

Comparative Threshold Analysis – So Near, Yet So Far ...

Vivek Viswanathan, PhD

Manager, Research & Development, Rubicon Research Canada Ltd.

Daliya Bharati, MS

Director, Regulatory Affairs and IP, Advagen Pharma, Ltd.

May 21, 2024

The opinions & views expressed in this presentation are of the authors and do not necessarily reflect that of Rubicon Research or its affiliates.

Comparison of user interface (UI) of the generic Drug-device combination product (gDDCP) to RLD UI

Labelling comparison

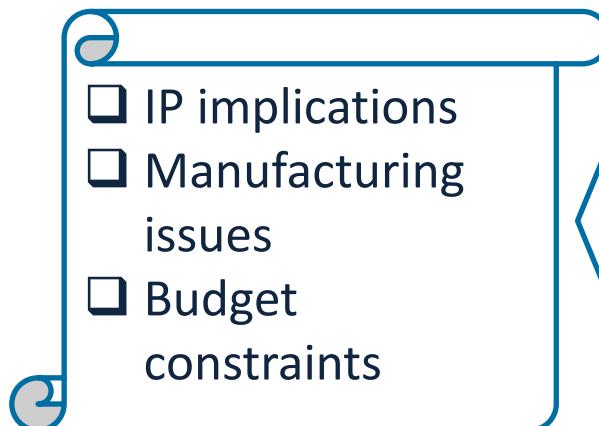
Side by side, line by line comparison of

- Prescribing information
- IFU
- Device labels, carton labels
- Device constituent parts descriptions

Physical comparison of DDCP UIs

Perform visual & tactile examination

- Examine physical features of the RLD
- Compare the same with the drug delivery constituent part of the gDDCP

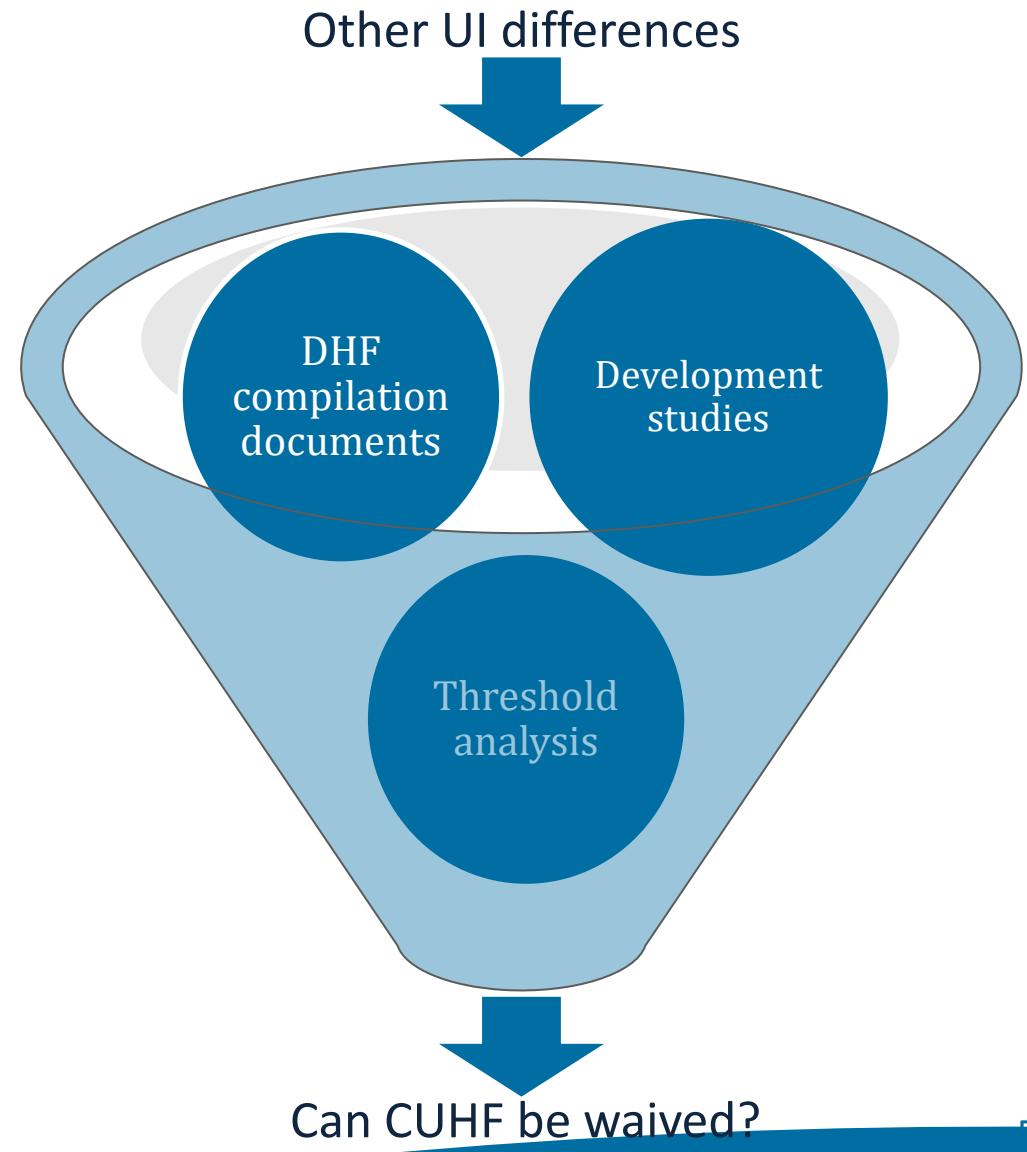

Comparative task analysis

Applicants should perform

- Comparison of the tasks for the proposed gDDCP against the RLD

Outcome of Threshold analysis

- ✓ No design difference
- Minor design difference
- ❖ Other design differences



- If UI design difference has impact on the external critical design attribute that involves administration of the product
- Difference may not be considered 'minor'
- Applicants to consider modifying the device design
- Provide additional information
- Data from CUHF studies
- Prove that no risk is introduced during substitution of RLD with proposed gDDCP

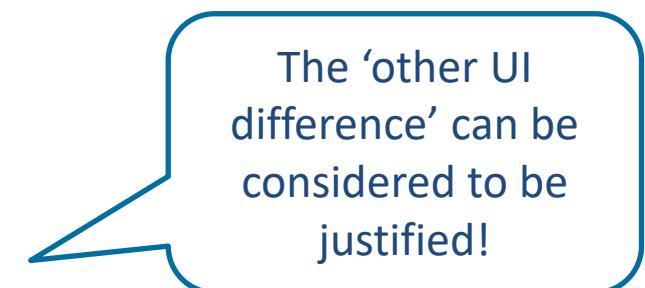
Generic product development is a time sensitive affair, thus proposal to justify 'other' UI differences based on available data from product development should be considered.

- Design & development of gDDCP involves multi dimensional research
- Extensive studies are done as a part of development e.g. CMC characterization (cleaning, priming-repriming, robustness), bioequivalence (in vitro & in vivo), reliability studies (for emergency use products)
- All above studies demonstrate & prove device performance is comparable to reference product
- Hazard lists, risk analysis & risk mitigation done as a part of Design history file (DHF) compilation – exhibit substantial evidence for gDDCP performance in actual use scenario
- Threshold analysis takes the sponsor step closer to ANDA approval; however, approval seems so far when other UI differences exist!

Background:

- ✓ Nasal spray product T requires more priming shots as compared to R
- ✓ Due to different bottle size & hence the dip tube length

Priming instructions for R	Priming instructions for T
Push bottle with thumb FIRMLY and QUICKLY 5-6 times or until a fine spray appears. Now your pump is primed.	Push bottle with thumb FIRMLY and QUICKLY 6-7 times or until a fine spray appears. Now your pump is primed.



CMC drug product characterization studies:

- Equivalence of product performance is demonstrated as a part of priming-repriming studies
- Done as a part of development

Steps taken to mitigate risk:

- Clear indication on the IFU as well as product carton
- Demonstration of drug content from sprays 5, 6 & 7 – T v/s R
- Establish that substitutability of T product does not introduce any new risk

Background:

- ✓ Oral liquid product T provides lesser number of syringes with the product as compared to R

Use instructions for R	Use instructions for T
Use the second syringe for the remaining volume of the medicine to be taken.	Reuse the first/same syringe for the remaining volume of the medicine to be taken.

Studies using the T device:

- Comparative Dose Accuracy Studies with T and R products

Steps taken to mitigate risk:

- Clear indication on the IFU as well as product carton
- Demonstration of drug content is comparable – T v/s R
- Establish that substitutability of T product does not introduce any new risk

A blue speech bubble with a rounded rectangular border and a small tail pointing towards the text. Inside, the text 'The 'other UI difference' can be considered to be justified!' is written in a blue, sans-serif font.

Background:

- ✓ Inhaler device with a different mouthpiece design – due to IP implications
- ✓ Cleaning step for T device different from R

Cleaning instructions for R	Cleaning instructions for T
Open the mouthpiece by pulling it upwards . Open the base by lifting the button. Clean the device with warm water.	Open the mouthpiece & base by lifting the button . Clean the device with warm water.

Does this difference in cleaning step present additional risk?

Studies done using the T device:

- Cleaning study for the T device as per IFU instructions
- Risk assessment for incomplete cleaning of T device
- Impact of following the R cleaning instructions on the T device

Steps taken to mitigate risk:

- Demonstrate comparable performance of RLD & gDDCP
- No impact of difference in the cleaning steps (tasks)

It is possible that T product can be substituted for R without any additional risks

Background:

- ✓ Product intended to be used as an emergency medicine
- ✓ T device design is different from R (side actuation button as compared to bottom actuation)

Dosing instructions for R	Dosing instructions for T
Press the XXX coloured plunger at the bottom with your thumb to deliver the dose.	Press the XXX coloured plunger at the side with your thumb to deliver the dose.

Does this difference in the location of the plunger pose an additional risk?

Studies done using the T device:

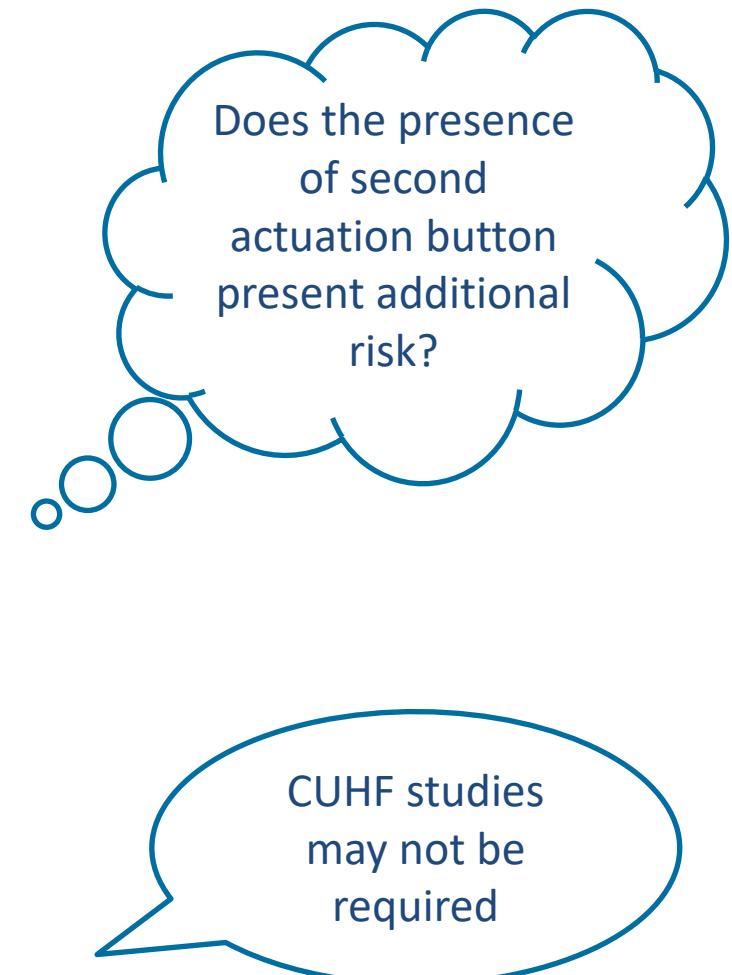
- Reliability studies as a part of performance demonstration for emergency use product
- Bioequivalence of T & R (in vitro as well as in vivo)
- Risk management as a part of Design History file

Steps taken to mitigate risk:

- Ensuring product performance consistency through extensive comparative testing
- Appropriateness of use of T device in emergency use

T & R products can be proposed to be used interchangeably

Background:


Device is intended to deliver 2 doses of medicament

T product design is different & has 2 actuation buttons as against 1 of R

Dosing instructions for R	Dosing instructions for T
Push the plunger with thumb. Breathe in while pushing the plunger till end of stroke.	Push the blue plunger with thumb. Breathe in while pushing the blue plunger till end of stroke.
Check dose indicator for successful delivery of first dose.	Check dose indicator for successful delivery of first dose.
Repeat above steps for second dose .	For second dose, push the yellow plunger with thumb. Breathe in while pushing the yellow plunger till end of stroke.
Check dose indicator for successful delivery of second dose.	Check dose indicator for successful delivery of second dose.

Risk mitigation:

- IFU & label clearly mentions to check successful delivery of first & second doses
- User accustomed to use the single button R device would be used to checking dose delivery indicator

Background:

- ✓ Product is a single use DDCP
- ✓ R device has a device-integrated safety feature to prevent accidental dose delivery
- ✓ T product has a safety feature built into the product via packaging

Instructions for R	Instructions for T
Remove the product from the pack. Separate the XXXXXX (safety feature). Administer the dose of the medicine by pressing.	Remove the product from the pack by twisting the XXXXXX (safety feature). Administer the dose of the medicine by pressing.

Can accidental dose delivery occur from the T product?

Studies done for the T device:

- Device robustness to prove that the accidental dose delivery does not occur during storage & transit
- Transport worthiness as a part of product performance testing

Although the UI difference exists, no risk is identified for substituting T for R

Steps taken to mitigate risk:

- Demonstrate the efficiency of the packaging of the T product to prevent accidental dose discharge
- Users do not have to perform any additional tasks before using the T product

- Differences in the gDDCP (as compared to RLD) would more likely exist due to multitude of factors
- Threshold analysis outcomes may end up having an outcome of 'Other design differences'
- Current FDA guidance for Threshold analysis (January 2017) does not provide detailed classification & illustrations to 'Other differences'
- An attempt is made to propose to leverage comprehensive & exhaustive data generated during product development – to 'justify' other differences
- The ultimate aim is to reduce turn-around time for gDDCPs whilst mitigating user risk to substitutability of generic DDCP
- A midway can be worked upon which could enable acceptability of generic device without performing CUHF studies
- Increasing number of complex DDCPs being available; elaborate information provided in the guidance may be beneficial to sponsors of gDDCPs

Thank You

Corporate HQ and R&D Center

Rubicon Research Private Limited
MedOne House, Plot No. B-75,
Road No. 33, Wagle Estate
Thane (W) 400604,
Maharashtra, India
Contact: +91 22 61414000

Manufacturing Plant (Ambernath)

Rubicon Research Private Limited
Plot no. K 30/4 & 30/5,
Additional MIDC, Ambernath,
District Thane 421 506,
Maharashtra, India
Contact: +91 251 2628100

USA Office

AdvaGen Pharma,
50 Millstone Road,
Building 200, Suite 180
East Windsor, New Jersey 08512
USA

Canada R&D Center

Rubicon Research Canada
Limited
255 Spinnaker Way,
Unit 6, Concord,
Ontario, L4K 4J1,
Canada

Manufacturing Plant (Satara)

Rubicon Research Private Limited
J-4/2, Additional MIDC,
Satara – 415 004
Maharashtra, India
+91 2162 240309