

Innovative Designs for Clinical Trials of Cellular and Gene Therapy Products in Small Populations

Draft Guidance For Industry

This guidance document is being distributed for comment purposes only.

Submit one set of either electronic or written comments on this draft guidance by the date provided in the Federal Register notice announcing the availability of the draft guidance. Submit electronic comments to <https://www.regulations.gov>. Submit written comments to the Dockets Management Staff (HFA-305), Food and Drug Administration, 5630 Fishers Lane, Rm. 1061, Rockville, MD 20852. You should identify all comments with the docket number listed in the notice of availability that publishes in the Federal Register.

Additional copies of this guidance are available from the Office of Communication, Outreach and Development, Center for Biologics Evaluation and Research, Food and Drug Administration; Phone: 800-835-4709 or 240-402-8010; Email: industry.biologics@fda.hhs.gov, or from the Internet at <https://www.fda.gov/vaccines-blood-biologics/guidance-compliance-regulatory-information-biologics/biologics-guidances>.

For questions on the content of this guidance, contact OCOD at the phone numbers or email address listed above.

**U.S. Department of Health and Human Services
Food and Drug Administration
Center for Biologics Evaluation and Research
September 2025**

Contains Nonbinding Recommendations

Draft — Not for Implementation

TABLE OF CONTENTS

I.	INTRODUCTION.....	1
II.	BACKGROUND	2
III.	INNOVATIVE CLINICAL TRIAL DESIGNS	2
	A. Single Arm Trials Utilizing Participants as Their Own Control.....	3
	B. Disease Progression Modeling	4
	C. Externally Controlled Studies.....	4
	D. Adaptive Clinical Trial Designs.....	5
	E. Bayesian Trial Designs	5
	F. Master Protocol Designs.....	6
IV.	CONSIDERATIONS FOR PARTICIPANT SELECTION.....	6
	A. Treatment Landscape Considerations	6
	B. Symptom Status Considerations.....	7
	C. Study Population Representativeness	7

1 **Innovative Designs for Clinical Trials of Cellular and Gene Therapy**
2 **Products in Small Populations**
3 **Draft Guidance for Industry¹**

6 *This draft guidance, when finalized, will represent the current thinking of the Food and Drug
7 Administration (FDA or Agency) on this topic. It does not establish any rights for any person
8 and is not binding on FDA or the public. You can use an alternative approach if it satisfies the
9 requirements of the applicable statutes and regulations. To discuss an alternative approach,
10 contact the FDA staff responsible for this guidance as listed on the title page.*

11 **I. INTRODUCTION**

12 This guidance provides recommendations to sponsors who are planning clinical trials of cell and
13 gene therapy (CGT) products intended for use in a disease or condition that affects a small
14 population—generally one that meets the definition of a rare disease or condition under section
15 526(a)(2) of the FD&C Act (21 U.S.C. 360bb(a)(2)). It describes FDA requirements and
16 provides considerations for the use of various clinical trial designs and endpoints to generate
17 clinical evidence to support product licensure. This guidance expands on principles described in
18 FDA’s existing guidance documents related to this topic,^{2,3} by providing additional
19 recommendations for the planning, design, conduct, and analysis of cell and gene therapy trials
20 to facilitate FDA’s assessment of product effectiveness.⁴

21 In general, FDA’s guidance documents do not establish legally enforceable responsibilities.
22 Instead, guidances describe the Agency’s current thinking on a topic and should be viewed only
23 as recommendations, unless specific regulatory or statutory requirements are cited. The use of
24 the word *should* in Agency guidances means that something is suggested or recommended, but
25 not required.

¹ This draft guidance has been prepared by the Center of Biologics Evaluation and Research (CBER) at the Food and Drug Administration.

² See guidance for industry: *Rare Diseases: Considerations for the Development of Drugs and Biological Products* (December 2023), available at <https://www.fda.gov/media/119757/download>.

³ See draft guidance for industry: *Rare Diseases: Natural History Studies for Drug Development* (March 2019), available at <https://www.fda.gov/regulatory-information/search-fda-guidance-documents/rare-diseases-natural-history-studies-drug-development>. When final, this guidance will represent the FDA’s current thinking on this topic. For the most recent version of a guidance, check the FDA guidance web page at <https://www.fda.gov/regulatory-information/search-fda-guidance-documents>.

⁴ For a biological product, like CGT, to be licensed under section 351 of the Public Health Service Act, a sponsor must demonstrate, among other things, that its product is safe, pure, and potent. Potency has long been interpreted to include effectiveness. See 42 U.S.C. 242; see also 21 CFR 600.3(s). FDA has also generally considered “substantial evidence” of effectiveness to be necessary to support licensure. See section 505(d) of the FD&C Act (21 U.S.C. 355(d)) and 21 CFR 314.126 (discussing characteristics of adequate and well-controlled studies used to establish effectiveness).

Contains Nonbinding Recommendations

Draft — Not for Implementation

32 **II. BACKGROUND**

33
34 On September 30, 2022, the FDA User Fee Reauthorization Act of 2022 was signed into law.
35 The Act includes the sixth reauthorization of the Prescription Drug User Fee Act (PDUFA),
36 *PDUFA VII: Fiscal Years 2023 – 2027 FDA*,⁵ which provides FDA with resources to help
37 maintain a predictable and efficient review process for human drug and biological products.
38

39 This guidance was created as part of FDA's response to the PDUFA VII commitment to increase
40 efficiency in the development of CGT products.⁶ FDA recognizes the significant challenges in
41 developing drug and biological products for rare diseases, including small population sizes
42 where limited data exist to support regulatory decision-making, sparse natural history
43 knowledge, incompletely understood molecular pathogenetic mechanisms, and molecular and
44 phenotypic heterogeneity. These development challenges are further compounded by unique
45 considerations for product manufacturing and the generation of nonclinical evidence to support a
46 product's pharmacology and toxicology profile for CGT products. On the other hand, CGT
47 products for rare diseases can be uniquely positioned to allow the tailoring of individual
48 programs, due to the targeted nature of the products, which often directly correct or modify a
49 gene known to cause phenotypic disease. Consideration of innovative clinical trial design
50 features early in product development can help optimize the quality of data generated while
51 maximizing the use of each data point collected throughout the development process.
52

53 Given the urgent need for safe and effective products to treat serious and severely debilitating
54 diseases in small populations, FDA recognizes the importance of innovative and efficient trial
55 designs, including selection of appropriate endpoints that are feasible and capable of generating
56 the necessary evidence for approval. Trial designs that are novel but maintain a high degree of
57 rigor in data collection and interpretability are essential to meet these urgent needs. The
58 recommendations herein are intended for sponsors developing CGTs intended for use in small
59 populations to leverage the use of innovative trial designs to simultaneously expedite drug
60 development and generate data necessary to demonstrate substantial evidence of effectiveness.
61

62 In certain cases for common diseases with significant methodological challenges pertaining to
63 conducting trials, the innovative trial designs and participant selection considerations discussed
64 below may be appropriate. We recommend that, in such situations, the sponsor contact the
65 relevant review division to discuss further.
66

67 **III. INNOVATIVE CLINICAL TRIAL DESIGNS**

68
69 Sponsors may consider a variety of innovative clinical trial approaches for developing CGTs in
70 small populations. The recommendations below address a non-exhaustive list of trial design(s)
71 that sponsors may consider when planning clinical trials to develop CGT products intended for

⁵ See www.fda.gov/industry/prescription-drug-user-fee-amendments/pdufa-vii-fiscal-years-2023-2027.

⁶ Section I.O.2.b. of the PDUFA VII commitment letter states that, “[B]y the end of FY 2025, FDA will issue a draft guidance on the evaluation of efficacy in small patient populations using novel trial designs and statistical methods, and how these concepts can be applied to more common diseases.”

Contains Nonbinding Recommendations

Draft — Not for Implementation

72 use in small populations.⁷ FDA recommends that sponsors discuss options for innovative
73 clinical trial designs with the Agency as early as possible.^{8, 9, 10}

A. Single Arm Trials Utilizing Participants as Their Own Control.

This design leverages an internal, baseline control strategy where a participant's response to therapy on a given measure is compared to their baseline status on that measure. In this way, the measure could be used to inform one or more endpoint(s) to determine the outcome of the trial. This scenario is predicated on having reliable and complete data to establish the participant's baseline on the relevant endpoint. Establishing participants' baselines can be achieved by prospectively collecting relevant data in a lead-in period in the trial over a certain duration before administration of the investigational product. Alternatively, baseline data can be collected retrospectively if data on the relevant endpoint are available and reliable.

When considering such a study design, sponsors should account for the overall course of the illness and goal of treatment. Self-controlled studies can be particularly persuasive when a condition is universally degenerative in all affected individuals, and the intervention is expected to lead to improvement. However, in conditions that have waxing and waning course, or when the CGT is intended to slow rather than reverse progression, it can be challenging to demonstrate effectiveness without a concurrent control. For such conditions, it is important to ensure that enrollment criteria do not lead to subjects beginning the trial with unusually severe symptoms. If a large number of subjects are at a "peak" of their symptom severity at the time of treatment initiation, any subsequent improvement in symptoms could be due to either the treatment itself or to a natural tendency for symptoms to return to a more stable level after peaking (sometimes called regression to the mean). This can create significant challenges to interpretation of trial results, particularly in cases where the observed treatment effect size is not very large. Finally, the selection of objectively measured endpoints that are not effort-dependent is critical to interpreting results from self-controlled or other non-blinded trials. We also direct investigators to relevant ICH scientific guidelines¹¹ for additional methodological considerations.

⁷ One such approach may be to consider a decentralized trial design. See guidance for industry: *Conducting Clinical Trials With Decentralized Elements* (September 2024), available at <https://www.fda.gov/regulatory-information/search-fda-guidance-documents/conducting-clinical-trials-decentralized-elements>.

⁸ [Interactions with Office of Therapeutic Products | FDA](#)

⁹ See draft guidance for industry: *Formal Meetings Between the FDA and Sponsors or Applicants of PDUFA Products*, available at <https://www.fda.gov/regulatory-information/search-fda-guidance-documents/formal-meetings-between-fda-and-sponsors-or-applicants-pdufa-products>. When final, this guidance will represent the FDA's current thinking on this topic. For the most recent version of a guidance, check the FDA guidance web page at <https://www.fda.gov/regulatory-information/search-fda-guidance-documents>.

¹⁰ See the guidance for industry: *Interacting with the FDA on Complex Innovative Trial Designs for Drugs and Biological Products* (December 2020), available at <https://www.fda.gov/regulatory-information/search-fda-guidance-documents/interacting-fda-complex-innovative-trial-designs-drugs-and-biological-products>.

¹¹ See International Council for Harmonisation document E10: *Choice of Control Group in Clinical Trials* (July 2000).

Contains Nonbinding Recommendations

Draft — Not for Implementation

105

B. Disease Progression Modeling

106

107 Disease progression modeling is a quantitative approach that characterizes the natural
108 history of a disease over time, incorporating factors such as biomarker trajectories,
109 clinical endpoints, and patient heterogeneity to inform clinical trial design and regulatory
110 decision-making. Key considerations include selecting appropriate mathematical
111 frameworks, defining meaningful clinical endpoints that correlate with disease
112 progression, and accounting for covariates such as baseline disease severity,
113 demographics, and concomitant treatments that may influence progression rates. Major
114 challenges include the inherent variability in disease progression across patients, the often
115 lengthy observation periods required to capture meaningful changes, potential
116 confounding from standard-of-care evolution, and the statistical complexity of validating
117 models across diverse populations, particularly if extrapolating to subgroups not well-
118 represented in the modeling dataset.¹²

119

C. Externally Controlled Studies

120

121 Externally controlled clinical trial studies utilize historical or real-world data from
122 patients who did not receive the investigational treatment as the comparator group, rather
123 than or in addition to enrolling a concurrent control arm within the same study protocol.
124 External control and trial populations should be as similar as possible regarding known
125 factors that can affect the outcome variable, including baseline characteristics, disease
126 severity, standard of care, and prognostic factors, while also accounting for differences in
127 data collection methods, outcome definitions, and follow-up procedures between datasets.
128

129

130 Importantly, before choosing to conduct a clinical trial using an external control arm as a
131 comparator, sponsors and investigators should consider the likelihood that such a trial
132 design would be able to distinguish the effect of a drug from other factors that impact the
133 outcome of interest. The suitability of an externally controlled trial design warrants a
134 case-by-case assessment, informed by issues including heterogeneity of the disease (e.g.,
135 clinical presentation, severity, prognosis), preliminary evidence regarding the drug
136 product under investigation, the approach to ascertaining the outcome of interest, and
137 whether the goal of the trial is to show superiority or non-inferiority. For additional
138 information, see FDA guidance on using external controls.¹³

139

140

¹² One population that is frequently underrepresented in trials are pediatric participants. We encourage investigators to consider December 2000 guidance *E11: Clinical Investigation of Medicinal Products in the Pediatric Population* when modeling disease progression. The guidance is available at <https://www.fda.gov/regulatory-information/search-fda-guidance-documents/e11-clinical-investigation-medicinal-products-pediatric-population>.

¹³ See the draft guidance for industry: *Considerations for the Design and Conduct of Externally Controlled Trials for Drug and Biological Products* (February 2023), available at <https://www.fda.gov/regulatory-information/search-fda-guidance-documents/considerations-design-and-conduct-externally-controlled-trials-drug-and-biological-products>. When final, this guidance will represent the FDA's current thinking on this topic. For the most recent version of a guidance, check the FDA guidance web page at <https://www.fda.gov/regulatory-information/search-fda-guidance-documents>.

Contains Nonbinding Recommendations

Draft — Not for Implementation

D. Adaptive Clinical Trial Designs

Adaptive clinical trial¹⁴ designs allow for prospectively planned modifications to one or more aspects of the design based on accumulating data from participants in the trial. Clinical trials that are intended to demonstrate the safety and effectiveness of a CGT can contain a variety of adaptive features that may be appropriate in different circumstances to generate robust data and expedite drug development. These include:

- i. group sequential designs - allow for early trial termination due to convincing evidence of effectiveness or futility;
- ii. sample size reassessment designs - allow for adjustments to study size based on accumulating data;¹⁵
- iii. adaptive enrichment designs¹⁶ - modify enrollment after prespecified interim analysis to focus on subpopulations most likely to benefit from an intervention;
- iv. adaptive dose-selection designs - can select a dose and confirm the effectiveness of that dose within the same study.

All these adaptive features use accumulating trial data to modify the trial design according to a prospectively defined plan. As such, adaptive designs can improve the chance of trial success in situations with limited pre-trial clinical data by allowing learning from empirical evidence. To preserve trial integrity, rigorous planning, careful implementation, and comprehensive documentation of approaches can support the ability of the trial to reliably achieve the stated objective in a timely manner.¹⁷ Many adaptive techniques are potentially applicable to both single arm and controlled trials. With all adaptive designs, great care should be taken to adequately prespecify the adaptive procedure to avoid a potentially inflated chance of erroneous conclusions; this is particularly critical in the case of adaptations in single arm or other open label trials.

E. Bayesian Trial Designs

Bayesian designs can explicitly incorporate clinical data external to the trial in analyses, effectively leveraging available relevant information. This can include use of existing control data to augment a concurrent control group, thereby reducing the sample size

¹⁴ See the guidance for industry: *Adaptive Design Clinical Trials for Drugs and Biologics Guidance for Industry* (November 2019), available at <https://www.fda.gov/regulatory-information/search-fda-guidance-documents/adaptive-design-clinical-trials-drugs-and-biologics-guidance-industry>.

¹⁵ Accumulating data may be used, for example, to conduct interim analyses that allow for expedited approvals or to support crossover design studies. In some cases, designs that allow patients initially assigned to control to receive the investigational therapy after primary endpoint ascertainment may help motivate subject enrollment. These designs ensure that all participants can potentially receive a promising investigational therapy, addressing concerns about being assigned to a potentially less effective control.

¹⁶ See the guidance for industry: *Enrichment Strategies for Clinical Trials to Support Determination of Effectiveness of Human Drugs and Biological Products* (March 2019), available at <https://www.fda.gov/regulatory-information/search-fda-guidance-documents/enrichment-strategies-clinical-trials-support-approval-human-drugs-and-biological-products>.

¹⁷ Fleming, TR, et al., 2008, Maintaining Confidentiality of Interim Data to Enhance Trial Integrity and Credibility, *Clin Trials* 5(2):157-167.

Contains Nonbinding Recommendations

Draft — Not for Implementation

175 needed for the concurrent controls. In rare cases, there may be relevant comparative prior
176 information available that can be leveraged to reduce the overall sample size of a
177 controlled trial. Bayesian approaches can also be used to facilitate complex adaptive
178 designs, to aid in establishing effectiveness in pediatric populations after effectiveness
179 has been demonstrated in adults, and to improve estimates of treatment effects in
180 subgroups. Bayesian designs can also potentially incorporate alternative trial success
181 criteria based on benefit-risk considerations or decision theoretic approaches that evaluate
182 the likelihood and magnitude of clinical benefit in the overall context of product risk
183 and/or medical need.

184

185 F. Master Protocol Designs

186

187 Master protocols¹⁸ are protocols designed with multiple substudies. Examples of trial
188 types that use a master protocol include platform or umbrella designs in which multiple
189 interventions can be studied concurrently with a common control group, and basket
190 designs in which a single CGT product can be evaluated in multiple conditions or disease
191 subtypes. Such designs could incorporate cohorts with different manifestations of a
192 disease to potentially address challenges in measuring the treatment effect in a disease
193 setting with very heterogeneous clinical presentations.

194

195

196 IV. CONSIDERATIONS FOR PARTICIPANT SELECTION

197

198

A. Treatment Landscape Considerations

199

200 CGT development programs are often intended for use in a rare disease or condition that
201 presents a significant unmet medical need. Often, any available therapy manages
202 symptoms or addresses the underlying pathophysiology of the disease with limited
203 efficacy. As such, trial entry criteria that require participants to have exhausted available
204 therapies may not be appropriate or may be unnecessarily exclusive. Sponsors are
205 encouraged to carefully consider the treatment landscape and the effectiveness of
206 available therapies prior to determining whether restriction of the trial to those who are
207 no longer responding to available treatments is appropriate, and whether such an
208 approach would facilitate generalizability of study results should the product be
209 approved.

210

211

¹⁸ See the draft guidance for industry: *Master Protocols for Drug and Biological Product Development* (December 2023), available at <https://www.fda.gov/regulatory-information/search-fda-guidance-documents/master-protocols-drug-and-biological-product-development>. When final, this guidance will represent the FDA's current thinking on this topic. For the most recent version of a guidance, check the FDA guidance web page at <https://www.fda.gov/regulatory-information/search-fda-guidance-documents>.

Contains Nonbinding Recommendations

Draft — Not for Implementation

212

213

214 In the early phase of some genetic diseases, symptoms may be mild or absent. In some
215 cases, there may be uncertainty regarding whether all affected patients will develop
216 symptoms, at what timepoint, and how those may progress or change over time.

217 Sponsors should carefully account for this at the study design phase, specifically with
218 respect to efficacy endpoint selection and the study analysis plan. Sponsors may consider
219 trial designs that incorporate surrogate endpoints, biomarkers, or intermediate clinical
220 endpoints prior to symptom onset if applicable. Sponsors are strongly encouraged to
221 interact with FDA early to discuss efficacy endpoints. In some cases, endpoints
222 measured with digital health technologies¹⁹ (DHTs) may be better able to capture
223 meaningful changes in clinical function.

224

225

C. Study Population Representativeness

226

227 In most cases, it is appropriate in early trials of CGT for sponsors to permit enrollment of
228 broadly representative populations affected by the disease. This can help increase the
229 pool of participants available to evaluate safety and identify product dosages that may be
230 appropriate to investigate in future studies. Broad representativeness in the enrolled
231 population may also permit the collection of data that may be relied upon to extrapolate
232 to populations beyond those enrolled in pivotal study(ies). When appropriate, generally
233 based on the product's mechanism of action, broad representation of those with common
234 genetic variants and phenotypes should be allowed to enroll.

235

236

237 Sponsors who are developing CGT products to treat pediatric diseases or conditions
238 should consider whether and how they will incorporate additional safeguards for pediatric
239 subjects in clinical investigations.²⁰ FDA regulations at 21 CFR part 50, subpart D²¹
240 address requirements for permission by parents/guardians and, where appropriate, assent
241 by children, the level of risk posed to children as subjects, and additional safeguards. In
242 accordance with 21 CFR 50.50, an Institutional Review Board (IRB) reviewing a clinical
243 investigation involving children as subjects must approve only those clinical
244 investigations that satisfy the criteria described in 21 CFR 50.51, 50.52, or 50.53 and the
245 requirements of all other applicable provisions of Subpart D. The IRB must assess the
246 level of risk that the interventions and procedures included in a clinical trial would
247 present to pediatric subjects to determine whether they involve no greater than minimal
risk (21 CFR 50.51), greater than minimal risk but present the prospect of direct benefit

¹⁹ [Medical Devices that Incorporate Sensor-based Digital Health Technology](#)

²⁰ A detailed discussion of the FDA requirements for safeguarding pediatric subjects in clinical investigations (21 CFR part 50 Subpart D) (Subpart D) is beyond the scope of this guidance, which briefly highlights only certain considerations. In addition to the Subpart D regulations, the FDA has published other documents that address the inclusion of children as subjects in clinical investigations, including the preamble to the Subpart D final rule cited in footnote 21, the guidances cited in footnotes 12 and 22, and the draft guidance *Research Involving Children as Subjects and Not Otherwise Approvable by an IRB: Process for Referrals to FDA and OHRP* (March 2023), available at <https://www.fda.gov/regulatory-information/search-fda-guidance-documents/research-involving-children-subjects-and-not-otherwise-approvable-institutional-review-board-process>.

²¹ See also Final Rule: Additional Safeguards for Children in Clinical Investigations of Food and Drug Administration-Regulated Products. 78 FR 12937 (February 26, 2013).

Contains Nonbinding Recommendations

Draft — Not for Implementation

248 to individual subjects (21 CFR 50.52), or no more than a minor increase over minimal
249 risk and no prospect of direct benefit to individual subjects but likely to yield
250 generalizable knowledge about the subjects' disorder or condition (21 CFR 50.53);
251 depending on the level of risk found by the IRB, additional requirements may apply. If
252 the IRB concludes that a clinical investigation does not meet the requirements of these
253 provisions, a further process under 21 CFR 50.54 may be applicable if additional criteria
254 are met. Trials of CGT products may present more than a minor increase over minimal
255 risk, and in such cases would need to meet the requirements of 21 CFR 50.52 or 50.54.
256

257 To support determinations on including pediatric participants in a clinical investigation,
258 sponsors should take an approach that would expedite safe development of CGT to treat
259 diseases or conditions in children. When planning a CGT clinical development program,
260 sponsors should consider whether the disease affects the pediatric population differently
261 than adults with the same disease; whether the data generated in adults would be relevant
262 to the pediatric population with the condition; and what available data and information
263 from their clinical development program and from other sources can support an
264 assessment of the prospect of clinical benefit in pediatric patients. Such data could be
265 derived from nonclinical (e.g., animal studies, in vitro studies, *in silico*), and clinical
266 evaluation (e.g., clinical pharmacology studies, clinical trials). Pediatric enrollment into
267 studies for CGTs without prior investigation in adults may be considered, provided
268 scientific necessity has been assessed, and an appropriate clinical trial design with
269 adequate safety monitoring can be developed and approved by the IRB and reviewed by
270 the FDA, as appropriate.^{22, 23}

²² See draft guidance for Industry, Sponsors, and IRBs: *Ethical Considerations for Clinical Investigations of Medical Products Involving Children* (September 2022), available at <https://www.fda.gov/regulatory-information/search-fda-guidance-documents/ethical-considerations-clinical-investigations-medical-products-involving-children>. When final, this guidance will represent the FDA's current thinking on this topic. For the most recent version of a guidance, check the FDA guidance web page at <https://www.fda.gov/regulatory-information/search-fda-guidance-documents>.

²³ "IRBs should consider the scientific necessity of conducting a clinical investigation in children. It may be more efficient to consider scientific necessity prior to assessing risk and benefit under 21 CFR part 50, subpart D. Children should not be enrolled into a clinical investigation unless their participation is necessary to answer an important scientific and/or public health question directly relevant to the health and welfare of children. For example, for products that are being developed for use in adults and children, if effectiveness in adults can be extrapolated to children, then effectiveness studies in adults should be conducted to minimize the need to collect effectiveness data in children." Id.