

Postapproval Methods to Capture Safety and Efficacy Data for Cell and Gene Therapy Products

Draft Guidance for Industry

This guidance document is being distributed for comment purposes only.

Submit one set of either electronic or written comments on this draft guidance by the date provided in the Federal Register notice announcing the availability of the draft guidance. Submit electronic comments to <https://www.regulations.gov>. Submit written comments to the Dockets Management Staff (HFA-305), Food and Drug Administration, 5630 Fishers Lane, Rm. 1061, Rockville, MD 20852. You should identify all comments with the docket number listed in the notice of availability that publishes in the Federal Register.

Additional copies of this guidance are available from the Office of Communication, Outreach and Development (OCOD), 10903 New Hampshire Ave., Bldg. 71, Rm. 3128, Silver Spring, MD 20993-0002, or by calling 1-800-835-4709 or 240-402-8010, or email industry.biologics@fda.hhs.gov, or from the Internet at <https://www.fda.gov/vaccines-blood-biologics/guidance-compliance-regulatory-information-biologics/biologics-guidances>.

For questions on the content of this guidance, contact OCOD at the phone numbers or email address listed above.

Contains Nonbinding Recommendations

Draft — Not for Implementation

TABLE OF CONTENTS

I.	INTRODUCTION.....	1
II.	BACKGROUND	1
III.	METHODS AND APPROACHES FOR CAPTURING POSTAPPROVAL DATA	2
	A. Use of Real-World Data and Real-World Evidence	2
	B. Use of Electronic Health Records, Medical Claims, and Vital Statistics Data	3
	C. Use of Registries	4
	D. Decentralized Data Collection	5
IV.	REFERENCES.....	7

1 **Postapproval Methods to Capture Safety and Efficacy Data for Cell**
2 **and Gene Therapy Products**

5 **Guidance for Industry¹**

8 *This draft guidance, when finalized, will represent the current thinking of the Food and Drug
9 Administration (FDA or Agency) on this topic. It does not establish any rights for any person
10 and is not binding on FDA or the public. You can use an alternative approach if it satisfies the
11 requirements of the applicable statutes and regulations. To discuss an alternative approach,
12 contact the FDA staff responsible for this guidance as listed on the title page.*

13 **I. INTRODUCTION**

17 The purpose of this guidance is to discuss methods and approaches for capturing postapproval
18 safety and efficacy data for cell and gene therapy (CGT) products. Given the potential for long-
19 lasting effects of CGT products, and the generally limited number of participants treated in
20 clinical trials conducted to support approval of CGT products, postapproval monitoring is
21 important for gathering data on product safety and effectiveness over time. This guidance does
22 not address data collected for the purpose of expanding clinical indications.

24 In general, FDA's guidance documents do not establish legally enforceable responsibilities.
25 Instead, guidances describe the Agency's current thinking on a topic and should be viewed only
26 as recommendations, unless specific regulatory or statutory requirements are cited. The use of
27 the word *should* in Agency guidances means that something is suggested or recommended, but
28 not required.

31 **II. BACKGROUND**

33 The FDA's Center for Biologics Evaluation and Research (CBER) Office of Therapeutic
34 Products (OTP) hosted a virtual public listening meeting on April 27, 2023 [Ref. 1] and opened a
35 docket (FDA-2023-N-0398) to solicit input on methods and approaches for capturing
36 postapproval safety and efficacy data for CGT products. Stakeholders provided perspectives on
37 multiple topics, including methods, approaches, logistics, and privacy concerns. The event was
38 held to meet an FDA commitment that is part of the seventh authorization of the Prescription
39 Drug User Fee Act (PDUFA), *PDUFA VII: Fiscal Years 2023 – 2027 FDA*.²

40

¹ This guidance has been prepared by the Office of Therapeutic Products and the Office of Biostatistics and Pharmacovigilance in the Center for Biologics Evaluation and Research at the Food and Drug Administration.

² See www.fda.gov/industry/prescription-drug-user-fee-amendments/pdufa-vii-fiscal-years-2023-2027.

Contains Nonbinding Recommendations

Draft — Not for Implementation

41 The collection of postapproval study data for CGT products is important because during
42 premarketing clinical development, the number of patients receiving CGT products is typically
43 limited. Additional postapproval efficacy and safety data increases understanding of the long-
44 term safety and effectiveness of CGT products, can help guide safe clinical use of CGT products,
45 and help inform subsequent regulatory decision-making. FDA has previously recommended
46 long-term follow-up (LTFU) observation studies for some CGT products [Ref. 2] noting that
47 long-term observations can be an important tool to monitor long term safety. Postapproval
48 efficacy considerations include treatment durability, while safety considerations include
49 monitoring for long-term effects, unknown side effects, and mortality due to the underlying
50 disease or its treatment. In certain populations, particularly pediatric patients, the lifecycle of
51 CGT products may be a factor in accurately capturing postapproval data. For example,
52 additional considerations, especially those intended for pediatric patients, include the potential
53 for lifetime monitoring, the transition from pediatric to adult care, and the need for consenting
54 the adult patient. Because the period of LFTU for CGTs can be long (e.g., 15 years), pediatric
55 patients will often be followed into adulthood. Therefore, obtaining informed consent must be
56 addressed in accordance with 21 CFR 50 Subpart D and B, respectively, to allow participation
57 for the duration of data collection, research interventions, and/or procedures. Additionally,
58 sponsors should provide a plan for follow-up, including funding, in the event the sponsor ceases
59 to operate the study before completion of LTFU observations [Ref. 2].³

60
61 Postapproval methods that capture safety and efficacy data can help balance premarket and
62 postmarket data, including for CGT products approved under accelerated pathways. The
63 postapproval collection of real-world evidence (RWE) can add additional data to studies with
64 small sample sizes, lack of comparators, and low completion rates. The postapproval methods
65 discussed here may facilitate identification of subgroup differences and adverse events.

66
67 **III. METHODS AND APPROACHES FOR CAPTURING POSTAPPROVAL DATA**

68 **A. Use of Real-World Data and Real-World Evidence**

69
70 FDA's real-world evidence (RWE) program [Ref. 3] addresses the use of real-world data
71 (RWD) sources to derive RWE. For the purposes of this guidance, CBER employs the
72 definitions of RWD and RWE described in previous FDA guidances [Refs. 4, 5].
73 Sponsors are encouraged to consult CBER early when selecting RWD sources to support
74 RWE-containing submissions for CGT products. CBER also accepts proposals under the
75 FDA's Advancing Real-World Evidence Program [Ref. 6], which seeks to improve the
76 quality and acceptability of RWE-based approaches in support of submissions with
77 RWD.

78
79 When using RWE, sponsors should safeguard patient data, by establishing robust data
80 governance structures that ensure the integrity and confidentiality of RWD. This

³ A list of relevant guidances can be found at <https://www.fda.gov/vaccines-blood-biologics/biologics-guidances/cellular-gene-therapy-guidances>.

Contains Nonbinding Recommendations

Draft — Not for Implementation

83 includes implementing measures such as data quality control, anonymization, and
84 cybersecurity controls; maintaining transparent and auditable processes that comply with
85 relevant laws and regulations (e.g., the Health Insurance Portability and Accountability
86 Act); and reporting demographic and clinical data in a de-identified manner to protect
87 patient privacy. Digital health technologies may be used to support collection of
88 postapproval data. Software programs used to produce and process postapproval data are
89 subject to 21 CFR part 11 [Ref. 7]. Sponsors should consult relevant FDA guidance
90 documents [Refs. 4, 5, 8] to inform and update their data governance practices.
91

B. Use of Electronic Health Records, Medical Claims, and Vital Statistics Data

92 Administrative medical claims, vital statistics, and electronic health records (EHRs) are
93 not typically designed to collect data for evaluation of safety or effectiveness of medical
94 products. Therefore, sponsors should consider several important constraints when
95 assessing fitness for use of these RWD sources for approved CGTs, especially in rare
96 disease settings where patient numbers are limited, diagnosis is delayed, and clinical
97 presentations are heterogeneous. These constraints include:
98

- 100 • Lack of data in the RWD source on pertinent patient and rare disease variables.
- 101 • Inadequate or lagging medical coding terminology, resulting in a lack of
102 structured data and challenges ensuring data reliability and validity.
- 103 • Fragmented data due to medical insurance or healthcare provider switching that
104 restricts long-term studies.
- 105 • Limitations in analyzing rare outcomes due to small study sizes and inadequate
106 statistical power, even in data derived from large EHR and claims databases.
107

108 Nonetheless, with adequate strategies for study sample selection, data validation, and
109 ascertainment of exposures, outcomes, and covariates [Ref. 4], sponsors can consider
110 using these RWD sources for one or more of the following purposes:

- 111 • Utilization studies to assess CGT exposure and characteristics of patients and
112 prescribers.
- 113 • Assessment of rates of clinical outcomes in CGT-treated patients.
- 114 • Determination of background rates of malignancies or cardiovascular
115 complications, or other outcomes of interest, occurring in the absence of CGT
116 exposure.
- 117 • Observation of CGT outcomes in multiple patient populations.
- 118 • Training of Artificial Intelligence (AI) and Natural Language Processing (NLP)
119 machine-learning models to develop computable phenotypes for CGT safety or
120 effectiveness outcomes.

121 When proposing RWD for analysis of approved CGTs, sponsors should consider the
122 following methodological approaches to data source selection, verification, and assurance

Contains Nonbinding Recommendations

Draft — Not for Implementation

123 of data quality, and share information with FDA about their choices for a proposed
124 evaluation [Ref. 9]:

- 125 • A feasibility assessment can be conducted to ensure that selected data are
126 representative of the target disease population. In rare diseases, diagnosis may be
127 delayed and/or recorded through variable codes in claims databases, so sponsors
128 should consider developing algorithms with varied scenarios for comprehensive
129 study sample construction and relevant data capture. If computable phenotypes
130 are used, their definitions, algorithms, and data elements should be included in the
131 study protocol.
- 132 • RWD collection coincides with clinical care provided over time, and there may be
133 additional time between data collection and availability of data for analysis.
134 Sponsors should consider changes in clinical practice and guidelines (e.g., criteria
135 for disease diagnosis, cancer staging, and the introduction of new treatments), so
136 that a proposed RWD analysis reflects the current clinical environment.
- 137 • Assurance of uninterrupted data selected for the study is an important aspect of
138 data quality, particularly, when long-term outcome assessment is needed for CGT
139 products. Sponsors should consider follow-up using RWD from the index date of
140 CGT use until either the end of the pre-planned follow-up time or the last time a
141 CGT patient is identified within the RWD source. The study end date should be
142 set on a day when data checks and audits can assure that the underlying data are
143 of sufficient quality for use in postapproval studies.
- 144 • When CGT data in rare disease populations are available primarily as
145 unstructured EHR or patient-generated data, instead of standardized values or
146 codes in structured database fields, sponsors should develop and operationalize
147 methods to extract usable information. Data analysis proposals should outline the
148 technology, algorithmic assumptions, and validation procedures, including any
149 applicable NLP or AI-training methods and sources used.
- 150 • Data completeness and the ability to reliably pull data from varied RWD sources
151 are essential for the validity of postapproval evaluation of CGTs. When working
152 with fragmented data, sponsors should outline the study protocol methods used
153 for missing data, including data not collected in a selected RWD source and data
154 intended for collection but missing. To reduce the study uncertainty and
155 minimize data extraction gaps, techniques such as data linking, or use of proxies
156 may be employed [Refs. 4, 9].

C. Use of Registries

160 For the purposes of this guidance, a registry is an organized system that collects clinical
161 and other data in a standardized format for a population defined by a particular disease,
162 condition, or drug exposure. The Coordinated Registry Network (CRN) is a type of
163 registry established by clinical professional societies. CRNs are highly curated RWE
164 resources that may be able to overcome common RWD limitations. By leveraging
165 professional networks, CRNs may provide granular data that may inform regulatory

Contains Nonbinding Recommendations

Draft — Not for Implementation

166 decisions among other uses. Sponsors can partner with clinical society registries to
167 access existing CRN data and develop new resources as needed [Ref. 10].
168

169 We recommend keeping the following considerations in mind regarding registries:
170

- 171 • Registries, in addition to patient-level clinical and laboratory data, can include
172 repositories of genetic data, histopathology specimens, diagnostic medical device
173 imaging data, and patient-generated data with input from in-home use of digital
174 health technologies.
- 175 • Registries offer advantages over other RWD sources because they allow
176 collection of longitudinal, curated data with predefined data elements in a defined
177 population of patients exposed to an approved product, particularly the course of
178 the disease and its complications.
- 179 • Registries have the potential to overcome the limitations of other datasets such as
180 medical claims datasets or EHR datasets because they can also collect information
181 on patient-reported outcomes, treatment adherence, and measures of disease
182 severity.
- 183 • Registries may not be representative of the target population of interest due to
184 challenges related to patient recruitment and retention. For example, patients with
185 more severe disease may be more likely to be enrolled in a registry compared to
186 patients with milder disease, or vice versa. FDA therefore encourages sponsors to
187 be mindful of the requirements for registry participation and encourage all
188 patients to participate in the registry, if feasible.
- 189 • In the postapproval setting, where patient registries can be used to collect both
190 safety [Ref. 5] and efficacy data for CGTs, registry data may be particularly
191 relevant in the following situations:
 - 192 – Assessment of long-term durability of response after exposure to CGTs,
193 including evaluation of biomarkers (e.g., changes in laboratory or imaging
194 tests) indicative of changes in one or more clinically meaningful
195 outcomes.
 - 196 – Growth and developmental milestone data for pediatric recipients of CGT
197 products.
 - 198 – Surveillance for malignancies after receiving CGT products.
 - 199 – Fertility and pregnancy outcomes-related data in recipients of CGT
200 products who are exposed to conditioning treatments.

D. Decentralized Data Collection

204 A decentralized clinical trial (DCT) refers to a clinical trial where some or all of the trial-
205 related activities are conducted at locations other than the traditional clinical site [Ref.
206 11]. Use of a decentralized model of data collection, similar to those used in DCTs, can
207 play a critical role in capturing and assessing postapproval efficacy and safety data for
208 CGT products, because it provides a new paradigm of data collection that is more
209 accessible and less burdensome. Benefits of using a decentralized model for data
210 collection include increased enrollment and data on study populations, which improves

Contains Nonbinding Recommendations

Draft — Not for Implementation

211 the generalizability of study results. The reduction or elimination of travel time to the
212 clinical study sites can optimize efficiency and improve patient convenience and
213 retention.

214 The following strategies should be considered when using a decentralized model for the
215 collection of postapproval data for CGT products [Ref. 1]:

- 216 • Identify data elements that need to be collected for safety or efficacy in the
217 postmarketing setting [Ref. 2].
- 218 • Ensure robust data collection methods to substantiate accuracy and reliability of
219 the results.
- 220 • Incorporate flexibility in the study design to tailor to the therapeutic area, the type
221 of treatment, and the patient journey.
- 222 • Use of local healthcare professionals (HCPs) and facilities and telemedicine
223 visits:
 - 224 – Assessments performed by local HCPs may vary, therefore the protocol
225 should describe how investigators or HCPs will track and document
226 postapproval study activities, including how effectiveness outcomes (e.g.,
227 durability of response) or adverse events (e.g., secondary malignancy) will
228 be captured and assessed.
 - 229 – Remote visits can occur at locations such as participants' homes or local
230 health care facilities, and telehealth visits can be considered. Therefore,
231 the protocol should specify where the study participants can seek local
232 medical assistance when necessary and where to receive follow-up care
233 (e.g., following treatment with a CGT, where will a patient receive the
234 routine follow-up and where will they be assessed if a secondary
235 malignancy occurs). In addition, the protocol should describe how care
236 will be provided for adverse events that require urgent or in-person care or
237 events that require further evaluation (e.g., collection of tissue samples for
238 insertion site analysis in case of secondary malignancies).

240 Please note that the regulatory requirements for institutional review boards⁴ and
241 obtaining informed consent⁵, [Ref. 12] apply to collecting data in a postapproval setting.
242

⁴ 21 CFR Part 56

⁵ 21 CFR Part 50

Contains Nonbinding Recommendations

Draft — Not for Implementation

243 **IV. REFERENCES**

244

245 1. FDA CBER OTP Listening Meeting: Methods and Approaches for Capturing Post-
246 Approval Safety and Efficacy Data on Cell and Gene Therapy Products, April 2023,
247 <https://www.fda.gov/media/173146/download>.

248 2. Long Term Follow-Up After Administration of Human Gene Therapy Products,
249 Guidance for industry, January 2020, <https://www.fda.gov/media/113768/download>.

250 3. Real-World Evidence, FDA, September 2024, <https://www.fda.gov/science-research/science-and-research-special-topics/real-world-evidence>.

251 4. Real-World Data: Assessing Electronic Health Records and Medical Claims Data To
252 Support Regulatory Decision-Making for Drug and Biological Products, Guidance for
253 industry, July 2024, <https://www.fda.gov/media/152503/download>.

254 5. Real-World Data: Assessing Registries to Support Regulatory Decision-Making for Drug
255 and Biological Products, Guidance for industry, December 2023,
256 <https://www.fda.gov/media/154449/download>.

257 6. Advancing Real-World Evidence Program, FDA, July 2024,
258 <https://www.fda.gov/drugs/development-resources/advancing-real-world-evidence-program>.

259 7. Digital Health Technologies for Remote Data Acquisition in Clinical Investigations,
260 Guidance for industry, investigators, and other stakeholders, December 2023,
261 <https://www.fda.gov/media/155022/download>.

262 8. Integrating Randomized Controlled Trials for Drug and Biological Products Into Routine
263 Clinical Practice, Draft guidance for industry, September 2024,
264 <https://www.fda.gov/media/181871/download>.

265 9. Considerations for the Use of Real-World Data and Real-World Evidence to Support
266 Regulatory Decision-Making for Drug and Biological Products, Guidance for industry,
267 August 2023, <https://www.fda.gov/media/171667/download>.

268 10. Bridging the Patient-Center Outcome Research Infrastructure and Technology, ASPE:
269 Office of the Assistant Secretary for Planning and Evaluation, May 2023,
270 <https://aspe.hhs.gov/reports/innovation-through-crn>.

271 11. Conducting Clinical Trials With Decentralized Elements, Guidance for industry,
272 investigators, and other interested parties, September 2024,
273 <https://www.fda.gov/media/167696/download>.

274 12. Informed Consent, Guidance for IRBs, clinical investigators, and sponsors, August 2023,
275 <https://www.fda.gov/media/88915/download>.

276 277 278 279 * When finalized, this guidance will represent FDA's current thinking on this topic.