbons as analogs. The study authors stated that saturated perfluorocarbons are well established as a class of compounds with very similar toxicological properties. The study authors concluded that perfluorodimethylcyclohexane is not expected to be absorbed significantly and is likely to distribute to the liver and spleen. In addition, perfluorodimethylcyclohexane is not metabolized and is rapidly excreted by exhalation without bioaccumulation. However, we were unable to evaluate the quality and validity of the study due to the lack of critical details.

Hazard Assessment

A literature search in PubMed and Web of Science using the query outlined in **Table S9** yielded no toxicity data for perfluorodimethylcyclohexane. However, a registrant's dossier on the ECHA website provides some relevant information, which is summarized below in the corresponding subsections (ECHA 2017).

It is important to note that the REACH dossier provides only limited publicly available information and the original study reports were inaccessible for review. Thus, the quality of the data cannot be independently and fully evaluated.

Acute and Repeated Dose Toxicity

Acute Toxicity

Dermal

The REACH dossier (ECHA 2017) included a read-across study to evaluate the acute dermal toxicity of perfluorodimethylcyclohexane based on a category approach, using perfluoroperhydrofluorene as an analog. The study authors concluded that the ingredient does not have acute dermal toxicity because the acute lethal dermal dose to rats was >2000 mg/kg bw. However, we were unable to evaluate the quality and validity of the study due to the lack of critical details.

Oral

An acute oral toxicity study (ECHA 2017) was performed in rats at a dose of 100 ml/kg (183,000 mg/kg). No mortality or adverse effects were observed. The study authors reported a LD₅₀ of >100 ml/kg bw.

Inhalation

An acute inhalation toxicity study (ECHA 2017) was performed in rats via whole-body inhalation at a concentration of 40,000 ppm v/v for 360 minutes. No adverse effects were observed. The study authors reported a LC₅₀ of >40,000 ppm. No control animals were included in this study.

The REACH dossier (ECHA 2017) also included a read-across study to evaluate the acute inhalation toxicity of perfluorodimethylcyclohexane based on a category approach using octafluoropropane as an

analog. The study authors concluded that the ingredient does not have acute inhalation toxicity. However, we were unable to evaluate the quality and validity of the study due to the lack of critical details.

Repeated Dose Systemic Toxicity

We did not locate any data for repeated dose systemic toxicity via the dermal or oral routes of exposure, or for carcinogenicity, DART or neurotoxicity.

Inhalation

The REACH dossier (ECHA 2017) included a read-across study to evaluate the short-term repeated dose inhalation toxicity of perfluorodimethylcyclohexane based on a category approach, using octafluoropropane as an analog. The study authors concluded that the ingredient is not chronically toxic after inhalation exposure. However, we were unable to evaluate the quality and validity of the study due to the lack of critical details.

Genotoxicity

An Ames test was performed in 1979. Six, 4 and 2 ml of the test substances (CAS#: 335-27-3) that had vaporized in desiccator were applied with and without S9-mix. A negative response was reported. In addition, the REACH dossier (ECHA 2017) included two read-across studies to evaluate the genetic toxicity of perfluorodimethylcyclohexane based on a category approach. The REACH dossier concluded that the ingredient did not exhibit genetic toxicity in the Ames test and *in vitro* mammalian cell micronucleus test. However, the FDA is unable to evaluate the quality and validity of the studies due to the lack of critical details.

Site of Contact Effects:

We did not locate any data for dermal, ocular, or respiratory irritation, or photo-induced toxicity.

Dermal Sensitization

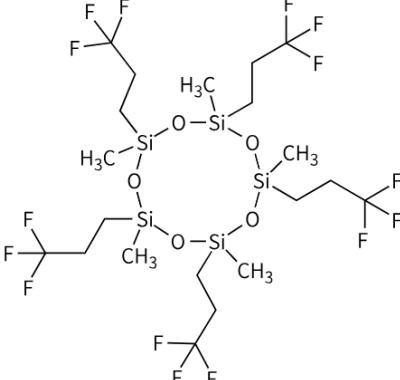
The REACH dossier (ECHA 2017) included a read-across study to evaluate the skin sensitization of perfluorodimethylcyclohexane based on a category approach. The study authors stated that saturated perfluorocarbons, used as analogs, are well established as a class of compounds with very similar toxicological properties. The study authors concluded that the ingredient does not cause skin sensitization. However, we were unable to evaluate the quality and validity of the study due to the lack of critical details.

Review Summary/Conclusion

Use: Perfluorodimethylcyclohexane functions as a solvent in cosmetic products, as reported by the INCI database. Based on the mandatory cosmetic product listing data submitted to the FDA, it is an ingredient in 17 cosmetic products, primarily in skin care preparations and in non-coloring hair preparations. In skin care products, it is most commonly used in face and neck leave-on products. In hair preparations, its usage is limited to leave-on products. While specific concentrations in FDA-listed cosmetic products are unavailable, literature reports show levels ranging from 0.02% to 2.25%. The VCRP and Mintel's GNPD do not show a clear trend in the use of perfluorodimethylcyclohexane in

cosmetic products. Due to the lack of baseline or historical data in the mandatory cosmetic product listing data submitted to the FDA, a trend cannot be demonstrated at this time.

Safety: Based on the product types containing perfluorodimethylcyclohexane, dermal contact is expected to be the primary route of consumer exposure to this ingredient when used in cosmetic products. The REACH dossier for perfluorodimethylcyclohexane presents limited toxicological data. Acute toxicity studies found no adverse effects in rats for oral and inhalation exposure at the highest dose tested. Both experimental and read-across studies suggest this ingredient is not genotoxic. ECHA also concluded that the ingredient does not cause skin sensitization based on a read-across study. No other toxicological data is available. Overall, these data suggest minimal acute toxicity, but significant data gaps remain for certain endpoints. However, the FDA does not have access to the full study reports to assess the quality of the studies presented in the REACH dossier and therefore cannot fully evaluate and determine the safety of perfluorodimethylcyclohexane from its use in cosmetic products or risks associated with such use.


24. Trifluoropropyl Cyclopentasiloxane

Introduction

The chemical formula of trifluoropropyl cyclopentasiloxane varies depending on the exact structure but generally includes a cyclopentasiloxane ring with one or more trifluoropropyl groups attached. **Table A.24.1** shows the chemical structure and physicochemical properties of trifluoropropyl cyclopentasiloxane. As an example, the structure of “cyclopentasiloxane, 2,4,6,8,10-pentamethyl-2,4,6,8,10-pentakis(3,3,3-trifluoropropyl)-,” containing five trifluoropropyl groups attached (CAS No. 2063-78-7; PubChem CID: 164923), is provided.

Trifluoropropyl cyclopentasiloxane is a liquid and is biodegradable. Due to the presence of the fluorinated group, it is highly water-repellent, making it insoluble in water but soluble in most organic solvents. It has excellent absorption, wetting, spreading, dispersing, and lubricating abilities and is used for skin and hair conditioning in cosmetic products.^{121,122}

Table A.24.1. Physical and Chemical Properties of Trifluoropropyl Cyclopentasiloxane

Element	Description
Name	Trifluoropropyl Cyclopentasiloxane
INCI name	Trifluoropropyl Cyclopentasiloxane
Synonyms	Cyclopentasiloxane, 2,4,6,8,10-pentamethyl-2,4,6,8,10-pentakis(3,3,3-trifluoropropyl) DTXSID5073953
CAS#	2063-78-7
Structure	<p>122</p>
Molecular formula	C ₂₀ H ₃₅ F ₁₅ O ₅ Si ₅
Molecular weight	780.90 g/mol
Particle size	Not applicable

¹²¹ [Trifluoropropyl cyclopentasiloxane information](#) (accessed 12/10/2024).

¹²² [Trifluoropropyl Cyclopentasiloxane - Surfactant - SAAPedia](#) (accessed 12/10/2024).

Physical form	Liquid
Density	NA
Solubility	Water insoluble
Partition coefficient (Log K _{ow})	NA
Vapor pressure	NA
Melting point	NA
Boiling point	NA
Topological polar surface area	NA
UV light absorption spectrum	NA
Decomposes	NA
Additional properties	NA

Notes: NA, not available. Sources: PubChem; specified otherwise.

Use in Cosmetic Products

According to INCI, trifluoropropyl cyclopentasiloxane functions as hair conditioning agents and miscellaneous skin-conditioning agents in cosmetic products.

Based on the mandatory cosmetic product listing data submitted to the FDA, trifluoropropyl cyclopentasiloxane is used as an ingredient in 11 cosmetic products as shown in **Table A.24.2**. The 11 products are categorized in the following two main product categories: makeup preparations (not eye) (other than makeup preparations for children) (n=9, 81.8%) and skin care preparations (creams, lotions, powder, and sprays) (n=2, 18.2%). Please see **Table S2** for a full list of cosmetic product categories.

Within the two main categories, trifluoropropyl cyclopentasiloxane is predominantly used in lipsticks and lip glosses, accounting for 54.5% (n=6) of the ingredient's total usage in cosmetic products as shown in **Table A.24.2**.

Table A.24.2. Frequency of Use of Trifluoropropyl Cyclopentasiloxane in the Mandatory Cosmetic Product Listing Data Submitted to the FDA (as of August 30, 2024)

Product Category	Number of Products	Percentage of Total (%)
Makeup preparations (not eye) (other than makeup preparations for children)		
Blushers and rouges (all types)	1	9.1
Foundations, traditional applications	1	9.1
Lipsticks and lip glosses	6	54.5
Makeup bases, traditional applications	1	9.1

Product Category	Number of Products	Percentage of Total (%)
Makeup (not eye) total	9	81.8
Skin care preparations (creams, lotions, powder, and sprays)		
Moisturizing	2	18.2
Grand total	11	100.0

To assess the trend of trifluoropropyl cyclopentasiloxane's use in cosmetic products, we searched historical data in the VCRP and the Mintel GNPD. In the VCRP database, while there was no reported use of trifluoropropyl cyclopentasiloxane in 2019 and 2021, it was present in 31 products in 2023 (**Table S4**). However, the Mintel GNPD data shows that trifluoropropyl cyclopentasiloxane was formulated in 11 cosmetic products launched in the U.S. market over a 5-year period (August 2019 to July 2024), but no new products were launched between August 2023 and July 2024 (**Table S4**). A use trend of trifluoropropyl cyclopentasiloxane cannot be currently determined using the mandatory cosmetic product listing data submitted to the FDA due to the lack of historical data.

Under the FD&C Act, the concentration of ingredients used in cosmetic products is not required to be submitted to the FDA as part of the product listing data. Therefore, the use concentration for trifluoropropyl cyclopentasiloxane is not available to the FDA. A recent publication by Balan, Bruton et al. (2024) assumed a use concentration of 0.5%-5%, a similar concentration range as trifluoropropyl dimethicone, which has the same functional use. It can be used in various cosmetic products, including foundation and concealer, lip cosmetics, and lotions and moisturizers.

Given that the majority of the products containing trifluoropropyl cyclopentasiloxane are makeup and skin care products, dermal contact is expected to be the primary route of consumer exposure to this ingredient. Incidental ingestion may occur when using lipsticks and lip glosses.

Existing Safety Assessments by Government Agencies, Scientific Advisory Groups, and Peer-Reviewed Literature

A comprehensive search of data sources as listed in **Table S5** did not identify any assessments for trifluoropropyl cyclopentasiloxane by government agencies or other scientific advisory groups such as SCCS, CIR, or IARC.

ADME/Toxicokinetics

A literature search in PubMed and Web of Science using the query outlined in **Table S9** did not identify any publications on the toxicokinetics of trifluoropropyl cyclopentasiloxane (searched on 12/10/2024). We did not identify a REACH dossier for trifluoropropyl cyclopentasiloxane in the ECHA database (searched on 12/10/2024).

Hazard Assessment

A literature search in PubMed and Web of Science using the query outlined in **Table S9** yielded no publications on the toxicity of trifluoropropyl cyclopentasiloxane. Based on limited information, the ingredient is classified as an irritant to the skin and eyes under GHS guidelines (Revision 10), but no data was provided.¹²¹ However, as FDA does not have premarket authority over cosmetic ingredients or products, other than color additives which are subject to FDA approval before use, we do not have specific data to review or evaluate the GHS classification.

Review Summary/Conclusion

Use: Based on the mandatory cosmetic product listing data submitted to the FDA, trifluoropropyl cyclopentasiloxane is currently used as an ingredient in 11 cosmetic products, predominantly in makeup and skin care preparations, and particularly in lipsticks and lip glosses. Available information from the VCRP shows an increase in the use of trifluoropropyl cyclopentasiloxane in cosmetic products in 2023 compared to 2019 and 2021, whereas Mintel's GNPD data shows no new products introduced from August 2023-July 2024. Due to the lack of baseline or historical data in the mandatory cosmetic product listing data submitted to the FDA, a trend cannot be demonstrated at this time.

Safety: Based on the product types containing trifluoropropyl cyclopentasiloxane, consumers may be exposed to the ingredient through multiple routes. As it is predominantly used in makeup and skin care preparations, dermal contact is considered the primary route of consumer exposure to this ingredient. Additionally, use of trifluoropropyl cyclopentasiloxane in lipsticks and lip glosses may lead to incidental oral exposure. However, as the FDA does not have any relevant information to assess the potential toxicity of trifluoropropyl cyclopentasiloxane, we cannot determine the safety of trifluoropropyl cyclopentasiloxane from its use in cosmetic products or risks associated with such use.

25. Perfluoromethylcyclopentane

Introduction

Perfluoromethylcyclopentane (CAS No. 1805-22-7; PubChem CID: 74546) is a perfluorocycloalkane chemical. **Table A.25.1** shows the chemical structure and physicochemical properties.

Perfluoromethylcyclopentane is a clear liquid that is insoluble in water. It is soluble in aliphatic hydrocarbons and chlorinated hydrocarbons. Perfluoromethylcyclopentane is generally stable under normal storage and handling conditions, but decomposition occurs at 400 °C.¹²³

Table A.25.1. Physical and Chemical Properties of Perfluoromethylcyclopentane

Element	Description
Name	Perfluoromethylcyclopentane
INCI name	Perfluoromethylcyclopentane
Synonyms	Perfluoro(methylcyclopentane) Perfluoromethylcyclopentane Nonafluoro(trifluoromethyl)cyclopentane 1,1,2,2,3,3,4,4,5-nonafluoro-5-(trifluoromethyl)cyclopentane Cyclopentane, 1,1,2,2,3,3,4,4,5-nonafluoro-5-(trifluoromethyl)- Cyclopentane, nonafluoro(trifluoromethyl)- 8S014W4T75-UNII ¹²⁴ (TRIFLUOROMETHYL)PERFLUOROCYCLOPENTANE ¹²⁴ FIFLOW 50 ¹²⁴ FLUTEC PC-1C (trade name) ¹²⁴ FLUTEC TG PMCP (trade name) FLUTEC PP1C (trade name)
CAS#	1805-22-7
Structure	
Molecular formula	C ₆ F ₁₂

¹²³ Safety datasheet for FLUTEC PP1C, [https://www.f2chemicals.com/pdf/sds/FLUTEC%20PP1C\(1805-22-7\).pdf](https://www.f2chemicals.com/pdf/sds/FLUTEC%20PP1C(1805-22-7).pdf) (accessed 12/11/2024).

¹²⁴ <https://gsrs.fda.gov/ginias/app/ui/substances/cd1ee042-0f2c-4f46-8fc1-7237ff105415> (accessed 12/11/2024).

Element	Description
Molecular weight	300.04 g/mol
Particle size	Not applicable
Physical form	Clear, colorless liquid ¹²³
Density	0.01040 g/cm ³ (gas) @ Temp: 48.0 °C; Press: 760 Torr, 1.707 g/cm ³ (liquid) @ Temp: 48.0 °C; Press: 760 Torr ¹²⁵
Solubility	Water solubility: 4.01e-5 mol/L (predicted avg), ¹²⁴ soluble in aliphatic hydrocarbons, ¹²³ soluble in chlorinated hydrocarbons, ¹²³ insoluble in water, ¹²³
Partition coefficient (Log K _{ow})	3.67 ¹²⁶ (predicted)
Vapor pressure	387 mmHg (predicted average), ¹²⁵ 45kPa ¹²³
Melting point	45 °C, ¹²⁵ -50 °C ¹²³
Boiling point	48 °C ¹²⁵
Topological polar surface area	NA
UV light absorption spectrum	NA
Decomposes	Decomposition temp: 400 °C ¹²³
Additional properties	Critical temperature: 184.9 °C, ¹²³ critical pressure: 23 bar, ¹²³ surface tension: 12.4 mN/m @ Temp 321 K, Press 1x10 ⁵ Pa, ¹²⁵ viscosity (dynamic): 1.86 mPa·s @Temp: 321 K; Press:1x10 ⁵ Pa, ¹²⁵ thermal conductivity: 60.9 mW/(m*K), ¹²⁶ index of refraction: 1.27 ¹²⁶

Notes: NA, not available. Sources: PubChem; specified otherwise.

Use in Cosmetic Products

According to INCI, perfluoromethylcyclopentane functions as miscellaneous skin-conditioning agents and solvents in cosmetic products.

Based on the mandatory cosmetic product listing data submitted to the FDA, perfluoromethylcyclopentane is used as an ingredient in 10 cosmetic products as shown in **Table A.25.2**. All 10 products are categorized in the skin care preparations (creams, lotions, powder, and sprays) product category. Please see **Table S2** for a full list of cosmetic product categories.

Within the skin care preparations (creams, lotions, powder, and sprays) product category, perfluoromethylcyclopentane is predominantly used in the face and neck (excluding shaving preparations) leave-on product category, accounting for 40.0% (n= 4) of the ingredient's total usage in cosmetic products as shown in **Table A.25.2**.

¹²⁵ <https://scifinder-n.cas.org/search/all/67643552fd9ec1154915f452> (accessed 12/11/2024. Login is required for access).

¹²⁶ <https://comptox.epa.gov/dashboard/chemical/properties/DTXSID7061982> (accessed 12/11/2024).

Table A.25.2. Frequency of Use of Perfluoromethylcyclopentane in the Mandatory Cosmetic Product Listing Data Submitted to the FDA (as of August 30, 2024)

Product Category	Number of Products	Percentage of Total (%)
Skin care preparations (creams, lotions, powder, and sprays)		
Cleansing (cold creams, cleansing lotions, liquids, and pads)	1	10.0
Face and neck (excluding shaving preparations), leave-on	4	40.0
Paste masks (mud packs)	2	20.0
Other skin care preparations, leave-on	1	10.0
Other skin care preparations, rinse-off	2	20.0
Total	10	100.0

To assess the trend of the ingredient's use in cosmetic products, we searched the historical data in the VCRP and the Mintel GNPD. Perfluoromethylcyclopentane was used in 1 product in 2019, 3 products in 2021, and 3 products in 2023 according to the VCRP (**Table S4**). The Mintel GNPD data showed that 10 products containing perfluoromethylcyclopentane were launched in the U.S. market over a 5-year period (August 2019 to July 2024) and 3 products were launched between August 2023 and July 2024 (**Table S4**). A use trend of perfluoromethylcyclopentane cannot be currently determined using the mandatory cosmetic product listing data submitted to the FDA due to the lack of historical data.

Under the FD&C Act, the concentration of ingredients used in cosmetic products is not required to be submitted to the FDA as part of the product listing data. Therefore, the use concentration for perfluoromethylcyclopentane is not available to the FDA. A recent publication by Balan, Bruton et al. (2024) reported a use concentration of 0.02% to 2% in various cosmetic products including foundation and concealer, lotions and moisturizers, and shaving creams and gels.

Given that the products containing perfluoromethylcyclopentane are all skin care preparation products, dermal contact is expected to be the primary route of consumer exposure to this ingredient, occurring from its use in cosmetic products such as creams, lotions, and paste masks.

Existing Safety Assessments by Government Agencies, Scientific Advisory Groups, and Peer-Reviewed Literature

A comprehensive search of data sources as listed in **Table S5** did not identify any assessments for perfluoromethylcyclopentane by government agencies or other scientific advisory groups, such as SCCS, CIR, or IARC.

ADME/Toxicokinetics

A literature search using the query outlined in **Table S9** identified 7 publications in PubMed and 13 from Web of Science (searched on 12/11/2024). After screening abstracts of these publications, none of these were determined to be relevant to the toxicokinetics of perfluoromethylcyclopentane. In addition, we

did not find any toxicokinetics information in the REACH dossier for perfluoromethylcyclopentane (ECHA 2018) (searched on 12/11/2024). The REACH dossier (ECHA 2018) included a read-across study to evaluate ADME properties of perfluoromethylcyclopentane based on a category approach using perfluorocarbons as analogs. The study authors stated that saturated perfluorocarbons are well established as a class of compounds with very similar toxicological properties. The study authors concluded that perfluoromethylcyclopentane is not expected to be absorbed significantly and that it distributes to the liver and spleen. In addition, perfluoromethylcyclopentane is not metabolized and is rapidly excreted by exhalation without bioaccumulation. However, we were unable to evaluate the quality and validity of the study due to the lack of critical details.

Hazard Assessment

A literature search in PubMed and Web of Science using the query outlined in **Table S9** yielded no publicly available information regarding the toxicity of perfluoromethylcyclopentane. However, a registrant's dossier on the ECHA website provides some relevant information, which is summarized below in the corresponding subsections (ECHA 2018).

It is important to note that the REACH dossier provides only limited publicly available information and the original study reports were inaccessible for review. Thus, the quality of the data cannot be independently and fully evaluated.

Acute and Repeated Dose Toxicity

Acute Toxicity

Dermal

An acute dermal toxicity study (ECHA 2018) was performed in three male rabbits according to OECD Guideline 402 (Acute Dermal Toxicity) and in compliance with GLP. Perfluoromethylcyclopentane at 0.5 ml was introduced under a 2.5 cm square gauze patch and placed on the back onto shorn skin of a rabbit for 4 hours. One animal showed very slight erythema 1 hour after patch removal and at 24-, 48- and 72-hour observations. The study authors did not identify a LD₅₀ (ECHA 2018).

The REACH dossier (ECHA 2018) also included a read-across study to evaluate the acute dermal toxicity of perfluoromethylcyclopentane based on a category approach using perfluoroperhydrofluorene as the analog. The study authors concluded that the ingredient does not have acute dermal toxicity because the acute lethal dermal dose to rats was >2,000 mg/kg bw. However, the FDA was unable to evaluate the quality and validity of the study due to the lack of critical details.

Oral

An acute oral toxicity study was performed in five female and five male rats at a dose of 5000mg/kg bw according to OECD Guideline 401 (Acute Oral Toxicity) and in compliance with GLP. No mortality or systemic toxicity were observed. The study authors identified a LD₅₀ of >5,000 mg/kg bw (ECHA 2018).

Inhalation

The REACH dossier (ECHA 2018) included two read-across studies to evaluate the acute inhalation toxicity of perfluoromethylcyclopentane based on a category approach, using perfluorodecalin and octafluoropropane as analogs. The study authors concluded that the ingredient is not acutely toxic after

inhalation. However, the FDA was unable to evaluate the quality and validity of the study due to the lack of critical details.

Repeated Dose Systemic Toxicity

We did not locate any data for repeated dose systemic toxicity via the dermal or oral routes of exposure, or for carcinogenicity, DART or neurotoxicity.

Inhalation

The REACH dossier (ECHA 2018) included two read-across studies to evaluate the repeated dose inhalation toxicity of perfluoromethylcyclopentane based on a category approach. The study authors concluded that the ingredient is not chronically toxic after inhalation. However, the FDA was unable to evaluate the quality and validity of the study due to the lack of critical details.

Genotoxicity

An Ames test was conducted according to OECD Guideline 471 and in compliance with GLP. Perfluoromethylcyclopentane was tested at concentrations ranging from 8 to 5000 µg/plate with and without S9-mix in five *Salmonella* strains. However, it was not tested in the *E. coli* strain recommended by OECD 471. The test material was found to be non-mutagenic under the conditions of this test.

The REACH dossier (ECHA 2018) also included a read-across study to evaluate the genetic toxicity of perfluoromethylcyclopentane based on a category approach, using nonafluoro(trifluoromethyl)cyclopentane as an analog. The study authors concluded that the ingredient did not induce mutations in an Ames test. However, the FDA was unable to evaluate the quality and validity of the study due to the lack of critical details.

Another two read-across studies were included in the REACH dossier (ECHA 2018) to evaluate the genetic toxicity of perfluoromethylcyclopentane, using octafluoropropane as an analog. The study authors concluded that the ingredient did not induce genetic toxicity in an *in vitro* mammalian cell micronucleus test and an *in vivo* mouse erythrocyte micronucleus test. However, the FDA was unable to evaluate the quality and validity of the study due to the lack of critical details.

Site of Contact Effects:

Dermal Irritation

A study in the REACH dossier (ECHA 2018) evaluated perfluoromethylcyclopentane for acute skin irritation in a semi-occlusive study conducted in accordance with OECD TG 404. Three New Zealand White rabbits were exposed to 0.5 ml undiluted perfluoromethylcyclopentane for 4 hours and observed throughout a 72-hour period. The study authors found the substance to be a mild irritant to rabbit skin. However, under EEC labeling regulations, it is classified as non-irritating, requiring no symbols or risk phrases.

Dermal Sensitization

The REACH dossier (ECHA 2018) included a read-across study to evaluate the skin sensitization of perfluoromethylcyclopentane based on a category approach. The study authors stated that saturated perfluorocarbons, used as analogs, are well established as a class of compounds with very similar

toxicological properties. The study authors concluded that the ingredient does not cause skin sensitization.

Ocular Irritation

In an eye irritation study performed in compliance with OECD 405 guidelines, 0.1 ml perfluoromethylcyclopentane did not cause irritation to the eyes of three New Zealand White rabbits throughout a 72-hour observation period (ECHA 2018).

Respiratory irritation

No data.

Photo-induced toxicity

No data.

Others

No data.

Review Summary/Conclusion

Uses: Based on the mandatory cosmetic product listing data submitted to the FDA, perfluoromethylcyclopentane, a perfluorocycloalkane chemical, is currently used as an ingredient in 10 cosmetic products, all for skin care preparations, and particularly on the face and neck. The VCRP and Mintel's GNDP show consistently low use of perfluoromethylcyclopentane in cosmetic products. Due to the lack of baseline or historical data in the mandatory cosmetic product listing data submitted to the FDA, a trend cannot be demonstrated at this time.

Safety: Based on the product types containing perfluoromethylcyclopentane, consumers are primarily exposed to this ingredient via dermal contact. It is not acutely toxic and not genotoxic. It is not irritating to eyes and there is conflicting information regarding skin irritation. However, there is a lack of publicly available information regarding the toxicokinetics or toxicity of perfluoromethylcyclopentane. The FDA does not have sufficient information to assess the potential for skin sensitization, and whether it can be absorbed and could lead to systemic exposure and toxicity. Given the limited data and information available, the FDA cannot determine the safety of perfluoromethylcyclopentane from its use in cosmetic products or risks associated with such use.

Appendix 2. Supplemental Tables

Supplemental Table 1. List of INCI Names Identified as PFAS, CAS No, Reported Functions and Product Categories in wINCI (as of 2/14/24)

No.	INCI Names of PFAS	CAS No.	Reported Functions	Reported Product Categories
1	Acetyl sh-Decapeptide-4 SP Amide Trifluoroacetate	NA	Skin-Conditioning Agents - Miscellaneous	NA
2	Acetyl Trifluoromethylphenyl Valylglycine	379685-96-8	Skin-Conditioning Agents - Miscellaneous	Eye Lotions Face and Neck Preparations (Excluding Shaving Preparations) Moisturizing Preparations Skin Care Preparations, Misc. Eye Makeup Preparations, Misc. Foundations Night Skin Care Preparations
3	Acrylates/Methoxy PEG-23 Methacrylate/Perfluoroctyl Ethyl Acrylate Copolymer	NA	Film Formers	NA
4	Acrylates/Perfluorohexylethyl Methacrylate Copolymer	1557087-30-5	Film Formers	NA
5	Acrylates/Trifluoropropylmethacrylate/Polytrimethyl Siloxymethacrylate Copolymer	NA	Film Formers Hair Fixatives Skin-Conditioning Agents - Miscellaneous	NA
6	Acrylic Acid/Perfluorohexylethyl Acrylate Crosspolymer	1820790-78-0	Viscosity Increasing Agents - Aqueous	NA

No.	INCI Names of PFAS	CAS No.	Reported Functions	Reported Product Categories
7	Adamantanylcarboxamido Trifluoromethylbenzonitrile	NA	Antimicrobial Agents Hair Conditioning Agents	NA
8	Ammonium C6-16 Perfluoroalkylethyl Phosphate	65530-70-3 65530-72-5 65530-71-4	Surfactants - Emulsifying Agents	NA
9	Ammonium C9-10 Perfluoroalkylsulfonate	NA	Surfactants - Cleansing Agents	NA
10	Ammonium Perfluorohexyl Ethylphosphates	1764-95-0	Surfactants - Emulsifying Agents	NA
11	AMP-C8-18 Perfluoroalkylethyl Phosphate	NA	Emulsion Stabilizers Slip Modifiers Surfactants - Emulsifying Agents Surfactants - Solubilizing Agents	NA
12	Behenyl Methacrylate/Perfluoroctylethyl Methacrylate Copolymer	NA	Film Formers Viscosity Increasing Agents - Nonaqueous	NA
13	Biotinoyl Histidyl D-Tryptophanyl Dipeptide-29 D-Phenylalanyl Lysinamide Trifluoroacetate	1894171-15-3	Skin-Conditioning Agents - Miscellaneous	NA
14	Biotinyl Histidyl D-Tryptophanyl Dipeptide-29 Lysinamide Trifluoroacetate	NA	Skin-Conditioning Agents - Miscellaneous	NA
15	Bis-Trifluoromethyl Phenylcaffeamide	NA	Hair Conditioning Agents	NA
16	Butyl Acrylate/C6-14 Perfluoroalkylethyl	NA	NA	NA

No.	INCI Names of PFAS	CAS No.	Reported Functions	Reported Product Categories
	Acrylate/Mercaptopropyl Dimethicone Copolymer			
17	C12-16 Alkyl PEG-7 Methacrylate/Perfluorohexylethyl Methacrylate Copolymer	NA	Film Formers Hair Conditioning Agents	NA
18	C20-28 Alkyl Perfluorodecylethoxy Dimethicone	NA	Film Formers	NA
19	C4-14 Perfluoroalkylethoxy Dimethicone	NA	Skin-Conditioning Agents - Miscellaneous	NA
20	C4-18 Perfluoroalkylethyl Thiohydroxypropyltrimonium Chloride	70983-60-7	Surfactants - Cleansing Agents	NA
21	C6-12 Perfluoroalkylethanol	NA	Hair Conditioning Agents Skin-Conditioning Agents - Miscellaneous Solvents	NA
22	C6-14 Perfluoroalkylethyl Acrylate	NA	NA	NA
23	C6-14 Perfluoroalkylethyl Acrylate/HEMA Copolymer	NA	Dispersing Agents - Nonsurfactant Film Formers Viscosity Increasing Agents - Nonaqueous	NA
24	C8-18 Fluoroalcohol Phosphate	NA	Bulking Agents	NA
25	C9-13 Fluoroalcohol	NA	Skin-Conditioning Agents - Miscellaneous	Face Powders Foundations

No.	INCI Names of PFAS	CAS No.	Reported Functions	Reported Product Categories
26	C9-15 Fluoroalcohol Phosphate	NA	Skin-Conditioning Agents - Miscellaneous	Face and Neck Preparations (Excluding Shaving Preparations) Foundations Moisturizing Preparations Face Powders Makeup Preparations (Not eye), Misc.
27	Calcium Trifluoroacetate	60884-90-4	Exfoliants	NA
28	Chlorotrifluoropropene	102687-65-0	Solvents	NA
29	Cloflucarban	369-77-7	Cosmetic Biocides Deodorant Agents	NA
30	DEA-C8-18 Perfluoroalkylethyl Phosphate	65530-63-4 65530-64-5	Surfactants - Emulsifying Agents	Foundations
31	DEA-Perfluorohexyl Ethylphosphates	NA	Surfactants - Emulsifying Agents	NA
32	DEA-Polyperfluoroethoxymethoxy PEG-2 Phosphate	NA	Surfactants - Emulsifying Agents	NA
33	Decafluoropentane	138495-42-8	Solvents	NA
34	Diethylaminoethyl Methacrylate/HEMA/Perfluorohexylethyl Methacrylate Crosspolymer	NA	Binders Surface Modifiers	NA
35	Difluorocyclohexyloxyphenol	2001566-55-6	Antioxidants Skin Bleaching Agents	NA
36	Dimethiconol Fluoroalcohol Dilinoleic Acid	NA	Skin-Conditioning Agents - Occlusive	NA

No.	INCI Names of PFAS	CAS No.	Reported Functions	Reported Product Categories
37	Diocetyldecyl Fluoroheptyl Citrate	214334-16-4	Skin-Conditioning Agents - Miscellaneous	Hair Conditioners Lipsticks
38	Ethyl Nitrotrifluoromethylphenyl Citramalamide	1081953-87-8	Antiacne Agents	NA
39	Ethyl Perfluorobutyl Ether	163702-05-4	Solvents Viscosity Decreasing Agents	NA
40	Ethyl Perfluoroisobutyl Ether	163702-06-5	Solvents Viscosity Decreasing Agents	NA
41	Ethyl tafluprostamide	1185851-52-8	Hair Conditioning Agents Nail Conditioning Agents	NA
42	Ethyl travoprostamide	1005193-64-5	Antimicrobial Agents Antioxidants Hair Conditioning Agents Skin-Conditioning Agents - Miscellaneous	NA
43	Europium Tris(Trifluorothienylbutanedione) Bis(Triphenylphosphine Oxide)	120851-64-1	Colorants	NA
44	Fluoro C2-8 Alkyldimethicone	NA	Antifoaming Agents	Foundations
45	Fluorosalan	6/1/4776	Cosmetic Biocides	NA
46	Fluridil	260980-89-0	Hair Conditioning Agents	NA
47	Galactose Difluoroethyl Aminopiperidinone	NA	Antioxidants Skin-Conditioning	NA

No.	INCI Names of PFAS	CAS No.	Reported Functions	Reported Product Categories
			Agents - Humectant	
48	HC Yellow No. 13	10442-83-8	Hair Colorants	Hair Dyes and Colors
49	Heptapeptide-50 Trifluoroacetate	NA	Skin-Conditioning Agents - Miscellaneous	NA
50	Hexafluoropropylene/Tetrafluoroethylene Copolymer	25067-11-2	Film Formers Skin-Conditioning Agents - Emollient Slip Modifiers	NA
51	Hydrofluorocarbon 134a	811-97-2	Propellants	NA
52	Hydrofluorocarbon 227ea	431-89-0	Propellants	NA
53	Hydrogen Trifluoropropyl Dimethicone	766542-38-5	Antifoaming Agents Binders Emulsion Stabilizers Slip Modifiers Surface Modifiers	NA
54	Isobutylmethacrylate/Trifluoroethylmethacrylate/Bis-Hydroxypropyl Dimethicone Acrylate Copolymer	321735-42-6	Film Formers Hair Fixatives Skin-Conditioning Agents - Miscellaneous	NA
55	Isododecyl/Perfluorononyl ethyl Dimer Dilinoleate/Citrate	NA	Skin-Conditioning Agents - Emollient	NA
56	Isopropyl Titanium Triisostearate/Perfluoroctyl Triethoxysilane Crosspolymer	NA	Surface Modifiers	NA
57	Ketotravoprost	404830-45-1	Hair Conditioning Agents	NA

No.	INCI Names of PFAS	CAS No.	Reported Functions	Reported Product Categories
58	Methyl Perfluoro Butyl/Isobutyl Ether	163702-07-6 163702-08-7	Solvents	Cleansing Products (Cold Creams, Cleansing Lotions, Liquids and Pads) Face and Neck Preparations (Excluding Shaving Preparations)
59	Methyl Perfluorobutyl Ether	163702-07-6	Solvents Viscosity Decreasing Agents	Cleansing Products (Cold Creams, Cleansing Lotions, Liquids and Pads) Skin Care Preparations, Misc. Face and Neck Preparations (Excluding Shaving Preparations)
60	Methyl Perfluoroisobutyl Ether	163702-08-7	Solvents Viscosity Decreasing Agents	Cleansing Products (Cold Creams, Cleansing Lotions, Liquids and Pads) Face and Neck Preparations (Excluding Shaving Preparations)
61	Methyl travoprost	NA	Hair Conditioning Agents	NA
62	Nortafluprost	209860-89-9	Eyelash Conditioning Agents Hair Conditioning Agents	NA
63	Octafluoropentyl Methacrylate	355-93-1	Surface Modifiers	Hair Conditioners Shampoos (Non-coloring) Hair Sprays (Aerosol Fixatives) Tonics, Dressings, and

No.	INCI Names of PFAS	CAS No.	Reported Functions	Reported Product Categories
				Other Hair Grooming Aids
64	Octapeptide-29 Trifluoroacetate	NA	Skin-Conditioning Agents - Miscellaneous	NA
65	Oligopeptide-177 Trifluoroacetate	NA	Skin Protectants	NA
66	PEG-10 Acrylate/Perfluorohexylethyl Acrylate Copolymer	NA	Film Formers	NA
67	PEG-10 Nonafluorohexyl Dimethicone Copolymer	NA	Hair Conditioning Agents Skin-Conditioning Agents - Miscellaneous	Hair Conditioners Shampoos (Non-coloring)
68	PEG-10 Trifluoropropyl Dimethicone Copolymer	NA	Hair Conditioning Agents Skin-Conditioning Agents - Miscellaneous	NA
69	PEG-4 Trifluoropropyl Dimethicone Copolymer	NA	Hair Conditioning Agents Skin-Conditioning Agents - Miscellaneous	NA
70	PEG-8 Trifluoropropyl Dimethicone Copolymer	NA	Hair Conditioning Agents Skin-Conditioning Agents - Miscellaneous	NA
71	Pentafluoropropane	460-73-1	Dispersing Agents - Nonsurfactant External Analgesics Fragrance	Moisturizing Preparations

No.	INCI Names of PFAS	CAS No.	Reported Functions	Reported Product Categories
			Ingredients Solvents	
72	Pentapeptide-34 Trifluoroacetate	NA	Skin-Conditioning Agents - Miscellaneous	NA
73	Perfluoro Dimethylethylpentane	50285-18-2	NA	NA
74	Perfluoro t-Butylcyclohexane	84808-64-0	Antistatic Agents Hair Conditioning Agents Surface Modifiers	NA
75	Perfluoroalkylsilyl Mica	NA	NA	NA
76	Perfluorobutoxydiglycol Difluoroethoxy Propyl Trimethoxysilane	NA	Skin-Conditioning Agents - Miscellaneous	NA
77	Perfluorobutylcyclohexane	374-60-7	Antistatic Agents Hair Conditioning Agents Skin-Conditioning Agents - Miscellaneous Surface Modifiers	NA
78	Perfluorobutylethyl Dimethicone	NA	Hair Conditioning Agents Skin-Conditioning Agents - Humectant Surfactants - Foam Boosters	NA
79	Perfluorobutylethyl Stearyl Dimethicone	915223-67-5	Antifoaming Agents Dispersing Agents - Nonsurfactant Hair Conditioning Agents Skin-Conditioning	NA

No.	INCI Names of PFAS	CAS No.	Reported Functions	Reported Product Categories
			Agents - Emollient Slip Modifiers Surface Modifiers	
80	Perfluorocaprylyl Bromide	423-55-2	Solvents	NA
81	Perfluorocaprylyl Triethoxysilylethyl Methicone	NA	Binders Skin-Conditioning Agents - Emollient	NA
82	Perfluorocyclohexylmethanol	28788-68-3	Emulsion Stabilizers Skin-Conditioning Agents - Miscellaneous Slip Modifiers Surface Modifiers	NA
83	Perfluorodecalin	306-94-5	Skin-Conditioning Agents - Miscellaneous Solvents	Eye Makeup Preparations, Misc. Moisturizing Preparations Skin Care Preparations, Misc. Face and Neck Preparations (Excluding Shaving Preparations) Nail Polish and Enamels
84	Perfluorodimethylcyclohexane	26637-68-3 335-27-3	Solvents	Eye Makeup Preparations, Misc.
85	Perfluoroheptane	335-57-9	Absorbents Anticaking Agents Emulsion Stabilizers Skin-Conditioning Agents - Miscellaneous	NA

No.	INCI Names of PFAS	CAS No.	Reported Functions	Reported Product Categories
			Slip Modifiers Surface Modifiers	
86	Perfluorohexane	355-42-0	Solvents	Eye Makeup Preparations, Misc. Moisturizing Preparations Face and Neck Preparations (Excluding Shaving Preparations) Skin Care Preparations, Misc.
87	Perfluorohexyl Ethylphosphonic Acid	252237-40-4	Surface Modifiers	NA
88	Perfluorohexylethoxy Dimethicone	NA	Skin-Conditioning Agents - Miscellaneous	NA
89	Perfluorohexylethyl alcohol	647-42-7	Dispersing Agents - Nonsurfactant Emulsion Stabilizers Plasticizers	NA
90	Perfluorohexylethyl Dimethylbutyl Ether	210896-25-6	Skin-Conditioning Agents - Miscellaneous	NA
91	Perfluorohexylethyl Triethoxysilane	51851-37-7	Binders Skin-Conditioning Agents - Miscellaneous	Eye Shadows Lipsticks Foundations Makeup Preparations (Not eye), Misc.
92	Perfluoroisohexane	355-04-4	Anticaking Agents Skin-Conditioning Agents - Emollient	NA

No.	INCI Names of PFAS	CAS No.	Reported Functions	Reported Product Categories
93	Perfluoromethylcyclohexane	355-02-2	Absorbents Anticaking Agents Binders Emulsion Stabilizers Skin-Conditioning Agents - Miscellaneous Slip Modifiers Surface Modifiers	NA
94	Perfluoromethylcyclopentane	1805-22-7	Skin-Conditioning Agents - Miscellaneous Solvents	NA
95	Perfluoromethyldecalin	51294-16-7	Absorbents Anticaking Agents Binders Emulsion Stabilizers Skin-Conditioning Agents - Miscellaneous Slip Modifiers Surface Modifiers	NA
96	Perfluorononyl Dimethicone	259725-95-6	Skin-Conditioning Agents - Miscellaneous Skin-Conditioning Agents - Occlusive Slip Modifiers	Eye Shadows Lipsticks Eyeliners Makeup Preparations (Not eye), Misc.
97	Perfluorononyl Dimethicone/Methicone/Amodimethicone Crosspolymer	NA	Surface Modifiers	Skin Care Preparations, Misc.
98	Perfluorononyl Octyldodecyl Glycol Grapeseedate	NA	Hair Conditioning Agents Skin-Conditioning Agents - Miscellaneous	Face Powders

No.	INCI Names of PFAS	CAS No.	Reported Functions	Reported Product Categories
99	Perfluorononyl Octyldodecyl Glycol Meadowfoamate	NA	Dispersing Agents - Nonsurfactant Hair Conditioning Agents Skin-Conditioning Agents - Miscellaneous	NA
100	Perfluorononyl Ethyl Carboxy PEG-7 Dimethicone Phosphate	NA	Hair Conditioning Agents	NA
101	Perfluorononyl Ethyl Carboxydecyl Behenyl Dimethicone	NA	Skin-Conditioning Agents - Emollient Skin-Conditioning Agents - Occlusive	NA
102	Perfluorononyl Ethyl Carboxydecyl Hexacosyl Dimethicone	NA	Skin-Conditioning Agents - Emollient Skin-Conditioning Agents - Occlusive	NA
103	Perfluorononyl Ethyl Carboxydecyl Lauryl Dimethicone	NA	Skin-Conditioning Agents - Emollient Skin-Conditioning Agents - Occlusive	NA
104	Perfluorononyl Ethyl Carboxydecyl Lauryl/Behenyl Dimethicone	NA	Skin-Conditioning Agents - Emollient Skin-Conditioning Agents - Occlusive	NA
105	Perfluorononyl Ethyl Carboxydecyl PEG-10 Dimethicone	NA	Skin-Conditioning Agents - Emollient Surface Modifiers Surfactants - Emulsifying Agents	NA
106	Perfluorononyl Ethyl Carboxydecyl PEG-8 Dimethicone	NA	Skin-Conditioning Agents - Emollient	NA
107	Perfluorononyl Ethyl Dimethicone/Methicone Copolymer	NA	Slip Modifiers Surface Modifiers	NA

No.	INCI Names of PFAS	CAS No.	Reported Functions	Reported Product Categories
108	Perfluorononylethyl PEG-8 Dimethicone	NA	NA	NA
109	Perfluorononylethyl PEG-8 Phenylisopropyl Dimethicone	NA	Skin-Conditioning Agents - Emollient	NA
110	Perfluorononylethyl Stearyl Dimethicone	NA	Film Formers Skin-Conditioning Agents - Occlusive	NA
111	Perfluoroctylethyl Triethoxysilane	101947-16-4	Anticaking Agents	NA
112	Perfluoroctylethyl Trimethoxysilane	83048-65-1	Bulking Agents	NA
113	Perfluoroctylethyl Trisiloxane	163921-85-5	Binders	NA
114	Perfluoroctylethyl/Diphenyl Dimethicone Copolymer	NA	Skin-Conditioning Agents - Emollient	Lipsticks
115	Perfluoroperhydrobenzyl Tetralin	116265-66-8	Skin-Conditioning Agents - Miscellaneous Solvents	NA
116	Perfluoroperhydrofluorene	307-08-4	Solvents	NA
117	Perfluoroperhydrophenanthrene	306-91-2	Skin-Conditioning Agents - Miscellaneous Solvents	Eye Makeup Preparations, Misc. Skin Care Preparations, Misc. Moisturizing Preparations
118	Perfluoropropane	76-19-7	NA	NA
119	Perfluoropropoxy (Perfluoro PPG)-9 Dimethylaminopropylamide	NA	Surface Modifiers	NA
120	Perfluoropropylene	116-15-4	NA	NA
121	Perfluoropropylene/Vinylidene Difluoride Copolymer	9011-17-0	Film Formers	NA
122	Perfluorotetralin	2342-07-6	Skin-Conditioning Agents -	NA

No.	INCI Names of PFAS	CAS No.	Reported Functions	Reported Product Categories
			Miscellaneous Solvents	
123	Polyacrylate-37	NA	Binders Surface Modifiers	NA
124	Polyacrylate-48	NA	Skin Protectants	NA
125	Polychlorotrifluoroethylene	9002-83-9	Film Formers Skin-Conditioning Agents - Occlusive	NA
126	Polyperfluoroethoxymethoxy Difluoroethyl PEG Diisostearate	NA	Skin Protectants Skin-Conditioning Agents - Emollient Slip Modifiers Viscosity Increasing Agents - Nonaqueous	NA
127	Polyperfluoroethoxymethoxy Difluoroethyl PEG Ether	162492-15-1	Hair Conditioning Agents Skin-Conditioning Agents - Miscellaneous Skin-Conditioning Agents - Occlusive	NA
128	Polyperfluoroethoxymethoxy Difluoroethyl PEG Phosphate	NA	Hair Conditioning Agents Skin-Conditioning Agents - Miscellaneous	Face Powders Moisturizing Preparations Lipsticks
129	Polyperfluoroethoxymethoxy Difluorohydroxyethyl Ether	88645-29-8	Hair Conditioning Agents Skin-Conditioning Agents - Miscellaneous	NA
130	Polyperfluoroethoxymethoxy Difluoromethyl Distearamide	NA	Skin-Conditioning Agents - Miscellaneous Viscosity	NA

No.	INCI Names of PFAS	CAS No.	Reported Functions	Reported Product Categories
			Increasing Agents - Nonaqueous	
131	Polyperfluoroethoxymethoxy Difluoromethyl Ether	161075-02-1	Solvents	NA
132	Polyperfluoroethoxymethoxy PEG-2 Phosphate	162567-74-0	Dispersing Agents - Nonsurfactant	NA
133	Polyperfluoroisopropyl Ether	NA	Skin-Conditioning Agents - Miscellaneous Skin-Conditioning Agents - Occlusive	Eye Makeup Preparations, Misc. Face Powders
134	Polyperfluoromethylisopropyl Ether	69991-67-9	Skin-Conditioning Agents - Miscellaneous Skin-Conditioning Agents - Occlusive	Blushers (All types) Eye Lotions Eye Shadows Face Powders Indoor Tanning Preparations Makeup Bases Manicuring Preparations, Misc. Skin Care Preparations, Misc. Body and Hand Preparations (Excluding Shaving Preparations) Eye Makeup Preparations, Misc. Face and Neck Preparations (Excluding Shaving Preparations) Foundations Lipsticks Makeup Preparations (Not eye), Misc. Moisturizing Preparations Suntan Gels, Creams, and Liquids

No.	INCI Names of PFAS	CAS No.	Reported Functions	Reported Product Categories
135	Polyperfluoroperhydrophenanthrene	NA	Film Formers Hair Fixatives Skin-Conditioning Agents - Miscellaneous	NA
136	Polysilicone-10	NA	Antifoaming Agents Hair Conditioning Agents	NA
137	Polysilicone-7	146632-08-8	Antifoaming Agents Hair Conditioning Agents	NA
138	Polytetrafluoroethylene Acetoxypropyl Betaine	NA	NA	NA
139	Polyurethane-26	NA	Film Formers Hair Conditioning Agents Skin Protectants	NA
140	Polyurethane-27	328389-91-9	Film Formers Hair Conditioning Agents Skin Protectants	NA
141	Polyvinylidene difluoride	24937-79-9	Binders Skin-Conditioning Agents - Miscellaneous Slip Modifiers	NA
142	Potassium Perfluorohexyl Ethylphosphate	1224952-82-2	Surface Modifiers	NA
143	Polytetrafluoroethylene (PTFE)	9002-84-0	Bulking Agents, Slip Modifiers	Blushers and rouges (All types) Eye Lotions Eye Shadows Eyeliners Face Powders Lipsticks

No.	INCI Names of PFAS	CAS No.	Reported Functions	Reported Product Categories
				Makeup Preparations (Not eye), Misc. Moisturizing Preparations Shaving Preparations, Misc. Body and Hand Preparations (Excluding Shaving Preparations) Eye Makeup Preparations, Misc. Eyebrow Pencils Face and Neck Preparations (Excluding Shaving Preparations) Foundations Makeup Bases Mascara Night Skin Care Preparations Shaving Cream (Aerosol, Brushless and Lather)
144	s-Enterobacteria Phage T4 Decapeptide-1 SP Trifluoroacetate	NA	Skin-Conditioning Agents - Miscellaneous	NA
145	sh-Heptapeptide-4 SP Trifluoroacetate	NA	Skin-Conditioning Agents - Humectant	NA
146	sh-Oligopeptide-73 Amide Trifluoroacetate	NA	Antioxidants Skin Protectants Skin-Conditioning Agents - Humectant	NA
147	sh-Pentapeptide-6 Trifluoroacetate	NA	Skin-Conditioning Agents - Miscellaneous	NA

No.	INCI Names of PFAS	CAS No.	Reported Functions	Reported Product Categories
148	sh-Tetrapeptide-38 Trifluoroacetate	NA	Skin-Conditioning Agents - Miscellaneous	NA
149	Sodium Formylhippurate Trifluoroacetyl isobutyl Dipeptide-42 Amide	144055-55-0	Skin-Conditioning Agents - Miscellaneous	NA
150	Sodium Perfluorohexyl Ethylphosphonate	1189052-95-6	Surface Modifiers	NA
151	Sorbitan Hexa-Guanidino hexanoate Trifluoroacetate	NA	Skin-Conditioning Agents - Miscellaneous	NA
152	Stearyl Methacrylate/Perfluoroctylethyl Methacrylate Copolymer	NA	Film Formers Viscosity Increasing Agents - Nonaqueous	NA
153	Tafluprost	209860-87-7	Hair Conditioning Agents	NA
154	TEA-C8-18 Perfluoroalkylethyl Phosphate	NA	Hair Conditioning Agents Skin-Conditioning Agents - Miscellaneous Surface Modifiers Surfactants - Solubilizing Agents	NA
155	TEA-Perfluorohexyl Ethylphosphates	NA	Surfactants - Emulsifying Agents	NA
156	Tetradecyl Aminobutyroylvalylaminobutyric Urea Trifluoroacetate	934368-60-2	Skin-Conditioning Agents - Miscellaneous	Face and Neck Preparations (Excluding Shaving Preparations) Moisturizing Preparations
157	Tetrafluoropropene	29118-24-9	Propellants	NA

No.	INCI Names of PFAS	CAS No.	Reported Functions	Reported Product Categories
158	Trifluoroacetic Acid	76-05-1	pH Adjusters	NA
159	Trifluoroacetyl Tripeptide-2	64577-63-5	Skin Protectants Skin-Conditioning Agents - Miscellaneous	Face and Neck Preparations (Excluding Shaving Preparations)
160	Trifluoroethyl Methacrylate	352-87-4	Artificial Nail Builders	Nail Extenders
161	Trifluoromethyl C1-4 Alkyl Dimethicone	NA	Skin-Conditioning Agents - Occlusive	Face and Neck Preparations (Excluding Shaving Preparations) Moisturizing Preparations Foundations Skin Care Preparations, Misc.
162	Trifluoromethyl Dehydrolatanoprost	NA	Eyelash Conditioning Agents	NA
163	Trifluoromethylbipyridyl Bromobenzimidazole	NA	Skin-Conditioning Agents - Miscellaneous	NA
164	Trifluoromethylphenethyl Mesalazine	NA	Skin Protectants Skin-Conditioning Agents - Miscellaneous	NA
165	Trifluoropropyl Cyclopentasiloxane	NA	Hair Conditioning Agents Skin-Conditioning Agents - Miscellaneous	Makeup Preparations (Not eye), Misc. Moisturizing Preparations
166	Trifluoropropyl Cyclotetrasiloxane	429-67-4	Hair Conditioning Agents Skin-Conditioning Agents - Miscellaneous	Makeup Preparations (Not eye), Misc. Moisturizing Preparations

No.	INCI Names of PFAS	CAS No.	Reported Functions	Reported Product Categories
167	Trifluoropropyl Cyclotrisiloxane	2374-14-3	Plasticizers Slip Modifiers Surface Modifiers	NA
168	Trifluoropropyl Dimethicone	115361-68-7	Hair Conditioning Agents Skin-Conditioning Agents - Miscellaneous	NA
169	Trifluoropropyl Dimethicone/PEG-10 Crosspolymer	NA	Skin-Conditioning Agents - Miscellaneous Surfactants - Emulsifying Agents Viscosity Increasing Agents - Nonaqueous	NA
170	Trifluoropropyl Dimethicone/Trifluoropropyl Divinyldimethicone Crosspolymer	NA	Skin-Conditioning Agents - Miscellaneous Viscosity Increasing Agents - Nonaqueous	Makeup Preparations (Not eye), Misc.
171	Trifluoropropyl Dimethicone/Vinyl Trifluoropropyl Dimethicone/Silsesquioxane Crosspolymer	NA	Viscosity Increasing Agents - Nonaqueous	NA
172	Trifluoropropyl Dimethiconol	NA	Anticaking Agents Skin-Conditioning Agents - Miscellaneous	NA
173	Trifluoropropyl Methicone	63148-56-1	Anticaking Agents Skin-Conditioning Agents - Miscellaneous	NA

No.	INCI Names of PFAS	CAS No.	Reported Functions	Reported Product Categories
174	Trifluoropropyldimethyl(trimethylsiloxy)silicate	NA	Binders Skin-Conditioning Agents - Emollient	NA
175	Trifluoropropyldimethylsiloxy/Trimethylsiloxy Silsesquioxane	NA	Film Formers	NA
176	Trimethyl Trifluoromethylindolino Piperidinylspironaphthooxazine	172208-34-3	Antioxidants Colorants	NA
177	Vinylidene difluoride	75-38-7	NA	NA

NA = not available.

Supplemental Table 2. Cosmetic Product Categories and Codes

(01) Baby products.
(a) Baby shampoos.
(b) Lotions, oils, powders, and creams.
(c) Baby wipes.
(d) Other baby products.
1. Leave-on.
2. Rinse-off.
(02) Bath preparations.
(a) Bath oils, tablets, and salts.
(b) Bubble baths.
(c) Bath capsules.
(d) Other bath preparations.
(03) Eye makeup preparations (other than children's eye makeup preparations).
(a) Eyebrow pencils.
(b) Eyeliners.
(c) Eye shadows.
(d) Eye lotions.
(e) Eye makeup removers.
(f) False eyelashes.
(g) Mascaras.
(h) Eyelash and eyebrow adhesives, glues, and sealants.
(i) Eyelash and eyebrow preparations (primers, conditioners, serums, fortifiers).
(j) Eyelash cleansers.
(k) Other eye makeup preparations.
(04) Children's eye makeup preparations.
(a) Children's eyeshadows.
(b) Other children's eye makeup.
(05) Fragrance preparations.
(a) Colognes and toilet waters.
(b) Perfumes.
(c) Powders (dusting and talcum) (excluding aftershave talc).

(d) Other fragrance preparations.
(06) Hair preparations (non-coloring).
(a) Hair conditioners.
1. Leave-on.
2. Rinse-off.
(b) Hair sprays (aerosol fixatives).
(c) Hair straighteners.
(d) Permanent waves.
(e) Rinses (non-coloring).
(f) Shampoos (non-coloring).
1. Leave-on.
2. Rinse-off.
(g) Tonics, dressings, and other hair grooming aids.
(h) Wave sets.
(i) Other hair preparations.
1. Leave-on.
2. Rinse-off.
(07) Hair coloring preparations.
(a) Hair dyes and colors (all types requiring caution statement and patch test).
(b) Hair tints.
(c) Hair rinses (coloring).
1. Leave-on.
2. Rinse-off.
(d) Hair shampoos (coloring).
1. Leave-on.
2. Rinse-off.
(e) Hair color sprays (aerosol).
(f) Hair lighteners with color.
(g) Hair bleaches.
(h) Eyelash and eyebrow dyes.
(i) Other hair coloring preparations.
1. Leave-on.

2. Rinse-off.
(08) Makeup preparations (not eye) (other than makeup preparations for children).
(a) Blushers and rouges (all types).
(b) Face powders.
(c) Foundations.
1. Traditional applications.
2. Airbrush applications.
(d) Leg and body paints.
1. Traditional applications.
2. Airbrush applications.
(e) Lipsticks and lip glosses.
(f) Makeup bases.
1. Traditional applications.
2. Airbrush applications.
(g) Makeup fixatives.
(h) Other makeup preparations.
1. Traditional applications.
2. Airbrush applications.
(09) Makeup preparations for children (not eye).
(a) Children's blushers and rouges (all types).
(b) Children's face paints.
(c) Children's face powders.
(d) Children's foundations.
(e) Children's lipsticks and lip glosses.
(f) Children's color hairsprays.
(g) Other children's makeup.
(10) Manicuring preparations.
(a) Basecoats and undercoats.
(b) Cuticle softeners.
(c) Nail creams and lotions.
(d) Nail extenders.
(e) Nail polishes and enamels.

(f) Nail polish and enamel removers.
(g) Other manicuring preparations.
(11) Oral products.
(a) Dentifrices (aerosols, liquids, pastes, and powders).
(b) Mouthwashes and breath fresheners (liquids and sprays).
(c) Other oral products.
(12) Personal cleanliness.
(a) Bath soaps and body washes.
(b) Deodorants (underarm).
1. Sticks, roll-ons, gels, creams, and wipes.
2. Sprays.
(c) Douches.
(d) Feminine deodorants.
1. Leave-on.
2. Rinse-off.
(e) Disposable wipes.
(f) Other personal cleanliness products.
1. Leave-on.
2. Rinse-off.
(13) Shaving preparations.
(a) Aftershave lotions.
(b) Beard softeners.
(c) Men's talcum.
(d) Pre-shave lotions (all types).
(e) Shaving creams (aerosol, brushless, and lather).
(f) Shaving soaps (cakes, sticks, etc.).
(g) Other shaving preparation products.
(14) Skin care preparations, (creams, lotions, powder, and sprays).
(a) Cleansing (cold creams, cleansing lotions, liquids, and pads).
(b) Depilatories.
(c) Face and neck (excluding shaving preparations).
1. Leave-on.

2. Rinse-off.
(d) Body and hand (excluding shaving preparations).
1. Leave-on.
2. Rinse-off.
(e) Foot powders and sprays.
(f) Moisturizing.
(g) Night.
(h) Paste masks (mud packs).
(i) Skin fresheners.
(j) Other skin care preparations.
1. Leave-on.
2. Rinse-off.
(15) Suntan preparations.
(a) Suntan gels, creams, and liquids.
(b) Indoor tanning preparations.
1. Traditional applications (creams, lotions, etc.).
2. Airbrush applications.
3. Spray applications.
4. Professional airbrush tanning applications.
5. Professional spray tanning applications.
(c) Other suntan preparations.
(16) Tattoo preparations.
(a) Permanent tattoo inks.
(b) Temporary tattoo inks.
(c) Other tattoo preparations.
(17) Other preparations (i.e., those preparations that do not fit another category)

Note: the product categories are also available at FDA webpage: <https://www.fda.gov/cosmetics/registration-listing-cosmetic-product-facilities-and-products/cosmetic-product-categories-and-codes>.

Supplemental Table 3. Categories of PFAS-Containing Cosmetic Products in FDA's Mandatory Cosmetic Product Listing Data

Product category	Product number	% of Total
(03) Eye makeup preparations (other than children's eye makeup preparations) (03C) Eye shadows	348	20.5
(14) Skin care preparations (creams, lotions, powder, and sprays) (14C1) Face and neck (excluding shaving preparations), leave-on	270	15.9
(03) Eye makeup preparations (other than children's eye makeup preparations) (03B) Eyeliners	143	8.4
(08) Makeup preparations (not eye) (other than makeup preparations for children) (08B) Face powders	112	6.6
(08) Makeup preparations (not eye) (other than makeup preparations for children) (08C1) Foundations, traditional applications	76	4.5
(08) Makeup preparations (not eye) (other than makeup preparations for children) (08H1) Other makeup preparations, traditional applications	68	4.0
(08) Makeup preparations (not eye) (other than makeup preparations for children) (08E) Lipsticks and lip glosses	62	3.6
(08) Makeup preparations (not eye) (other than makeup preparations for children) (08A) Blushers and rouges (all types)	59	3.5
(14) Skin care preparations (creams, lotions, powder, and sprays) (14C1) Face and neck (excluding shaving preparations), leave-on (14F) Moisturizing	59	3.5
(14) Skin care preparations (creams, lotions, powder, and sprays) (14F) Moisturizing	51	3.0
(14) Skin care preparations (creams, lotions, powder, and sprays) (14C2) Face and neck (excluding shaving preparations), rinse-off	40	2.4
(14) Skin care preparations (creams, lotions, powder, and sprays) (14J1) Other skin care preparations, leave-on	38	2.2
(14) Skin care preparations (creams, lotions, powder, and sprays) (14A) Cleansing (cold creams, cleansing lotions, liquids, and pads)	36	2.1
(07) Hair coloring preparations (07A) Hair dyes and colors (all types requiring caution statement and patch test)	29	1.7
(10) Manicuring preparations (10E) Nail polishes and enamels	29	1.7
(14) Skin care preparations (creams, lotions, powder, and sprays) (14H) Paste masks (mud packs)	20	1.2
(14) Skin care preparations (creams, lotions, powder, and sprays) (14A) Cleansing (cold creams, cleansing lotions, liquids, and pads) (14C2) Face and neck (excluding shaving preparations), rinse-off	15	0.9

Product category	Product number	% of Total
(17) Other preparations (i.e., those preparations that do not fit another category)	15	0.9
(06) Hair preparations (non-coloring) (06I1) Other hair preparations, leave-on	14	0.8
(14) Skin care preparations (creams, lotions, powder, and sprays) (14J2) Other skin care preparations, rinse-off	14	0.8
(06) Hair preparations (non-coloring) (06G) Tonics, dressings, and other hair grooming aids	11	0.6
(03) Eye makeup preparations (other than children's eye makeup preparations) (03D) Eye lotions	10	0.6
(03) Eye makeup preparations (other than children's eye makeup preparations) (03G) Mascaras	9	0.5
(03) Eye makeup preparations (other than children's eye makeup preparations) (03K) Other eye makeup preparations	9	0.5
(06) Hair preparations (non-coloring) (06B) Hair sprays (aerosol fixatives)	9	0.5
(06) Hair preparations (non-coloring) (06F2) Shampoos (non-coloring), rinse-off	9	0.5
(03) Eye makeup preparations (other than children's eye makeup preparations) (03A) Eyebrow pencils	8	0.5
(14) Skin care preparations (creams, lotions, powder, and sprays) (14D1) Body and hand (excluding shaving preparations), leave-on	8	0.5
(07) Hair coloring preparations (07G) Hair bleaches	7	0.4
(14) Skin care preparations (creams, lotions, powder, and sprays) (14G) Night	7	0.4
(03) Eye makeup preparations (other than children's eye makeup preparations) (03I) Eyelash and eyebrow preparations (primers, conditioners, serums, fortifiers)	6	0.4
(08) Makeup preparations (not eye) (other than makeup preparations for children) (08F1) Makeup bases, traditional applications	6	0.4
(03) Eye makeup preparations (other than children's eye makeup preparations) (03H) Eyelash and eyebrow adhesives, glues, and sealants	5	0.3
(06) Hair preparations (non-coloring) (06E) Rinses (non-coloring)	5	0.3
(06) Hair preparations (non-coloring) (06I2) Other hair preparations, rinse-off	5	0.3
(10) Manicuring preparations (10G) Other manicuring preparations	5	0.3
(12) Personal cleanliness (12F2) Other personal cleanliness products, rinse-off	4	0.2
(14) Skin care preparations (creams, lotions, powder, and sprays) (14A) Cleansing (cold creams, cleansing lotions, liquids, and pads) (14C1) Face and neck (excluding shaving preparations), leave-on	4	0.2

Product category	Product number	% of Total
(14) Skin care preparations (creams, lotions, powder, and sprays) (14A) Cleansing (cold creams, cleansing lotions, liquids, and pads) (14C1) Face and neck (excluding shaving preparations), leave-on (14D1) Body and hand (excluding shaving preparations), leave-on (14I) Skin fresheners	4	0.2
(14) Skin care preparations (creams, lotions, powder, and sprays) (14C1) Face and neck (excluding shaving preparations), leave-on (14F) Moisturizing (14G) Night	4	0.2
(14) Skin care preparations (creams, lotions, powder, and sprays) (14C1) Face and neck (excluding shaving preparations), leave-on (14J1) Other skin care preparations, leave-on	4	0.2
(03) Eye makeup preparations (other than children's eye makeup preparations) (03C) Eye shadows (08) Makeup preparations (not eye) (other than makeup preparations for children) (08B) Face powders	3	0.2
(06) Hair preparations (non-coloring) (06A1) Hair conditioners, leave-on	3	0.2
(06) Hair preparations (non-coloring) (06A2) Hair conditioners, rinse-off	3	0.2
(06) Hair preparations (non-coloring) (06C) Hair straighteners	3	0.2
(06) Hair preparations (non-coloring) (06F1) Shampoos (non-coloring), leave-on	3	0.2
(12) Personal cleanliness (12B2) Deodorants (underarm), sprays	3	0.2
(12) Personal cleanliness (12F1) Other personal cleanliness products, leave-on	3	0.2
(14) Skin care preparations (creams, lotions, powder, and sprays) (14C2) Face and neck (excluding shaving preparations), rinse-off (14F) Moisturizing	3	0.2
(15) Suntan preparations (15A) Suntan gels, creams, and liquids	3	0.2
(15) Suntan preparations (15B1) Indoor tanning preparations	3	0.2
(03) Eye makeup preparations (other than children's eye makeup preparations) (03A) Eyebrow pencils (03K) Other eye makeup preparations	2	0.1
(03) Eye makeup preparations (other than children's eye makeup preparations) (03K) Other eye makeup preparations (08) Makeup preparations (not eye) (other than makeup preparations for children) (08H1) Other makeup preparations, traditional applications	2	0.1
(08) Makeup preparations (not eye) (other than makeup preparations for children) (08A) Blushers and rouges (all types) (08B) Face powders	2	0.1
(08) Makeup preparations (not eye) (other than makeup preparations for children) (08C2) Foundations, airbrush applications	2	0.1
(08) Makeup preparations (not eye) (other than makeup preparations for children) (08G) Makeup fixatives	2	0.1

Product category	Product number	% of Total
(08) Makeup preparations (not eye) (other than makeup preparations for children) (08G) Makeup fixatives (08H1) Other makeup preparations, traditional applications	2	0.1
(10) Manicuring preparations (10A) Basecoats and undercoats	2	0.1
(10) Manicuring preparations (10D) Nail extenders	2	0.1
(12) Personal cleanliness (12A) Bath soaps and body washes (14) Skin care preparations (creams, lotions, powder, and sprays) (14A) Cleansing (cold creams, cleansing lotions, liquids, and pads) (14C1) Face and neck (excluding shaving preparations), leave-on (14F) Moisturizing (14G) Night (14H) Paste masks (mud packs) (14I) Skin fresheners (14J1) Other skin care preparations, leave-on	2	0.1
(13) Shaving preparations (13A) Aftershave lotions	2	0.1
(13) Shaving preparations (13E) Shaving creams (aerosol, brushless, and lather)	2	0.1
(14) Skin care preparations (creams, lotions, powder, and sprays) (14A) Cleansing (cold creams, cleansing lotions, liquids, and pads) (14C1) Face and neck (excluding shaving preparations), leave-on (14F) Moisturizing	2	0.1
(14) Skin care preparations (creams, lotions, powder, and sprays) (14A) Cleansing (cold creams, cleansing lotions, liquids, and pads) (14J2) Other skin care preparations, rinse-off	2	0.1
(14) Skin care preparations (creams, lotions, powder, and sprays) (14C1) Face and neck (excluding shaving preparations), leave-on (14D1) Body and hand (excluding shaving preparations), leave-on (14F) Moisturizing (14I) Skin fresheners	2	0.1
(14) Skin care preparations (creams, lotions, powder, and sprays) (14C1) Face and neck (excluding shaving preparations), leave-on (14G) Night	2	0.1
(14) Skin care preparations (creams, lotions, powder, and sprays) (14F) Moisturizing (14J1) Other skin care preparations, leave-on	2	0.1
(01) Baby products (01B) Lotions, oils, powders, and creams (14) Skin care preparations (creams, lotions, powder, and sprays) (14C1) Face and neck (excluding shaving preparations), leave-on	1	0.1
(03) Eye makeup preparations (other than children's eye makeup preparations) (03B) Eyeliners (03K) Other eye makeup preparations	1	0.1
(03) Eye makeup preparations (other than children's eye makeup preparations) (03C) Eye shadows (03K) Other eye makeup preparations (08) Makeup preparations (not eye) (other than makeup preparations for children) (08H1) Other makeup preparations, traditional applications	1	0.1

Product category	Product number	% of Total
(03) Eye makeup preparations (other than children's eye makeup preparations) (03D) Eye lotions (14) Skin care preparations (creams, lotions, powder, and sprays) (14C1) Face and neck (excluding shaving preparations), leave-on	1	0.1
(03) Eye makeup preparations (other than children's eye makeup preparations) (03D) Eye lotions (14) Skin care preparations (creams, lotions, powder, and sprays) (14J1) Other skin care preparations, leave-on	1	0.1
(03) Eye makeup preparations (other than children's eye makeup preparations) (03H) Eyelash and eyebrow adhesives, glues, and sealants (03K) Other eye makeup preparations	1	0.1
(05) Fragrance preparations (05D) Other fragrance preparations (06) Hair preparations (non-coloring) (06G) Tonics, dressings, and other hair grooming aids (14) Skin care preparations (creams, lotions, powder, and sprays) (14J1) Other skin care preparations, leave-on	1	0.1
(06) Hair preparations (non-coloring) (06A1) Hair conditioners, leave-on (06G) Tonics, dressings, and other hair grooming aids	1	0.1
(06) Hair preparations (non-coloring) (06E) Rinses (non-coloring) (06G) Tonics, dressings, and other hair grooming aids (06I2) Other hair preparations, rinse-off (08) Makeup preparations (not eye) (other than makeup preparations for children) (08E) Lipsticks and lip glosses (12) Personal cleanliness (12C) Douches (14) Skin care preparations (creams, lotions, powder, and sprays) (14F) Moisturizing (14I) Skin fresheners	1	0.1
(06) Hair preparations (non-coloring) (06G) Tonics, dressings, and other hair grooming aids (06I2) Other hair preparations, rinse-off (08) Makeup preparations (not eye) (other than makeup preparations for children) (08C1) Foundations, traditional applications (08E) Lipsticks and lip glosses (10) Manicuring preparations (10C) Nail creams and lotions (10G) Other manicuring preparations (12) Personal cleanliness (12C) Douches (14) Skin care preparations (creams, lotions, powder, and sprays) (14F) Moisturizing (14I) Skin fresheners	1	0.1
(07) Hair coloring preparations (07A) Hair dyes and colors (all types requiring caution statement and patch test) (07F) Hair lighteners with color	1	0.1
(07) Hair coloring preparations (07B) Hair tints	1	0.1
(07) Hair coloring preparations (07B) Hair tints (07I2) Other hair coloring preparations, rinse-off	1	0.1
(07) Hair coloring preparations (07C2) Hair rinses (coloring), rinse-off	1	0.1
(07) Hair coloring preparations (07I1) Other hair coloring preparations, leave-on	1	0.1
(08) Makeup preparations (not eye) (other than makeup preparations for children) (08B) Face powders (08H1) Other makeup preparations, traditional applications	1	0.1

Product category	Product number	% of Total
(08) Makeup preparations (not eye) (other than makeup preparations for children) (08F1) Makeup bases, traditional applications (08F2) Makeup bases, airbrush applications	1	0.1
(10) Manicuring preparations (10A) Basecoats and undercoats (10E) Nail polishes and enamels	1	0.1
(10) Manicuring preparations (10C) Nail creams and lotions	1	0.1
(12) Personal cleanliness (12A) Bath soaps and body washes	1	0.1
(12) Personal cleanliness (12A) Bath soaps and body washes (14) Skin care preparations (creams, lotions, powder, and sprays) (14A) Cleansing (cold creams, cleansing lotions, liquids, and pads) (14C1) Face and neck (excluding shaving preparations), leave-on (14F) Moisturizing (14G) Night (14J1) Other skin care preparations, leave-on	1	0.1
(12) Personal cleanliness (12A) Bath soaps and body washes (14) Skin care preparations (creams, lotions, powder, and sprays) (14F) Moisturizing (14I) Skin fresheners	1	0.1
(12) Personal cleanliness (12B1) Deodorants (underarm), sticks, roll-ons, gels, creams, and wipes	1	0.1
(12) Personal cleanliness (12F2) Other personal cleanliness products, rinse-off (14) Skin care preparations (creams, lotions, powder, and sprays) (14F) Moisturizing	1	0.1
(14) Skin care preparations (creams, lotions, powder, and sprays) (14A) Cleansing (cold creams, cleansing lotions, liquids, and pads) (14B) Depilatories (14C1) Face and neck (excluding shaving preparations), leave-on (14D1) Body and hand (excluding shaving preparations), leave-on (14I) Skin fresheners	1	0.1
(14) Skin care preparations (creams, lotions, powder, and sprays) (14A) Cleansing (cold creams, cleansing lotions, liquids, and pads) (14C1) Face and neck (excluding shaving preparations), leave-on (14F) Moisturizing (14G) Night	1	0.1
(14) Skin care preparations (creams, lotions, powder, and sprays) (14A) Cleansing (cold creams, cleansing lotions, liquids, and pads) (14C1) Face and neck (excluding shaving preparations), leave-on (14F) Moisturizing (14G) Night (14I) Skin fresheners	1	0.1
(14) Skin care preparations (creams, lotions, powder, and sprays) (14A) Cleansing (cold creams, cleansing lotions, liquids, and pads) (14C1) Face and neck (excluding shaving preparations), leave-on (14G) Night	1	0.1
(14) Skin care preparations (creams, lotions, powder, and sprays) (14A) Cleansing (cold creams, cleansing lotions, liquids, and pads) (14C2) Face and neck (excluding shaving preparations), rinse-off (14J2) Other skin care preparations, rinse-off	1	0.1

Product category	Product number	% of Total
(14) Skin care preparations (creams, lotions, powder, and sprays) (14A) Cleansing (cold creams, cleansing lotions, liquids, and pads) (14F) Moisturizing	1	0.1
(14) Skin care preparations (creams, lotions, powder, and sprays) (14A) Cleansing (cold creams, cleansing lotions, liquids, and pads) (14F) Moisturizing (14J2) Other skin care preparations, rinse-off	1	0.1
(14) Skin care preparations (creams, lotions, powder, and sprays) (14A) Cleansing (cold creams, cleansing lotions, liquids, and pads) (14J1) Other skin care preparations, leave-on	1	0.1
(14) Skin care preparations (creams, lotions, powder, and sprays) (14C1) Face and neck (excluding shaving preparations), leave-on (14D1) Body and hand (excluding shaving preparations), leave-on (14F) Moisturizing	1	0.1
(14) Skin care preparations (creams, lotions, powder, and sprays) (14C1) Face and neck (excluding shaving preparations), leave-on (14F) Moisturizing (14G) Night (14J1) Other skin care preparations, leave-on	1	0.1
(14) Skin care preparations (creams, lotions, powder, and sprays) (14C1) Face and neck (excluding shaving preparations), leave-on (14F) Moisturizing (14J1) Other skin care preparations, leave-on	1	0.1
(14) Skin care preparations (creams, lotions, powder, and sprays) (14C1) Face and neck (excluding shaving preparations), leave-on (14H) Paste masks (mud packs)	1	0.1
(14) Skin care preparations (creams, lotions, powder, and sprays) (14C1) Face and neck (excluding shaving preparations), leave-on (17) Other preparations (i.e., those preparations that do not fit another category)	1	0.1
(14) Skin care preparations (creams, lotions, powder, and sprays) (14C2) Face and neck (excluding shaving preparations), rinse-off (14F) Moisturizing (14H) Paste masks (mud packs) (14J2) Other skin care preparations, rinse-off	1	0.1
(14) Skin care preparations (creams, lotions, powder, and sprays) (14D1) Body and hand (excluding shaving preparations), leave-on (14F) Moisturizing	1	0.1
(14) Skin care preparations (creams, lotions, powder, and sprays) (14D2) Body and hand (excluding shaving preparations), rinse-off	1	0.1
(14) Skin care preparations (creams, lotions, powder, and sprays) (14H) Paste masks (mud packs) (14J1) Other skin care preparations, leave-on	1	0.1
(14) Skin care preparations (creams, lotions, powder, and sprays) (14H) Paste masks (mud packs) (14J2) Other skin care preparations, rinse-off	1	0.1
(14) Skin care preparations (creams, lotions, powder, and sprays) (14I) Skin fresheners	1	0.1
(15) Suntan preparations (15C) Other suntan preparations	1	0.1

Product category	Product number	% of Total
(14) Skin care preparations (creams, lotions, powder, and sprays) (14D2) Body and hand (excluding shaving preparations), rinse-off (14F) Moisturizing	1	0.1
Grand Total	1744	100.0

Supplemental Table 4. Market Trend of Top Used PFAS in Cosmetic Products in the U.S. Market

CAS No.	INCI Names of PFAS	FDA's mandatory cosmetic product listing data	VCRP	VCRP	VCRP	Mintel's GNPD* US_5 year	Mintel's GNPD US_1 year
		As of 8/30/2024	8/22/2019	8/18/2021	3/27/2023	7/27/2024	7/27/2024
9002-84-0	PTFE	490	249	102	79	222	4
259725-95-6	Perfluorononyl Dimethicone	232	65	33	29	61	6
64577-63-5	Trifluoroacetyl Tripeptide-2	164	NA	NA	21	66	14
934368-60-2	Tetradecyl Aminobutyroylvalylaminobutyric Urea Trifluoroacetate	156	NA	NA	39	69	11
163702-07-6	Methyl Perfluorobutyl Ether	114	13	17	23	28	5
163702-08-7	Methyl Perfluoroisobutyl Ether	108	11	16	22	20	4
306-94-5	Perfluorodecalin	71	36	35	28	29	6
51851-37-7	Perfluorohexylethyl Triethoxsilane	124	19	105	172	33	1
69991-67-9	Polyperfluoromethylisopropyl Ether	54	79	NA	12	11	3
10442-83-8	HC Yellow No. 13	40	NA	NA	6	0	0
355-42-0	Perfluorohexane	40	18	23	18	21	3
NA	Diethylaminoethyl Methacrylate/HEMA/Perfluorohexylethyl Methacrylate Crosspolymer	35	NA	NA	NA	0	0
NA	Pentapeptide-34 Trifluoroacetate	33	NA	NA	NA	9	4
NA	Trifluoropropyltrimethylsiloxane	28	NA	NA	4	6	0
NA	Polyperfluoroethoxymethoxy Difluoroethyl PEG Phosphate	27	29	2	1	9	0
306-91-2	Perfluoroperhydrophenanthrene	25	20	13	7	10	3

CAS No.	INCI Names of PFAS	FDA's mandatory cosmetic product listing data	VCRP	VCRP	VCRP	Mintel's GNPD* US_5 year	Mintel's GNPD US_1 year
		As of 8/30/2024	8/22/2019	8/18/2021	3/27/2023	7/27/2024	7/27/2024
NA	Dimethiconol Fluoroalcohol Dilinoleic Acid	24	NA	NA	NA	0	0
29118-24-9	Tetrafluoropropene	23	NA	NA	1	21	4
163702-05-4	Ethyl Perfluorobutyl Ether	22	4	5	5	2	0
NA	Trifluoromethyl C1-4 Alkyl Dimethicone	21	NA	NA	2	0	0
NA	Perfluorononylethyl Stearyl Dimethicone	18	NA	NA	NA	0	0
379685-96-8	Acetyl Trifluoromethylphenyl Valylglycine	17	NA	NA	NA	9	0
26637-68-3 335-27-3	Perfluorodimethylcyclohexane	17	7	9	5	4	3
NA	Trifluoropropyl Cyclopentasiloxane	11	NA	NA	31	7	0
1805-22-7	Perfluoromethylcyclopentane	10	1	3	3	10	3

* Mintel's GNPD tracks new product launches, so the data presented in the table reflect new cosmetic products introduced during the timeframe, not the total products available on the market in the U.S.

NA: not available.

Supplemental Table 5. Template for Searching Existing Assessments

Data Source
Tier 1
US FDA Data (use as food, drug, cosmetic, or color additive)
Scientific Committee on Consumer Safety (SCCS) Opinion
Cosmetic Ingredient Review (CIR) Assessment
Research Institute of Fragrance Materials (RIFM) Assessment
Tier 2
Agency for Toxic Substances and Disease Registry (ATSDR) Toxicological Profile
US EPA Reviews
National Toxicology Program (NTP)
Consumer Product Safety Commission (CPSC)
Health Canada
Joint FAO/WHO Expert Committee on Food Additives (JECFA)
World Health Organization (WHO)/International Programme on Chemical Safety (IPCS)
European Food Safety Authority (EFSA) Opinion
German Federal Institute for Risk Assessment (BfR)
International Agency for Research on Cancer (IARC)
European Chemicals Agency Committee for Risk Assessment (ECHA RAC)
Other sources as needed
(e.g., regulatory status details)

Supplemental Table 6. Search Syntax for PTFE Using PubMed and Web of Science

Endpoints	PubMed: https://www.PubMed.gov	Web of Science: https://www.webofscience.com/wos/woscc/advanced-search
Toxicity in general	(("polytetrafluoroethylene"[tw] OR "PTFE"[tw] OR "Teflon"[tw]) NOT ("graft*"[tw] OR "reconstruction"[tw] OR "stent*"[tw] OR "filter*"[tw] OR "membrane*"[tw] OR "ePTFE"[tw] OR "mesh"[tw] OR "tube*"[tw] OR "ring*"[tw] OR "catheter*"[tw] OR "contact*"[tw])) AND ("toxicity"[tw] OR "toxicological effect*"[tw] OR "adverse effect*"[tw] OR "acute exposure"[tw] OR LD50[tw]))	TS=((("polytetrafluoroethylene" OR "PTFE" OR "Teflon") NOT ("graft*" OR "reconstruction" OR "stent*" OR "filter*" OR "membrane*" OR "ePTFE" OR "mesh" OR "tube*" OR "ring*" OR "catheter*" OR "contact*")) AND TS=(("toxicity" OR "toxicological effect*" OR "adverse effect*" OR "acute exposure" OR LD50))
ADME	((("polytetrafluoroethylene"[tw] OR "PTFE"[tw] OR "Teflon"[tw]) NOT ("graft*"[tw] OR "reconstruction"[tw] OR "stent*"[tw] OR "filter*"[tw] OR "membrane*"[tw] OR "ePTFE"[tw] OR "mesh"[tw] OR "tube*"[tw] OR "ring*"[tw] OR "catheter*"[tw] OR "contact*"[tw])) AND ("ADME"[tw] OR "absorption"[tw] OR "distribution"[tw] OR "metabolism"[tw] OR "excretion"[tw] OR "elimination"[tw] OR "toxicokinetic*"[tw] OR "pharmacokinetic*"[tw] OR "bioavailability"[tw]))	TS=((("polytetrafluoroethylene" OR "PTFE" OR "Teflon") NOT ("graft*" OR "reconstruction" OR "stent*" OR "filter*" OR "membrane*" OR "ePTFE" OR "mesh" OR "tube*" OR "ring*" OR "catheter*" OR "contact*")) AND TS=(("ADME" OR "absorption" OR "distribution" OR "metabolism" OR "excretion" OR "elimination" OR "toxicokinetic*" OR "pharmacokinetic*" OR "bioavailability"))
Genotoxicity	("polytetrafluoroethylene"[tw] OR "PTFE"[tw] OR "Teflon"[tw]) AND ("genotox*"[tw] OR "DNA damage"[tw] OR "DNA adduct*"[tw] OR "DNA fragmentation"[tw] OR "mutagen*"[tw])	TS= ("polytetrafluoroethylene" OR "PTFE" OR "Teflon") AND TS=(("genotox*" OR "DNA damage" OR "DNA adduct*" OR "DNA fragmentation" OR "mutagen*"))
Carcinogenicity	((("polytetrafluoroethylene"[tw] OR "PTFE"[tw] OR "Teflon"[tw]) NOT ("graft*"[tw] OR "reconstruction"[tw] OR "stent*"[tw] OR "filter*"[tw] OR "membrane*"[tw] OR "ePTFE"[tw] OR "mesh"[tw] OR "tube*"[tw] OR "ring*"[tw] OR "catheter*"[tw] OR "contact*"[tw])) AND	TS=((("polytetrafluoroethylene" OR "PTFE" OR "Teflon") NOT ("graft*" OR "reconstruction" OR "stent*" OR "filter*" OR "membrane*" OR "ePTFE" OR "mesh" OR "tube*" OR "ring*" OR "catheter*" OR "contact*")) AND

Endpoints	PubMed: https://www.PubMed.gov	Web of Science: https://www.webofscience.com/wos/woscc/advanced-search
	("carcinogen*"[tw] OR "cancer*"[tw] OR "tumor*"[tw] OR "neoplas*"[tw])	TS= ("carcinogen*" OR "cancer*" OR "tumor*" OR "neoplas*")
DART	("polytetrafluoroethylene"[tw] OR "PTFE"[tw] OR "Teflon"[tw]) AND (((("toxicity"[tw] OR "hazard"[tw]) AND ("DART"[tw] OR "developmental"[tw] OR "reproductive"[tw] OR "matern*"[tw] OR "pregnan*"[tw] OR "prenatal"[tw] OR "antenatal"[tw] OR "perinatal"[tw] OR "postnatal"[tw] OR "postpartum"[tw] OR "offspring*"[tw] OR "infant*"[tw] OR "newborn"[tw] OR "neonat*"[tw] OR "fetal"[tw] OR "fetus"[tw] OR "feotal"[tw] OR "feotus"[tw] OR "testes"[tw] OR "testicular"[tw] OR "ovar*"[tw] OR "uter*"[tw])) OR "reprotoxicity"[tw] OR "*fertility"[tw] OR "teratogenicity"[tw] OR "embryotoxicity"[tw] OR "birth defects"[tw])	TS= ("polytetrafluoroethylene" OR "PTFE" OR "Teflon") AND TS= (((("toxicity" OR "hazard") AND ("DART" OR "developmental" OR "reproductive" OR "matern*" OR "pregnan*" OR "prenatal" OR "antenatal" OR "perinatal" OR "postnatal" OR "postpartum" OR "offspring*" OR "infant*" OR "newborn*" OR "neonat*" OR "fetal" OR "fetus" OR "feotal" OR "feotus" OR "testes" OR "testicular" OR "ovar*" OR "uter*") OR "reprotoxicity" OR "teratogenicity" OR "embryotoxicity" OR "birth defects"))
Skin Sensitization	("polytetrafluoroethylene"[tw] OR "PTFE"[tw] OR "Teflon"[tw]) AND ("allerg*"[tw] OR "sensitiz*"[tw] OR "sensitis*"[tw] OR "allergic contact dermatitis"[tw] OR "hypersensitivity"[tw] OR "HRIPT"[tw] OR "human maximization test*"[tw] OR "patch test*"[tw] OR "LLNA"[tw] OR "local lymph node assay"[tw])	TS= ("polytetrafluoroethylene" OR "PTFE" OR "Teflon") AND TS= ("allerg*" OR "sensitiz*" OR "sensitis*" OR "allergic contact dermatitis" OR "hypersensitivity" OR "HRIPT" OR "human maximization test*" OR "patch test*" OR "LLNA" OR "local lymph node assay")
Skin Irritation	("polytetrafluoroethylene"[tw] OR "PTFE"[tw] OR "Teflon"[tw]) AND (((("irrita*"[tw] AND ("skin"[tw] OR "dermal" [tw])) OR "erythema"[tw] OR "dermatitis"[tw] OR "Pruritus"[tw]))	TS= ("polytetrafluoroethylene" OR "PTFE" OR "Teflon") AND TS= ("skin irrita*" OR "dermal irrita*" OR "erythema" OR "dermatitis" OR "pruritus")
Eye Irritation	("polytetrafluoroethylene"[tw] OR "PTFE"[tw] OR "Teflon"[tw]) AND (((("eye"[tw] OR "ocular"[tw]) AND ("irrita*"[tw] OR "discomfort"[tw] OR "redness"[tw] OR burning [tw] OR	TS= ("polytetrafluoroethylene" OR "PTFE" OR "Teflon") AND TS= (((("eye" OR "ocular") AND ("corrosion" OR "discomfort" OR "redness" OR

Endpoints	PubMed: https://www.PubMed.gov	Web of Science: https://www.webofscience.com/wos/woscc/advanced-search
	stinging [tw] OR "corrosion") OR "conjunctivitis"[tw])	"burning" OR "stinging") OR "conjunctivitis")
Respiratory Irritation	("polytetrafluoroethylene"[tw] OR "PTFE"[tw] OR "Teflon"[tw]) AND (("irrita*"[tw] AND ("inhalation"[tw] OR "upper airway"[tw] OR "upper respiratory"[tw] OR "respiratory tract"[tw] OR "lung"[tw] OR "lungs"[tw] OR "nose"[tw] OR "nasal"[tw] OR "trachea*"[tw] OR "nasopharyngeal"[tw])) OR "asthma"[tw])	TS= ("polytetrafluoroethylene" OR "PTFE" OR "Teflon") AND TS= ("irrita*" AND ("inhalation" OR "upper airway" OR "upper respiratory" OR "respiratory tract" OR "lung" OR "lungs" OR "nose" OR "nasal" OR "trachea*" OR "nasopharyngeal") OR ("asthma"))
Photo-induced Toxicity	("polytetrafluoroethylene"[tw] OR "PTFE"[tw] OR "Teflon"[tw]) AND ("phototoxicity"[tw] OR "photo-toxicity"[tw] OR "photosensitiz*"[tw] OR "photo-sensitiz*"[tw] OR "photosensitiz*"[tw] OR "photo-sensitiz*"[tw] OR "photoirrita*"[tw] OR "photo-irrita*"[tw] OR "photogenotoxicity"[tw] OR "photo-genotoxicity"[tw])	TS= ("polytetrafluoroethylene" OR "PTFE" OR "Teflon") AND TS= ("phototoxicity" OR "photo-toxicity" OR "photosensitiz*" OR "photo-sensitiz*" OR "photosensitiz*" OR "photo-sensitiz*" OR "photoirrita*" OR "photo-irrita*" OR "photogenotoxicity" OR "photo-genotoxicity")
Other endpoints		
Neurotoxicity	("polytetrafluoroethylene"[tw] OR "PTFE"[tw] OR "Teflon"[tw]) AND ("neurotox*"[tw] OR "neural"[tw] OR "neuron*"[tw] OR "nervous system"[tw] OR "neurologic*"[tw] OR "neurodegenerati*"[tw] OR "cogniti*"[tw] OR "learning impairment"[tw] OR "Parkinson's"[tw] OR "Alzheimer's"[tw] OR "dementia"[tw])	TS= ("polytetrafluoroethylene" OR "PTFE" OR "Teflon") NOT ("graft*" OR "reconstruction" OR "stent*" OR "filter*" OR "membrane*" OR "ePTFE" OR "mesh" OR "tube*" OR "ring*" OR "catheter*" OR "contact*") AND TS= ("neurotox*" OR "neural" OR "neuron*" OR "nervous system" OR "neurologic*" OR "neurodegenerati*" OR "cogniti*" OR "learning impairment" OR "Parkinson's" OR "Alzheimer's" OR "dementia")

Supplemental Table 7. Search Syntax for Perfluorodecalin using PubMed and Web of Science

Endpoints	PubMed: https://www.PubMed.gov	Web of Science: https://www.webofscience.com/wos/woscc/advanced-search
Toxicity in general	("Perfluorodecalin"[tw] OR "306-94-5"[rn] OR "Perflunafene"[tw] OR "Perfluorodecahydronaphthalene"[tw]) AND ("toxicity"[tw] OR "toxicological effect*"[tw] OR "adverse effect*"[tw] OR "acute exposure"[tw] OR "LD50"[tw])	TS=("Perfluorodecalin" OR "306-94-5" OR "Perflunafene" OR "Perfluorodecahydronaphthalene") AND TS=("toxicity" OR "toxicological effect*" OR "adverse effect*" OR "acute exposure" OR "LD50")
ADME	("Perfluorodecalin"[tw] OR "306-94-5"[rn] OR "Perflunafene"[tw] OR "Perfluorodecahydronaphthalene"[tw]) AND ("ADME"[tw] OR "absorption"[tw] OR "distribution"[tw] OR "metabolism"[tw] OR "excretion"[tw] OR "elimination"[tw] OR "toxicokinetic*"[tw] OR "pharmacokinetic*"[tw] OR "bioavailability"[tw])	TS=("Perfluorodecalin" OR "306-94-5" OR "Perflunafene" OR "Perfluorodecahydronaphthalene") AND TS=("ADME" OR "absorption" OR "distribution" OR "metabolism" OR "excretion" OR "elimination" OR "toxicokinetic*" OR "pharmacokinetic*" OR "bioavailability")
Genotoxicity	("Perfluorodecalin"[tw] OR "306-94-5"[rn] OR "Perflunafene"[tw] OR "Perfluorodecahydronaphthalene"[tw]) AND ("genotox*"[tw] OR "DNA damage"[tw] OR "DNA adduct*"[tw] OR "DNA fragmentation"[tw] OR "mutagen*"[tw])	TS= ("Perfluorodecalin" OR "306-94-5" OR "Perflunafene" OR "Perfluorodecahydronaphthalene") AND TS=("genotox*" OR "DNA damage" OR "DNA adduct*" OR "DNA fragmentation" OR "mutagen*")
Carcinogenicity	("Perfluorodecalin"[tw] OR "306-94-5"[rn] OR "Perflunafene"[tw] OR "Perfluorodecahydronaphthalene"[tw]) AND ("carcinogen*"[tw] OR "cancer*"[tw] OR "tumor*"[tw] OR "neoplas*"[tw])	TS=("Perfluorodecalin" OR "306-94-5" OR "Perflunafene" OR "Perfluorodecahydronaphthalene") AND TS=("carcinogen*" OR "cancer*" OR "tumor*" OR "neoplas*")
DART	("Perfluorodecalin"[tw] OR "306-94-5"[rn] OR "Perflunafene"[tw] OR "Perfluorodecahydronaphthalene"[tw]) AND ((("toxicity"[tw] OR "hazard"[tw]) AND ("DART"[tw] OR "developmental"[tw] OR "reproductive"[tw] OR "matern*"[tw] OR "pregnan*"[tw] OR "prenatal"[tw]))	TS=("Perfluorodecalin" OR "306-94-5" OR "Perflunafene" OR "Perfluorodecahydronaphthalene") AND TS=(("toxicity" OR "hazard") AND ("DART" OR "developmental" OR "reproductive" OR "matern*" OR "pregnan*" OR "prenatal" OR "antenatal" OR "perinatal" OR

Endpoints	PubMed: https://www.PubMed.gov	Web of Science: https://www.webofscience.com/wos/woscc/advanced-search
	OR "antenatal"[tw] OR "perinatal"[tw] OR "postnatal"[tw] OR "postpartum"[tw] OR "offspring*"[tw] OR "infant*"[tw] OR "newborn"[tw] OR "neonat*"[tw] OR "fetal"[tw] OR "fetus"[tw] OR "foetal"[tw] OR "feotus"[tw] OR "testes"[tw] OR "testicular"[tw] OR "ovar*"[tw] OR "uter*"[tw])) OR "reprotoxicity"[tw] OR "*fertility"[tw] OR "teratogenicity"[tw] OR "embryotoxicity"[tw] OR "birth defects"[tw])	"postnatal" OR "postpartum" OR "offspring*" OR "infant*" OR "newborn*" OR "neonat*" OR "fetal" OR "fetus" OR "foetal" OR "feotus" OR "testes" OR "testicular" OR "ovar*" OR "uter*") OR "reprotoxicity" OR "teratogenicity" OR "embryotoxicity" OR "birth defects")
Skin Sensitization	("Perfluorodecalin"[tw] OR "306-94-5"[rn] OR "Perflunafene"[tw] OR "Perfluorodecahydronaphthalene"[tw]) AND ("allerg*"[tw] OR "sensitiz*"[tw] OR "sensitis*"[tw] OR "allergic contact dermatitis"[tw] OR "hypersensitivity" [tw] OR "HRIPT"[tw] OR "human maximization test*"[tw] OR "patch test*"[tw] OR "LLNA"[tw] OR "local lymph node assay"[tw])	TS=("Perfluorodecalin" OR "306-94-5" OR "Perflunafene" OR "Perfluorodecahydronaphthalene") AND TS=("allerg*" OR "sensitiz*" OR "sensitis*" OR "allergic contact dermatitis" OR "hypersensitivity" OR "HRIPT" OR "human maximization test*" OR "patch test*" OR "LLNA" OR "local lymph node assay")
Skin Irritation	("Perfluorodecalin"[tw] OR "306-94-5"[rn] OR "Perflunafene"[tw] OR "Perfluorodecahydronaphthalene"[tw]) AND (("irrita*"[tw] AND ("skin"[tw] OR "dermal" [tw])) OR "erythema"[tw] OR "dermatitis"[tw] OR "Pruritus"[tw])	TS=("Perfluorodecalin" OR "306-94-5" OR "Perflunafene" OR "Perfluorodecahydronaphthalene") AND TS=("skin irrita*" OR "dermal irrita*" OR "erythema" OR "dermatitis" OR "pruritus")
Eye Irritation	("Perfluorodecalin"[tw] OR "306-94-5"[rn] OR "Perflunafene"[tw] OR "Perfluorodecahydronaphthalene"[tw]) AND (("eye"[tw] OR "ocular"[tw]) AND ("irrita*"[tw] OR "discomfort"[tw] OR "redness"[tw] OR burning [tw] OR stinging [tw] OR "corrosion") OR "conjunctivitis"[tw])	TS=("Perfluorodecalin" OR "306-94-5" OR "Perflunafene" OR "Perfluorodecahydronaphthalene") AND TS=(("eye" OR "ocular") AND ("corrosion" OR "discomfort" OR "redness" OR "burning" OR "stinging") OR "conjunctivitis")
Respiratory Irritation	("Perfluorodecalin"[tw] OR "306-94-5"[rn] OR "Perflunafene"[tw] OR "Perfluorodecahydronaphthalene"[tw])	TS=("Perfluorodecalin" OR "306-94-5" OR "Perflunafene" OR "Perfluorodecahydronaphthalene") AND

Endpoints	PubMed: https://www.PubMed.gov	Web of Science: https://www.webofscience.com/wos/woscc/advanced-search
	AND (("irrita*"[tw] AND ("inhalation"[tw] OR "upper airway"[tw] OR "upper respiratory"[tw] OR "respiratory tract"[tw] OR "lung"[tw] OR "lungs"[tw] OR "nose"[tw] OR "nasal"[tw] OR "trachea*"[tw] OR "nasopharyngeal"[tw]))) OR "asthma"[tw])	TS="("irrita*" AND ("inhalation" OR "upper airway" OR "upper respiratory" OR "respiratory tract" OR "lung" OR "lungs" OR "nose" OR "nasal" OR "trachea*" OR "nasopharyngeal") OR ("asthma"))
Photo-induced Toxicity	("Perfluorodecalin"[tw] OR "306-94-5"[rn] OR "Perflunafene"[tw] OR "Perfluorodecahydronaphthalene"[tw]) AND ("phototoxicity"[tw] OR "photo-toxicity"[tw] OR "photosensitiz*"[tw] OR "photo-sensitiz*"[tw] OR "photosensitiz*"[tw] OR "photo-sensitiz*"[tw] OR "photo-irrita*"[tw] OR "photogenotoxicity"[tw] OR "photo-genotoxicity"[tw])	TS="("Perfluorodecalin" OR "306-94-5" OR "Perflunafene" OR "Perfluorodecahydronaphthalene") AND TS="("phototoxicity" OR "photo-toxicity" OR "photosensitiz*" OR "photo-sensitiz*" OR "photosensitiz*" OR "photo-sensitiz*" OR "photo-irrita*" OR "photo-irrita*" OR "photogenotoxicity" OR "photo-genotoxicity")
Other endpoints		
Neurotoxicity	("Perfluorodecalin"[tw] OR "306-94-5"[rn] OR "Perflunafene"[tw] OR "Perfluorodecahydronaphthalene"[tw]) AND ("neurotox*"[tw] OR "neural"[tw] OR "neuron*"[tw] OR "nervous system"[tw] OR "neurologic*"[tw] OR "neurodegenerati*"[tw] OR "cogniti*"[tw] OR "learning impairment"[tw] OR "Parkinson's"[tw] OR "Alzheimer's"[tw] OR "dementia"[tw])	TS="("Perfluorodecalin" OR "306-94-5" OR "Perflunafene" OR "Perfluorodecahydronaphthalene") AND TS="("neurotox*" OR "neural" OR "neuron*" OR "nervous system" OR "neurologic*" OR "neurodegenerati*" OR "cogniti*" OR "learning impairment" OR "Parkinson's" OR "Alzheimer's" OR "dementia")

Supplemental Table 8. Search Syntax for Perfluorohexane Using PubMed and Web of Science

Endpoints	PubMed: https://www.PubMed.gov	Web of Science: https://www.webofscience.com/wos/woscc/advanced-search
Toxicity in general	(("Perfluorohexane"[tw] OR "355-42-0"[rn] OR "Perflexane"[tw] OR "Tetradecafluorohexane"[tw]) NOT ("Perfluorohexane sulfon*"[tw] OR "Perfluorohexanesulfon*"[tw] OR "PFHxS"[tw])) AND ("toxicity"[tw] OR "toxicological effect*"[tw] OR "adverse effect*"[tw] OR "acute exposure"[tw] OR "LD50"[tw]))	TS=(("Perfluorohexane" OR "355-42-0" OR "Perflexane" OR "Tetradecafluorohexane") NOT ("Perfluorohexane sulfon*" OR "Perfluorohexanesulfon*" OR "PFHxS")) AND TS=(("toxicity" OR "toxicological effect*" OR "adverse effect*" OR "acute exposure" OR "LD50"))
ADME	(("Perfluorohexane"[tw] OR "355-42-0"[rn] OR "Perflexane"[tw] OR "Tetradecafluorohexane"[tw]) NOT ("Perfluorohexane sulfon*"[tw] OR "Perfluorohexanesulfon*"[tw] OR "PFHxS"[tw])) AND ("ADME"[tw] OR "absorption"[tw] OR "distribution"[tw] OR "metabolism"[tw] OR "excretion"[tw] OR "elimination"[tw] OR "toxicokinetic*"[tw] OR "pharmacokinetic*"[tw] OR "bioavailability"[tw]))	TS=(("Perfluorohexane" OR "355-42-0" OR "Perflexane" OR "Tetradecafluorohexane") NOT ("Perfluorohexane sulfon*" OR "Perfluorohexanesulfon*" OR "PFHxS")) AND TS=(("ADME" OR "absorption" OR "distribution" OR "metabolism" OR "excretion" OR "elimination" OR "toxicokinetic*" OR "pharmacokinetic*" OR "bioavailability"))
Genotoxicity	(("Perfluorohexane"[tw] OR "355-42-0"[rn] OR "Perflexane"[tw] OR "Tetradecafluorohexane"[tw]) NOT ("Perfluorohexane sulfon*"[tw] OR "Perfluorohexanesulfon*"[tw] OR "PFHxS"[tw])) AND ("genotox*"[tw] OR "DNA damage"[tw] OR "DNA adduct*"[tw] OR "DNA fragmentation"[tw] OR "mutagen*"[tw]))	TS=(("Perfluorohexane" OR "355-42-0" OR "Perflexane" OR "Tetradecafluorohexane") NOT ("Perfluorohexane sulfon*" OR "Perfluorohexanesulfon*" OR "PFHxS")) AND TS=(("genotox*" OR "DNA damage" OR "DNA adduct*" OR "DNA fragmentation" OR "mutagen*"))
Carcinogenicity	(("Perfluorohexane"[tw] OR "355-42-0"[rn] OR "Perflexane"[tw] OR "Tetradecafluorohexane"[tw]) NOT ("Perfluorohexane sulfon*"[tw] OR "Perfluorohexanesulfon*"[tw] OR "PFHxS"[tw])) AND ("carcinogen*"[tw]))	TS=(("Perfluorohexane" OR "355-42-0" OR "Perflexane" OR "Tetradecafluorohexane") NOT ("Perfluorohexane sulfon*" OR "Perfluorohexanesulfon*" OR "PFHxS")) AND TS=(("carcinogen*" OR "cancer*" OR "tumor*" OR "neoplas*"))

Endpoints	PubMed: https://www.PubMed.gov	Web of Science: https://www.webofscience.com/wos/woscc/advanced-search
	OR "cancer*"[tw] OR "tumor*"[tw] OR "neoplas*"[tw])	
DART	(("Perfluorohexane"[tw] OR "355-42-0"[rn] OR "Perflexane"[tw] OR "Tetradecafluorohexane"[tw]) NOT ("Perfluorohexane sulfon*"[tw] OR "Perfluorohexanesulfon*"[tw] OR "PFHxS"[tw])) AND (((("toxicity"[tw] OR "hazard"[tw]) AND ("DART"[tw] OR "developmental"[tw] OR "reproductive"[tw] OR "matern*"[tw] OR "pregnan*"[tw] OR "prenatal"[tw] OR "antenatal"[tw] OR "perinatal"[tw] OR "postnatal"[tw] OR "postpartum"[tw] OR "offspring*"[tw] OR "infant*"[tw] OR "newborn"[tw] OR "neonat*"[tw] OR "fetal"[tw] OR "fetus"[tw] OR "feotal"[tw] OR "feotus"[tw] OR "testes"[tw] OR "testicular"[tw] OR "ovar*"[tw] OR "uter*"[tw])) OR "reprotoxicity"[tw] OR "*fertility"[tw] OR "teratogenicity"[tw] OR "embryotoxicity"[tw] OR "birth defects"[tw]))	TS=((("Perfluorohexane" OR "355-42-0" OR "Perflexane" OR "Tetradecafluorohexane") NOT ("Perfluorohexane sulfon*" OR "Perfluorohexanesulfon*" OR "PFHxS")) AND TS=((("toxicity" OR "hazard") AND ("DART" OR "developmental" OR "reproductive" OR "matern*" OR "pregnan*" OR "prenatal" OR "antenatal" OR "perinatal" OR "postnatal" OR "postpartum" OR "offspring*" OR "infant*" OR "newborn*" OR "neonat*" OR "fetal" OR "fetus" OR "foetal" OR "foetus" OR "testes" OR "testicular" OR "ovar*" OR "uter*")) OR "reprotoxicity" OR "teratogenicity" OR "embryotoxicity" OR "birth defects"))
Skin Sensitization	(("Perfluorohexane"[tw] OR "355-42-0"[rn] OR "Perflexane"[tw] OR "Tetradecafluorohexane"[tw]) NOT ("Perfluorohexane sulfon*"[tw] OR "Perfluorohexanesulfon*"[tw] OR "PFHxS"[tw])) AND ("allerg*"[tw] OR "sensitiz*"[tw] OR "sensitis*"[tw] OR "allergic contact dermatitis"[tw] OR "hypersensitivity" [tw] OR "HRIPT"[tw] OR "human maximization test*"[tw] OR "patch test*"[tw] OR "LLNA"[tw] OR "local lymph node assay"[tw]))	TS=((("Perfluorohexane" OR "355-42-0" OR "Perflexane" OR "Tetradecafluorohexane") NOT ("Perfluorohexane sulfon*" OR "Perfluorohexanesulfon*" OR "PFHxS")) AND TS=(("allerg*" OR "sensitiz*" OR "sensitis*" OR "allergic contact dermatitis" OR "hypersensitivity" OR "HRIPT" OR "human maximization test*" OR "patch test*" OR "LLNA" OR "local lymph node assay"))
Skin Irritation	(("Perfluorohexane"[tw] OR "355-42-0"[rn] OR "Perflexane"[tw] OR "Tetradecafluorohexane"[tw]) NOT ("Perfluorohexane sulfon*"[tw] OR	TS=((("Perfluorohexane" OR "355-42-0" OR "Perflexane" OR "Tetradecafluorohexane") NOT ("Perfluorohexane sulfon*"))

Endpoints	PubMed: https://www.PubMed.gov	Web of Science: https://www.webofscience.com/wos/woscc/advanced-search
	"Perfluorohexanesulfon*"[tw] OR "PFHxS"[tw])) AND (("irrita*"[tw] AND ("skin"[tw] OR "dermal" [tw])) OR "erythema"[tw] OR "dermatitis"[tw] OR "Pruritus"[tw])	"Perfluorohexanesulfon*" OR "PFHxS") AND TS=("skin irrita*" OR "dermal irrita*" OR "erythema" OR "dermatitis" OR "pruritus")
Eye Irritation	(("Perfluorohexane"[tw] OR "355-42-0"[rn] OR "Perflexane"[tw] OR "Tetradecafluorohexane"[tw]) NOT ("Perfluorohexane sulfon*"[tw] OR "Perfluorohexanesulfon*"[tw] OR "PFHxS"[tw])) AND (("eye"[tw] OR "ocular"[tw]) AND ("irrita*"[tw] OR "discomfort"[tw] OR "redness"[tw] OR "burning [tw] OR stinging [tw] OR "corrosion") OR "conjunctivitis"[tw]))	TS=(("Perfluorohexane" OR "355-42-0" OR "Perflexane" OR "Tetradecafluorohexane") NOT ("Perfluorohexane sulfon*" OR "Perfluorohexanesulfon*") OR "PFHxS")) AND TS=(("eye" OR "ocular") AND ("corrosion" OR "discomfort" OR "redness" OR "burning" OR "stinging") OR "conjunctivitis")
Respiratory Irritation	(("Perfluorohexane"[tw] OR "355-42-0"[rn] OR "Perflexane"[tw] OR "Tetradecafluorohexane"[tw]) NOT ("Perfluorohexane sulfon*"[tw] OR "Perfluorohexanesulfon*"[tw] OR "PFHxS"[tw])) AND (("irrita*"[tw] AND ("inhalation"[tw] OR "upper airway"[tw] OR "upper respiratory"[tw] OR "respiratory tract"[tw] OR "lung"[tw] OR "lungs"[tw] OR "nose"[tw] OR "nasal"[tw] OR "trachea*"[tw] OR "nasopharyngeal"[tw])) OR "asthma"[tw]))	TS=(("Perfluorohexane" OR "355-42-0" OR "Perflexane" OR "Tetradecafluorohexane") NOT ("Perfluorohexane sulfon*" OR "Perfluorohexanesulfon*") OR "PFHxS")) AND TS=("irrita*" AND ("inhalation" OR "upper airway" OR "upper respiratory" OR "respiratory tract" OR "lung" OR "lungs" OR "nose" OR "nasal" OR "trachea*" OR "nasopharyngeal") OR ("asthma"))
Photo-induced Toxicity	(("Perfluorohexane"[tw] OR "355-42-0"[rn] OR "Perflexane"[tw] OR "Tetradecafluorohexane"[tw]) NOT ("Perfluorohexane sulfon*"[tw] OR "Perfluorohexanesulfon*"[tw] OR "PFHxS"[tw])) AND (("phototoxicity"[tw] OR "photo-toxicity"[tw] OR "photosensitiz*"[tw] OR "photo-sensitiz*"[tw] OR "photosensitis*"[tw] OR "photo-sensitis*"[tw] OR "photoirrita*"[tw] OR "photo-"))	TS=(("Perfluorohexane" OR "355-42-0" OR "Perflexane" OR "Tetradecafluorohexane") NOT ("Perfluorohexane sulfon*" OR "Perfluorohexanesulfon*") OR "PFHxS")) AND TS=("phototoxicity" OR "photo-toxicity" OR "photosensitiz*" OR "photo-sensitiz*" OR "photosensitis*" OR "photo-sensitis*" OR "photoirrita*" OR "photo-irrita*" OR "photogenotoxicity" OR "photo-genotoxicity")

Endpoints	PubMed: https://www.PubMed.gov	Web of Science: https://www.webofscience.com/wos/woscc/advanced-search
	irrita*"[tw] OR "photogenotoxicity"[tw] OR "photo-genotoxicity"[tw])	
Other endpoints		
Neurotoxicity	(("Perfluorohexane"[tw] OR "355-42-0"[rn] OR "Perflexane"[tw] OR "Tetradecafluorohexane"[tw]) NOT ("Perfluorohexane sulfon*"[tw] OR "Perfluorohexanesulfon*"[tw] OR "PFHxS"[tw])) AND ("neurotox*"[tw] OR "neural"[tw] OR "neuron*"[tw] OR "nervous system"[tw] OR "neurologic*"[tw] OR "neurodegenerati*"[tw] OR "cogniti*"[tw] OR "learning impairment"[tw] OR "Parkinson's"[tw] OR "Alzheimer's"[tw] OR "dementia"[tw]))	TS=((("Perfluorohexane" OR "355-42-0" OR "Perflexane" OR "Tetradecafluorohexane") NOT ("Perfluorohexane sulfon*" OR "Perfluorohexanesulfon*" OR "PFHxS")) AND TS=(("neurotox*" OR "neural" OR "neuron*" OR "nervous system" OR "neurologic*" OR "neurodegenerat*" OR "cogniti*" OR "learning impairment" OR "Parkinson's" OR "Alzheimer's" OR "dementia"))

Supplemental Table 9. Search Syntax for Other PFAS Using PubMed and Web of Science

PFAS	PubMed: https://www.PubMed.gov	Web of Science: https://www.webofscience.com/wos/woscc/advanced-search
Perfluorononyl Dimethicone	"Perfluorononyl Dimethicone"[tw] OR "259725-95-6"[tw] OR "siloxanes and silicones, di-Me, Me 3,3,4,4,5,5,6,6,6-nonafluorohexyl"[tw]	TS=("Perfluorononyl Dimethicone" OR "259725-95-6" OR "siloxanes and silicones, di-Me, Me 3,3,4,4,5,5,6,6,6-nonafluorohexyl")
Trifluoroacetyl Tripeptide-2	"Trifluoroacetyl Tripeptide-2"[tw] OR "64577-63-5"[tw]	TS=("Trifluoroacetyl Tripeptide-2" OR "64577-63-5")
Tetradecyl Aminobutyroylvalylaminobutyric Urea minobutyric Urea Trifluoroacetate	"Tetradecyl Aminobutyroylvalylaminobutyric Urea Trifluoroacetate"[tw] OR "934368-60-2"[tw]	TS=("Tetradecyl Aminobutyroylvalylaminobutyric Urea Trifluoroacetate" OR "934368-60-2")
Perfluorohexylethyl Triethoxysilane	"Perfluorohexylethyl Triethoxysilane"[tw] OR "perfluoroctyl triethoxysilane"[tw] OR "51851-37-7"[tw]	TS=("Perfluorohexylethyl Triethoxysilane" OR "perfluoroctyl triethoxysilane" OR "51851-37-7")
Methyl Perfluorobutyl Ether	"Methyl Perfluorobutyl Ether"[tw] OR "163702-07-6" [tw] OR "Methyl Nonafluorobutyl Ether"[tw]	TS=("Methyl Perfluorobutyl Ether" OR "163702-07-6" OR "Methyl Nonafluorobutyl Ether")
Methyl Perfluoroisobutyl Ether	"Methyl Perfluoroisobutyl Ether"[tw] OR "163702-08-7"[tw] OR "Methyl Nonafluoroisobutyl Ether"[tw]	TS=("Methyl Perfluoroisobutyl Ether" OR "163702-08-7" OR "Methyl Nonafluoroisobutyl Ether")
Polyperfluoromethylsopropyl Ether	"Polyperfluoromethylsopropyl Ether"[tw] OR "69991-67-9"[tw] OR "Fomblin HC"[tw]	TS=("Polyperfluoromethylsopropyl Ether" OR "69991-67-9" OR "Fomblin HC")
HC Yellow No. 13	"HC Yellow No. 13"[tw] OR "10442-83-8"[tw] OR "2-(2-Nitro-4-trifluoromethylphenylamino)ethanol"[tw]	TS=("HC Yellow No. 13" OR "10442-83-8" OR "2-(2-Nitro-4-trifluoromethylphenylamino)ethanol")
Diethylaminoethyl Methacrylate/HEMA/Perfluorohexylethyl Methacrylate Crosspolymer	"Diethylaminoethyl Methacrylate/HEMA/Perfluorohexylethyl Methacrylate Crosspolymer"[tw]	TS=("Diethylaminoethyl Methacrylate/HEMA/Perfluorohexylethyl Methacrylate Crosspolymer")
Pentapeptide-34 Trifluoroacetate	"Pentapeptide-34 Trifluoroacetate"[tw]	TS=("Pentapeptide-34 Trifluoroacetate")

PFAS	PubMed: https://www.PubMed.gov	Web of Science: https://www.webofscience.com/wos/woscc/advanced-search
Trifluoropropyldimethyltrimethylsiloxysilicate	"Trifluoropropyldimethyl(trimethylsilyl)trimethylsiloxysilicate"[tw]	TS=("Trifluoropropyldimethyl(trimethylsilyl)trimethylsiloxysilicate")
Polyperfluoroethoxy methoxy Difluoroethyl PEG Phosphate	"Polyperfluoroethoxymethoxy Difluoroethyl PEG Phosphate"[tw] OR "200013-65-6"[tw]	TS=("Polyperfluoroethoxymethoxy Difluoroethyl PEG Phosphate" OR "200013-65-6")
Perfluoroperhydrophenanthrene	"Perfluoroperhydrophenanthrene"[tw] OR "306-91-2"[tw] OR "Perfluorophenanthrene"[tw] OR "tetracosafluorophenanthrene"[tw] OR "perfluorotetradecahydrophenanthrene"[tw] OR "tetracosafluorotetradecahydrophenanthrene"[tw]	TS=("Perfluoroperhydrophenanthrene" OR "306-91-2" OR "Perfluorophenanthrene" OR "tetracosafluorophenanthrene" OR "perfluorotetradecahydrophenanthrene" OR "tetracosafluorotetradecahydrophenanthrene")
Dimethiconol Fluoroalcohol Dilinoleic Acid	"Dimethiconol Fluoroalcohol Dilinoleic Acid"[tw] OR "Silwax F"[tw]	TS=("Dimethiconol Fluoroalcohol Dilinoleic Acid" OR "Silwax F")
Tetrafluoropropene	"Tetrafluoropropene"[tw] OR "29118-24-9"[tw] OR "(1E)-1,3,3,3-tetrafluoroprop-1-ene"[tw]	TS=("Tetrafluoropropene" OR "29118-24-9" OR "(1E)-1,3,3,3-tetrafluoroprop-1-ene")
Ethyl Perfluorobutyl Ether	"Ethyl Perfluorobutyl Ether"[tw] OR "163702-05-4"[tw] OR "Ethyl Nonafluorobutyl Ether" OR "1-ethoxy-1,1,2,2,3,3,4,4,4-nonafluorobutane"[tw]	TS=("Ethyl Perfluorobutyl Ether" OR "163702-05-4" OR "Ethyl Nonafluorobutyl Ether" OR "1-ethoxy-1,1,2,2,3,3,4,4,4-nonafluorobutane")
Trifluoromethyl C1-4 Alkyl Dimethicone	"Trifluoromethyl C1-4 Alkyl Dimethicone"[tw]	TS=("Trifluoromethyl C1-4 Alkyl Dimethicone")
Perfluorononylethyl Stearyl Dimethicone	"Perfluorononylethyl Stearyl Dimethicone"[tw] OR "882878-48-0"[tw]	TS=("Perfluorononylethyl Stearyl Dimethicone" OR "882878-48-0")
Acetyl Trifluoromethylphenyl Valylglycine	"Acetyl Trifluoromethylphenyl Valylglycine"[tw] OR "379685-96-8"[tw] OR "2-[[2-[N-acetyl-3-(trifluoromethyl)anilino]-3-methylbutanoyl]amino]acetic acid"[tw]	TS=("Acetyl Trifluoromethylphenyl Valylglycine" OR "379685-96-8" OR "2-[[2-[N-acetyl-3-(trifluoromethyl)anilino]-3-methylbutanoyl]amino]acetic acid")

PFAS	PubMed: https://www.PubMed.gov	Web of Science: https://www.webofscience.com/wos/woscc/advanced-search
Perfluorodimethylcyclohexane	"Perfluorodimethylcyclohexane"[tw] OR "26637-68-3"[tw] OR "335-27-3"[tw] OR "Perfluoro-1,3-dimethylcyclohexane"[tw] OR "1,1,2,2,3,3,4,5,5,6-decafluoro-4,6-bis(trifluoromethyl)cyclohexane"[tw]	TS=("Perfluorodimethylcyclohexane" OR "26637-68-3" OR "335-27-3" OR "Perfluoro-1,3-dimethylcyclohexane" OR "1,1,2,2,3,3,4,5,5,6-decafluoro-4,6-bis(trifluoromethyl)cyclohexane")
Trifluoropropyl Cyclopentasiloxane	"Trifluoropropyl Cyclopentasiloxane"[tw]	TS=("Trifluoropropyl Cyclopentasiloxane")
Perfluoromethylcyclopentane	"Perfluoromethylcyclopentane"[tw] OR "1805-22-7"[tw] OR "Nonafluoro(trifluoromethyl)cyclopentane"[tw] OR "1,1,2,2,3,3,4,4,5-nonafluoro-5-(trifluoromethyl)cyclopentane"[tw]	TS=("Perfluoromethylcyclopentane" OR "1805-22-7" OR "Nonafluoro(trifluoromethyl)cyclopentane" OR "1,1,2,2,3,3,4,4,5-nonafluoro-5-(trifluoromethyl)cyclopentane")

