

Fiscal Year 2024  
Generic Drug Science  
& Research Initiatives  
*Public Workshop*



## Session Introduction

### *Predictive Tools for Generic Product Development and Assessment*



**Dr. Lanyan (Lucy) Fang**

Deputy Division Director  
DQMM, ORS, OGD, CDER, FDA



**Dr. Ahmed Zidan**

Senior Staff Fellow  
DPQR V, OPQR, OPQ, CDER, FDA

# Public Comments for Session 2

## ***Predictive Tools for Generic Product Development and Assessment***

### ***In Person Comments:***

- ***Huong Huynh, PhD, Director of Regulatory Science, and Shu Chin Ma, PhD, VP of MIDD & Quantitative Medicine, Critical Path Institute (C-Path)***
- ***Sandra Suarez-Sharp, PhD, President, Regulatory Strategies, Simulations Plus, Inc.***
- ***Anuj Chauhan, PhD, Professor, Colorado School of Mines***
- Elad Berkman, PhD, CTO PhaseV
- Sebastian Melgar, MPH, Lead Associate Booz | Allen | Hamilton
- Brian Eden, Vice President, Global Life Sciences Technical Operations Capgemini Group
- Sandhya Polu and Anil Bhatta, Contracts Manager, Deloitte Services LP
- Anthony Cristillo, PhD, MS, MBA, Partner, Digital Health
- Sarah Ferko, MS, PMP and Ally Lu, Senior Managing Consultant, Artificial Intelligence & Analytics, IBM Consulting
- Ashlee Brunaugh, PhD, Assistant Professor, Pharmaceutical Sciences, University of Michigan
- Jinxiang Xi, PhD, Associate Professor of Biomedical Engineering, University of Massachusetts, Lowell
- Guilherme Garcia, PhD, Assistant Professor, Marquette University and The Medical College of Wisconsin
- Darragh Murnane, PhD, Professor of Pharmaceutics, University of Hertfordshire (Informix Pharma)
- Jeff Schroeter, PhD, Senior Scientist, Applied Research Associates

### ***Virtual Comments:***

- Ravendra Singh, PhD, Director of Pharmaceutical Systems Engineering Rutgers
- Sebastian Polak, PhD, Professor Jagiellonian University
- Maxime Le Merdy, PhD, Associate Director, Research and Collaboration Simulations Plus, Inc.
- Stephan Schmidt, PhD, Professor, University of Florida
- Guenther Hochhaus, PhD, Professor, University of Florida
- Yu Feng, PhD, Associate Professor, Oklahoma State University
- Maria Malmlöf, PhD, and Per Gerde, PhD Director of Projects Inhalation Sciences
- Laleh Golshahi, PhD, Associate Professor of Mechanical and Nuclear Engineering, Virginia Commonwealth University
- Rodrigo Cristofolletti, PhD, Assistant Professor, University of Florida



# Using Innovative Quantitative Methodologies to Improve Generic Drug Development and Assessment of Bioequivalence

Huong Huynh, PhD, Director of Regulatory Science

Shu Chin Ma, PhD, VP of MIDD & Quantitative Medicine

20 May 2024

Advancing Drug Development. Improving Lives. Together.



c-path.org

# Public-Private Partnership Model

- Foster **development of new evaluation tools** to inform medical product development and regulatory decision-making
- **Convene** scientific consortia of industry, academia, and government for **sharing of data/expertise**
  - ✓ Active consensus building
  - ✓ Shared risks and costs
  - ✓ The best science
  - ✓ The broadest experience
- **Enable iterative EMA/FDA/PMDA participation** in developing new methods to assess the safety and efficacy of medical products
- **Obtain official regulatory endorsement** of novel methodologies and drug development tools



# Drug Development Solutions for Regulatory Decision-Making of Generic Products

## NDA Requirements

1. Labelling

2. Pharmacology/Toxicology

3. Chemistry

4. Manufacturing

5. Controls

6. Microbiology

7. Inspection

8. Testing

9. Animal Studies

10. Clinical Studies

11. Bioavailability

## ANDA Requirements

1. Labelling

2. Pharmacology/Toxicology

3. Chemistry

4. Manufacturing

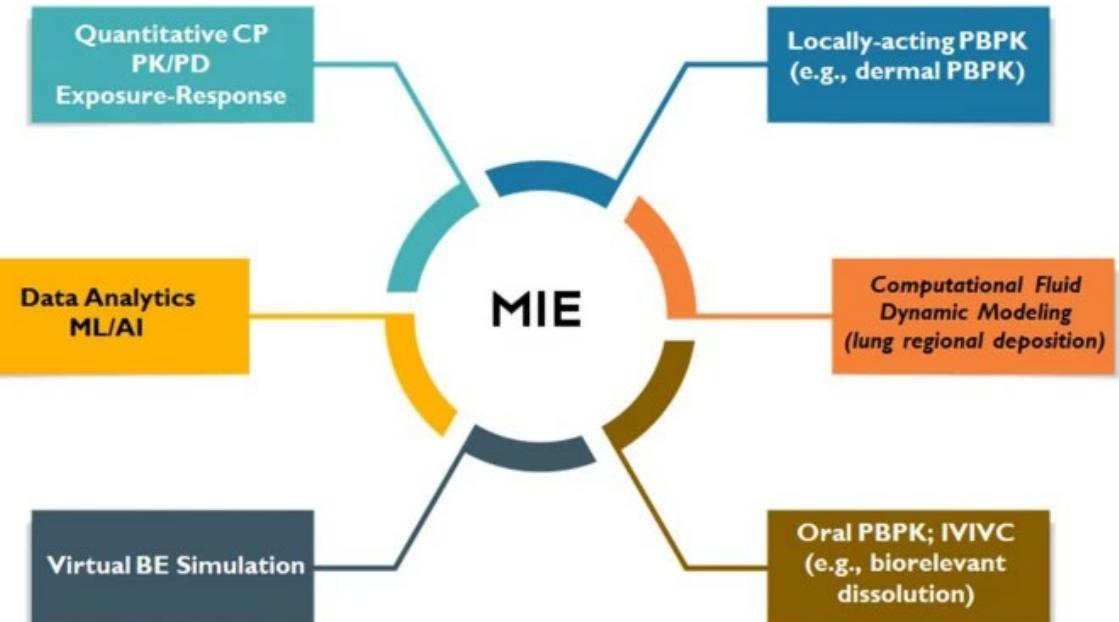
5. Controls

6. Microbiology

7. Inspection

8. Testing

9. Bioequivalence



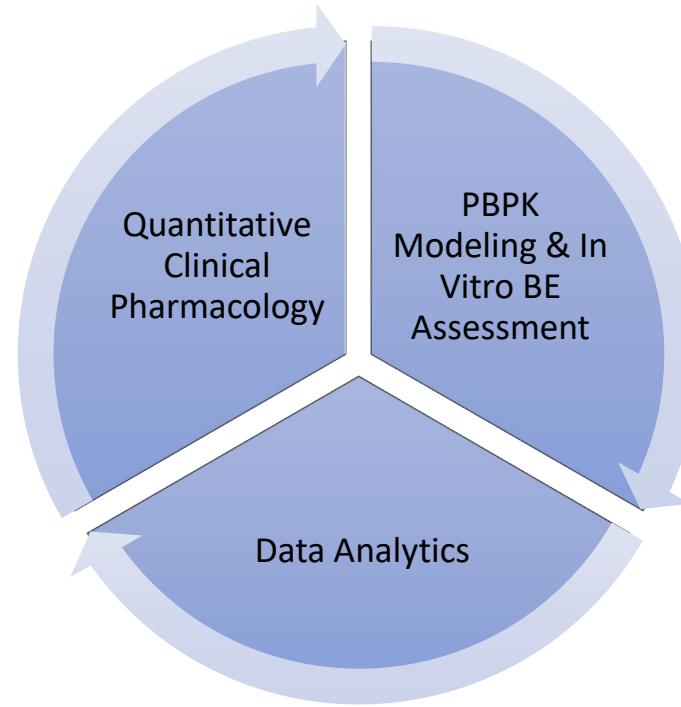
CP – Clinical Pharmacology; PBPK – Physiologically-based pharmacokinetics; BE – Bioequivalence  
PK/PD – Pharmacokinetics/Pharmacodynamics; ML – Machine Learning; AI – Artificial Intelligence  
IVIVC – In Vitro-In Vivo Correlations; BE – Bioequivalence

<https://link.springer.com/article/10.1208/s12248-023-00884-5>

# Potential Application of Quantitative Solutions

## Challenges

- PK repeats, sample selection bias
- Potency and formulation uniformity
- *In silico, in vitro, in vivo* correlations and integrations
- Model standardization, validation, utilization
- Long term bioavailability



## Opportunities

- Efficient BE study design
- PK metrics determination
- Evaluation of alternative BE approaches
- PBPK model as alternative approach
- Clinical relevancy of *in vitro* BE studies
- BE space determination for *in vitro* characterization
- Leveraging artificial intelligence and machine learning technologies to modernize ANDA review
- *In vitro* BE method development
- Post-marketing surveillance

## Potential Applications

- Use federated data to generate drug development tools
- Use validated quantitative models from approved drug products
- Develop framework for education and sharing validated models
- Use learnings from published data and data from similar drug class
- Monitor safety of use of drug products

[https://www.researchgate.net/figure/Commonly-used-MIDD-toolsets-in-generic-drug-development-Abbreviations-BE\\_fig3\\_360559059](https://www.researchgate.net/figure/Commonly-used-MIDD-toolsets-in-generic-drug-development-Abbreviations-BE_fig3_360559059)



Advancing Drug Development.  
Improving Lives. Together.

---

[c-path.org](http://c-path.org)





# Predictive Tools for Generic Product Development & Assessment – Research Input

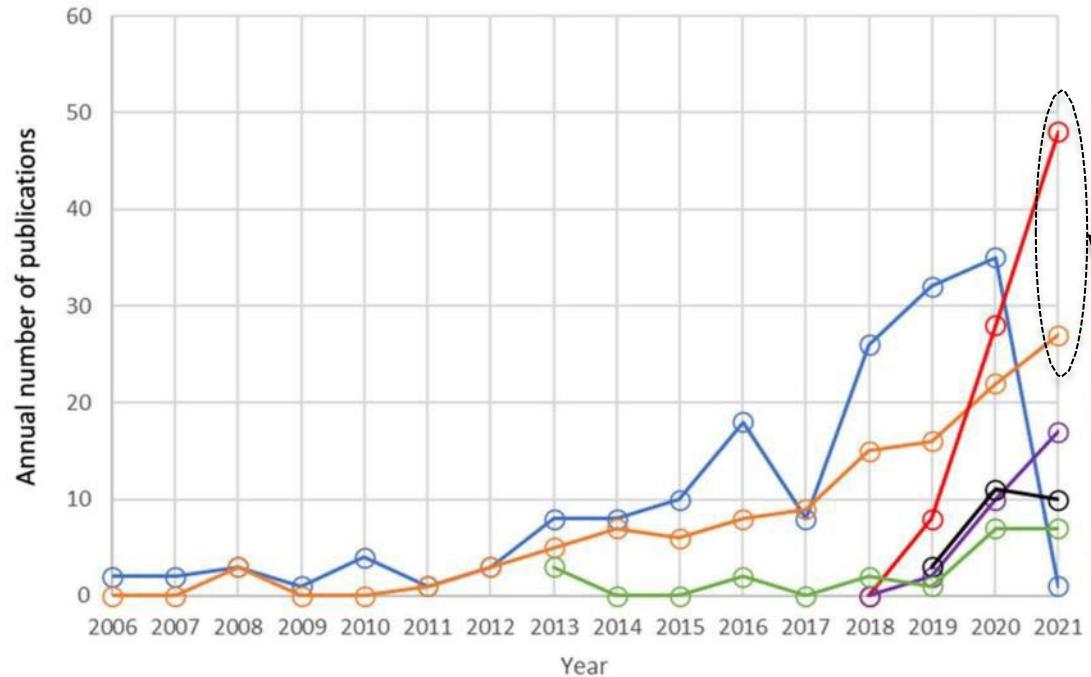
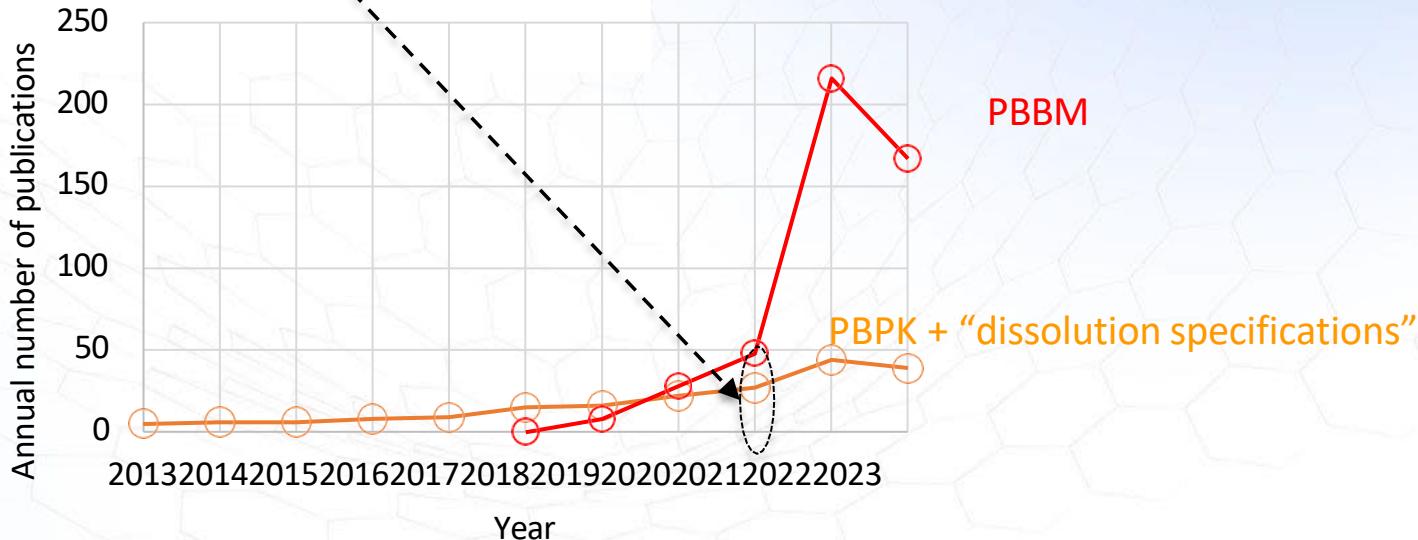
**Sandra Suarez Sharp, Ph.D.,**

*President, Regulatory Strategies*

May 20, 2024



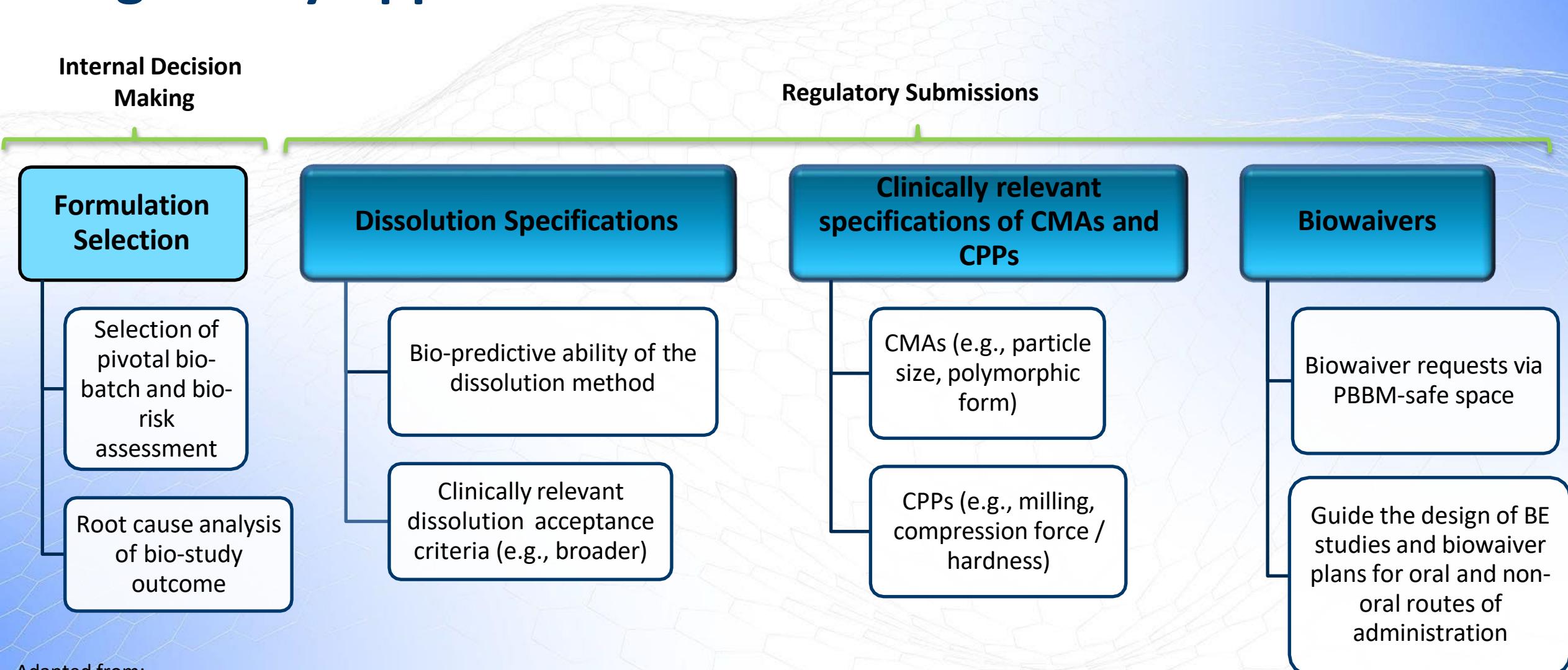
# The Growth of PBBM



Exponential increase in the number of publications on PBBM/PBPK application in support of drug product quality

Anand, O., et al., The Use of Physiologically Based Pharmacokinetic Analyses—in Biopharmaceutics Applications -Regulatory and Industry Perspectives. Pharmaceutical Research, 2022. <https://doi.org/10.1007/s11095-022-03280-4>

# Common Applications of PBBM in Support of the Development of Generic Products



Adapted from:

1. Fang Wu. OGD Perspective on PBBM applications for generics. 2023 FDA/M-CERSI PBBM Workshop [https://cersi.umd.edu/sites/cersi.umd.edu/files/D3-2\\_905AM\\_FangWu.pdf](https://cersi.umd.edu/sites/cersi.umd.edu/files/D3-2_905AM_FangWu.pdf)
2. S. Suarez-Sharp. 2019 AAPS meeting Annual Meeting. San Antonio, TX
3. Liang Zhao, et al. Generating Model Integrated Evidence for Generic Drug Development and Assessment. ASCPT, Nov 2018, <https://doi.org/10.1002/cpt.1282>

# FDA Guidance: The Use of PBBM in Support of Pro

## The Use of Physiologically Based Pharmacokinetic Analyses — Biopharmaceutics Applications for Oral Drug Product Development, Manufacturing Changes, and Controls Guidance for Industry

### DRAFT GUIDANCE

This guidance document is being distributed for comment purposes only.

Comments and suggestions regarding this draft document should be submitted within 60 days of publication in the *Federal Register* of the notice announcing the availability of the draft guidance. Submit electronic comments to <https://www.regulations.gov>. Submit written comments to the Dockets Management Staff (HFA-305), Food and Drug Administration, 5630 Fishers Lane, Rm. 1061, Rockville, MD 20852. All comments should be identified with the docket number listed in the notice of availability that publishes in the *Federal Register*.

For questions regarding this draft document, contact Paul Seo at 301-796-4874.

U.S. Department of Health and Human Services  
Food and Drug Administration  
Center for Drug Evaluation and Research (CDER)

October 2020  
Pharmaceutical Quality/CMC

We strongly recommend that sponsors demonstrate the model's predictive performance based on PK data from batches exhibiting unacceptable BA

Model validation acceptance criteria for a mechanistic IVIVC model to support biowaivers should comply with the criteria provided in the IVIVC guidance

<https://www.fda.gov/regulatory-information/search-fda-guidance-documents/use-physiologically-based-pharmacokinetic-analyses-biopharmaceutics-applications-oral-drug-product>

# Common PBBM Deficiencies/Acceptance Rate

## Summary for Case Example 2



- PBPK/PBBM modeling and simulation was used to evaluate the impact of faster dissolution profile of lower strength compared to higher strength on in vivo performance.
- The model should be sufficiently validated before being used to evaluate such impact.

## Case Example 3: PBPK Absorption Modeling/IVIVC to Evaluate BE for ER Tablets

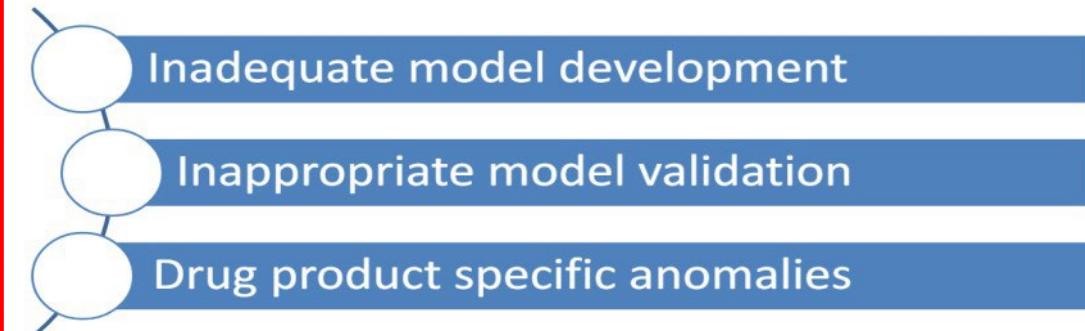


Deficiencies identified on the submitted PBPK/IVIVC model

### For PBPK

- There is a lack of non-BE batch to challenge the PBPK model. The Applicant is recommended to use available or theoretical non-BE batch/formulation to evaluate the sensitivity and demonstrate the bio-discriminating capability of the model.

## Observed Deficiency Categories



## PBBM Snapshot



- An estimated **50** A/NDA and IND submissions involved PBPK modeling/simulations to support Biopharmaceutics
- **48%** of the PBPK modeling/simulations to support Biopharmaceutics were found acceptable

# Gaps in Knowledge (Examples)

1. Meeting the PBBM-based IVIVRs/IVIVCs validation criteria (i.e. +/- 10%) may be challenging
  - **Research is needed to determine the appropriate criteria for model validation that is applicable to PBBM- based IVIVCs/IVIVRs**
2. The need for non-BE data to confirm the predictive ability of the model is challenging and could restrict the model application: safe space applications limited to interpolations between non-BE and BE batches
  - **Research is needed to evaluate the risk of model extrapolation beyond knowledge space**
    - **In which situations is it possible to extrapolate with low risk? What data are needed? How far can one extrapolate with confidence?**
    - **Evaluation of biowaiver implications, particularly for drug products containing BCS class 1/3 drug substances**

# Thank you !



Questions



# Modeling Ophthalmic Drug Delivery from solutions, complex formulations and devices

## Suggested Research Topic

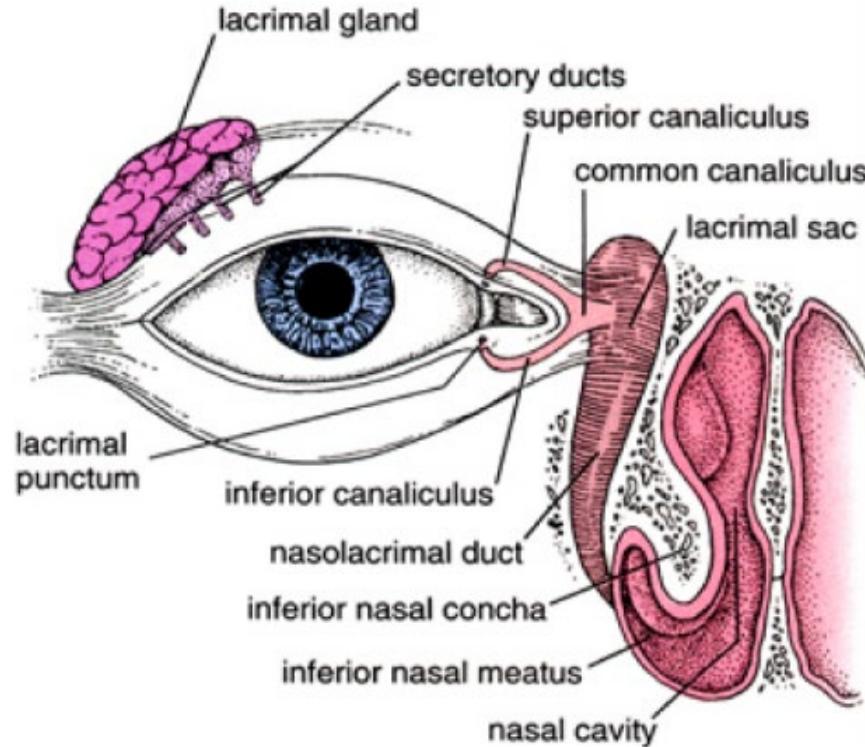
**Enhance the Efficiency of Equivalence Approaches for Complex Drug-Device Combination Products for Ocular Drug Delivery by using physiologically based PK (PBPK) models**

---

Anuj Chauhan

Professor, Chemical and Biological Engineering, Colorado School of Mines  
Chief Scientific Officer, Freya Ophthalmics ([freyaophthalmics.com](http://freyaophthalmics.com))

# PBPK Model for Ophthalmic Drug Delivery by Solutions



$$\frac{d(c_{tear}V_{tear})}{dt} = -c_{tear}(K_{conjunctiva}A_{conjunctiva} + K_{cornea}A_{cornea}) - c_{tear}q_{drainage}$$

Drug mass balance in tears

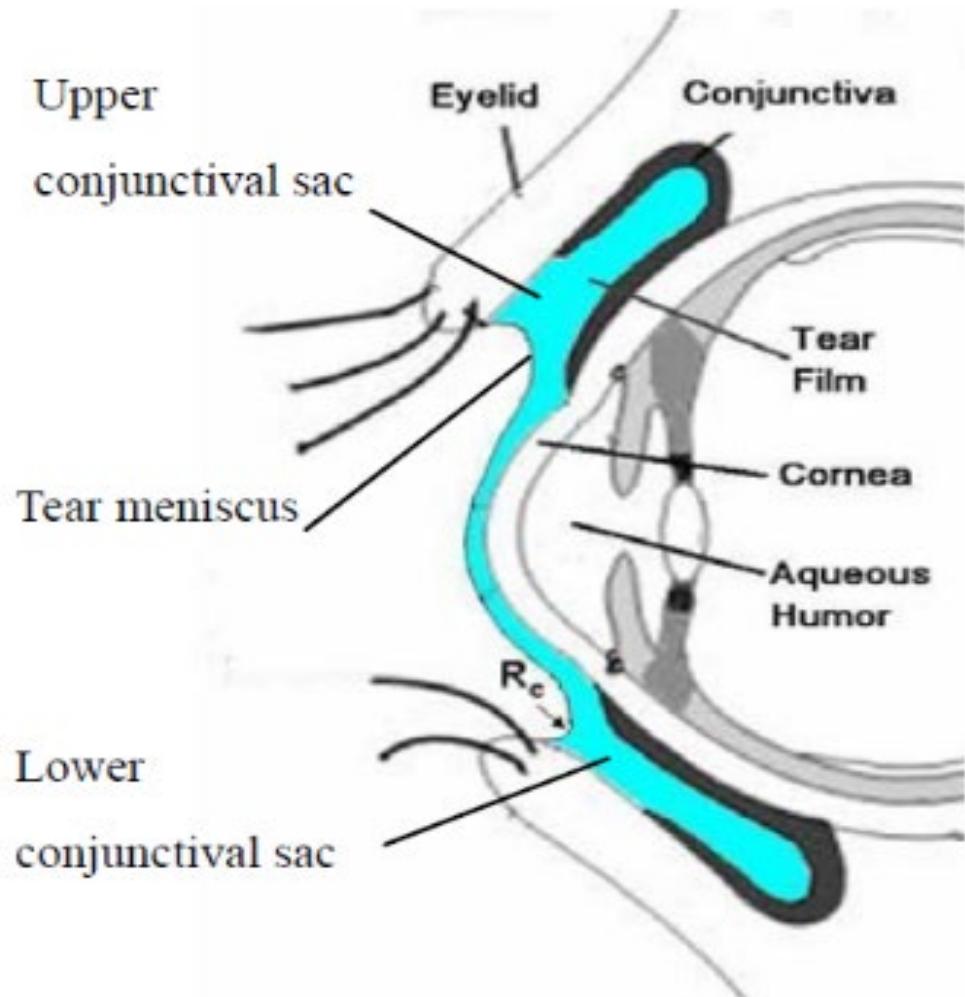
$$\frac{dV_{tear}}{dt} = q_{secretion} - q_{drainage} - q_{evaporation} - J_w S_{conj}$$

Fluid mass balance in tears

$$V_{aq} \frac{d(c_{aq})}{dt} = c_{tear}(K_{cornea}A_{cornea}) - c_{aq}q_{outflow}$$

Drug mass balance in Aqueous Humor

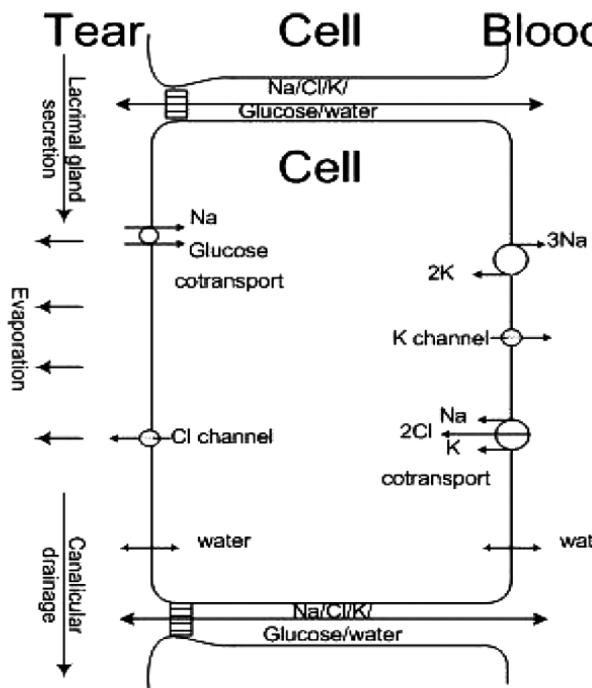
# Tear Drainage



$$\begin{aligned} q_{\text{drainage}} &= \frac{\Delta V}{\Delta t} = \frac{\Delta(\pi R^2 L)}{\Delta t} = \left( \frac{\pi L}{t_c} \right) (R_{ib}^2 - R_b^2) \\ &= \left( \frac{\pi L}{t_c} \right) \left( \left( \frac{R_0}{1 + \frac{R_m}{bE_c} R_0} \right)^2 - \left( \frac{R_0}{1 + \frac{R_0 p_{out}}{bE_c}} \right)^2 \right) \end{aligned}$$

Zhu H, Chauhan A. A mathematical model for tear drainage through the canaliculi. *Curr Eye Res.* 2005 Aug;30(8):621-30. doi: 10.1080/02713680590968628. PMID: 16109641.

# Conjunctiva Transport – Water and Ion Transport



$$J_w = P_{w,1-2} v_w (Osm_2 - Osm_1) + v_w r_{eo} F \sum z_{ion} J_{ion,paracellular}$$

$$J_{ion,12} = \frac{P_{ion} z F V_{12}}{RT} \left[ \frac{C_{ion,1} - C_{ion,2} \exp\left(\frac{-zV_{12}F}{RT}\right)}{1 - \exp\left(\frac{-zV_{12}F}{RT}\right)} \right]$$

$$J_{pump} = J_{pump,max} \left( \frac{C_{Na,c}}{C_{Na,c} + K_{pump,Na}} \right)^3 \left( \frac{C_{K,b}}{C_{K,b} + K_{pump,K}} \right)^2 * (-5 * 10^{-3} V_{cb} + 1.25)$$

$$J_{Na-K-Cl} = J_{Na-K-Cl,max} \left( \frac{C_{Na,b}}{C_{Na,b} + K_{Na,Na-K-Cl}} \frac{C_{K,b}}{C_{K,b} + K_{K,Na-K-Cl}} \frac{C_{Cl,b}}{C_{Cl,b} + K_{Cl,1,Na-K-Cl}} \frac{C_{Cl,b}}{C_{Cl,b} + K_{Cl,2,Na-K-Cl}} \right) - \frac{C_{Na,c}}{C_{Na,c} + K_{Na,Na-K-Cl}} \frac{C_{K,c}}{C_{K,c} + K_{K,Na-K-Cl}} \frac{C_{Cl,c}}{C_{Cl,c} + K_{Cl,1,Na-K-Cl}} \frac{C_{Cl,c}}{C_{Cl,c} + K_{Cl,2,Na-K-Cl}}$$

# Model Equations

$$\frac{d(c_{i,tear}V_{total})}{dt} = q_{secretion}c_{i,tear}^0 - q_{drainage}c_{i,tear} - (J_{i,channel} + J_{i,paracellular})S_{conj}$$

$$\frac{d(c_{i,cell}V_{cell})}{dt} = (\sum J_{i,channel} S_{conj}) - r_i c_{i,cell}$$

$$\frac{dV_{cell}}{dt} = (J_{w,transcellular,tear} - J_{w,transcellular,blood})S_{conj}$$

$$\frac{dV_{tear}}{dt} = q_{secretion} - q_{drainage} - q_{evaporation} - J_w S_{conj}$$

$$J_w = (J_{w,paracellular} + J_{w,transcellular,tear})$$

$$\frac{d(c_{tear}V_{total})}{dt} = -c_{tear}(K_{conjunctiva}A_{conjunctiva} + K_{cornea}A_{cornea}) - c_{tear}q_{drainage}$$

$$V_{aq} \frac{d(c_{aq})}{dt} = c_{tear}(K_{cornea}A_{cornea}) - c_{aq}q_{outflow}$$

Zhu H, Chauhan A. Tear dynamics model. *Curr Eye Res.* 2007 Mar;32(3):177-97. doi: 10.1080/02713680601186706. PMID: 17453939.

# Tear Drainage – Validation of Drainage Rate

**Experiment**: Measured drainage rate in rabbits per blink:  $0.58 \text{ mm}^3$  for the lower canaliculus.

**Model**: The model prediction for the drainage rate is  $0.4001 \text{ mm}^3$

Zhu H, Chauhan A. A mathematical model for tear drainage through the canaliculi. *Curr Eye Res.* 2005 Aug;30(8):621-30. doi: 10.1080/02713680590968628. PMID: 16109641.

# Validation of concentration transients in tears

**TABLE 8** Decays of tear volume, concentration and solute quantity after instillation

|                                                | Experiment             | Model  |
|------------------------------------------------|------------------------|--------|
| Volume decay (15 $\mu$ l instillation)         | 300 s <sup>56</sup>    | 1115 s |
|                                                | >600 s <sup>57</sup>   |        |
| Concentration decay (~40 $\mu$ l instillation) | 4800 s <sup>58</sup>   | 2401 s |
| Quantity decay (25 $\mu$ l instillation)       | ~ 1000 s <sup>59</sup> | 1454 s |
|                                                | >900 s <sup>60</sup>   |        |
|                                                | ~ 900 s <sup>61</sup>  |        |

Zhu H, Chauhan A. Tear dynamics model. Curr Eye Res. 2007 Mar;32(3):177-97. doi: 10.1080/02713680601186706. PMID: 17453939.

# Incorporation of Emulsion and Suspensions formulations in model

$$\frac{4}{3}\pi R^3 \frac{d(c_{oil})}{dt} = -4\pi R^2 k_{mt} \left( \frac{c_{oil}}{K_{o/w}} - c_{tear} \right)$$

$$j = k_{mt} (c_{sol} - c_{tear})$$

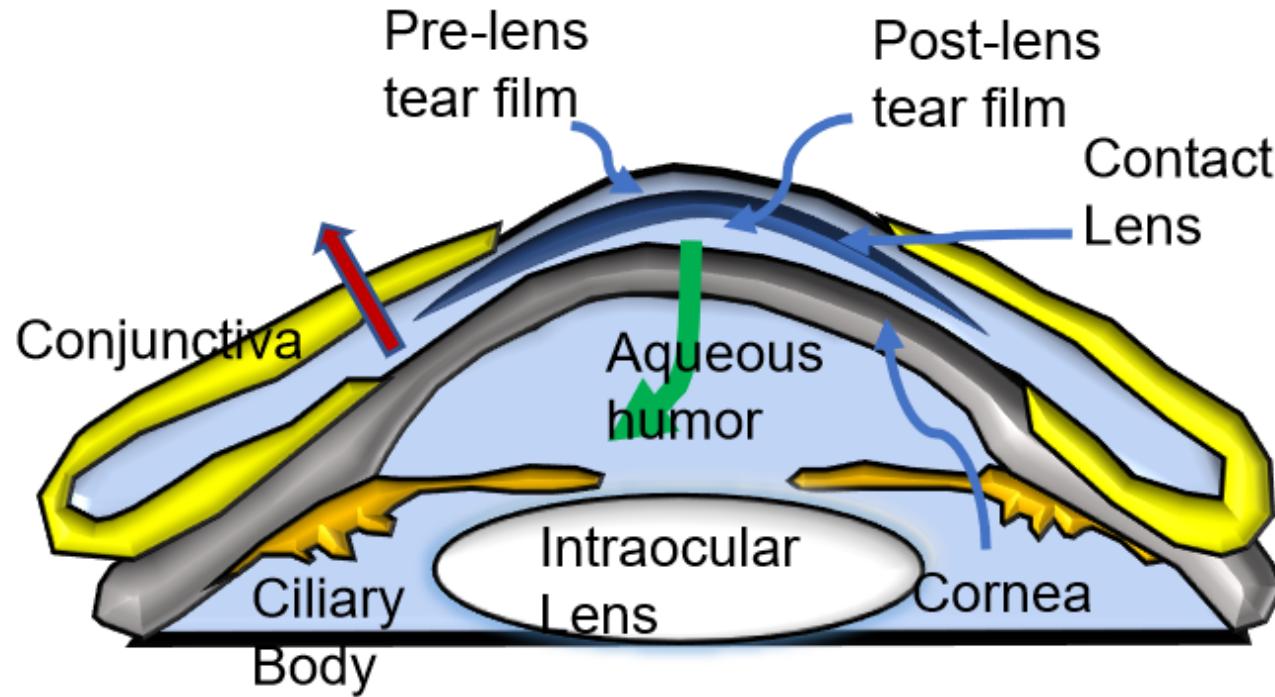
$$Sh = \frac{k_{mt}(2R)}{D} = \sqrt{4 + 1.21Pe^{2/3}}$$

$$Sh = \frac{k_{mt}(2R)}{D} = \sqrt{4 + 1.21Pe^{2/3}}$$

$$\begin{aligned} & \frac{d(c_{tear}V_{tear}(1 + K_{o/w}f_{oil}))}{dt} \\ &= -c_{tear}(K_{conjunctiva}A_{conjunctiva} + K_{cornea}A_{cornea}) \\ & - (c_{tear}(1 + K_{o/w}f_{oil})q_{drainage}) \end{aligned}$$

$$N4\pi R^2 k_{mt} (c_{sol} - c_{tear}) \sim c_{tear}(K_{conjunctiva}A_{conjunctiva} + K_{cornea}A_{cornea})$$

# Incorporation of devices such as contact lens



**Other Devices: Puncta Plugs, Fornix Inserts, Subconj Injection, Intravitreal Injections, Intracameral Injections, Devices in Anterior and Posterior Chamber**

# Posterior Segment Drug Delivery by Contact Lenses – Model

$$\frac{\partial C_l}{\partial t} = D_l \frac{\partial^2 C_l}{\partial y^2}$$

$$V_t \frac{dC_t}{dt} = -D_l \frac{\partial C_l}{\partial y} (y = 0) A_{cont} - q_d C_t - P_{t-blood} A_{conj,pal} C_t - P_{t-ScCh} A_{conj,bul} \left( \frac{C_t}{K_t} - \frac{C_{ScCh}}{K_{ScCh}} \right)$$

$$V_{ScCh} \frac{dC_{ScCh}}{dt} = q_{uvsc} C_{aq} - q_{uvsc} \frac{C_{ScCh}}{K_{ScCh}} + P_{t-Sch} A_{conj,bul} \left( \frac{C_t}{K_t} - \frac{C_{ScCh}}{K_{ScCh}} \right) - CL_{Ch} C_{ScCh} - A_{globe} P_{Sch-ret} \left( \frac{C_{ScCh}}{K_{ScCh}} - \frac{C_{ret}}{K_{ret}} \right)$$

$$V_{ret} \frac{\partial C_{ret}}{\partial t} = A_{globe} P_{Sch-ret} \left( \frac{C_{ScCh}}{K_{ScCh}} - \frac{C_{ret}}{K_{ret}} \right) - A_{globe} P_{ret-vit} \left( \frac{C_{ret}}{K_{ret}} - \frac{C_{vit}}{K_{vit}} \right)$$

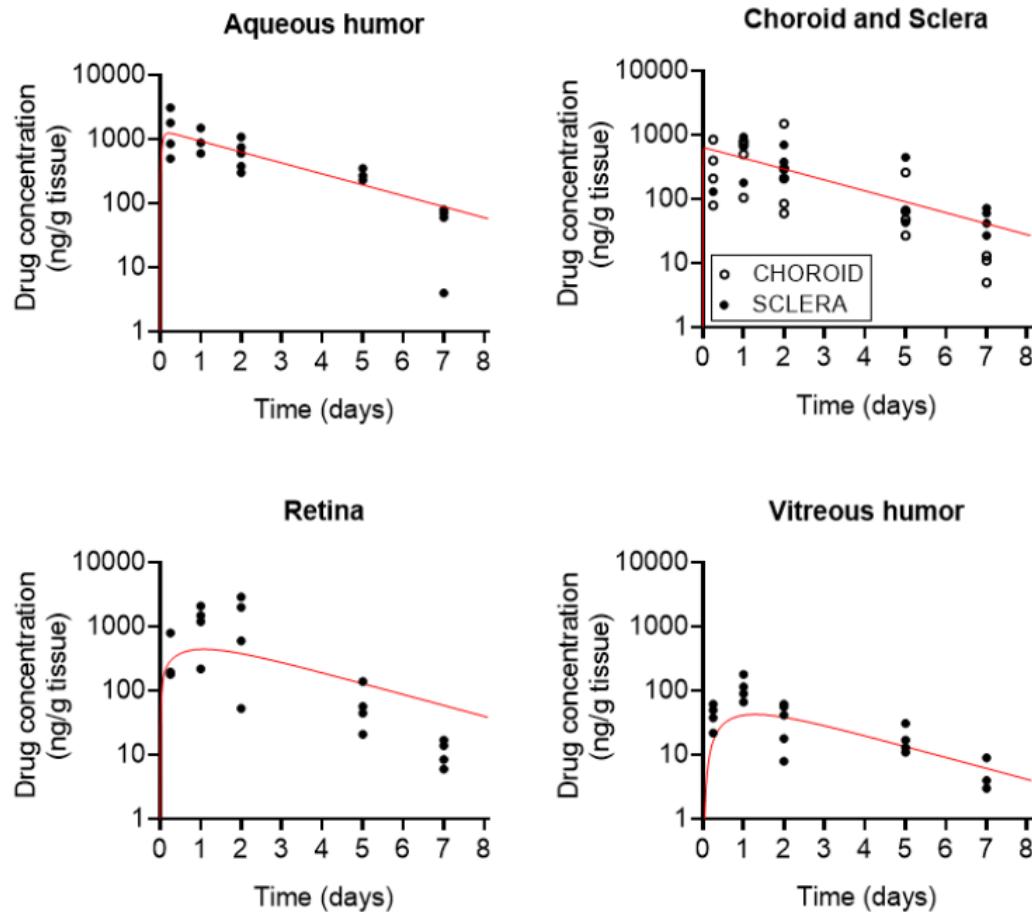
$$V_{vit} \frac{\partial C_{vit}}{\partial t} = A_{globe} P_{ret-vit} \left( \frac{C_{ret}}{K_{ret}} - \frac{C_{vit}}{K_{vit}} \right) - A_{vit-aq} P_{vit-aq} \left( \frac{C_{vit}}{K_{vit}} \right)$$

$$V_{aq} \frac{\partial C_{aq}}{\partial t} = A_{vit-aq} P_{vit-aq} (C_{vit}) + A_{cornea} P_{t-aq} \left( \frac{C_l(y=H)}{K_l} - C_{aq} \right) - q_{aq} C_{aq}$$

$$C_{epithelium} = \frac{(K_{ep/aq} C_{aq} + K_{ep/t} C_t)}{2}$$

Toffoletto N, Saramago B, Serro AP, Chauhan A. A Physiology-Based Mathematical Model to Understand Drug Delivery from Contact Lenses to the Back of the Eye. *Pharm Res.* 2023 Aug;40(8):1939-1951. doi: 10.1007/s11095-023-03560-7. Epub 2023 Jul 27. PMID: 37498499; PMCID: PMC10447275.

# Validation



Toffoletto N, Saramago B, Serro AP, Chauhan A. A Physiology-Based Mathematical Model to Understand Drug Delivery from Contact Lenses to the Back of the Eye. *Pharm Res.* 2023 Aug;40(8):1939-1951. doi: 10.1007/s11095-023-03560-7. Epub 2023 Jul 27. PMID: 37498499; PMCID: PMC10447275.

# Summary

1. Physiology Based Pharmacokinetic Models can utilize in vitro data and anatomical and physiological parameters to predict tissue concentrations, and hence Bioequivalence
2. Parameters can be obtained from literature or measured in vitro, ex vivo, or estimated based on fitting.
3. Validation by comparison with experiments is critical.

## Suggested Research Topic

Enhance the Efficiency of Equivalence Approaches for Complex Drug-Device Combination Products for Ocular Drug Delivery by using Physiologically Based Pharmacokinetic (PBPK) models

Thank you!

# Public Comments for Session 2

## ***Predictive Tools for Generic Product Development and Assessment***

### ***In Person Comments:***

- Huong Huynh, PhD, Director of Regulatory Science, and Shu Chin Ma, PhD, VP of MIDD & Quantitative Medicine, Critical Path Institute (C-Path)
- Sandra Suarez-Sharp, PhD, President, Regulatory Strategies, Simulations Plus, Inc.
- Anuj Chauhan, PhD, Professor, Colorado School of Mines
- Elad Berkman, PhD, CTO PhaseV
- Sebastian Melgar, MPH, Lead Associate Booz | Allen | Hamilton
- Brian Eden, Vice President, Global Life Sciences Technical Operations Capgemini Group
- Sandhya Polu and Anil Bhatta, Contracts Manager, Deloitte Services LP
- Anthony Cristillo, PhD, MS, MBA, Partner, Digital Health
- Sarah Ferko, MS, PMP and Ally Lu, Senior Managing Consultant, Artificial Intelligence & Analytics, IBM Consulting
- Ashlee Brunaugh, PhD, Assistant Professor, Pharmaceutical Sciences, University of Michigan
- Jinxiang Xi, PhD, Associate Professor of Biomedical Engineering, University of Massachusetts, Lowell
- Guilherme Garcia, PhD, Assistant Professor, Marquette University and The Medical College of Wisconsin
- Darragh Murnane, PhD, Professor of Pharmaceutics, University of Hertfordshire (Informix Pharma)
- Jeff Schroeter, PhD, Senior Scientist, Applied Research Associates

### ***Virtual Comments:***

- ***Ravendra Singh, PhD, Director of Pharmaceutical Systems Engineering Rutgers***
- ***Sebastian Polak, PhD, Professor Jagiellonian University***
- ***Maxime Le Merdy, PhD, Associate Director, Research and Collaboration Simulations Plus, Inc.***
- ***Stephan Schmidt, PhD, Professor, University of Florida***
- ***Guenther Hochhaus, PhD, Professor, University of Florida***
- Yu Feng, PhD, Associate Professor, Oklahoma State University
- Maria Malmlöf, PhD; Per Gerde, PhD Director of Projects Inhalation Sciences
- Laleh Golshahi, PhD, Associate Professor of Mechanical and Nuclear Engineering, Virginia Commonwealth University
- Rodrigo Cristofolletti, PhD, Assistant Professor, University of Florida

# Digital twin model: a faster and economical way to modernize the generic drug product manufacturing

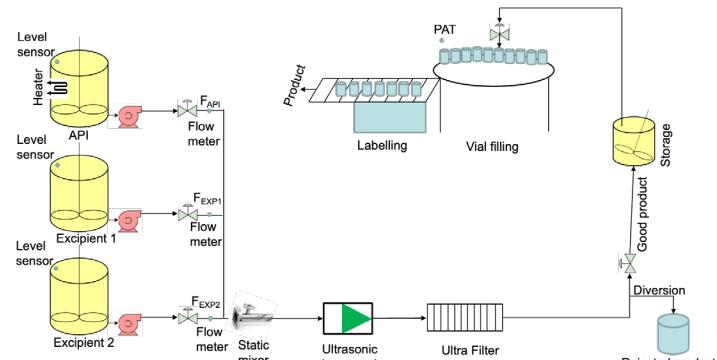
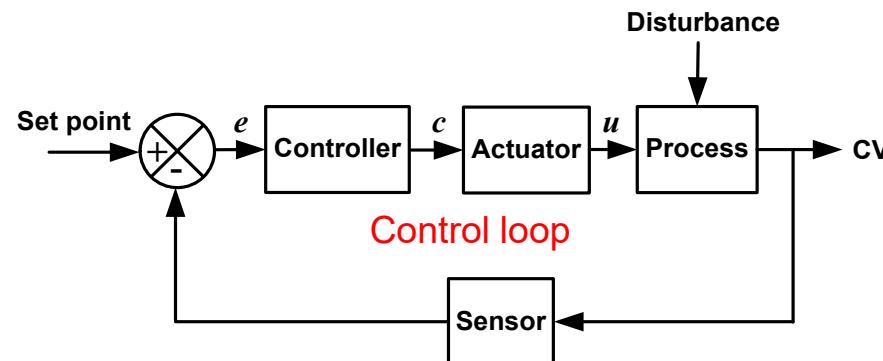
Ravendra Singh

*C-SOPS, Department of Chemical and Biochemical Engineering  
Rutgers University, NJ, USA*

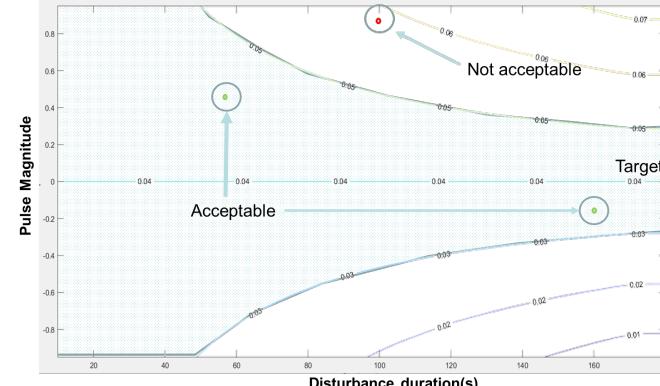
# Introduction and applications of digital twin model

- Simulation
- Process control
- Optimization
- Process design
- Digital DOE screening
- Material traceability
- Disturbance analysis
- Soft sensing
- Identification of CPPs and CQAs
- Sensitivity analysis
- Scenario analysis
- Risk assessment
- Feasibility and flexibility analysis
- Ingredient selection
- Could be part of regulatory filing
- Natural knowledge reservoir

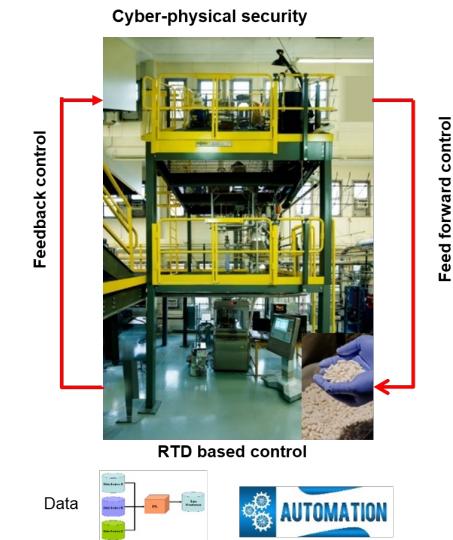
## Injectable manufacturing



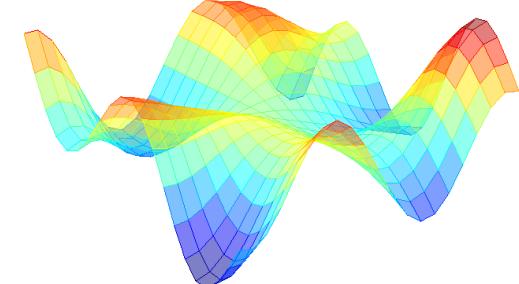
## Disturbance analysis



## Tablet manufacturing



## Optimization



# Implemented digital twin in tablet manufacturing process

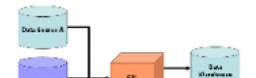
Artificial intelligence/Machine learning

Cyber-physical security



RTD based control

Data

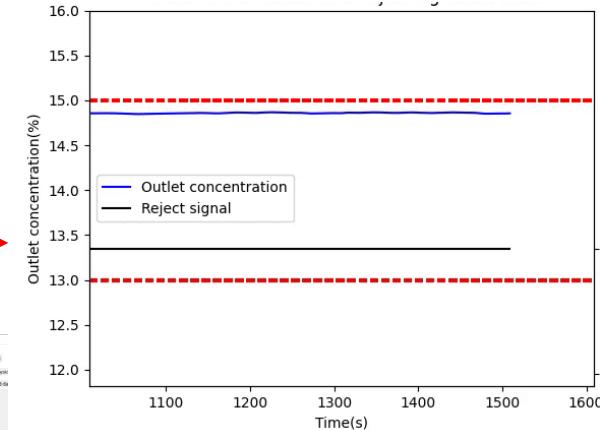


RUTGERS



Feed forward control

RTD based diversion



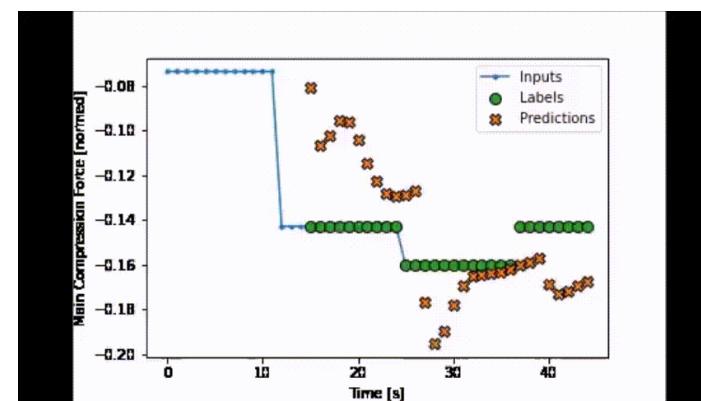
Output in '.csv' format

SIMATIC  
PCS 7  
SIEMENS

DELTAV™

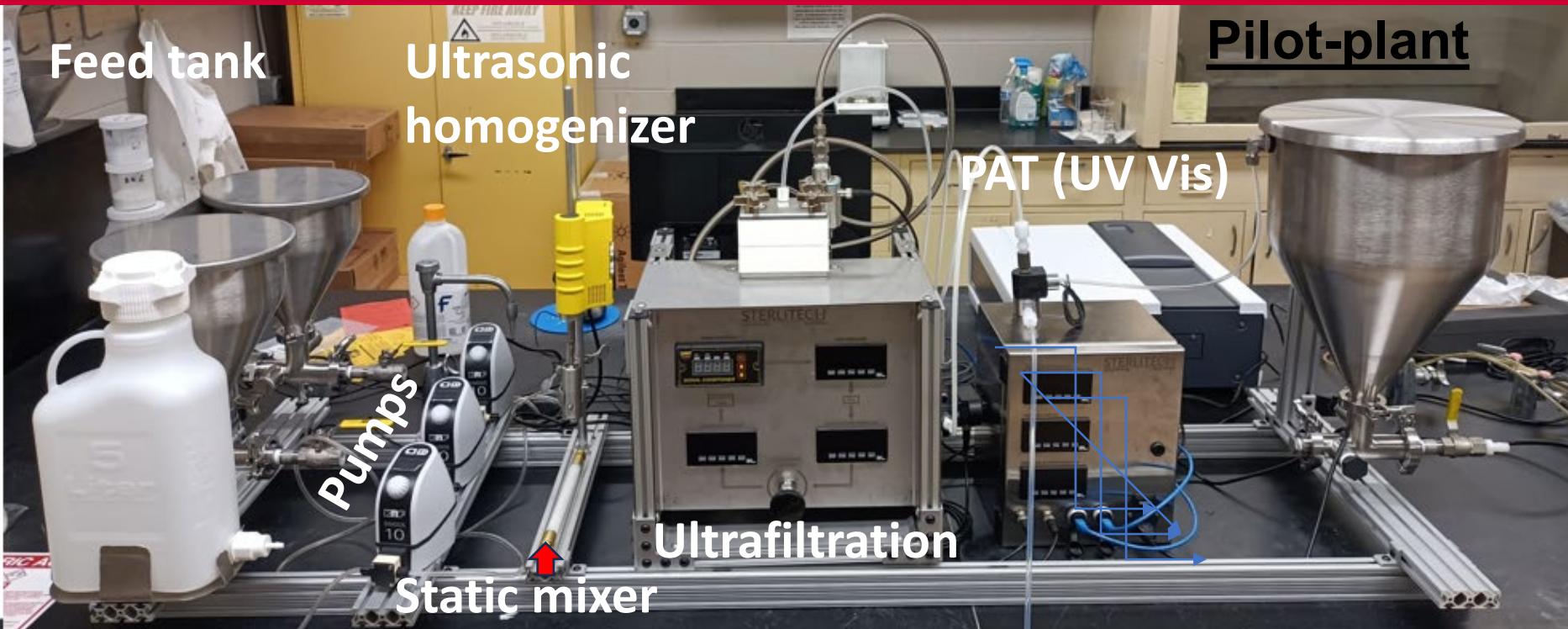
Plant

AI/ML



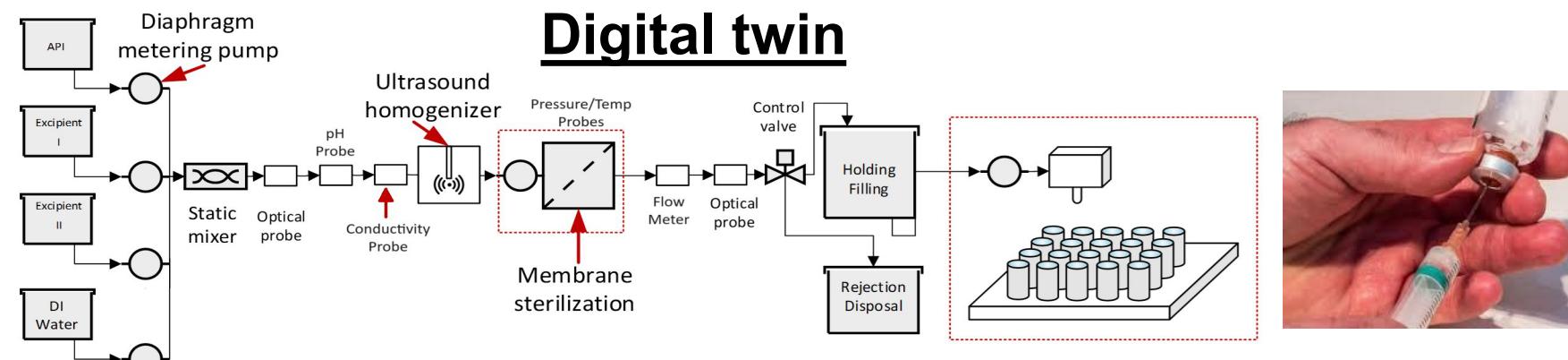
Predictions and  
saved in '.csv' format

# Injectable drug product manufacturing

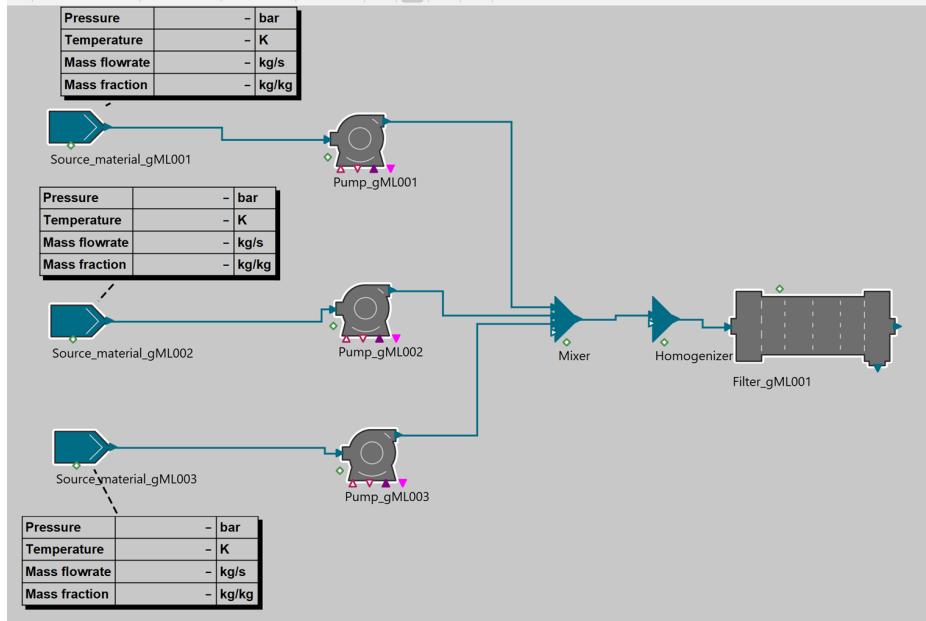
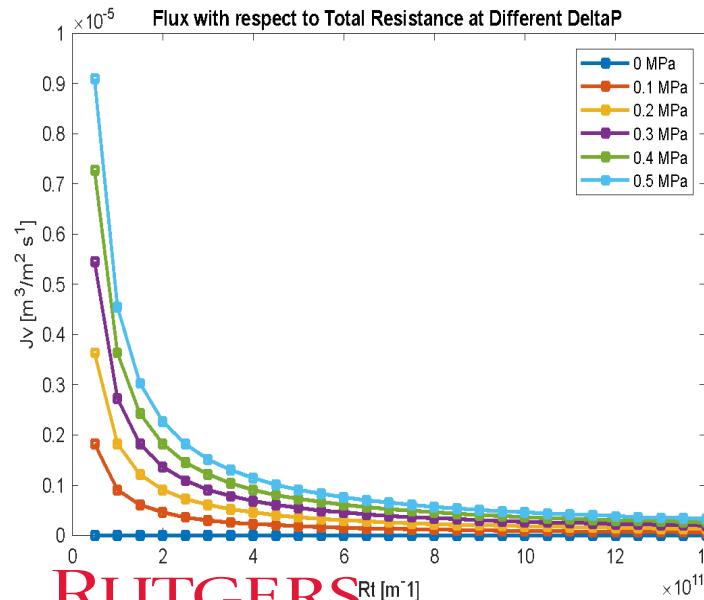
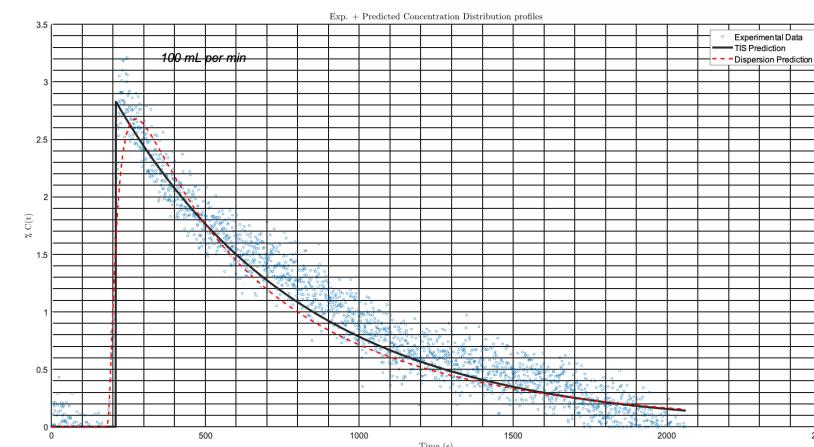
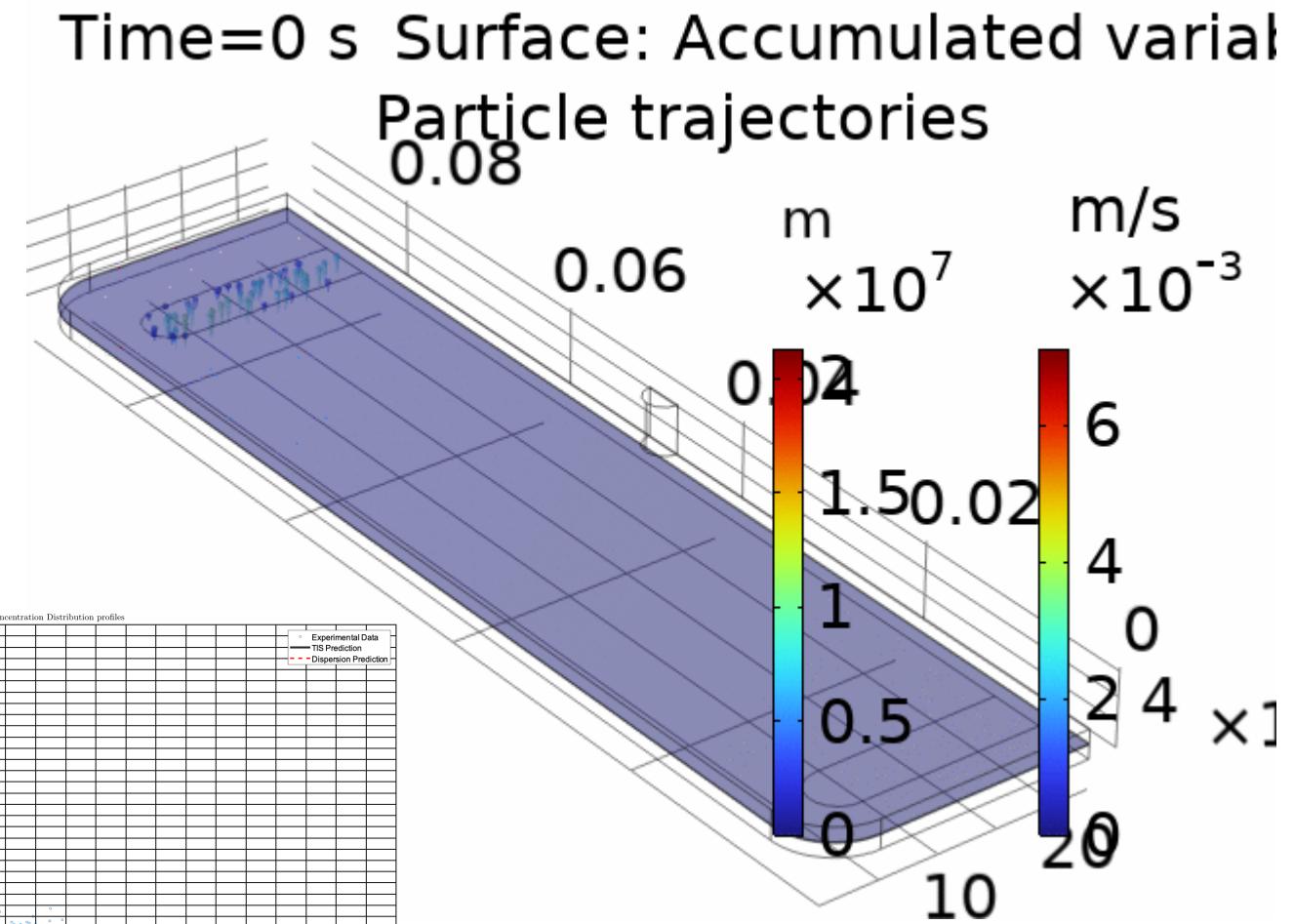


**Pilot-plant**

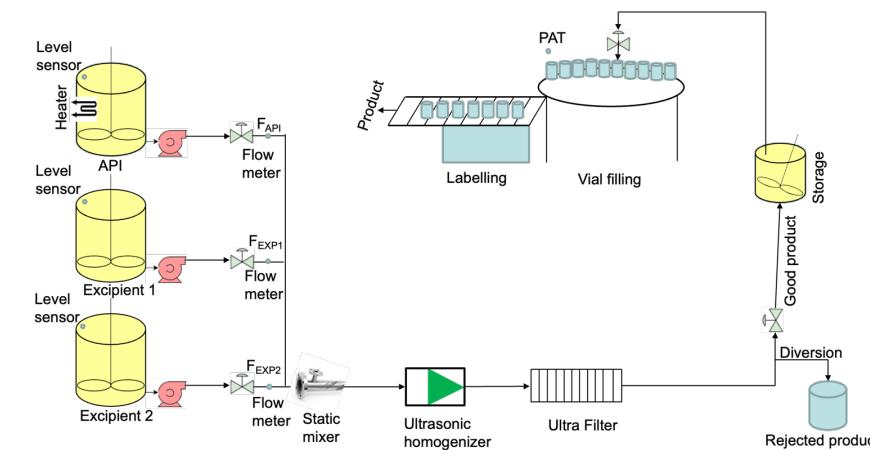
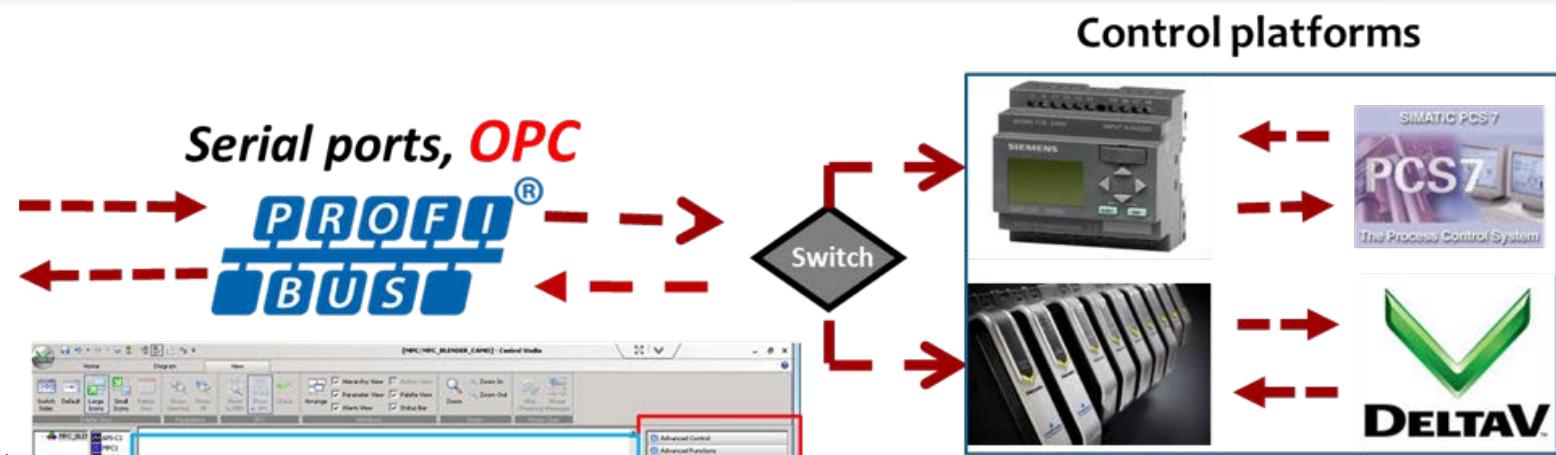
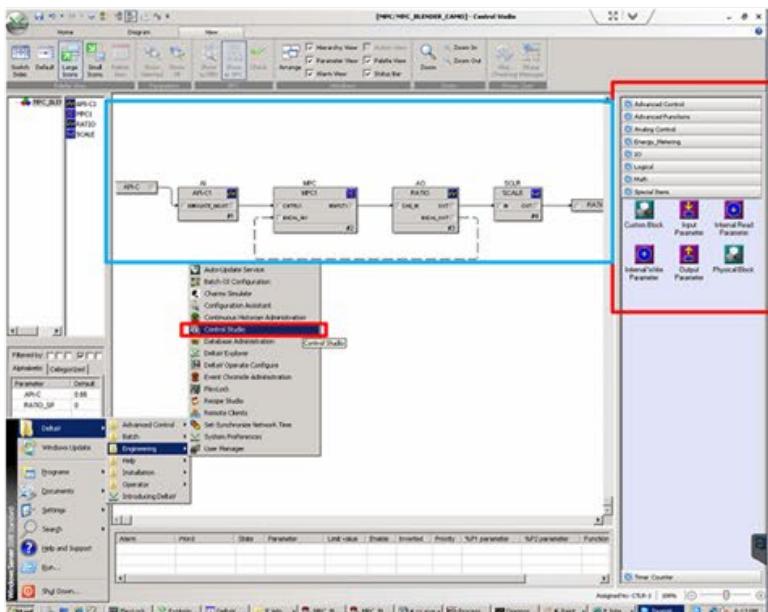
Vial filling and capping



# Modelling of injectable manufacturing process



# Automation and control for real time quality assurance



Sensors  
UV VIS

Real time  
monitoring

Real time  
control

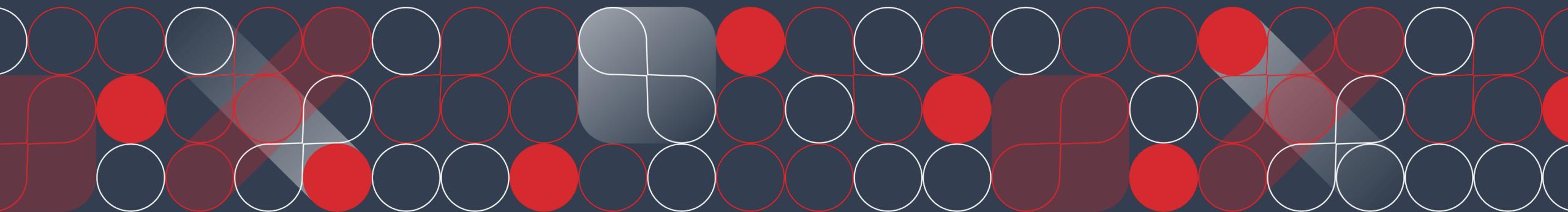
# *ALL MODELS ARE WRONG AND YOURS ARE USELESS*

what is needed to make predictive models accepted for regulatory decision making – focus on complex generics

Sebastian Polak

MAY 20-21

2024



# the source of presentation title

and how to translate it to the drugs realm

npj | precision oncology

Published in partnership with The Hormel Institute, University of Minnesota

Comment



<https://doi.org/10.1038/s41698-024-00553-6>

## All models are wrong and yours are useless: making clinical prediction models impactful for patients

Florian Markowetz

Check for updates

### KEY OBSERVATIONS

- focus on *in silico* models with potential use in the clinical settings
- success in academia is not the same as success in the clinic
- successful models use data that are available in routine practice
- successful models are linked to actions

### Box 1 | A checklist for useful clinical prediction tools

1. Do you address a clear clinical decision point?
2. Does your tool output parameters that help in that decision making?
3. Do you address a clear clinical decision point? Are you sure? Better go and talk to a clinical collaborator who is a domain expert.
4. Are the input parameters used in common clinical practice?
5. Do you address a clear clinical decision point? Are you really, really sure? Better go and get advice from a large and diverse group of experts and stakeholders.
6. Is the interface easy to use, both for input and output?
7. What value does your model add to current clinical judgement?
8. Is your tool better than existing tools?
9. What is your implementation plan?
  - a. What needs to happen for doctors to actually use this tool?
  - b. What is the path through medical device regulation?
  - c. Is the medical environment ready for it?

# simulating virtual patients and waiving clinical studies

>115 Novel Drugs



## ONCOLOGY

|                     |                                                     |                   |                                    |                  |                                      |
|---------------------|-----------------------------------------------------|-------------------|------------------------------------|------------------|--------------------------------------|
| AbbVie              | Venexta (venetoclax)                                | EMD Serono        | Tepmetko (tepotinib hydrochloride) | Novartis         | Vijoice (apalutamide)                |
| Agios               | Tibsovo (ivosidenib)                                | Genentech         | Alecensa (alectinib)               | Novartis         | Rydapt (midostaurin)                 |
| Amgen               | Blincyto (blinatumomab)                             | Genentech         | Cotellic (cobimetinib)             | Novartis         | Tabrecta (capmatinib)                |
| Amgen               | Lumakras (sotorasib)                                | Genentech         | Gavreto <sup>®</sup> (pralsetinib) | Novartis         | Zykadia (ceritinib)                  |
| Ariad               | Alunbrig (brigatinib)                               | Genentech         | Polivy (polatuzumab vedotin-piq)   | Novartis         | Jakavi (ruxolitinib)                 |
| Ariad (Takeda)      | Iduslig (ponatinib)                                 | Genentech         | Rozlytrek (entrectinib)            | Pfizer           | Daurismo (glasdegib)                 |
| AstraZeneca         | Calquence (acalabrutinib)                           | Incyte            | Pemazyre (pemigatinib)             | Pfizer           | Ibrance <sup>®</sup> (palbociclib)   |
| AstraZeneca         | Lynparza (olaparib)                                 | Janssen           | Balversa (erdafitinib)             | Pfizer           | Bosulif (bosutinib)                  |
| AstraZeneca         | Tagrisso (osimertinib)                              | Janssen           | Erleada (apalutamide)              | Pharmacyclics    | Lorbruna (lorlatinib)                |
| AstraZeneca         | Truquaq <sup>®</sup> (capivasertib)                 | Lilly             | Retevmo (selreceptinib)            | Puma             | Imbruvica (ibrutinib)                |
| Belogene            | Brukinia (zanubrutinib)                             | Lilly             | Verzenio (abemaciclib)             | Sanofi           | Nerlynx <sup>®</sup> (neratinib)     |
| Biohaven            | Nurtec (rimegepant)                                 | Loxo              | Jaypirca (pirabrutinib)            | Seattle Genetics | Jevtana (cabazitaxel)                |
| BluePrint Medicines | Ayvakit (avapritinib)                               | Loxo Oncology     | Vitrakvi (larotrectinib)           | Spectrum         | Tukysa (tucatinib)                   |
| Celgene             | Inrebic (fedratinib hydrochloride)                  | Menarini/Stemline | Orzurdo (elacestrant)              | Springworks      | Beleodaq (belinostat)                |
| Daiichi Sankyo      | Turalta (peroxatinib)                               | Mirati            | Krazati (adagrasib)                | Takeda           | Ogivree <sup>®</sup> (niragrant)     |
| Daiichi Sankyo      | Ezharmia (valmetostat tosylate)                     | Novartis          | Farydak (panobinostat)             | Taiho            | Exkivity (mobocertinib)              |
| Daiichi Sankyo      | Vanflyta <sup>®</sup> (quizartinib dihydrochloride) | Novartis          | Kisqali (ribociclib succinate)     | Verastem         | Fruzaqja <sup>®</sup> (fruquintinib) |
| Deciphera           | Ojntlock (irpretinib)                               | Novartis          | Scemblix (asciminib)               |                  | Lygobi (futibatinib)                 |
| Eisai               | Lenvima (lenvatinib)                                | Novartis          | Odomzo (sonidegib)                 |                  | Copiktra (duvelisib)                 |

and 375+ individual label claims, approved



## RARE DISEASE

|                           |                                 |                   |                                     |                  |                                           |
|---------------------------|---------------------------------|-------------------|-------------------------------------|------------------|-------------------------------------------|
| Agios                     | Pyrukynd (mitapivat)            | Intercept         | Ocaliva (obeticholic acid)          | Peloton/Merck    | Weireg (bezafibrate)                      |
| AkaRx (Eisai)             | Doptelet (avatrombopag maleate) | Ipse              | Sohonus <sup>®</sup> (palovarotene) | PTC Therapeutics | Emflaza (deflazacort)                     |
| AstraZeneca               | Koselugo (selumetinib)          | Kadmon            | Rezurock (belumosudil)              | Sanofi Genzyme   | Cerdelga (eliglustat tartrate)            |
| Aurinia                   | Lupkynis (volesporin)           | Merck             | Weiireg (bezafibrate)               | Travere          | Filspari (sparsentan)                     |
| Genentech                 | Enspryng (satralizumab)         | Mirum             | Livmarli (maralixibat)              | Vertex           | Symdeko (tezacaftor/ivacaftor)            |
| Genentech                 | Eryzedi (risdiplam)             | Mitsubishi Tanabe | Dysval (valbenazine)                |                  | Trikafta (exacaftor/ivacaftor/tezacaftor) |
| Global Blood Therapeutics | Oxbryta (voxelotor)             | Novartis          | Isturise (osilodrostat)             |                  |                                           |



## CENTRAL NERVOUS SYSTEM

|          |                                  |             |                          |          |                               |
|----------|----------------------------------|-------------|--------------------------|----------|-------------------------------|
| AbbVie   | Rinvoq (upadacitinib)            | Eisai       | Dayvigo (lemborexant)    | Lilly    | Reyrov (fasmiditan succinate) |
| AbbVie   | Quipta (atogepant)               | Idorsia     | Quiviquiq (daridorexant) | Novartis | Mayzent (siponimod fumarate)  |
| Alkermes | Aristada (aripiprazole lauroxil) | Janssen     | Ponvory (ponesimod)      | Pfizer   | Zavzpret (zavegepan)          |
| Alkermes | Lybalvi (olanzapine/samidorphan) | Kyowa Kirin | Nourianz (stradefylline) | UCB      | Brivact (brivaracetam)        |



## INFECTIOUS DISEASE

|         |                       |          |                              |         |                                                 |
|---------|-----------------------|----------|------------------------------|---------|-------------------------------------------------|
| Gilead  | Vexlury (remdesivir)  | Merck    | Prevymis (fetermovir)        | Pfizer  | Paxlovid <sup>®</sup> (nirmatrelvir, ritonavir) |
| Gilead  | Veklury (remdesivir)  | Nabriva  | Xenleta (efefamulin acetate) | Tibotec | Edurant (trilpicvirine)                         |
| Janssen | Olysto (simeprevir)   | Novartis | Egaten (trilabendazole)      | VIIV    | Cabenuva Kit (cabotegravir/trilpicvirine)       |
| Merck   | Pifeltro (doravirine) |          |                              |         |                                                 |



## GASTROENTEROLOGY

|             |                                      |          |                                                           |       |                          |
|-------------|--------------------------------------|----------|-----------------------------------------------------------|-------|--------------------------|
| AstraZeneca | Faxigyo (dabagliflozin)              | Phathom  | Voquezna TriplePak (onopriston/omeprazole/clarithromycin) | Shire | Motegrity (prucalopride) |
| AstraZeneca | Movantik (naloxegol)                 | Shionogi | Sympoic (naldemedine)                                     |       |                          |
| Helsinn     | Akynteo (fosnetupitant/palonosetron) |          |                                                           |       |                          |



## CARDIOVASCULAR

|                  |                      |                   |                       |  |  |
|------------------|----------------------|-------------------|-----------------------|--|--|
| Actelion (J & J) | Opsumit (macitentan) | Johnson & Johnson | Xarelto (rivaroxaban) |  |  |
| BMS              | Camzyos (mavacamten) | Pfizer            | Revatio (ildesofib)   |  |  |



## ENDOCRINE

|          |                                    |         |                          |       |                           |
|----------|------------------------------------|---------|--------------------------|-------|---------------------------|
| AbbVie   | Orilissa (elagolix)                | Janssen | Invokana (canagliflozin) | Merck | Steglatro (ertugliflozin) |
| Astellas | Veozah <sup>®</sup> (fezolinetant) | Lilly   | Olumiant (baricitinib)   |       |                           |
| Esperion | Nexetol (bempedoate acid)          | Lilly   | Mounjaro (tirzepatide)   |       |                           |



## OTHER

|          |                      |        |                     |  |  |
|----------|----------------------|--------|---------------------|--|--|
| Galderma | Akliet (trifarotene) | Takeda | Livtency (marbavir) |  |  |
|          |                      |        |                     |  |  |

Updated March. 2024

# various application explored in PBPK submissions

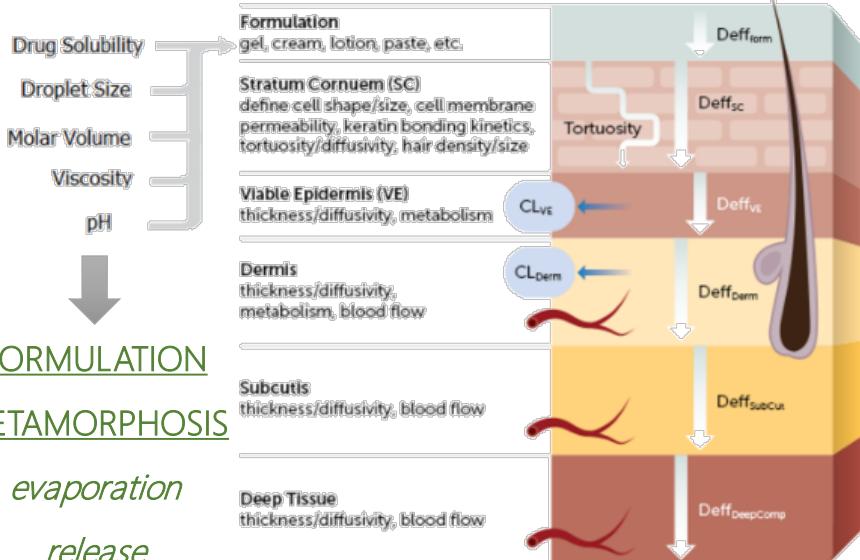
various routes of administration, therapeutic areas, drug development challenges, applications

| Application                                                           | Drug (trade name)                 | Year |
|-----------------------------------------------------------------------|-----------------------------------|------|
| P-gp and CYP3A4 inhibition                                            | Rivaroxaban (Xarelto)             | 2011 |
| OATP1B1/3 influence on PK                                             | Simeprevir (Olysio)               | 2013 |
| Food effect                                                           | Sonidegib (Odomzo)                | 2015 |
| PK in Cancer subjects                                                 | Cobimetinib (Cotellic)            | 2015 |
| Hepatic Impairment                                                    | Obeticholic acid (Ocaliva)        | 2016 |
| PK in children                                                        | Deflazacort (Emflaza)             | 2017 |
| UGT inhibition                                                        | Ertugliflozin (Steglatro)         | 2017 |
| Effect of stomach pH changes on PK                                    | Ribociclib (Kisqali)              | 2017 |
| Explain non-linear PK and ethnic differences due to OATP transporters | Letermovir (Prevymis)             | 2017 |
| ADC DDI                                                               | Polatuzumab vedotin piiq (Polivy) | 2018 |
| DDI in children – dermal application                                  | Akliel (trifarotene)              | 2019 |
| BE (PD endpoint study waiver) – dermal application                    | Arthritis Pain (diclofenac)       | 2020 |

# models allowing complex generics simulations

mechanistic models for various routes of administration – all available in Simcyp Simulator with GUI and validation

## MechDermA – skin absorption model > 10 years of R&D



Received: 19 November 2021 | Revised: 15 March 2022 | Accepted: 26 April 2022

DOI: [10.1002/psp.4.12814](https://doi.org/10.1002/psp.4.12814)

### ARTICLE

Patel N. et al.  
**Multi-phase multi-layer mechanistic dermal absorption (MPML MechDermA) model to predict local and systemic exposure of drug products applied on skin**

European Journal of Pharmaceutics and Biopharmaceutics 178 (2022) 140–149  
Contents lists available at ScienceDirect  
European Journal of Pharmaceutics and Biopharmaceutics  
journal homepage: [www.elsevier.com/locate/ejpb](http://www.elsevier.com/locate/ejpb)

Check for updates

Modelling and simulation approaches to support formulation optimization, clinical development and regulatory assessment of the topically applied formulations – Nimesulide solution gel case study\*

Naresh Mittapelly <sup>a</sup>, Sebastian Polak <sup>a,b</sup>

frontiers | Frontiers in Pharmacology  
Check for updates  
OPEN ACCESS  
EDITED BY  
Yousuf Hussain Mohammed,  
The University of Queensland, Australia  
REVIEWED BY  
Lateef Ahmad,  
University of Swabi, Pakistan  
Guoping Yang,  
Central South University, China  
\*CORRESPONDENCE  
J. F. Clarke,  
james.clarke@certara.com  
SPECIALTY SECTION  
This article was submitted to  
Toxicology and Applied Pharmacology  
European Journal of Pharmaceutics and Biopharmaceutics 178 (2022) 140–149  
DOI: [10.3389/fphar.2022.1007496](https://doi.org/10.3389/fphar.2022.1007496)

TYPE Original Research  
PUBLISHED: 01 December 2022  
DOI: [10.3389/fphar.2022.1007496](https://doi.org/10.3389/fphar.2022.1007496)

A mechanistic physiologically based model to assess the effect of study design and modified physiology on formulation safe space for virtual bioequivalence of dermatological drug products

J. F. Clarke <sup>1,2\*</sup>, K. Thakur <sup>1</sup> and S. Polak <sup>1,2</sup>

1<sup>1</sup> ToxGroup Division, Certara UK, Sheffield, United Kingdom; <sup>2</sup>Faculty of Pharmacy, Trinity College Dublin, Dublin, Ireland  
Toxicology and Applied Pharmacology 459 (2023) 116357  
Contents lists available at ScienceDirect  
Toxicology and Applied Pharmacology  
journal homepage: [www.elsevier.com/locate/taap](http://www.elsevier.com/locate/taap)

Check for updates

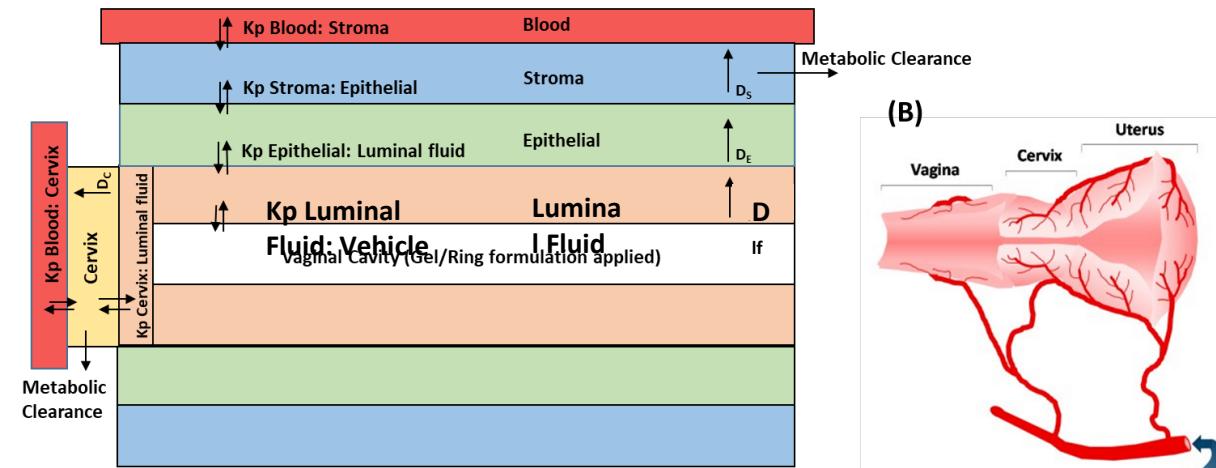
Wisniowsk B. et al.  
Physiologically based modelling of dermal absorption and kinetics of consumer-relevant chemicals: A case study with exposure to bisphenol A from thermal paper

Check for updates

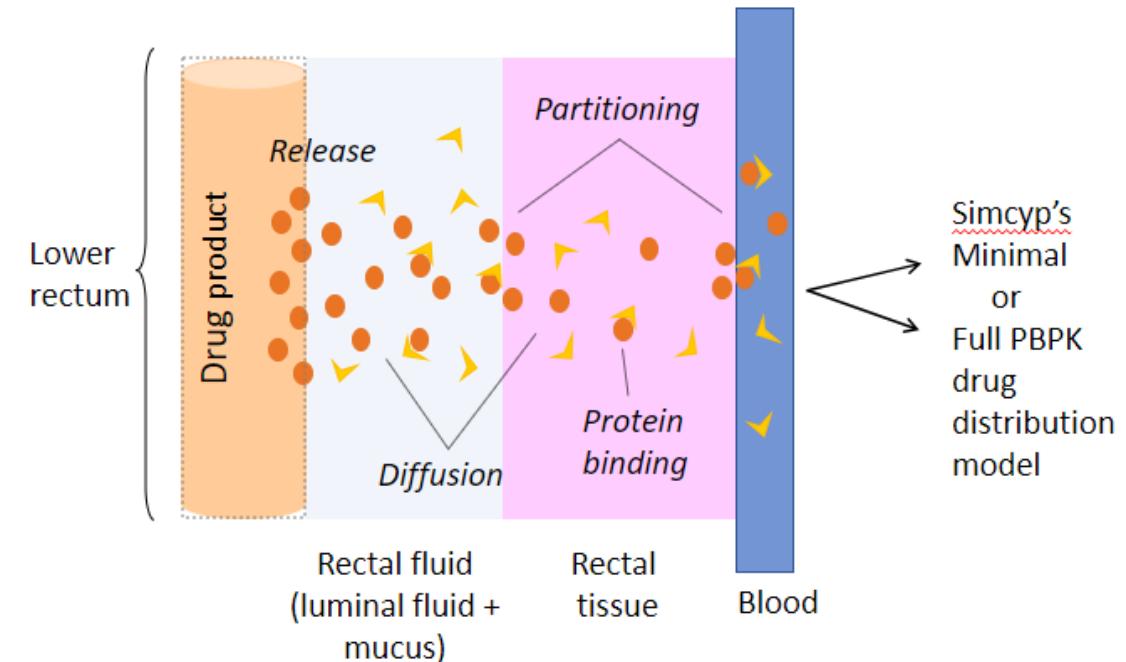
# models allowing complex generics simulations

mechanistic models for various routes of administration – all available in Simcyp Simulator with GUI and validation

## MechVAM – vaginal absorption model



## MechRAM – rectal absorption model



Received: 1 November 2023 | Revised: 18 January 2024 | Accepted: 22 January 2024

DOI: 10.1111/bcp.16029

### ORIGINAL ARTICLE

Thakur K. et al.

**Development and verification of mechanistic vaginal absorption and metabolism model to predict systemic exposure after vaginal ring and gel application**



© Copyright 2024 Certara, Inc. All rights reserved.

Contents lists available at [ScienceDirect](#)

International Journal of Pharmaceutics

journal homepage: [www.elsevier.com/locate/ijpharm](http://www.elsevier.com/locate/ijpharm)



Yuri Dancik <sup>a,\*</sup>, Naresh Mittadelly <sup>a</sup>, Santosh K. Puttrevu <sup>a</sup>, Sebastian Polak <sup>a,b</sup>  
A novel physiologically based pharmacokinetic model of rectal absorption, evaluated and verified using clinical data on 10 rectally administered drugs

# conclusions, discussion points and questions

current state and future perspectives

## PBPK MODELS

- *verified, validated and widely accepted tools saved in the Model Master File form*
- *the same level of quality control as in vitro and in vivo models*
- *utilized in various areas so solve problems and answer scientific questions*

## COMPLEX GENERICS

- *require new tools to support development and submissions*
- *considering advancement of the PBPK models questions arises what is required for their wider acceptance for regulatory decision making?*





## Predictive Tools for Generic Product Development & Assessment – Research Input

**Maxime Le Merdy, Ph.D., PharmD.**

*Associate Director, Research And Collaboration*

May 20, 2024



# Active Scientific Collaborations Between Simulations Plus and FDA

## Physiologically Based Pharmacokinetic Model to Support Ophthalmic Suspension Product Development

Maxime Le Merdy,<sup>1</sup> Ming-Liang Tan,<sup>1</sup> Andrew Babiskin,<sup>1,2</sup> and Liang Zhao<sup>1</sup>

## Clinical Ocular Exposure Extrapolation for Ophthalmic Solutions Using PBPK Modeling and Simulation

Maxime Le Merdy<sup>1</sup> · Farah AlQaraghuli<sup>1</sup> · Ming-Liang Tan<sup>2</sup> · Ross Walenga<sup>2</sup> · Andrew Babiskin<sup>2</sup> · Liang Zhao<sup>2</sup> · Viera Lukacova<sup>1</sup>

## Predicting Human Dermal Drug Concentrations Using PBPK Modeling and Simulation: Clobetasol Propionate Case Study

William W. van Osdol<sup>1</sup> · Jasmina Novakovic<sup>1</sup> · Maxime Le Merdy<sup>1</sup> · Eleftheria Tsakalozou<sup>2</sup> · Priyanka Ghosh<sup>2</sup> · Jessica Spires<sup>1</sup> · Viera Lukacova<sup>1</sup>

FDA: Ocular model extensions

FDA: Oral cavity model extensions

FDA: Pulmonary model extensions

FDA: Dermal model extensions

FDA: ACAT™ – GI Diseases – Local acting drugs

FDA: ACAT™ - Modified release

FDA: Virtual BE trial workflows

FDA: Long-acting injection model extensions

Ocular  
Nasal  
Oral Cavity

Pulmonary

Dermal

IV  
Oral

IM & SC  
Injections

Intraarticular  
Injections

# Budget Allocation

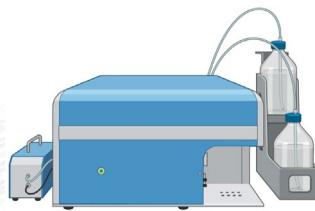
# Industry – Academic Partnerships



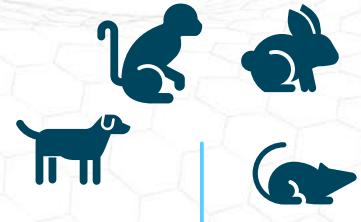
Northeastern  
University



*In vitro*  
characterization



*In vivo* preclinical  
study



Published *in vitro* &  
*in vivo* data



Enhancement and validation of the state-of-the-art PBPK model to support generic drug product development and regulatory assessment.

# Budget Allocation



# Challenges

*Increase of in silico models complexity*



*Need for new data*

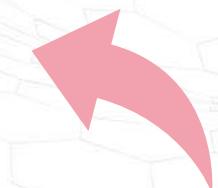


*Increase of costs associated*



*Administrative cost*

*Direct impact on research project outcomes & conclusions*



# Solution

*Increase of in silico models complexity*



*Need for new data*



*Increase Budget allocated*



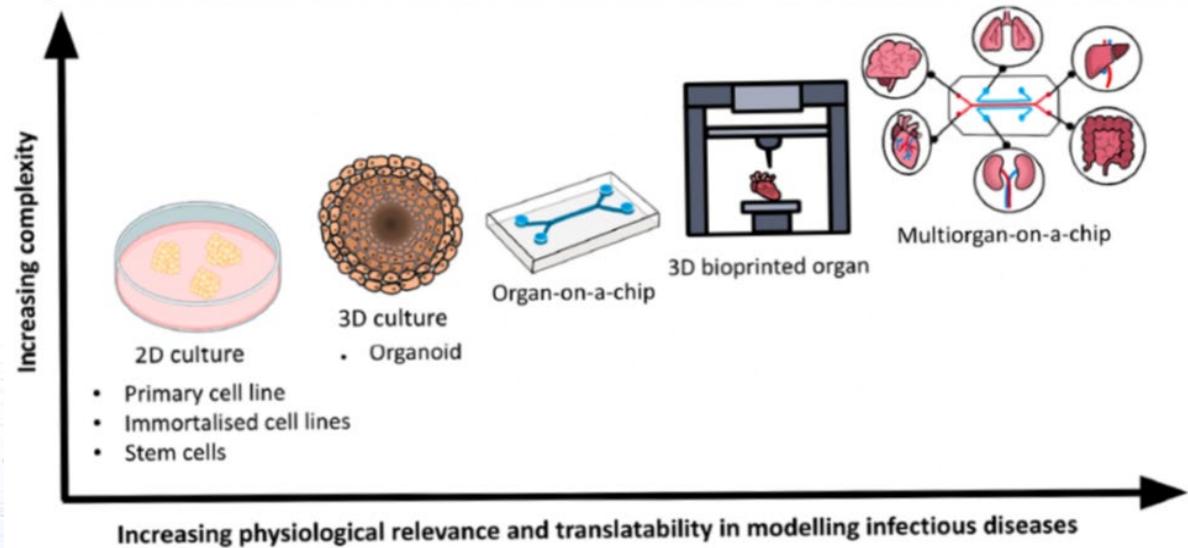
*Increase of costs associated*



*Administrative cost*

*Possible investigation of all facets of a particular issue*

# New *in vitro* Studies



Chia et al. *Biomedicines* 2022, 10, 1541.

- Development of new *in vitro* technologies (e.g., 3D cell culture..) combined with state-of-the-art *in silico* models allowing *in vitro* to *in vivo* extrapolation of the results.
- Role of Organ-on-a-chip could have in supporting the development and regulatory assessment of generic drug products.





# Thank you!

Public Comments for Session 2  
*Predictive Tools for Generic Product Development and Assessment*

---

***Virtual Comments: Did not provide PPTX – no PDF available***

➤ ***Stephan Schmidt, PhD, Professor, University of Florida***

# Public Comments for Session 2

## *Predictive Tools for Generic Product Development and Assessment*

### *In Person Comments:*

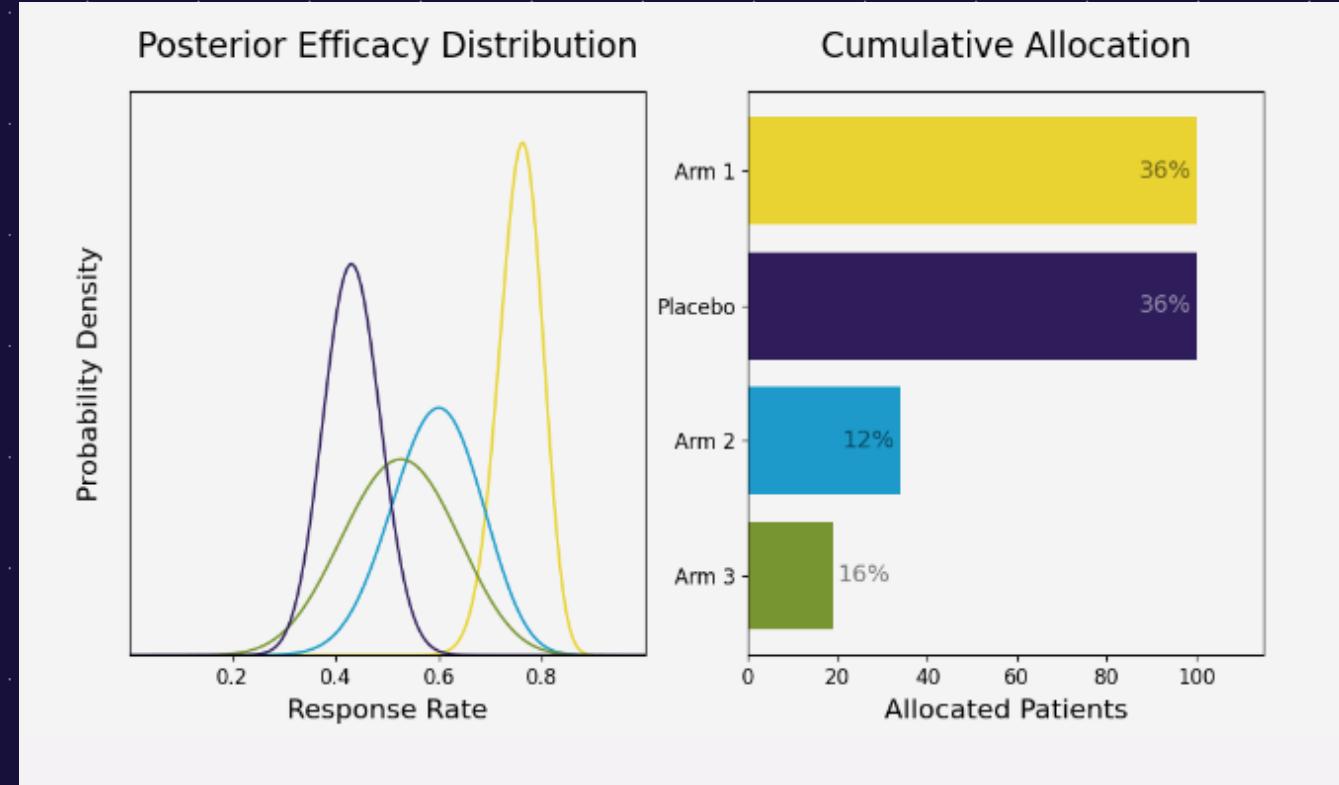
- Huong Huynh, PhD, Director of Regulatory Science, and Shu Chin Ma, PhD, VP of MIDD & Quantitative Medicine, Critical Path Institute (C-Path)
- Sandra Suarez-Sharp, PhD, President, Regulatory Strategies, Simulations Plus, Inc.
- Anuj Chauhan, PhD, Professor, Colorado School of Mines
- *Elad Berkman, PhD, CTO PhaseV*
- *Sebastian Melgar, MPH, Lead Associate Booz | Allen | Hamilton*
- *Brian Eden, Vice President, Global Life Sciences Technical Operations Capgemini Group*
- *Sandhya Polu and Anil Bhatta, Contracts Manager, Deloitte Services LP*
- *Anthony Cristillo, PhD, MS, MBA, Partner, Digital Health*
- *Sarah Ferko, MS, PMP and Ally Lu, Senior Managing Consultant, Artificial Intelligence & Analytics, IBM Consulting*
- *Ashlee Brunaugh, PhD, Assistant Professor, Pharmaceutical Sciences, University of Michigan*
- *Jinxiang Xi, PhD, Associate Professor of Biomedical Engineering, University of Massachusetts, Lowell*
- *Guilherme Garcia, PhD, Assistant Professor, Marquette University and The Medical College of Wisconsin*
- *Darragh Murnane, PhD, Professor of Pharmaceutics, University of Hertfordshire (Informix Pharma)*
- *Jeff Schroeter, PhD, Senior Scientist, Applied Research Associates*

### *Virtual Comments:*

- Ravendra Singh, PhD, Director of Pharmaceutical Systems Engineering Rutgers
- Sebastian Polak, PhD, Professor Jagiellonian University
- Maxime Le Merdy, PhD, Associate Director, Research and Collaboration Simulations Plus, Inc.
- Stephan Schmidt, PhD, Professor University of Florida
- Guenther Hochhaus, PhD, Professor University of Florida
- Yu Feng, PhD Associate Professor, Oklahoma State University
- Maria Malmlöf, PhD; Per Gerde, PhD, Director of Projects, Inhalation Sciences
- Laleh Golshahi, PhD, Associate Professor of Mechanical and Nuclear Engineering, Virginia Commonwealth University
- Rodrigo Cristofolletti, PhD, Assistant Professor, University of Florida

## Adaptive Trials for Bioequivalence - FDA GDUFA Public Workshop

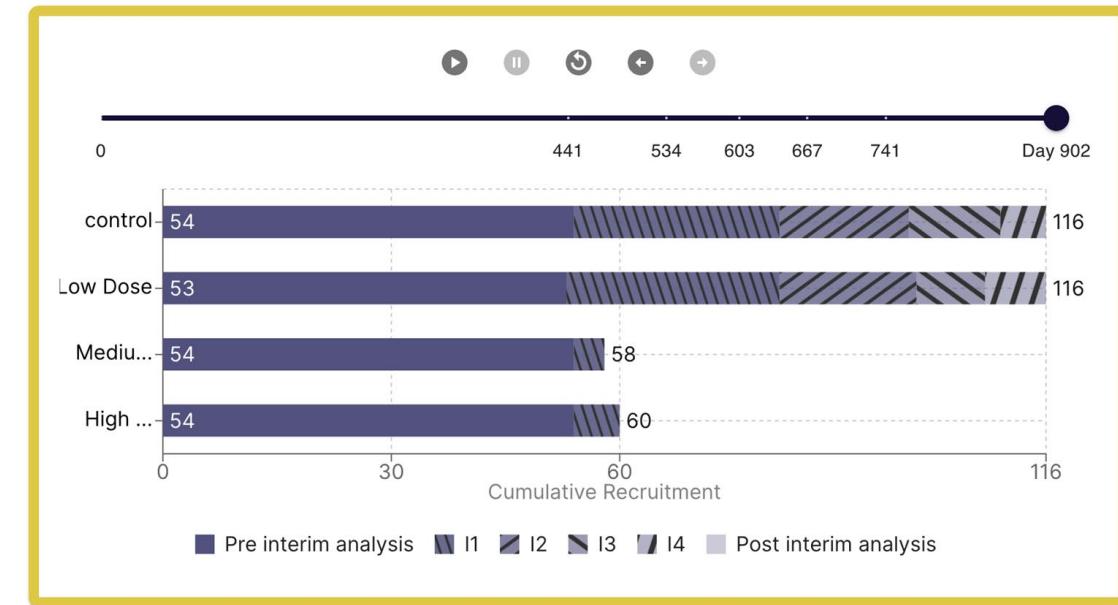
**Elad Berkman,**  
CTO and Co-founder of PhaseV Trials



# Adaptive Trials

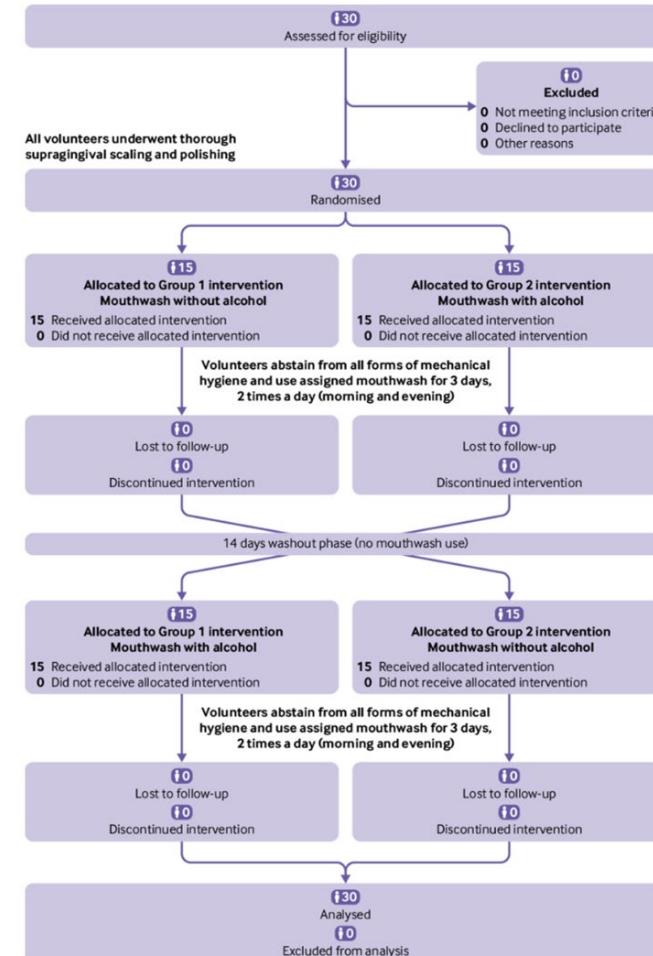
- Leverage the data collected during the trial:
  - Efficiency - Less patients, higher power
  - Time to market - stop earlier for efficacy or futility
  - Removing the guesswork
    - Variance
    - Effect size

⇒ Increased probability of success



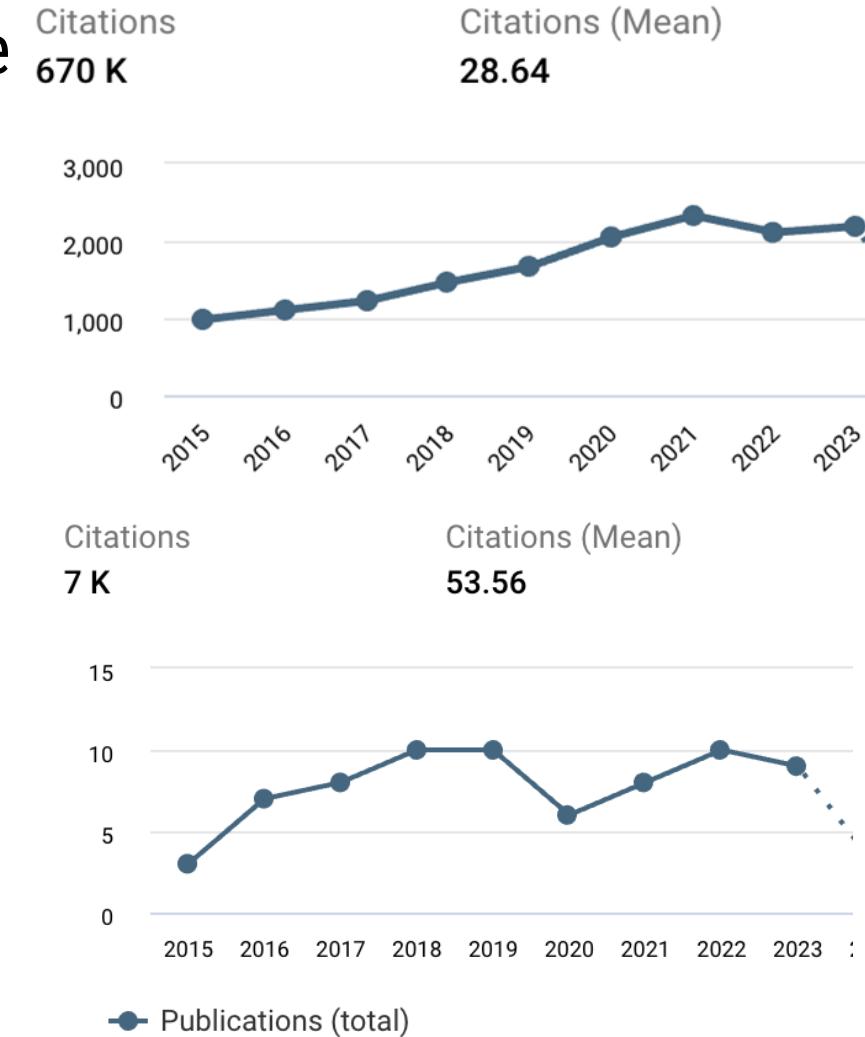
# Adaptive Trials for Generics

- Bioequivalence trials pose a unique challenge:
  - Small sample sizes
  - Efficiency as a key focus
  - Crossover trials
    - In-person variance - larger uncertainty
  - Relevant Historical data
    - Room for Bayesian designs
  - Bespoke approach is more challenging
    - Limited Budget

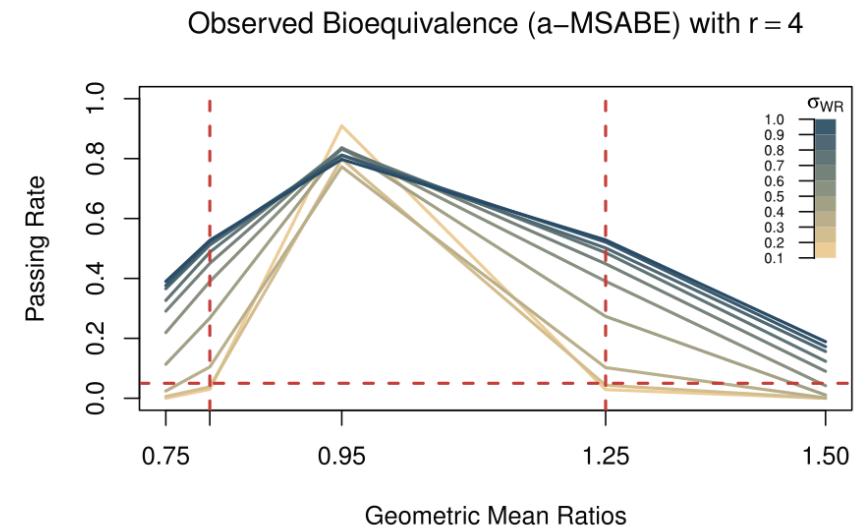


\*Dwan K, Li T, Altman DG, Elbourne D. CONSORT 2010 statement: extension to randomised crossover trials

- “Sequential design approaches for bioequivalence studies with crossover designs”, Potvin et al 2008
- “Optimal adaptive sequential designs for crossover bioequivalence studies”, Xu et al 2016
- “Statistical methodology for highly variable compounds: A novel design approach for the ofatumumab Phase 2 bioequivalence study”, Jones et al 2022



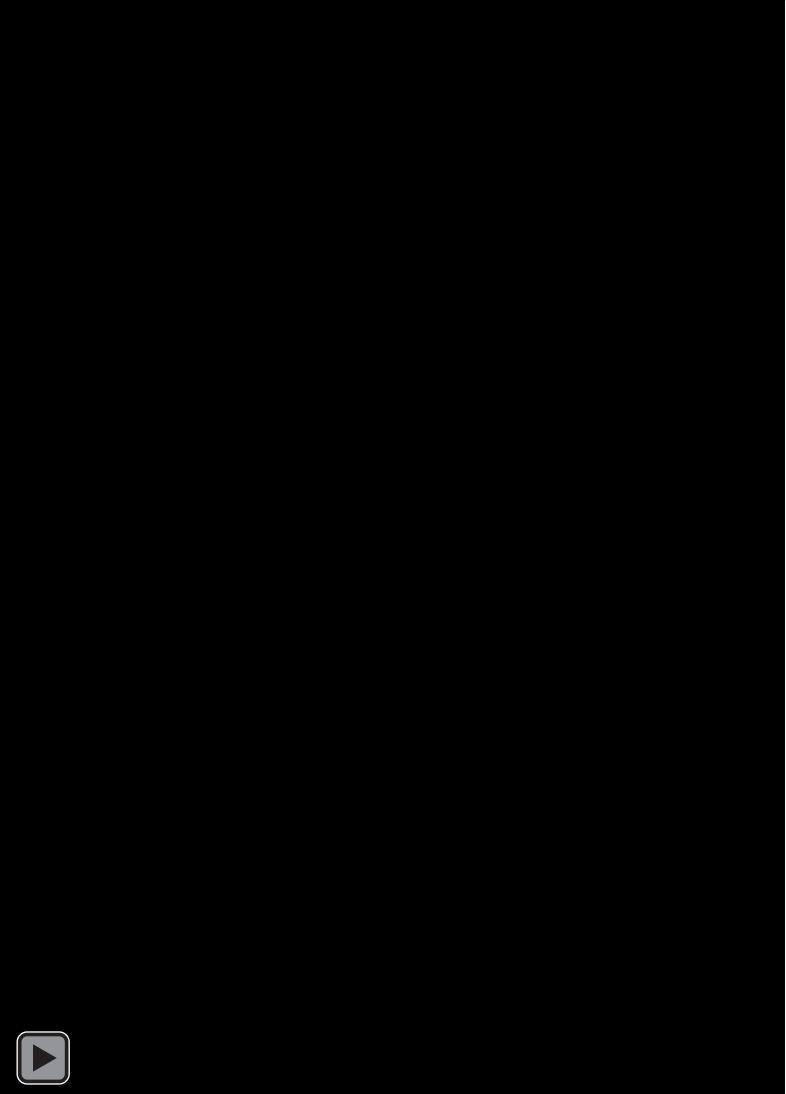
- Adaptive MSABE
  - New design combining MSABE (ABE/RSABE) with Sequential design (based on Potvin 2008)
  - Many degrees of freedom:
    - What should the initial number of subjects be ( $n_1$ )?
    - How many replicates per subject ( $r$ )?
    - What to choose  $\alpha_1$  and  $\alpha_2$ ?
    - What value of GMR to assume?
    - ...



\*Lim D, Rantou E, Kim J, Choi S, Choi NH, Grosser S. Adaptive designs for IVPT data with mixed scaled average bioequivalence

# Calibration of Trial Parameters

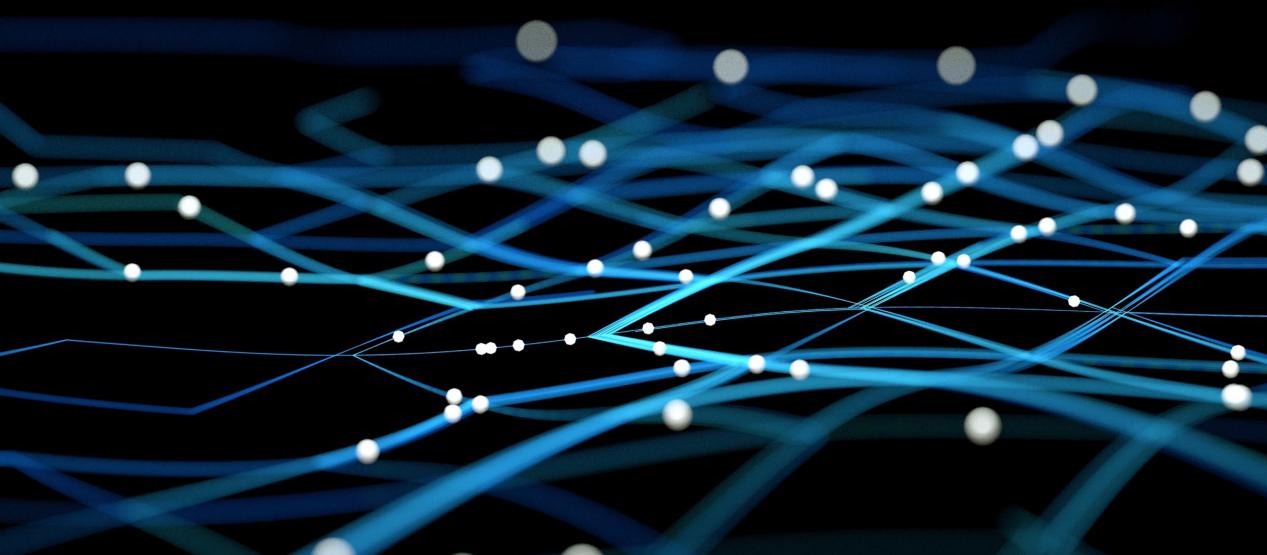
- **PhaseV** has developed a unique method for efficiently calibrating trial parameters:
  - Start with a burn-in - run simulations with diverse parameter values.
  - Train a model on the results and update after every batch
  - Choose new parameters guided by the model
  - Establish confidence in the final choice of parameters, without needing to heavily simulate that particular setup.
- The overall number of simulations required for convergence and verification is of the order of magnitude that would be needed to verify each set of parameters (if they are simulated one at a time).



# Directions for further Research

- Substantial room to innovate on trial design:
  - Additional adaptations
  - Optimal designs
  - “Building Blocks” to support easy design
    - Intuitive software
- We suggest there is room for a designated effort, utilizing the key learnings across adaptive trials to propose new, improved designs for Generic drug trials

# Thank You



# Utilization of Artificial Intelligence and Machine Learning Applications in Post-Marketing Safety, Regulatory Review, and Physiologically Based Pharmacokinetic Modeling for Generic Drug Development

Proposed Priority GDUFA Science and Research Initiatives

FDA should consider prioritizing the use of artificial intelligence and machine learning to address current challenges impacting post-marketing safety, regulatory review, and pharmacokinetic modeling



## Post-Marketing Safety



## Regulatory Review



## Pharmacokinetic Modeling

Current Challenges

Potential for Addressing Current Challenges through AI/ML

Considerations for Implementation of AI/ML

Recommendations

# AI has the potential to mitigate existing challenges in conducting post-market surveillance for generic drugs, but FDA should carefully consider ethical, privacy, and patient diversity concerns

## Current challenges and barriers in conducting post-market surveillance of generic drug substitution include:

- **Limited data:** There is insufficient data on bioequivalence versus real-world effectiveness due to under-reporting of adverse events
- **Lack of standardization:** Lack of a standardized reporting system can make it difficult for healthcare providers to submit adverse event (AE) reports
- **Cost:** Conducting large-scale studies to assess the real-world effectiveness and safety of generic drugs can be expensive and logistically challenging
- **System limitation:** Existing reporting can be complex to navigate, which can limit utilization
- **Data security:** Concerns over data privacy of patients' health information and data

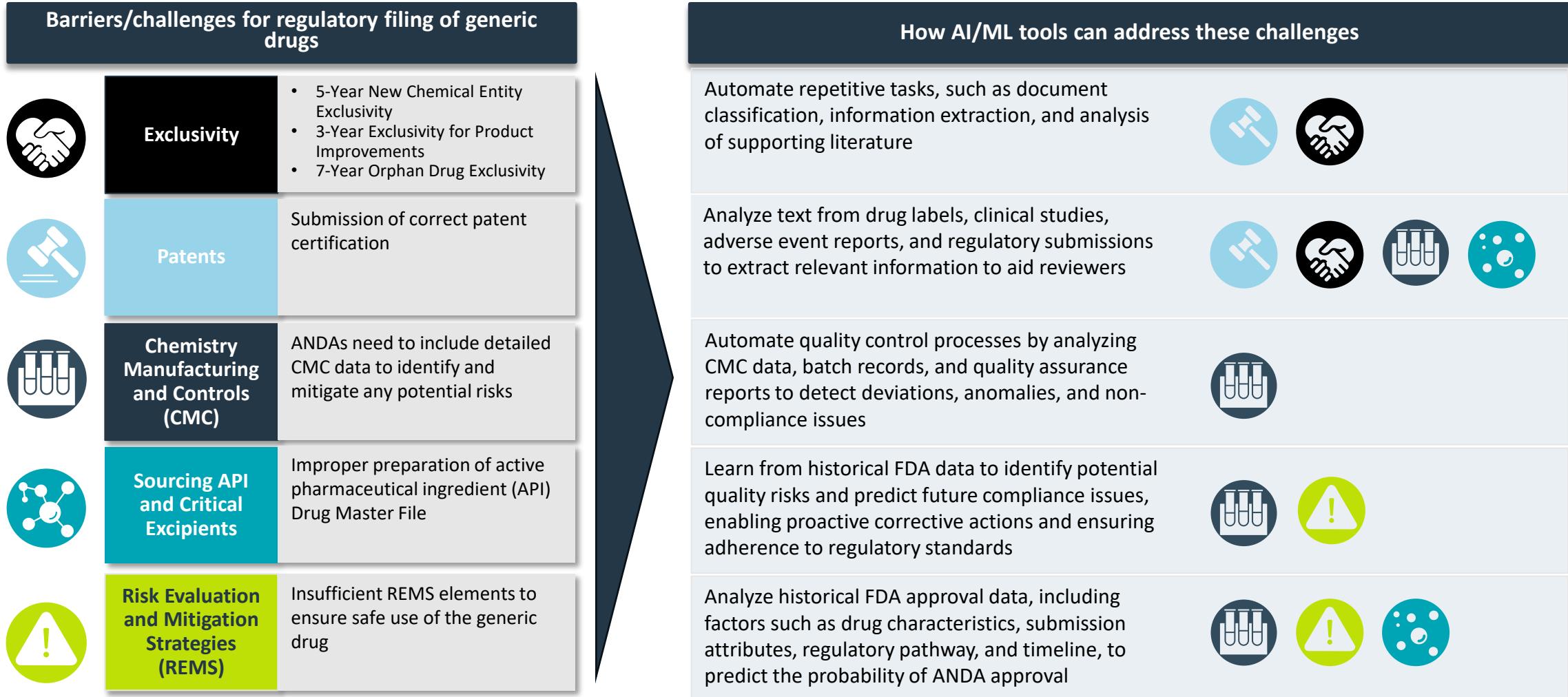
## Use of AI/ML tools can:

- Perform real-world data analyses of electronic health data to identify trends in AE. This can provide **insights into long-term safety of generic drugs**
- **Standardize and automate tasks** associated with case reporting, evaluation, and processing
- Analyze large amounts of safety data and compile aggregate reports of multiple AE for products within a specific timeframe. This **reduces the manual effort, cost, and time** compared to traditional report generation
- Train AI/ML tools on historical AE to **predict the potential for long-term effects** based on a drug's properties, patient factor, and reported events
- Provide **comparative safety analyses** of generic drugs and their potential effects

## When implementing AI/ML tools, FDA should consider:

- **Patient diversity concerns** (e.g., sponsors must ensure the historical data used to train algorithms is representative of **diverse patient data population to eliminate bias** and ethical concerns)
- **Regulatory compliance** (i.e., ensuring AI/ML tools meet regulatory requirements such as Good Pharmacovigilance Practices)
- **Ethical concerns** with using algorithms that have limited or little transparency, or algorithms that may have internal operations that are not visible to users or other interested parties
- **Security concerns** like improper data sharing, cybersecurity risks, and data privacy

# AI/ML tools are well-suited to address the current challenges in the regulatory review process of generic drugs



# Integration of AI/ML tools can improve prediction accuracy of physiologically based pharmacokinetic modeling by overcoming current challenges relating to complex formulations, model inputs and validation

## Formulation

- **Challenge:** Difficult to accurately model PK due to complex formulation or route of administration.
- **AI solution:** Integrate data from various resources (e.g., drug properties, excipient interactions, and dissolution profile) to improve accuracy.

## Model Validation

- **Challenge:** Clinical data limitations for the validation of PBPK models.
- **AI solution:** Impute missing data points, conduct neural network-based simulations using virtual patient populations, and apply transfer learning technique to adapt pretrained models to specific datasets.

## Model Inputs

- **Challenge:** Time intensive, costly, or infeasible data collection for generating input parameters for PBPK modeling.
- **AI solution:** Predict parameters using deep learning methods based on similar compounds or known correlations.

# FDA should consider requiring explainable and interpretable AI models, rigorous validation, and robust safeguards for data and patient privacy



Require **rigorous validation** of AI-integrated PBPK models against experimental data and comparison with traditional modeling to demonstrate reliability and suitability for regulatory decision-making



Require applicant use of **explainable models** and review results for model transparency



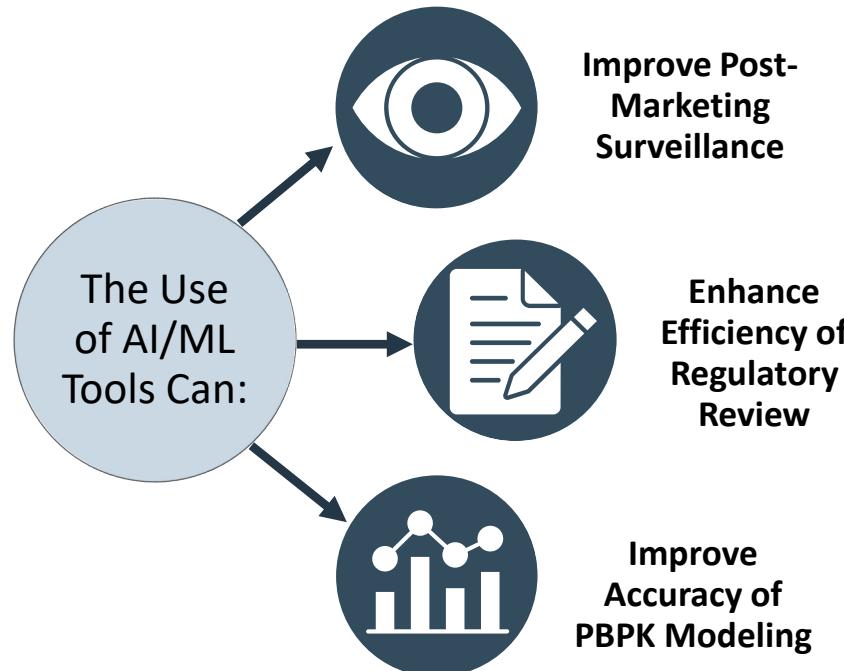
Prioritize **model interpretability** through quality model development practices and documentation



Consider **data privacy** and **patient confidentiality**

# Implementation of AI/ML can advance generic drug development by addressing current challenges in post-market surveillance, regulatory review, and pharmacokinetic modeling

## Potential Generic Drug AI Use Cases



## FDA Should Consider Developing Science and Research Initiatives to Include:

- Training AI/ML tools for post-market surveillance using representative diverse patient population data
- Promoting transparency in the implementation of AI/ML tools to reduce bias and ethical concerns

- Developing standardized methodologies and protocols for using AI/ML in quantitative analyses and modeling approaches for regulatory review
- Providing training and resources for FDA staff to enhance their proficiency in using AI/ML technologies

- Supporting research aimed at leveraging AI/ML tools for improving PBPK modeling for an efficient demonstration of bioequivalence for complex generics
- Requiring explainable and interpretable models, and rigorous validation for PBPK models generated using AI/ML algorithms

# Booz Allen emphasizes the continued importance of two of the Agency's existing science and research priorities for generic drug development

## #7 Facilitate the Utility of Model-Integrated Evidence (MIE) to Support Demonstrations of bioequivalence (BE)

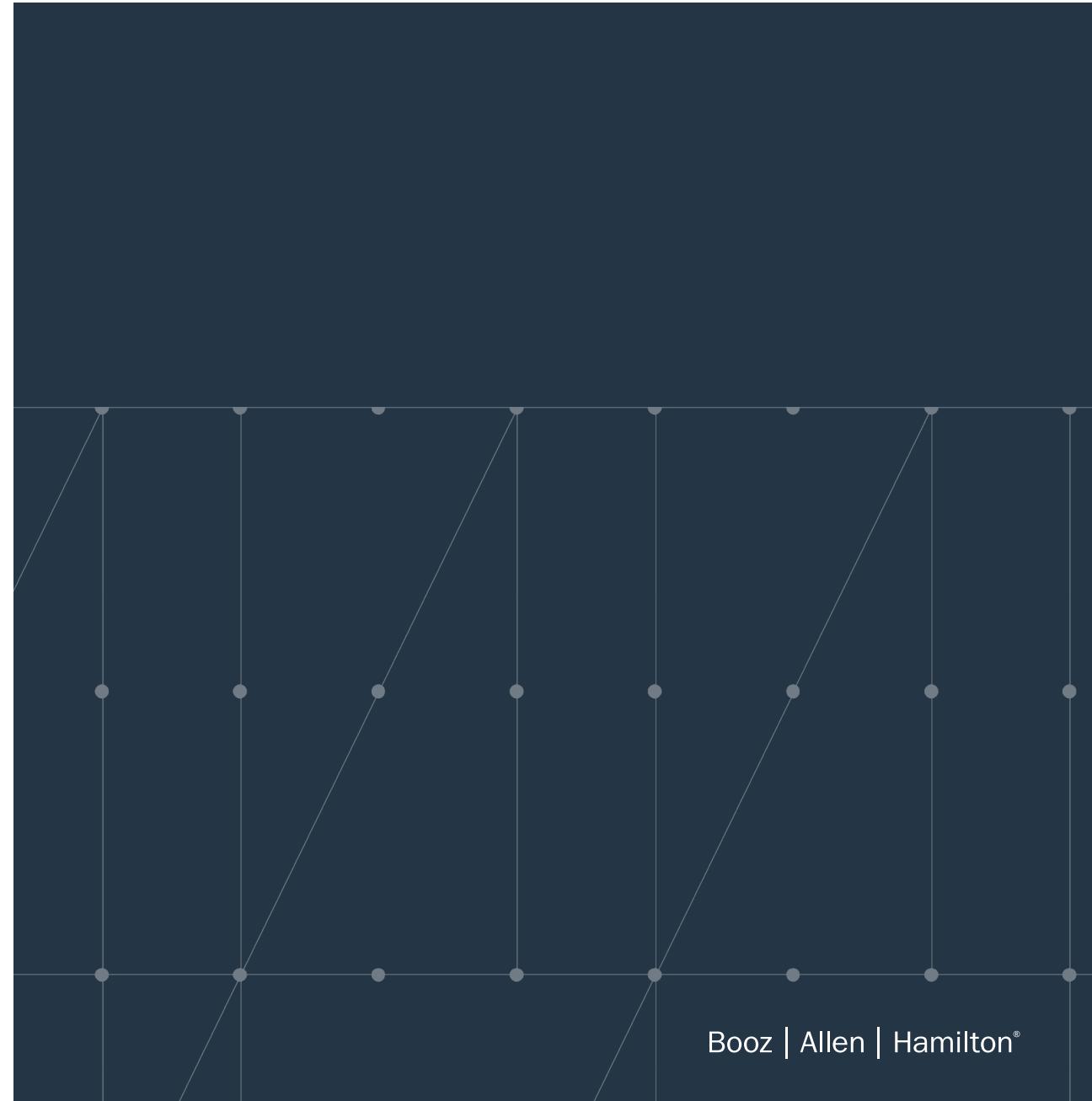
- A. Advancing complementary approaches **using MIE to support an efficient demonstration of BE** specifically for locally acting products (e.g., inhalation and topical routes of delivery) as well as for LAI products
- B. Establishing best practices for model standardization, validation, acceptance, and sharing (e.g., using model master files) that improve the reproducibility and reusability of quantitative pharmacology information used in BE study simulations

## #8 Expand the Use of Artificial Intelligence (AI) and Machine Learning (ML) Tools

- A. **Improving the use of real-world evidence for post-market surveillance** of generic drug substitution and for evaluating the impact of generic drugs on public health
- B. Integrating AI/ML tools with FDA information and data to support quantitative analyses and modeling approaches that **facilitate regulatory assessments**, and identifying strategies to optimize the reliability of outcomes produced by these tools
- C. Exploring the capability of AI/ML tools for a prospective applicant to be able to efficiently assess the completeness of its ANDA prior to submission, and to **enhance the efficiency, consistency, and quality of regulatory assessments** once ANDAs are submitted

# Booz Allen®

As the Federal government and its agencies seek to accelerate their adoption of AI capabilities, Booz Allen stands ready to support research and implementation of secure and responsible AI.



# Predictive Tools for Generic Product Development & Assessment

Use of Data Models and AI ML to Allow Participative ANDA Approval Interaction

May 20<sup>th</sup>, 2023



Brian Eden

VP, Global Life Sciences Technical Operations  
Capgemini Group

Profile

- Three decades of operations transformation, process improvement, management consulting and leadership experience developing global Lean and Digital programs, leading global business integrations, and serving an array of pharmaceutical and medical device clients.
- Provides subject matter expertise in Manufacturing, Supply Chain, Quality and related areas across multiple dosage forms, including injectables, vaccines, oral solid dose, API and specialty forms.
- Serves as business and domain leader for digital and systems transformations, including Agile product development, SAP and Oracle implementations and cGMP-specific MES, LES and related rollouts.
- Leads the Global Life Sciences Technical Operations Practice for the Capgemini Group, driving process and digital solutions for Pharmaceutical and Medical Device clients in Supply Chain, Manufacturing, Quality, Technical Transfer, and related functionalities.

Education and certificates

- Master of Science, Interdisciplinary Engineering, Purdue University
- Bachelor of Science, Physics, University of Connecticut
- Lean Six Sigma Master Black Belt, General Electric Company
- Agile Leader, Tata Consultancy Services
- Nuclear Engineer, United States Navy

Competencies

- cGMP Manufacturing, Supply Chain Quality, Technical Transfer
- Regulatory Affairs, Pharmacovigilance
- Transformation Management Office Leadership
- Lean Six Sigma and Digital process improvement and product development

Capgemini Group

# At a Glance



Founded

1967

by Serge Kampf

TOP 5

consultancy  
worldwide

We serve our  
clients in more  
than

100  
countries



Headquarters  
in Paris

## A Family of Brands

Capgemini Invent

Fahrenheit212  
Part of Capgemini Invent

idean  
Part of Capgemini Invent

Capgemini

sogeti  
Part of Capgemini

frog

Cambridge  
Consultants

350,000+  
Team members



Group Chairman  
& Chief Executive  
Officer

Aiman Ezzat

## E2E-Services

- Consulting
- Technology
- Engineering
- Outsourcing & Managed Services

# ANDA Filings | The Birth of the Generic Industry



FDA has enabled growth in generic, bioequivalent therapies while protecting the financial interests of innovators. The ANDA process has been improved dramatically over time, further encouraging robust and timely generic competition.

## Legal Basis



- ❑ Federal Food, Drug, and Cosmetic Act (1938)
- ❑ Hatch-Waxman Act (1984)
- ❑ Generic Drug User Fee Amendments (I '12, II '17, III '22)

## Continuous Improvement



- ✓ Drug Competition Action Plan (DCAP)
- ✓ CDER NextGen Portal
- ✓ Biologics Effectiveness and Safety (BEST) Initiative
- ✓ Dedicated AI steering committee and proofs of concept

**9 of 10 prescriptions in the US currently filled as generic and an estimated savings of \$2.9 trillion over the past 10 years (generic and biosimilars)**

# Filing Challenges

Despite improvements, challenges exist that limit the number/scope of approvals and total generic presence in the market.

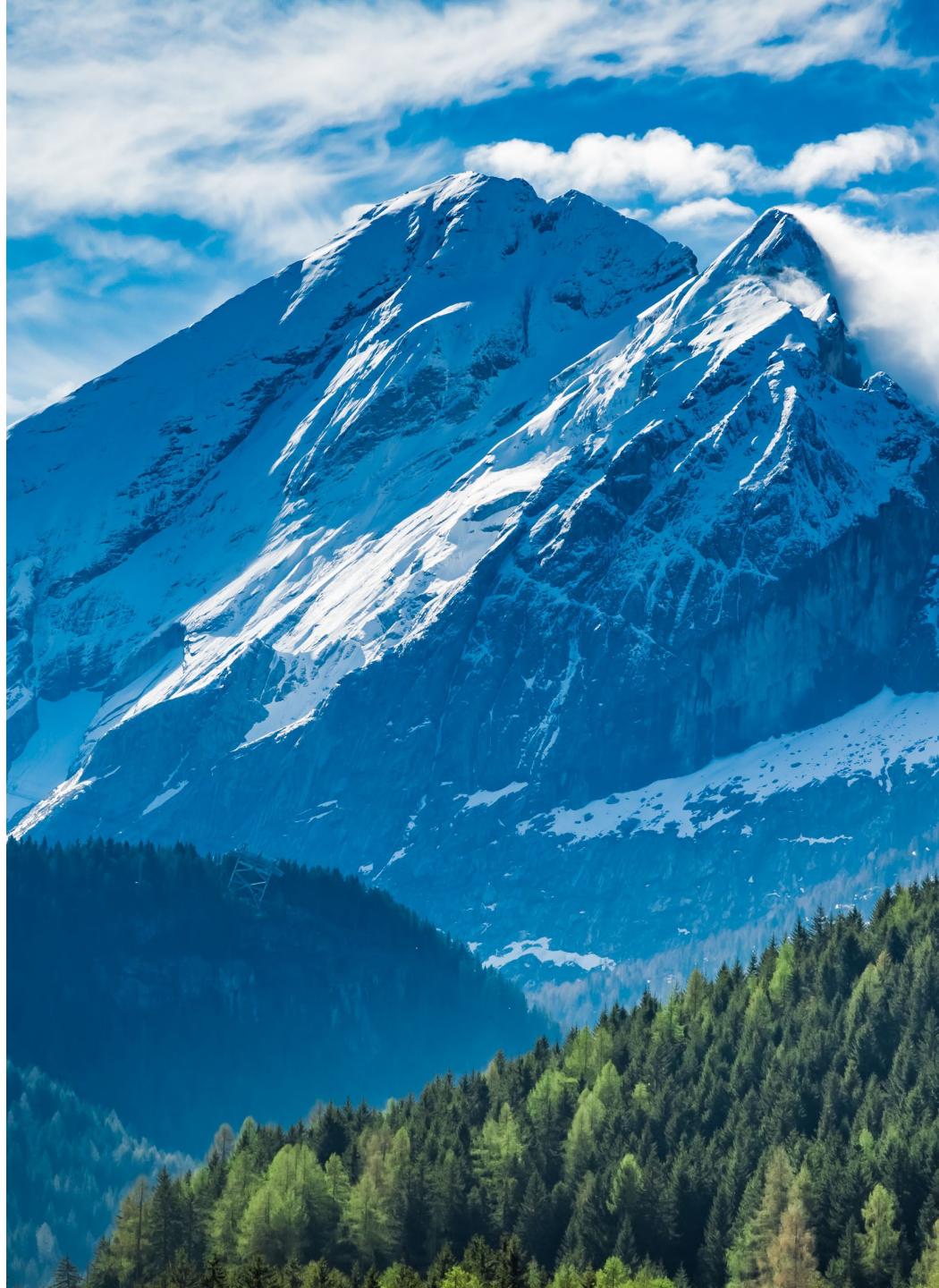
**Demonstrating Bioequivalence**

**Managing Patent and Exclusivity Issues**

**Ensuring Regulatory Compliance**

**Providing Adequate Resourcing**

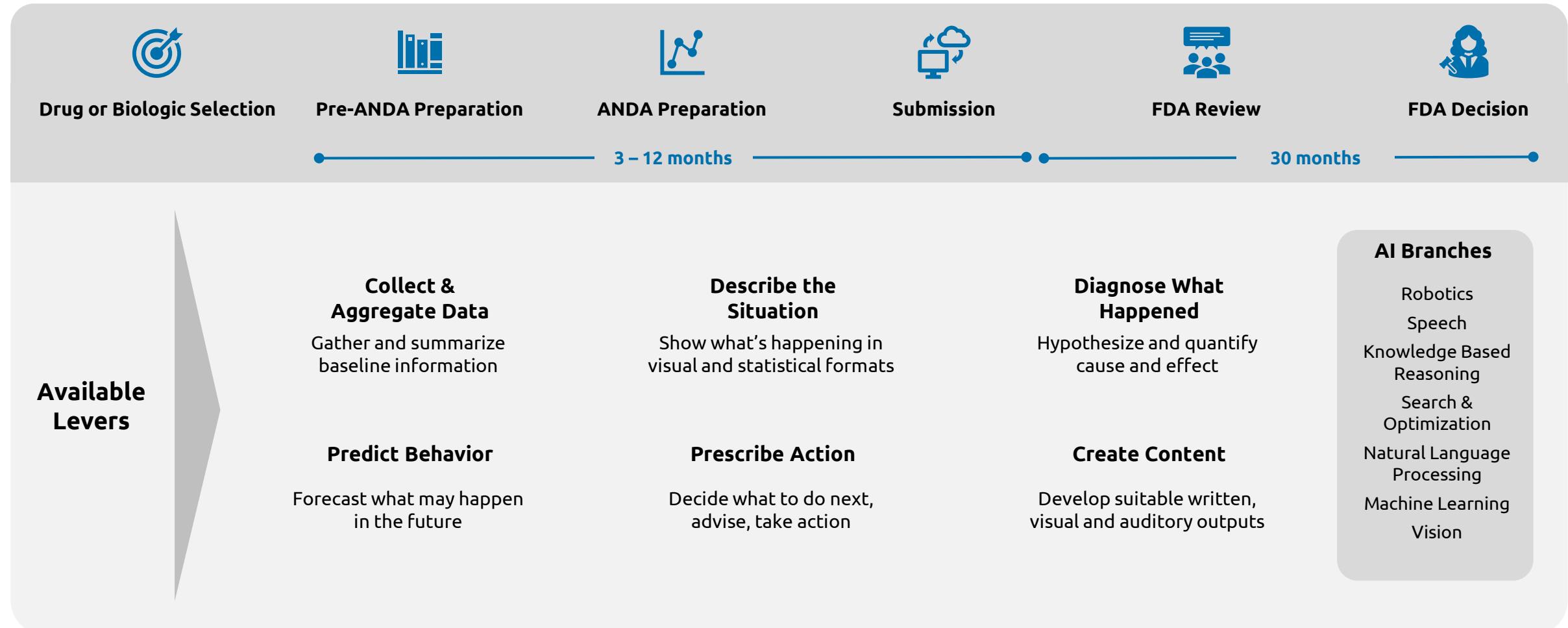
**Sharing Knowledge**



# Applying Advanced Technologies to Make Improvements



Expanded, scaled cloud computing and advanced technologies can provide breakthroughs to improve patient access, reduce patient and government costs and reduce the number of drugs for which generic equivalents are not available.



# Research Recommendation



Develop and test an AI Proof of Concept (POC) of a solution allowing prospective ANDA submission risk assessment and mitigation for a targeted group of filings to allow easier, more timely approvals.

|  Pain Points | TRC Errors/Resubmissions | BE Challenges         | FDA review time           | Primary Solution Benefits   |
|-----------------------------------------------------------------------------------------------|--------------------------|-----------------------|---------------------------|-----------------------------|
|                                                                                               | Sponsor Preparation Time | Resource Requirements | Overall approval timeline | Secondary Solution Benefits |



## Solution Elements

- ❑ Proactive signal to screen for missing submission elements
- ❑ Submission probability of success (POS) indicator
- ❑ Suggestions of critical input parameters to raise POS
- ❑ Submission specific best practice generation
- ❑ Visual interface with which prospective filers can interact

**We propose a short, targeted POC to demonstrate feasibility followed by pilot launch for quick wins**



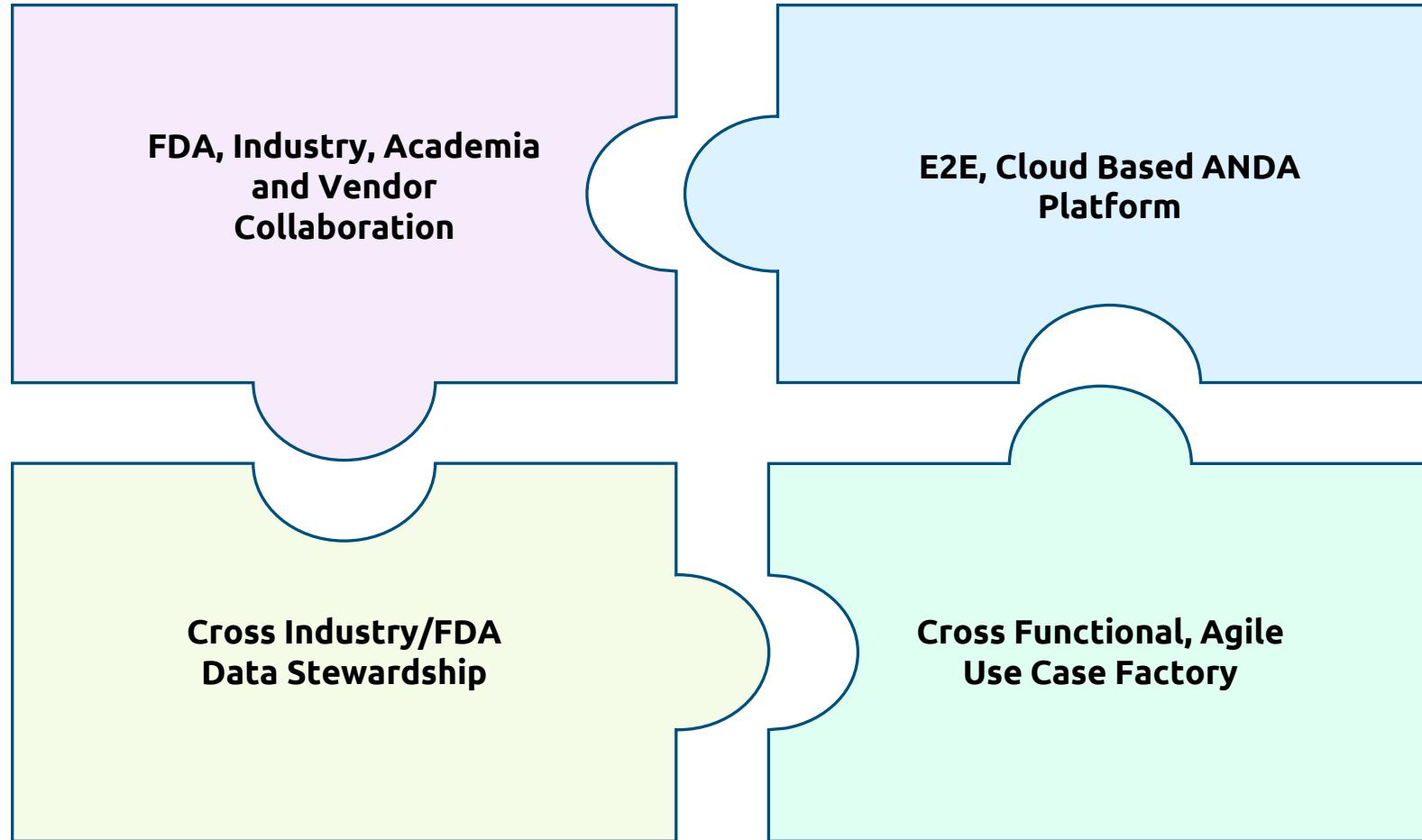
## Technical Requirements

- ✓ Model of submissions, review notes, regulations, numerical data
- ✓ Training for the AI/ML on all criteria
- ✓ Continuous incorporation of new data to guard against drift
- ✓ Knowledge graph to track and map available information over time and neural network graph to ID clusters and outliers
- ✓ ... working together with a multivariate analysis/loss function to link POS cause and effect
- ✓ Front end GUI development of the prospective filer interface
- ✓ Guardrails to keep recommendations inside the range of available information

# What is Required Beyond Proofs of Concept?



Ideation of use cases and proofs of concept are not sufficient to realize the full potential of advanced technology solutions, though. A supporting operating model and several enablers are required.

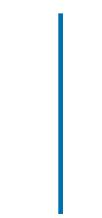


# How far have we come and what's next on the journey?



Step changes in access and performance via advanced technologies are possible and now is the time to develop a cohesive vision and set of actions to chart the course for these next innovations.

|                              |                                                                                                                                                                                                                                                                          |                                                                                                     |                                                                                                         |                                                                                                                 |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| <b>Excite &amp; Discover</b> | Create awareness of and excitement about the potential of advanced technology solutions and set the vision and strategy. Identify and prioritize use cases, ecosystem partners and underlying technology requirements                                                    |                                                                                                     |                                                                                                         |                                                                                                                 |
| <b>Build</b>                 | Formulate business cases, launch proofs of concept and pilots and learn from success and from failing fast. Iterate use case ID and prioritization.<br><br>Quantify resource, timeliness and quality benefits of actions to reduce, remove, re-engineering and reimagine |                                                                                                     |                                                                                                         |                                                                                                                 |
|                              | Estimate Implementation Costs including licensing, staffing, infrastructure and training                                                                                                                                                                                 |                                                                                                     |                                                                                                         |                                                                                                                 |
| <b>Scale</b>                 | Create sustainable operating model, track benefits to the bottom line and continue to improve and iterate based on latest information.                                                                                                                                   |                                                                                                     |                                                                                                         |                                                                                                                 |
|                              | <b>People &amp; Culture</b><br>Transformative workforce, management innovation, training and governance                                                                                                                                                                  | <b>Process</b><br>Agile workflows to maximize human & AI collaboration; KPIs to monitor performance | <b>Tech &amp; Data</b><br>Robust and sustainable platforms, close collaboration with ecosystem partners | <b>Ethics, Legal &amp; Risk</b><br>Coordination among entities with legal/ethics oversight to ensure compliance |



??

# A Sample of Additional Use Cases



Below are several additional examples of practical use cases leveraging advanced technologies that can be developed and scaled today, some of which are already in ideation and pilot phases.

| Use Case                                                  | Description                                                                                                                                                                                                            | Levers                            | Benefit                                                                                                                                   |
|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Document Submission Triage</b>                         | Summarize documents, automate chatbots, and establish sentiment analysis for reviewers of information as it is submitted.                                                                                              | Collect & Aggregate, Describe     | <ul style="list-style-type: none"><li>👉 FDA processing resource requirements</li><li>👉 Sponsor preparation and FDA review times</li></ul> |
| <b>Technical Rejection Criteria Error Rapid Screening</b> | Automated TRC error root cause ID and interactive problem solving between sponsors and FDA to provide early warning of possible TRC errors to sponsors                                                                 | Diagnose, Predict                 | <ul style="list-style-type: none"><li>👉 Submission quality</li><li>👉 Overall approval timeline</li><li>👉 Safety and efficacy</li></ul>    |
| <b>Bioequivalence Study Optimization</b>                  | A supervised machine learning based approach to classify, analyze, and optimize BE study information to ensure completeness of submission and to provide early warnings for unacceptable trending                      | Diagnose, Predict, Prescribe      | <ul style="list-style-type: none"><li>👉 Safety and efficacy</li><li>👉 Sponsor preparation and FDA review times</li></ul>                  |
| <b>Virtual FDA Review Assistant</b>                       | A fine-tuned foundational GenAI model built on existing NDA and ANDA submissions with a human-like interface to answer key scientific and regulatory queries to improve speed of review and to uncover hidden insights | Diagnose, Predict, Create Content | <ul style="list-style-type: none"><li>👉 FDA processing resource requirements</li><li>👉 Safety and efficacy</li></ul>                      |

**Effort toward some of these use cases is already underway**



## About Capgemini

Capgemini is a global leader in partnering with companies to transform and manage their business by harnessing the power of technology. The Group is guided everyday by its purpose of unleashing human energy through technology for an inclusive and sustainable future. It is a responsible and diverse organization of 270,000 team members in nearly 50 countries. With its strong 50 year heritage and deep industry expertise, Capgemini is trusted by its clients to address the entire breadth of their business needs, from strategy and design to operations, fuelled by the fast evolving and innovative world of cloud, data, AI, connectivity, software, digital engineering and platforms. The Group reported in 2020 global revenues of €16 billion.

Get the Future You Want | [www.capgemini.com](http://www.capgemini.com)



This presentation contains information that may be privileged or confidential and is the property of the Capgemini Group.

Copyright © 2023 Capgemini. All rights reserved.

### Intelligent Postmarket Surveillance and Assessment

AI-Driven Detection and  
Classification of Quality-Related  
Signals for Generic Drugs

May 20, 2024



## Postmarket surveillance of generic drugs faces several challenges



FDA's efforts, including remote regulatory assessments and the Sentinel Initiative, support postmarket monitoring; however, challenges remain:

- FDA inspection capacity insufficient; need for advanced notice for foreign inspections
- Majority of generic drug manufacturing outside the U.S.
- Cases of falsified data from manufacturers
- Voluntary FAERS reporting by clinicians and consumers

## Increasing number of FDA recall enforcement reports



- More than 1,000 drugs recalled each year; 80-90% of recalls are Class II
- 3,200+ Class I and 15,900+ Class II recalls from 2013-2023
- 300+ Class I/II recalls with cGMP deviations from 2013-2023



Existing limitations and spikes in Class I recalls **necessitate alternative approaches, tools, and data to augment inspection capacity and enhance postmarket surveillance**

# Approach to Generic Drug Quality Signal Detection

**Deloitte.**

In line with GDUFA research priority **#8 Expand the Use of Artificial Intelligence (AI) and Machine Learning (ML) Tools**, we propose to use **advanced AI models integrated with multimodal postmarket data sources** for the detection of quality-related signals for generic drugs. This approach would prioritize and thematically categorize generic drug quality signals to enhance postmarket monitoring.

**Data Sources:** Public use FDA documents (483s), social media, FAERS, legal and claims data, patient advocacy forums, blogs, Google trends

## Step 1: Source Data Curation

Extract, clean, deidentify data types and features

- Patient Demographics
- Drug Details: generic drug manufacturer, usage date
- Define signal events

## Step 2: Exploratory Data Analysis

Perform in-depth analyses on data sources

- Examine initial trends in the signal data
- Signal Rate Calculation

## Step 3: NLP Tools for Signal Identification

Develop an NLP pipeline to process unstructured data to extract relevant features

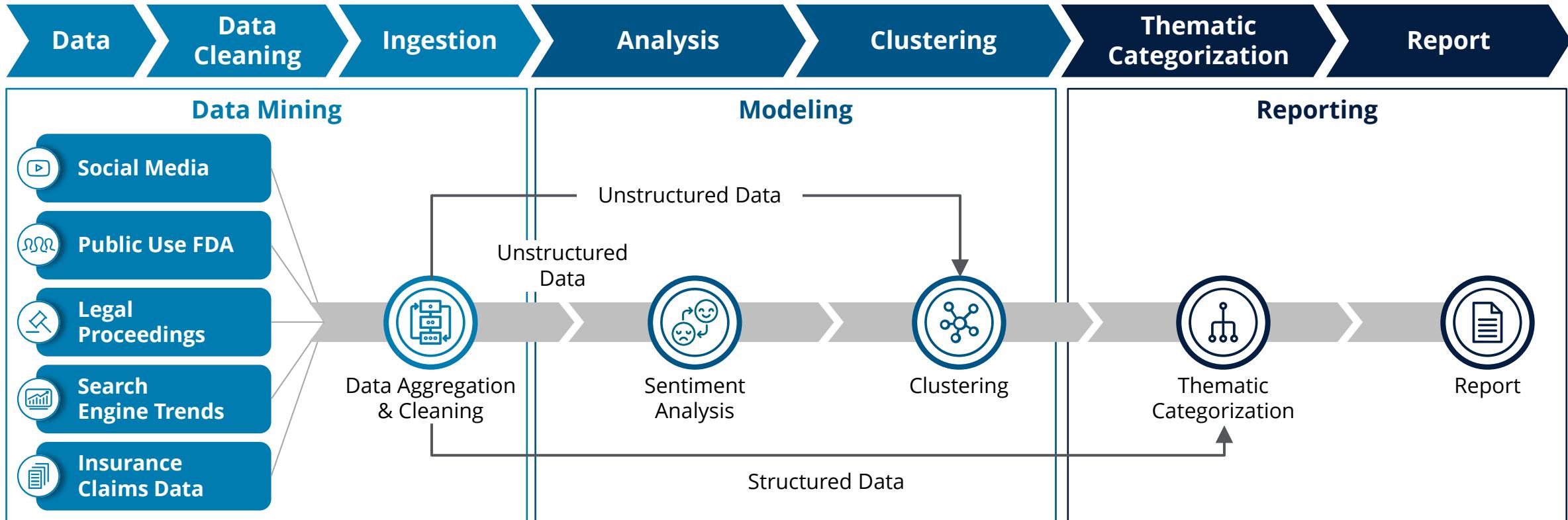
- Leverage NLP including task-appropriate Named Entity Recognition (NER) models (e.g., Bio\_ClinicalBERT)

## Step 4: Signal Detection and Analysis and Manual Signal Verification

Analyze rates of safety signal events and associated features:

- Apply machine learning-based anomaly detection algorithm to identify patterns in signal incidence
- Integrate human-in-the-loop review of signals for validation
- Transmit report to FDA of aggregated signal findings

various sources, which are then ingested for analysis. The analysis employ thematic categorization of sentiment, tracked over a specific period, for specific generic drugs. The goal is to **highlight quality signals that emerge before generic drugs are recalled**.



Our approach to quality signal detection for generic drugs supports GDUFA research priority **#8 Expand the Use of Artificial Intelligence (AI) and Machine Learning (ML) Tools**

Our approach would specifically support the GDUFA priority to **integrate AI/ML tools with FDA information and data to support quantitative analyses and modeling approaches that facilitate regulatory assessments** and to identify strategies to optimize the reliability of outcomes produced by these tools.

## Regulatory Impact

This approach addresses an existing gap in regulatory science by **enabling proactive analysis of generic drug quality data from multimodal and nontraditional sources**. The approach would enhance FDA's surveillance capabilities by:

- Deploying AI on multimodal postmarket data
- Integrating public data with partner and regulatory data
- Leveraging technology to test and enable improved generic drug quality monitoring

## Industry and Patient Impact

This approach could also **empower industry and advance patient safety** by:

- Enabling generic drug manufacturers to proactively address emerging generic drug quality signals with a feedback loop mechanism
- Advance patient safety by identifying potential quality concerns proactively and in near real time

---

**THANK YOU  
QUESTIONS ?**

---

# APPENDIX

# Meet the Team



**Chris Comrack, MBA**

***Managing Director***

Deep experience leading complex cross functional, multi-stakeholder public-health-oriented project teams; 12+ years serving in Program and Project Management leadership roles on projects at FDA



**Ashwin Admala**

***Managing Director***

20+ years experience in AI and Data Engineering solutions with expertise in leading business intelligence project implementations at FDA



**Matt Crowson, MD**

***Specialist Leader***

Surgeon and clinical informatician with expertise in applied machine learning and analytics; led academic medical teams on data science projects across all care contexts



**Anil Bhatta, PhD**

***Manager***

Leads multi-stakeholder engagement with FDA in using clinical evidence from disparate data sources to help inform regulatory decisions; expertise in the development of ML/NLP tools



**Sandy Polu, PhD**

***Specialist Master***

15+ years experience across public-private partnerships, public health data modernization, product strategy, and strategic initiatives, including at FDA



**Bipendra Basnyat, PhD**

***Specialist Master***

15+ years of experience as a data scientist, architect, and software engineer, PhD in Artificial Intelligence and Machine Learning



#### About Deloitte

Deloitte refers to one or more of Deloitte Touche Tohmatsu Limited, a UK private company limited by guarantee ("DTTL"), its network of member firms, and their related entities. DTTL and each of its member firms are legally separate and independent entities. DTTL (also referred to as "Deloitte Global") does not provide services to clients. In the United States, Deloitte refers to one or more of the US member firms of DTTL, their related entities that operate using the "Deloitte" name in the United States and their respective affiliates. Certain services may not be available to attest clients under the rules and regulations of public accounting. Please see [www.deloitte.com/about](http://www.deloitte.com/about) to learn more about our global network of member firms.

# Leveraging AI to Expedite Generic Drug Regulatory Review

Anthony Cristillo, PhD, MS

May 20, 2024

01

## **ANDA Regulatory Review**



**Leveraging Gen AI (LLMs/RAG) for Expedited & More Efficient Abbreviated New Drug Application (ANDA) Regulatory Review**

## **AI-Informed Routing**



**Drug Complexity- driven Routing**

03

## **Higher Quality Submissions**



**Providing Industry leverage AI/ML/NLP tools to develop higher quality Abbreviated New Drug Application (ANDA) Submission**

# ANDA Regulatory Review: Challenges & Solutions

## Challenges

Manual review of a large body of literature including Phase IV surveillance data and RWE/RWD of Referenced Listed Drug (RLD) is time consuming and not always complete

Detailed regulatory review of the ANDA to assess for gaps and missing information is time consuming and could delay the review process

Manual routing of the application to the appropriate FDA Reviewers can be time consuming, and delay the review process

Manual compliance checks of ANDA (prior to submission) may not identify all errors/omissions, thereby creating delays in the process

## Solutions

- Leveraging Large Language Models (LLMs)/Retrieval Augmented Generation (RAG) for expedited & more efficient review of the literature, phase IV surveillance data, RWE/RWD and gaps within ANDA submission

- Leveraging Artificial Intelligence/Machine Learning /Natural Language Processing for drug-complexity driven routing of ANDA to appropriate review and to help drug companies develop higher quality ANDA submissions

# What is AI, ML and NLP?

## Artificial Intelligence (AI)



The ability for computers to **imitate cognitive human functions** such as learning and problem-solving.



Through AI, a computer system **uses math and logic** to simulate the reasoning that people use to learn from new information and make decisions.

## Generative AI



Generative AI refers to AI that can generate new content, such as text, images, or music, similar in style or content to a given input

## Machine Learning (ML)

Subset of AI; when we teach computers to extract patterns from collected data and apply them to new tasks that they may not have completed before.

## Natural Language Processing (NLP)

A machine learning technology primarily concerned with giving computers the ability to interpret, manipulate, and comprehend human language.

# Foundation Models (FMs), Large Language Models (LLMs) & Retrieval Augmented Generation (RAG)

- Generative AI is powered by very large machine learning models (**Foundation Models - FMs**) pre-trained on vast amounts of data to understand existing content and generate original content.
- Large language models (LLMs)** are a subset of FMs trained on trillions of words across natural language tasks
- Pre-training LLMs:** training a model on a large corpus of text (e.g., billions of words); helps the model to learn the structure of the language, grammar, facts etc.  
*E.g., ChatGPT, Perplexity, BingChat*
- Fine-Tuning LLMs:** taking a pre-trained model and further training at least one internal model parameter (for a specific context/case) thereby transforming a general-purpose base model into a specialized model for a particular use
- Retrieval-Augmented Generation (RAG):** the process of optimizing the output of a large language model, so it references an authoritative knowledge base outside of its training data sources before generating a response.



# ANDA Regulatory Review: Need for More Research

## Challenges

Manual review of a large body of literature including Phase IV surveillance data and RWE/RWD of Referenced Listed Drug (RLD) is time consuming and not always complete

Detailed regulatory review of the ANDA to assess for gaps and missing information is time consuming and could delay the review process

Manual routing of the application to the appropriate FDA Reviewers can be time consuming, and delay the review process

Manual compliance checks of ANDA (prior to submission) may not identify all errors/omissions, thereby creating delays in the process

## Solutions

- Leveraging Large Language Models (LLMs)/Retrieval Augmented Generation (RAG) for expedited & more efficient review of the literature, phase IV surveillance data, RWE/RWD and gaps within ANDA submission

- Leveraging Artificial Intelligence/Machine Learning /Natural Language Processing for drug-complexity driven routing of ANDA to appropriate reviewer and to help drug manufacturers develop higher quality ANDA submissions

## Further Research Needed

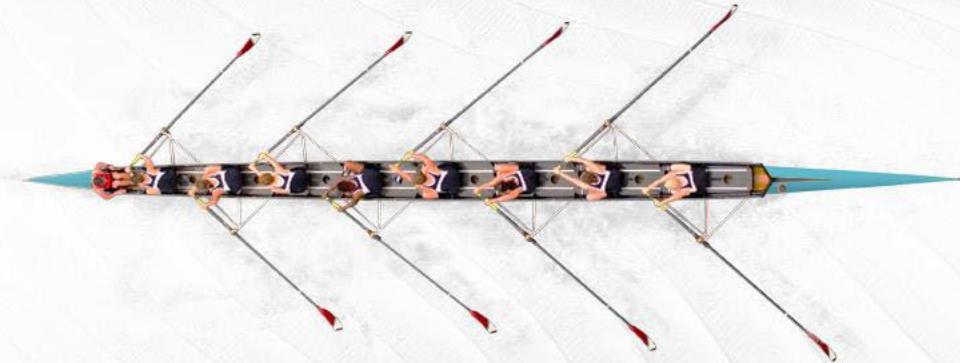
- To identify most ideal LLMs in this context
- To identify most appropriate data sources for RAG
- To understand and avoid hallucinations
- To define the level of QC/Validation needed
- To clearly define governance required

# Your Guide

**Dr. Anthony Cristillo**

Partner, Digital Health

[anthony.cristillo@guidehouse.com](mailto:anthony.cristillo@guidehouse.com)

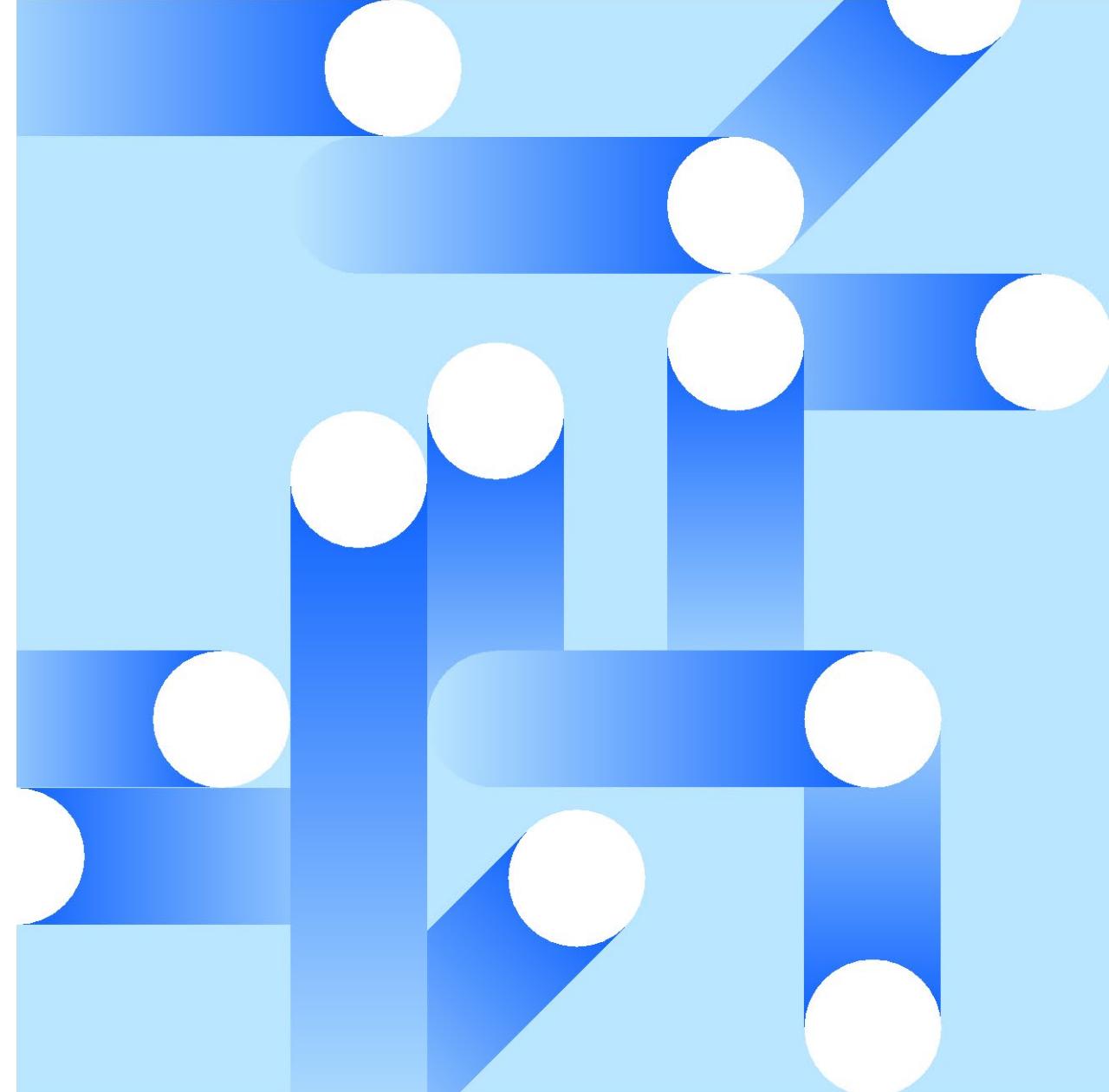


# GDUFA 2024

## Public Workshop I

*Harnessing GenAI to  
Enhance the Generic Drug  
Review Process*

Sarah Ferko, IBM Consulting  
Ally Lu, IBM Consulting



# GDUFA Science and Research Priority Initiatives for FY 2024

The focus area of today's presentation is initiative #8: *Expand the Use of Artificial Intelligence (AI) and Machine Learning (ML) Tools*

Source: [Draft FY24 GDUFA Science and Research Priorities \(fda.gov\)](https://www.fda.gov/industry/gdufa-science-and-research-priorities)

# Introduction

# IBM @ FDA

- International Business Machines (IBM) Corporation is an industry pioneer in artificial intelligence (AI), quantum computing, and large-scale modernizations, leveraging data and innovative technology to pave the way for government agencies.
- With the resources of a large company, IBM has been solving FDA's most pressing problems using cutting edge AI & data technologies and hybrid cloud solutions, underpinned by our public health and regulatory review expertise.
  - Project teams are working toward the goal of better enabling FDA for informed, data-driven regulatory decision making, supporting pre-market application review as well as post-market adverse event surveillance.
- At FDA, IBM has been providing expertise across multiple concurrent task orders for over 15 years. We are currently serving the Center for Drug Evaluation and Research (CDER), Center for Biologics Evaluation and Research (CBER), Center for Tobacco Products (CTP), and the Office of Digital Transformation (ODT).

# Goal: Expand the use of GenAI within OGD to support the ANDA review process

Generative AI (GenAI) is a type of AI that can generate new, original content such as text, images, music, and videos. GenAI applications offer a versatile range of functionalities, including:

- Summarization
- Semantic Search with Question-and-Answer capability <sup>102</sup>
- Content Creation
- Code Creation and Conversion

Within OGD, GenAI can be used to support modernization efforts of the generic drug review process by improving the efficiency of the review of both structured and unstructured data submitted within an ANDA.

# Benefits to OGD

# Summarization

GenAI can be used to extract, summarize, and compare data. More specifically, within OGD:

- A GenAI application can be used to effectively extract and summarize data from unstructured PDFs.
  - Together, structured and unstructured data can be summarized to create an application-level report for the ANDA submission. <sup>104</sup>
- This idea can be expanded such that data can be extracted and summarized from both ANDA and NDA data (e.g., the NME) to create a comparison report using a standardized template designed by OGD.
  - A comparison report supports the review and more effectively compare selected attributes between the two submissions.

# Semantic Search with Question-and-Answer Capability

GenAI can be used to support critical tasks performed during the review of an ANDA submission, including:

- **Enhanced search capabilities and information retrieval:** GenAI can be used to more efficiently search for results across datasets and documentation submitted as part of the ANDA based on queries/questions inputted by the user/reviewer.
  - By ingesting the large corpus of data that comprises an ANDA submission, which can span multiple sequence folders within the EDR, the application can quickly parse through information and provide the user with the desired result(s), along with source information to document where the result was extracted to support traceability.

# Content Creation

GenAI can be used to support critical tasks performed during the review of an ANDA submission, including:

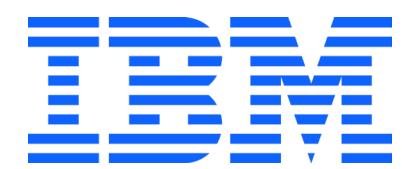
- **Drafting IR language:** GenAI can be used to draft language for Information Requests (IRs) that are sent to sponsors as needed during an ANDA review, ultimately reducing the average time needed to create and send IR information.
  - LLMs can use previously submitted IRs as the source to generate suggested text.

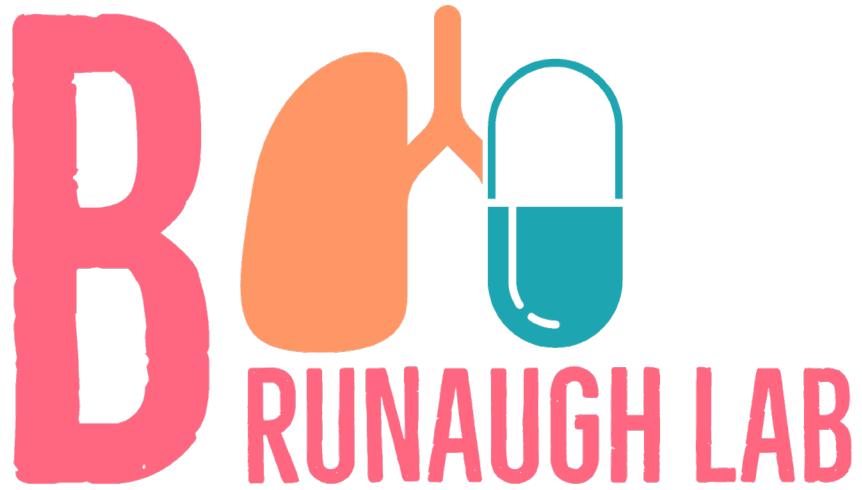
# Code Creation & Conversion

GenAI can be used to enhance developer productivity for system development, enhancement, and maintenance by:

- Automating the process of generating code snippets or even entire programs based on requirements or patterns;<sup>107</sup>
- Analyzing existing code and suggesting optimizations to improve performance and readability;
- Identifying potential bugs or vulnerabilities in code and suggesting fixes or improvements; and
- Assisting in refactoring existing codebases to improve code quality, maintainability, and scalability.

# Questions?





# Development of models to understand and predict the impact of airway mucus on inhaled drug bioavailability

Ashlee Brunaugh, PharmD, PhD  
Assistant Professor of Pharmaceutical Sciences,  
University of Michigan  
FDA GDUFA Public Workshop

# The first generic dry powder inhalers (DPI) have entered the US market

| Proprietary product | Approval year | API(s)                                | Generic product | Generic manufacturer | Generic approval year |
|---------------------|---------------|---------------------------------------|-----------------|----------------------|-----------------------|
| Advair Diskus       | 2000          | Fluticasone propionate and salmeterol | Wixela Inhub    | Mylan                | 2019                  |
| Spiriva Handihaler  | 2004          | Tiotropium bromide                    | LupinHaler      | Lupin                | 2023                  |

However, generic DPI development remains risky, high-cost endeavor

PHARMA

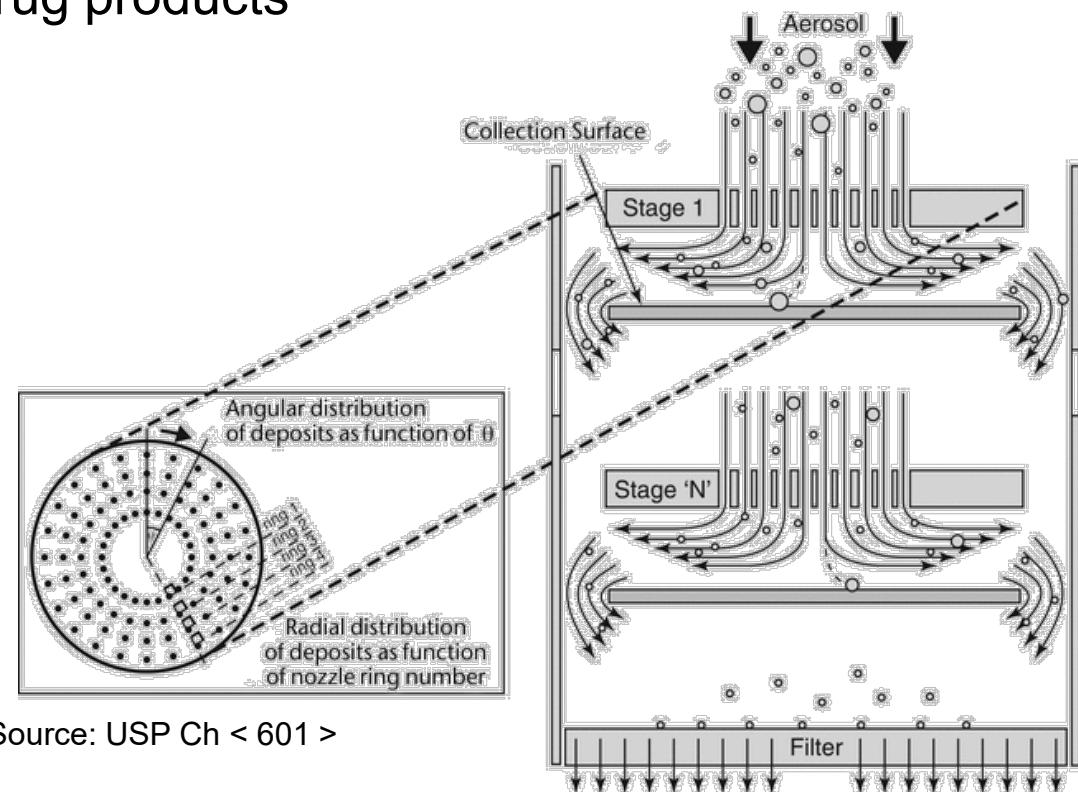
**A \$442M failure: After years of work and an FDA rejection, Novartis calls it quits on Advair copy**

By Eric Sagonowsky · Jan 29, 2020 11:38am

# *In vitro* methods for DPI performance testing lack key information related to bioavailability



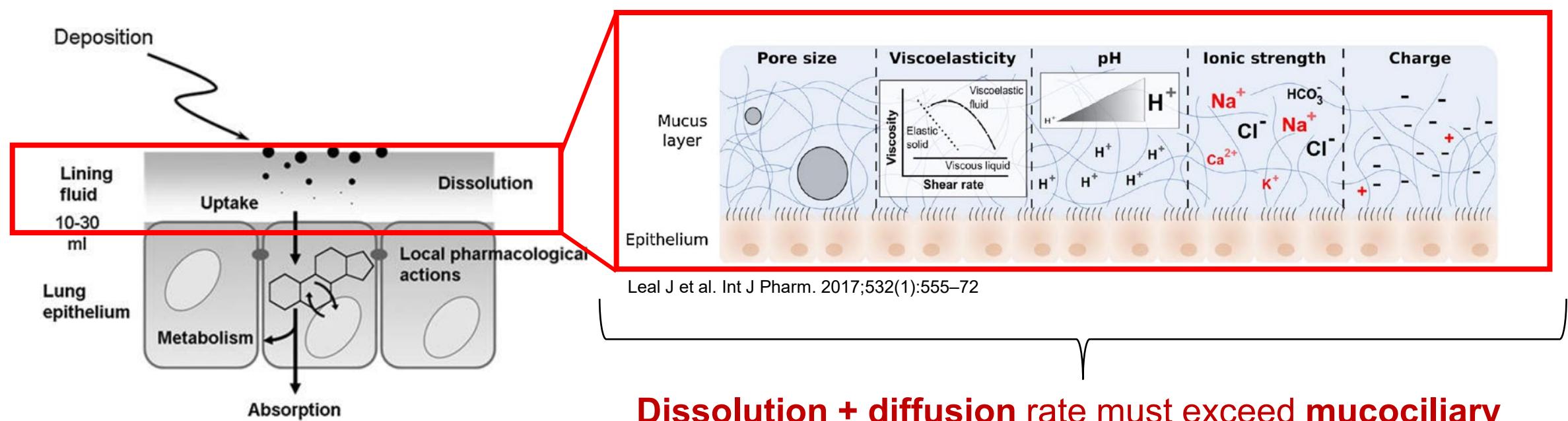
**Cascade impaction:** Current *in vitro* gold standard for assessment of orally inhaled drug products



**Output:**  
Aerodynamic particle size distribution → insight into potential location of lung deposition

**Provides no information about post-deposition particle behavior!**

# Prediction of inhaled drug bioavailability requires understanding post-deposition phenomenon

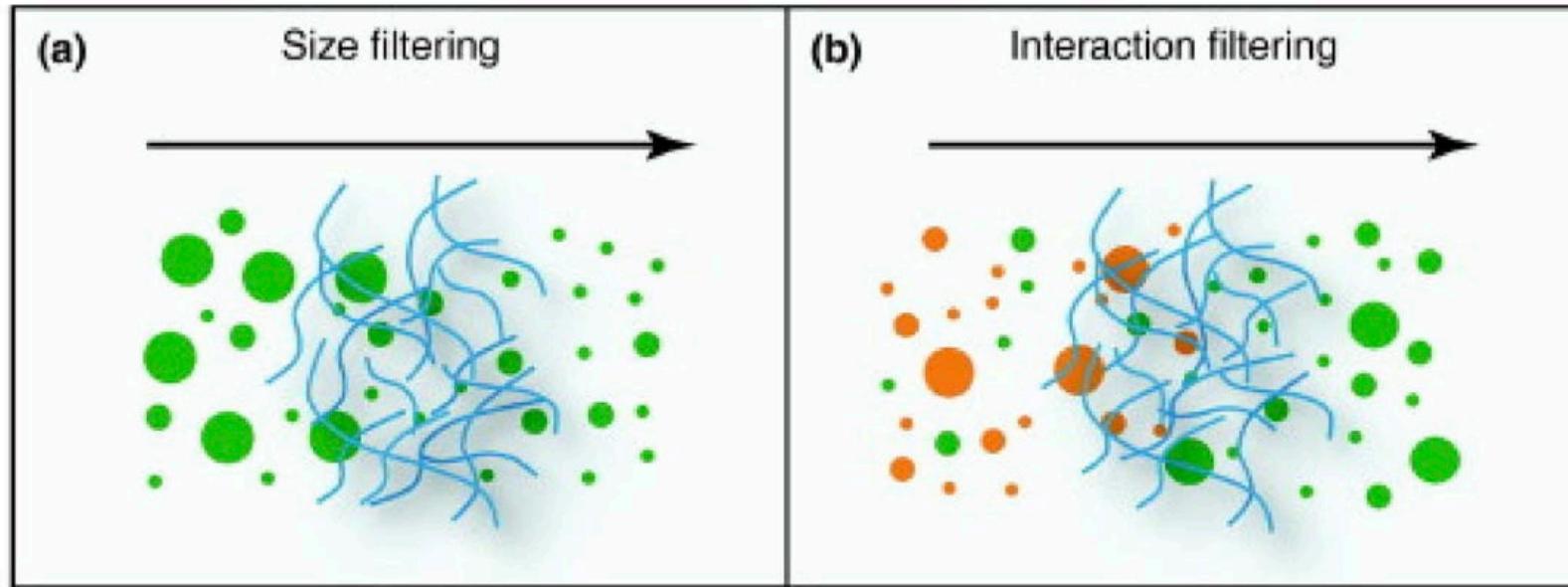


Patton JS et al. J. Aerosol. Med. Pulm. 2010;23(S2):S-71-S-87.

**Dissolution + diffusion rate must exceed mucociliary clearance rate for inhaled drug to reach target in conducting airway epithelium**

Interaction of inhaled particles with lung lining fluid is impacted by product attributes (e.g., particle rugosity, hydrophobicity, surface energy), but no standardized fluid exists to assess these interactions

# Mucus-drug interactions are a rate limiting step in inhaled drug bioavailability



Porous, mesh-like structure  
– 100nm – several  $\mu\text{m}$

+

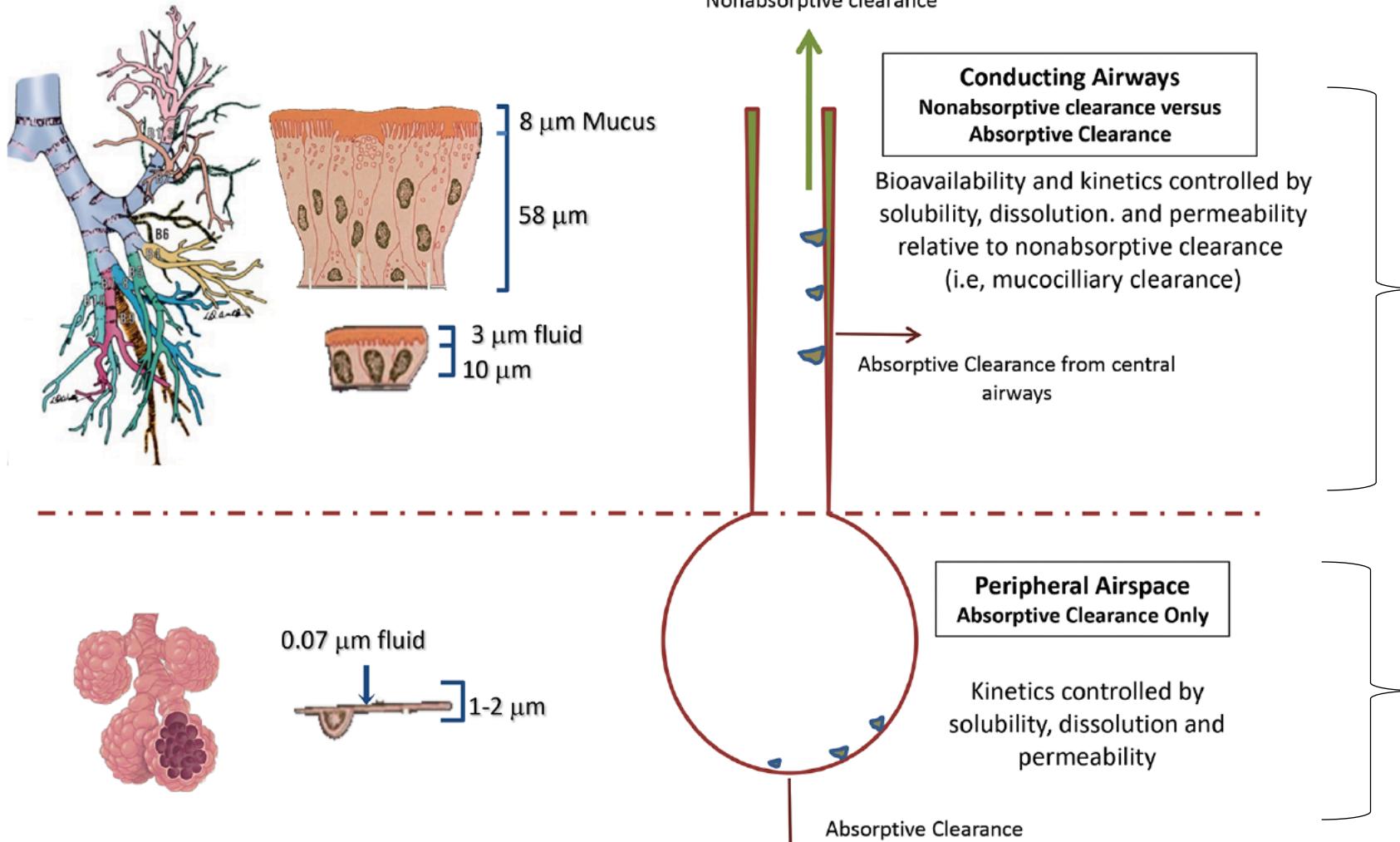
Hydrophobic and charge-based  
interactions (pH 6.5-7.9)

$$J = \frac{DA(C_1 - C_2)}{h}$$

Varies as function of  
anatomical location and  
disease

=  $\downarrow D$

# Mucus-drug interactions are a rate limiting step in inhaled drug bioavailability



- Larger particles (slower dissolution)
- Mucus gel barrier (hindered diffusion)
- Mucociliary clearance

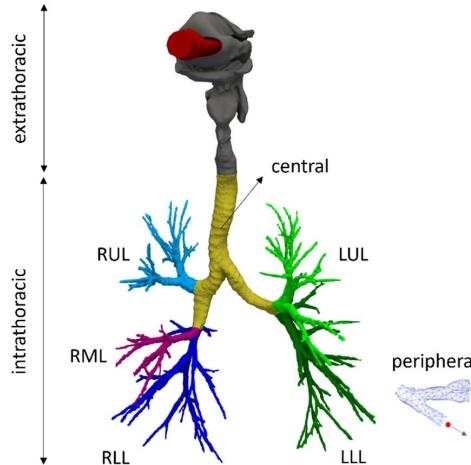
- Rapid dissolution (extensive blood flow, smaller particles, no mucus)

Hastedt JE, Bäckman P, Cabal A, Clark A, Ehrhardt C, Forbes B, Hickey AJ, Hochhaus G, Jiang W, Kassinos S, Kuehl PJ. iBCS: 1. Principles and Framework of an Inhalation-Based Biopharmaceutics Classification System. *Molecular Pharmaceutics*. 2022 May 16.

## What exists:



*In vitro* cascade impaction



Regional deposition data in lungs

## How this could be enhanced:

- Reverse engineering of healthy and diseased mucus to identify key components impacting free drug concentrations → **creation of validated artificial mucus models**
  - **Understand age, sex, environmental influence on airway mucus composition** (e.g. MUC5B:5AC)
- Elucidate relationship between particle surface properties and wetting / immersion → **critical quality attribute for DPIs / Q3 sameness**

CFD

### Desired outcomes:

- Personalized dose and OIDP selection
- Reduced risk during preclinical – clinical transition
- Improved efficiency of OIDP generic development

Questions?  
[Brunaugh@umich.edu](mailto:Brunaugh@umich.edu)

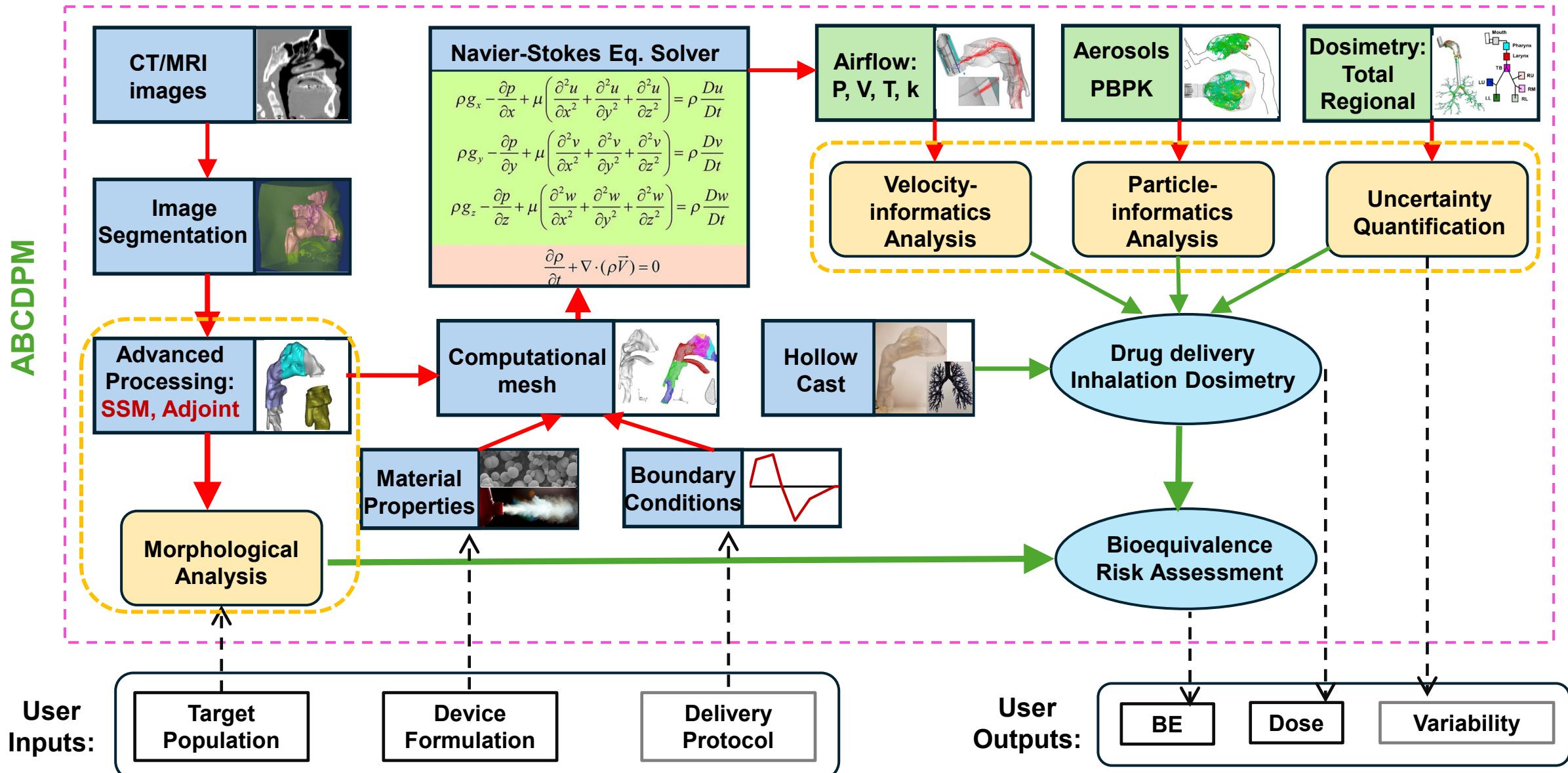
# **Developing an Easy-to-Use AI-Based Computational Dosimetry Prediction Model (ABCDPM) for Pharmaceutical Development and Device Testing**

**Jinxiang Xi, Ph.D.**

Associate Professor, Department of Biomedical Engineering  
University of Massachusetts, Lowell, MA

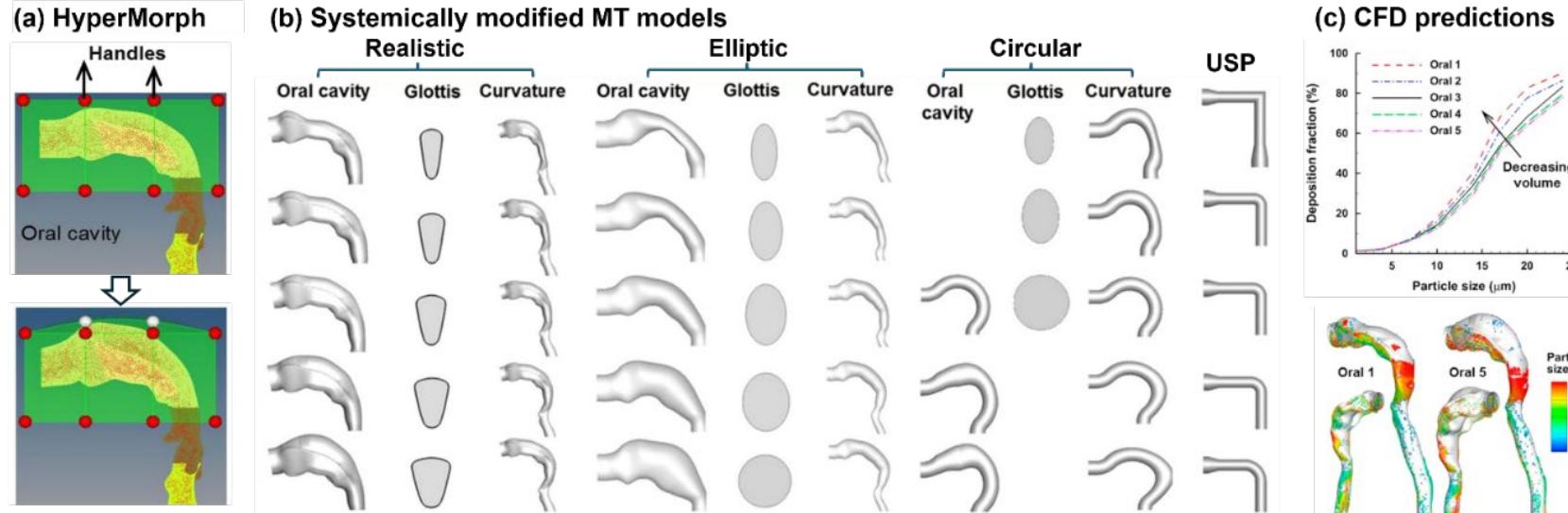
# AI-Based Computational Dosimetry Prediction Model (ABCDPM)

## Workflow: Inputs → ABCDPM → Outputs



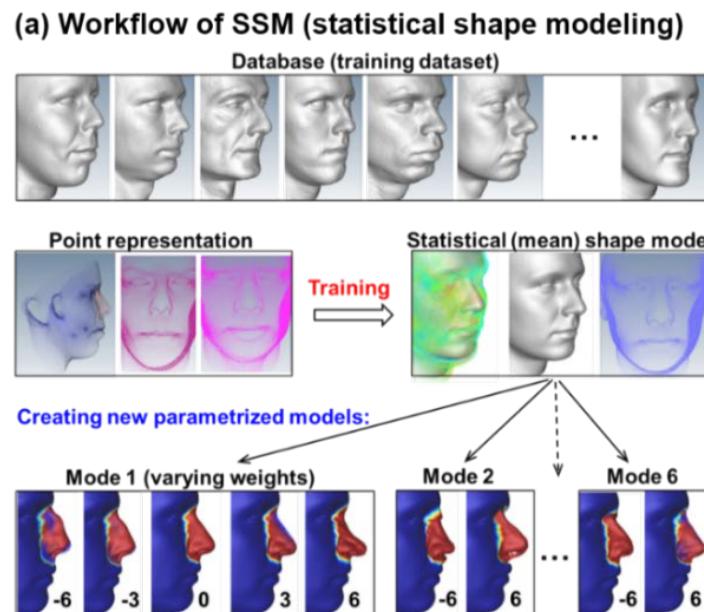
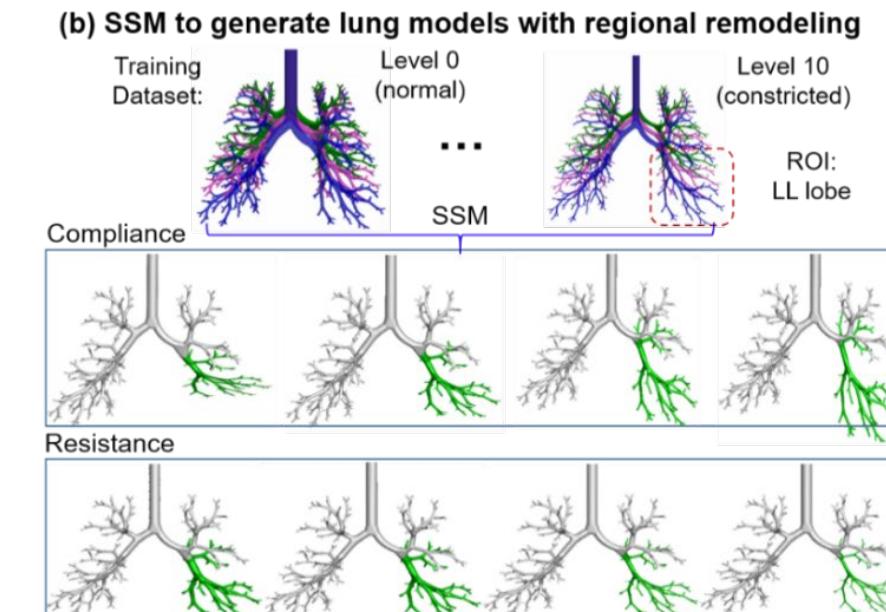
# AI-Based Computational Dosimetry Prediction Model (ABCDPM)

## ➤ Generating airway models using HyperMorph and Statistical Shape Modeling (SSM)

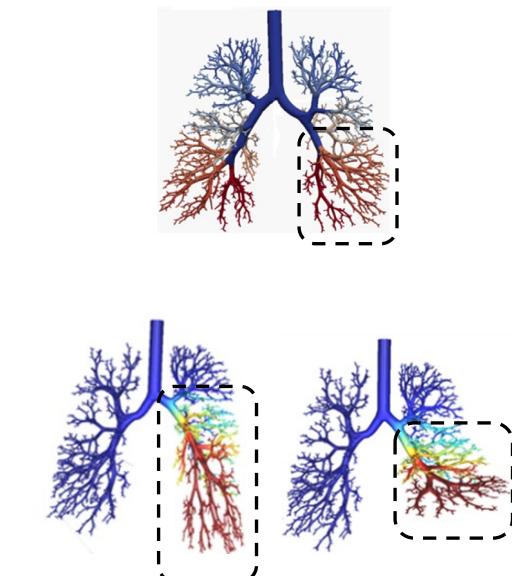


HyperMorph:

J. Xi, J.E. Yuan, M. Yang, X. Si, Y. Zhou, Y.S. Cheng, "Parametric study on mouth-throat geometrical factors on deposition of orally inhaled aerosols," *J. Aerosol Sci.*, 99:94-106, 2016



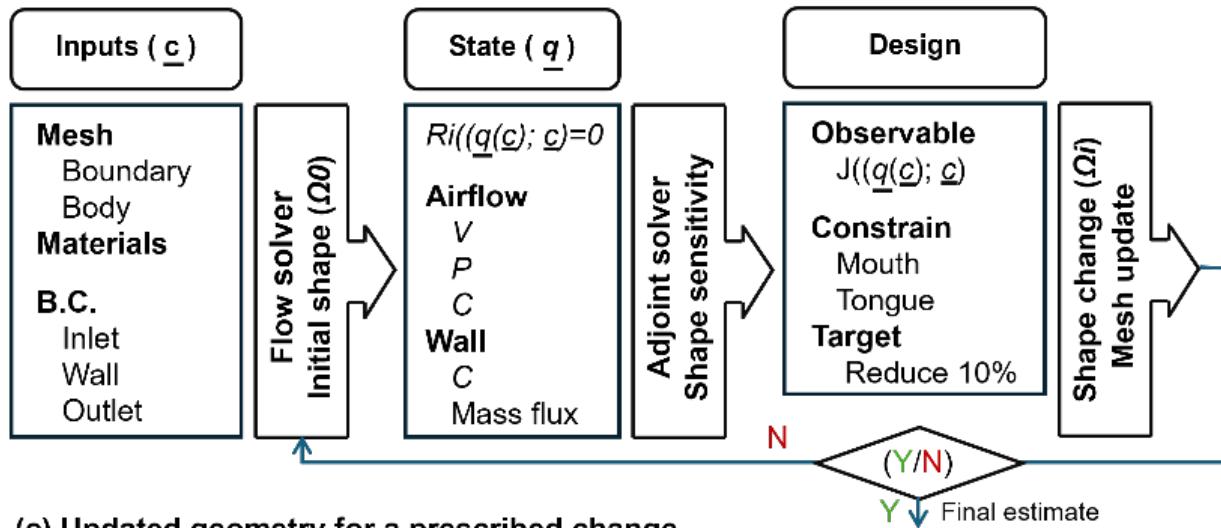
SSM:



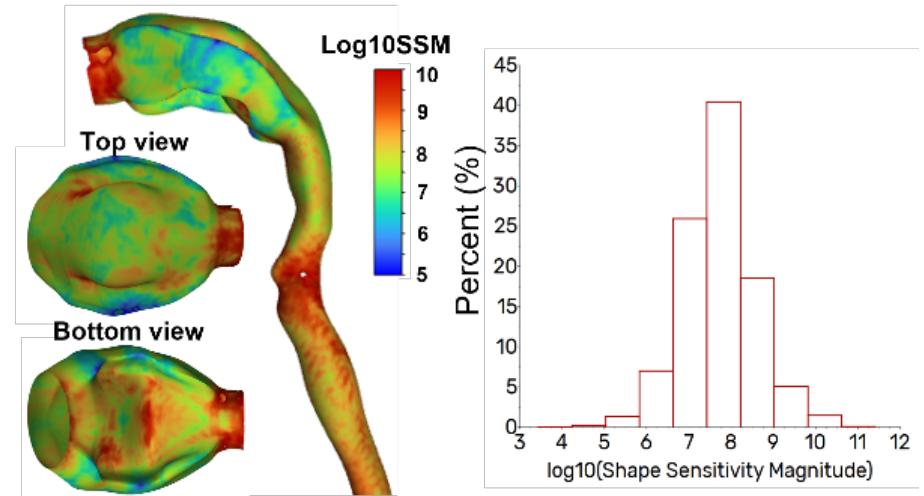
# AI-Based Computational Dosimetry Prediction Model (ABCDPM)

## ➤ Shape Sensitivity Analysis using Adjoint Solver

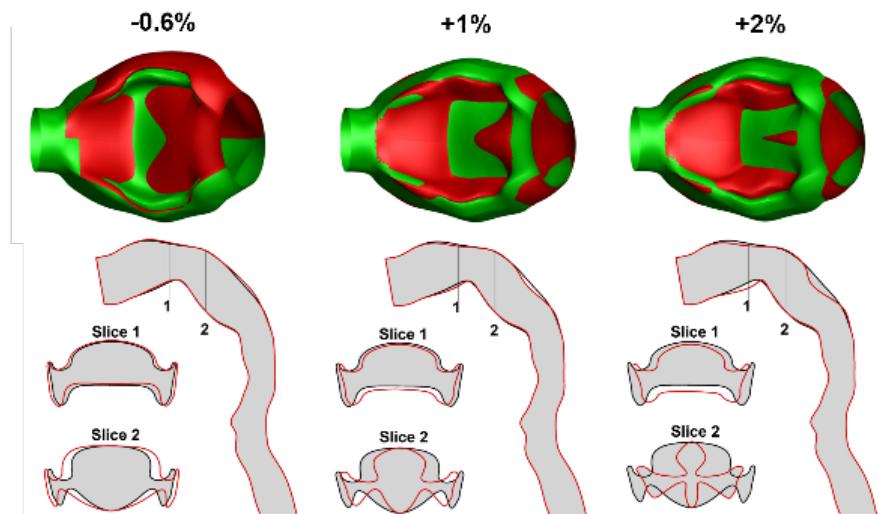
(a) Adjoint solver



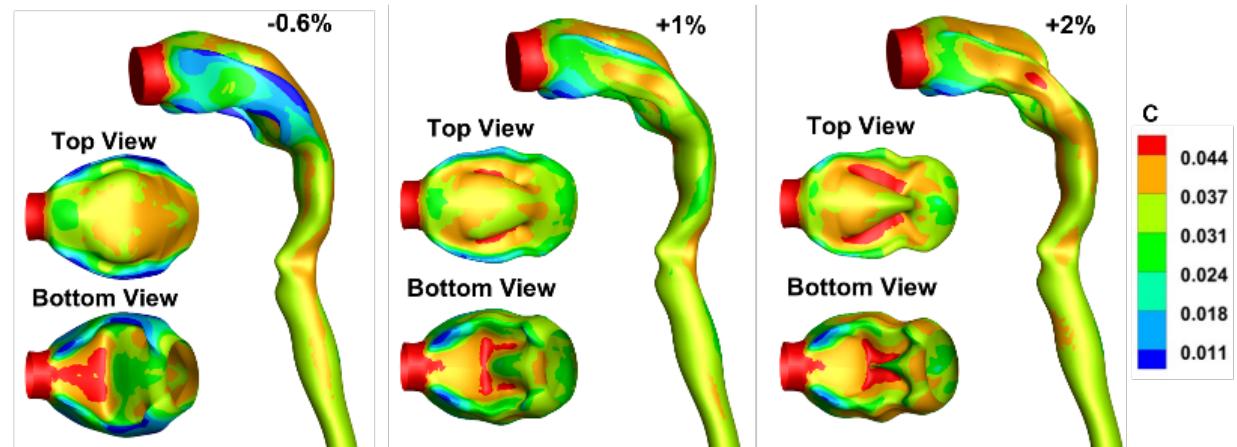
(b) Adjoint-calculated shape sensitivity



(c) Updated geometry for a prescribed change



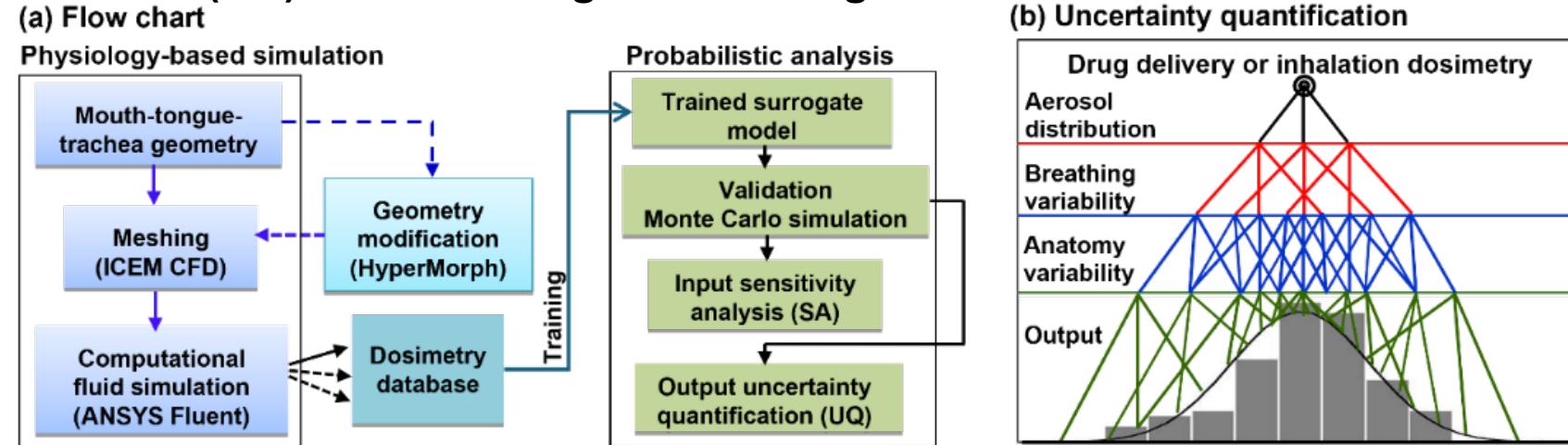
(d) Wall vapor concentration in updated geometries



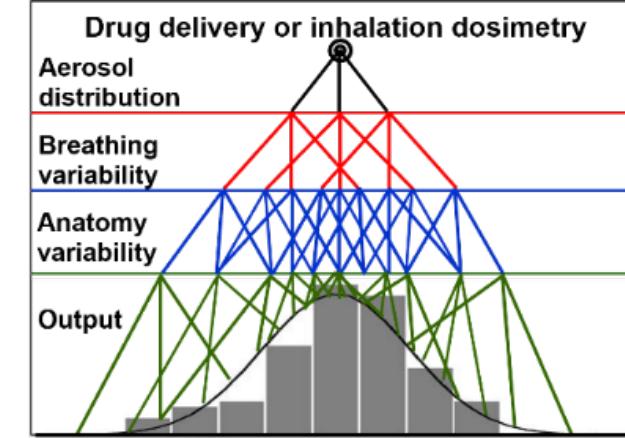
# AI-Based Computational Dosimetry Prediction Model (ABCDPM)

## ➤ Gaussian Process (GP) based Surrogate Modeling

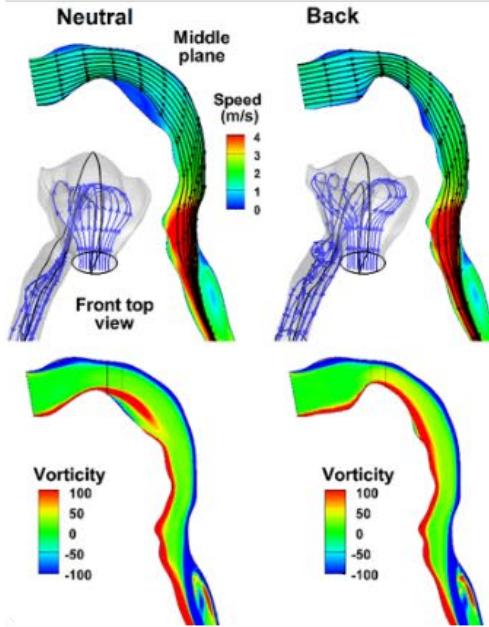
Method:



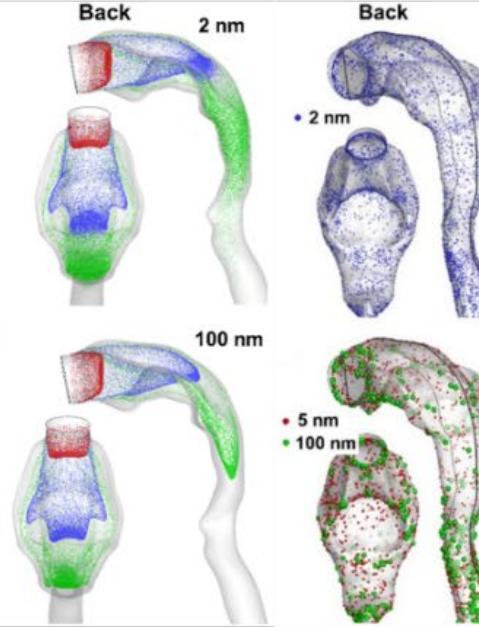
## (b) Uncertainty quantification



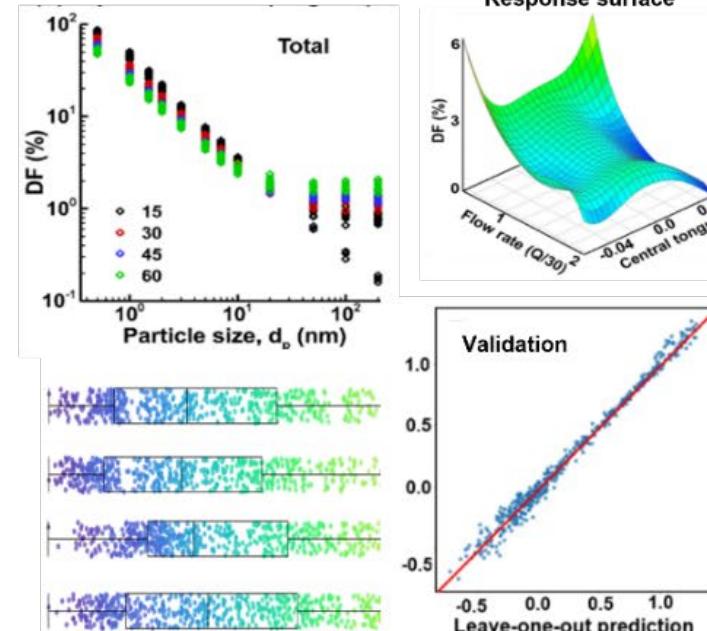
(a) Airflows



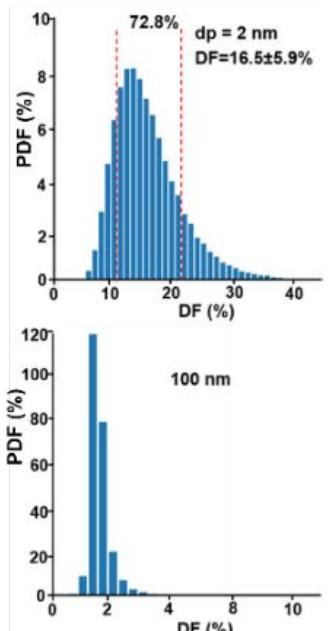
(b) Particle transport and deposition



(c) Surrogate model training



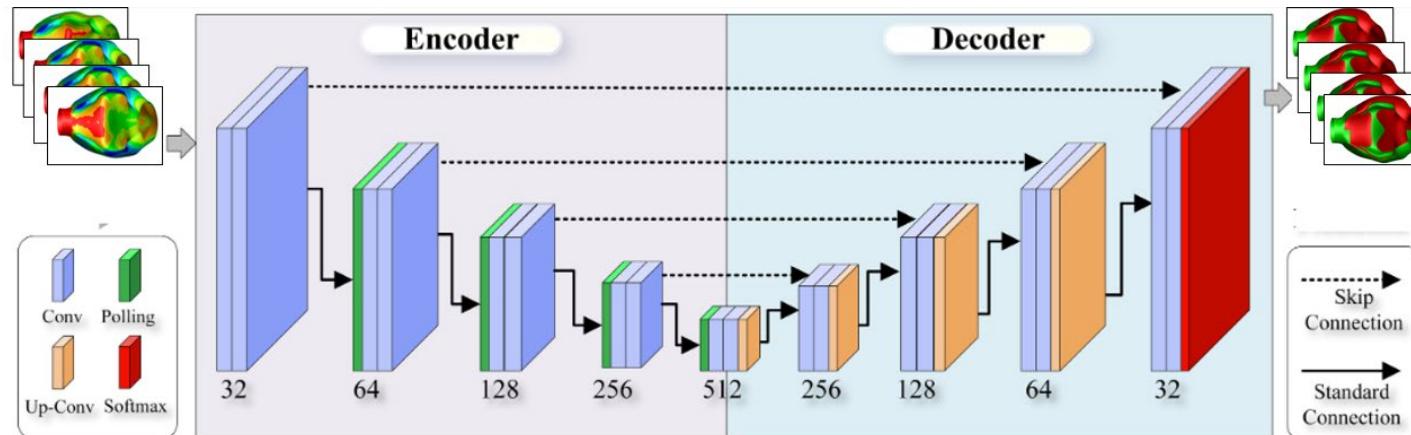
(d) UQ



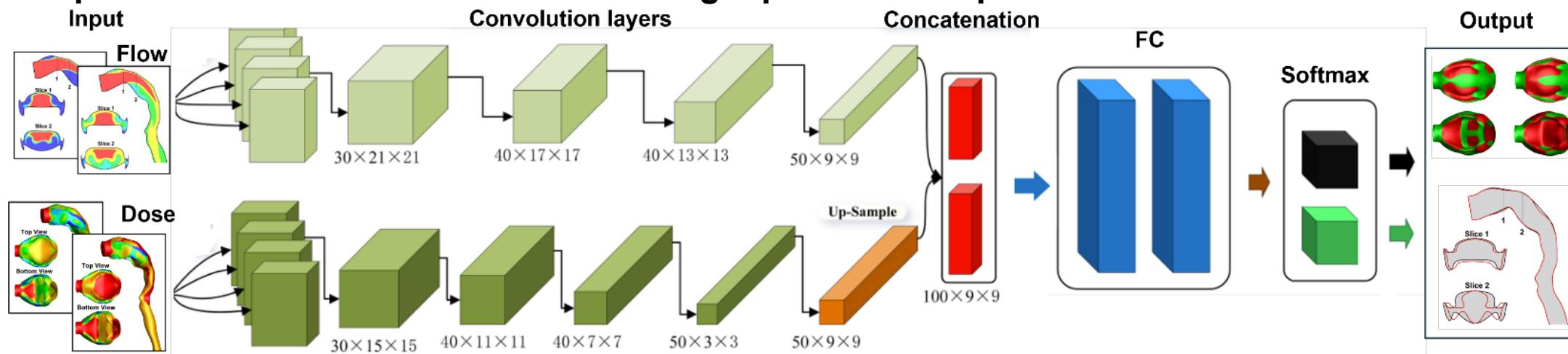
Example:

# AI-Based Computational Dosimetry Prediction Model (ABCDPM)

## ➤ Machine learning of Velocity Informatics (VI) and Particle Informatics (PI) using MIScnn



## ➤ DeepMedic architecture to train correlating Inputs and Outputs

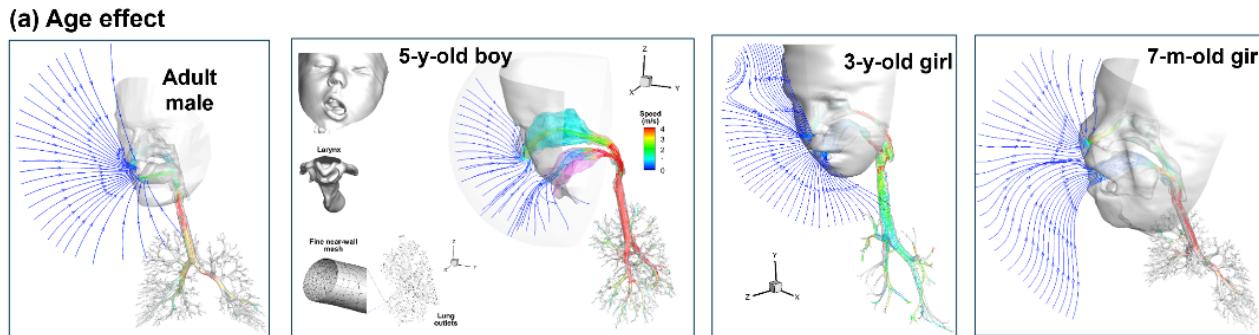


- [1]. A Almeldein, **N VanDam**, "Accelerating chemical kinetics calculations with physics Informed neural networks," *J. Eng. Gas Turbines Power*, 145(9): 091008, 2023.
- [2]. A SubLaban, T Kessler, **N VanDam**, JH Mack, "Artificial neural network models for octane number and octane sensitivity: A quantitative structure property relationship approach to fuel design," *Journal of Energy Resources Technology*, 145, 102302, 2023.
- [3]. M. Talaat, .. **J. Xi**, "Convolutional neural network classification of exhaled aerosol images for diagnosis of obstructive respiratory diseases," *J. Nanotheranostics*, 4(3): 228-247, 2023.
- [4]. M. Talaat, X Si, **J. Xi**, "Simulated exhaled aerosol images from normal and diseased lungs for convolutional neural network Training/Testing," *Data*, 8(8): 126, 2023.
- [5]. M Talaat, X Si, **J. Xi**, "Breathe out the secret of the lung: Video classification of exhaled flows from normal and asthmatic lung models", *Journal of Respiration* 3 (4), 237-257, 2023

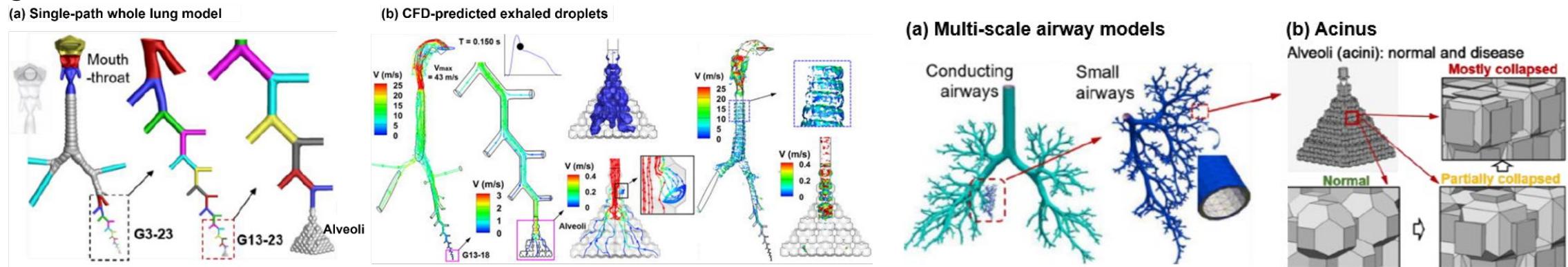
# AI-Based Computational Dosimetry Prediction Model (ABCDPM)

## ➤ Airway Models and Experimental Facility to Develop High-fidelity Dosimetry Database

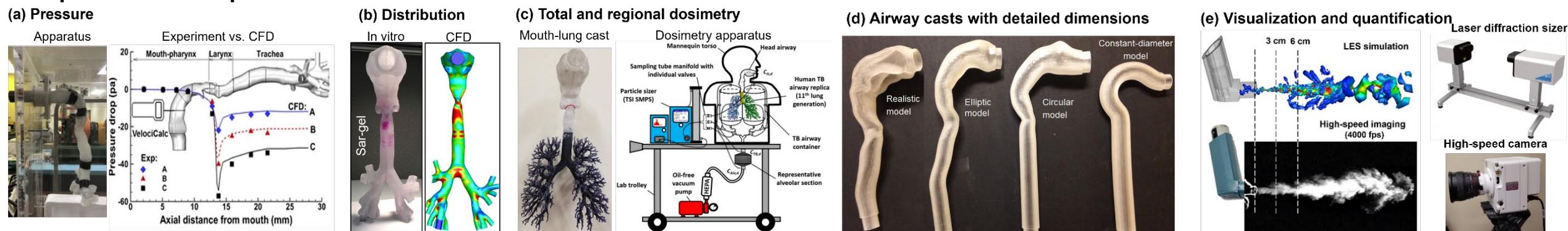
### A. Age effects



### B. Lung and Alveoli



### C. Experimental setup



[1] X. Si, J. Xi, "Deciphering exhaled aerosol fingerprints for early diagnosis and personalized therapeutics", *J. Nanotheranostics* 2 (3), 94-117, 2021.

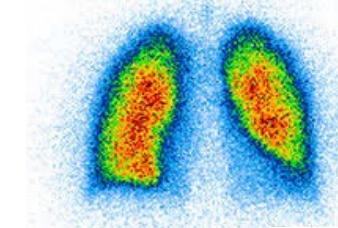
[2] X. Si, M Talaat, J Xi, "SARS COV-2 virus-laden droplets coughed from deep lungs: Numerical quantification in a single-path whole respiratory tract geometry", *Phys Fluids* 33, 023306, 2021

# AI-Based Computational Dosimetry Prediction Model (ABCDPM)

## ➤ Data-Driven High-Fidelity In Vitro-In Silicon Inhalation Dosimetry Model with Interpretability

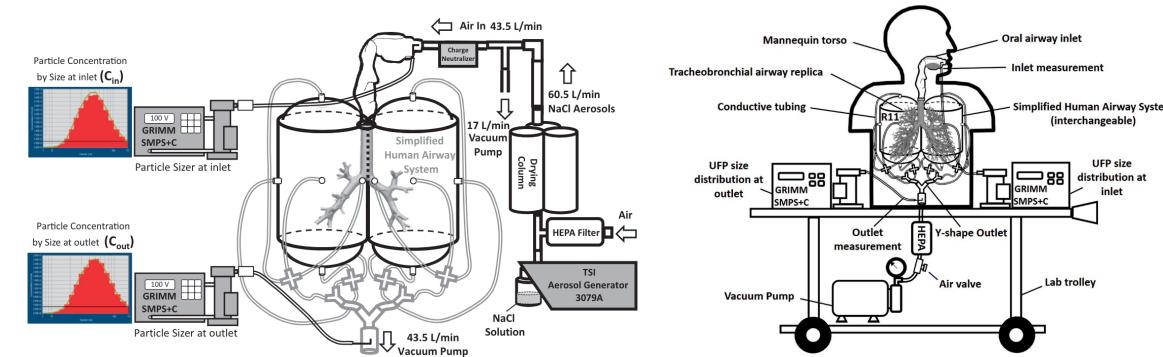
### ➤ In Vivo data:

Low spatiotemporal resolution + Noise + Ethic issues



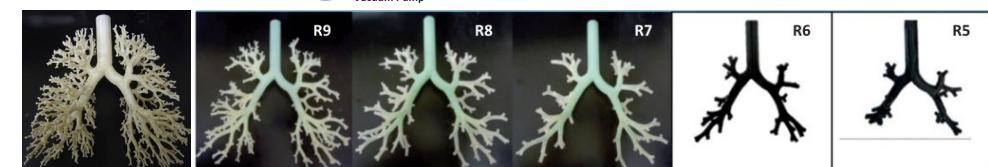
### ➤ In Vitro data:

Low spatiotemporal resolution + Noise + Labor Intensive



### ➤ In Silicon data:

High-resolution  
Uncertainty in parameters (B.C.)



### ➤ Further actions:

Discovering hidden low-dimensionality in data

→ Data-driven modeling → Improve prediction fidelity

#### ❖ Machine-Learning Reduced-Order Models (ML-ROM)

#### ❖ Compressed Sensing: $y = \Phi x = \Phi \Psi \alpha$

$$y = \Phi \alpha$$

data       $\Phi$        $\Psi$        $\alpha$

Irregular sampling

$x = \Psi \alpha$

Thank you!

# **Computational methods to evaluate the bioequivalence of generic metered dose inhalers**

**Guilherme Garcia**

1. Joint Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin
2. Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin

# Motivation

- Few generic metered dose inhalers (MDIs) have received FDA approval.
- New-generation MDIs using environmentally friendly “green” propellants are under development.
- In the FDA’s “weight of evidence” approach, computational models can be used as evidence to demonstrate the bioequivalence of a candidate generic MDI to a reference product.
- However, gold standard computational methods to evaluate the bioequivalence of MDIs have not been established yet, especially in the context of green propellants.



# Research Areas in FY24 GDUFA Science and Research Priorities

## Item 5.C.

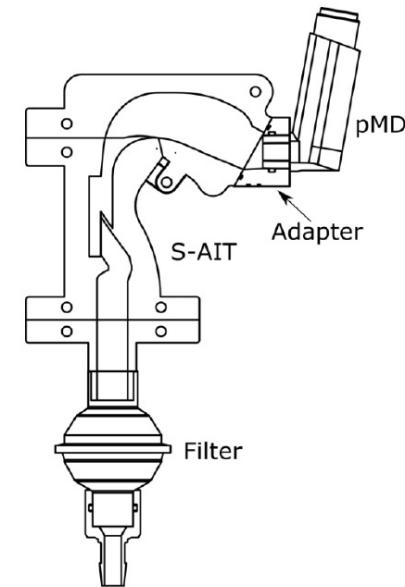
- *Developing efficient approaches to support transitions by generic products to utilize more environmentally friendly propellants.*

There are many challenges / open questions...

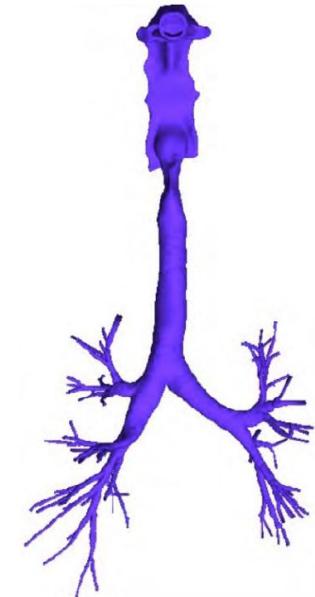
# Potential study design to validate methods for testing the bioequivalence of MDIs

- Compare MDIs with currently-used vs. green propellants
- In vitro characterization (plume geometry, spray velocity, particle size distribution, etc.)
- In vitro experiments to quantify the regional doses in airway models
- Validation of CFD methods to predict regional doses
- Validation of PBPK models to estimate bioavailability

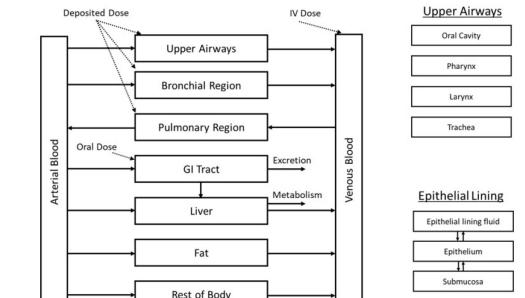
In vitro experiments



CFD models



PBPK models

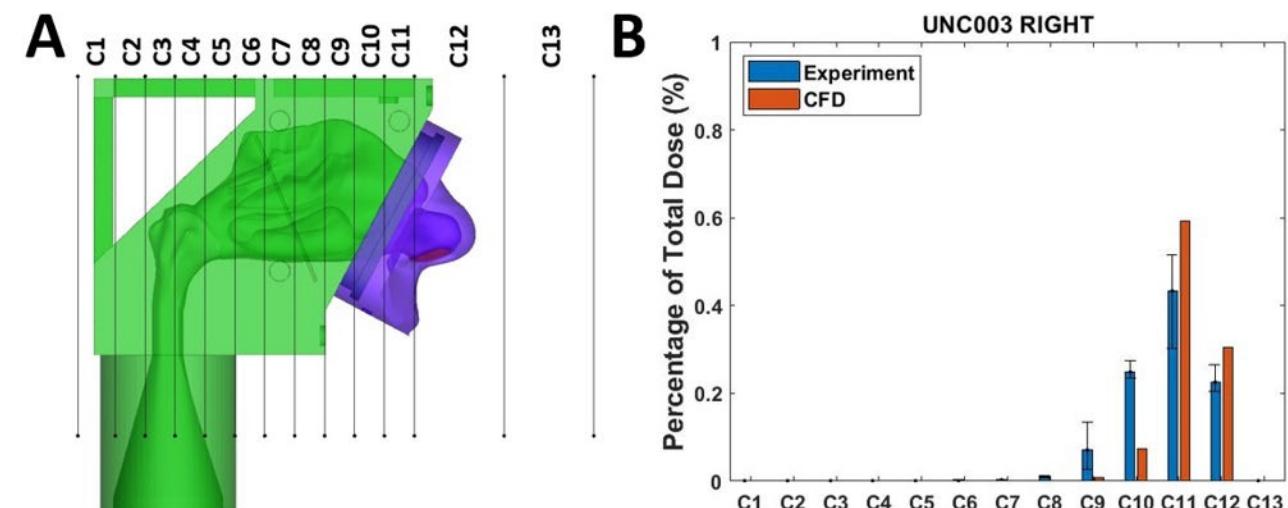


# Recommended Areas of Research

## Particle Bounce

- Particle bounce can affect the particle size distribution determined by cascade impactors [1].
- CFD simulations with a trap boundary condition underpredicted the dose of nasal sprays that penetrate the nasal valve compared to gamma scintigraphy ( $24 \pm 14\%$  vs.  $46 \pm 15\%$ ,  $p=0.0002$ ,  $n=12$  models) [2].

→ There is a need to validate wall-film boundary conditions for CFD simulations of pharmaceutical aerosols.



[1] – Doub et al. (2020) AAPS PharmSciTech (2020) 21, 239.

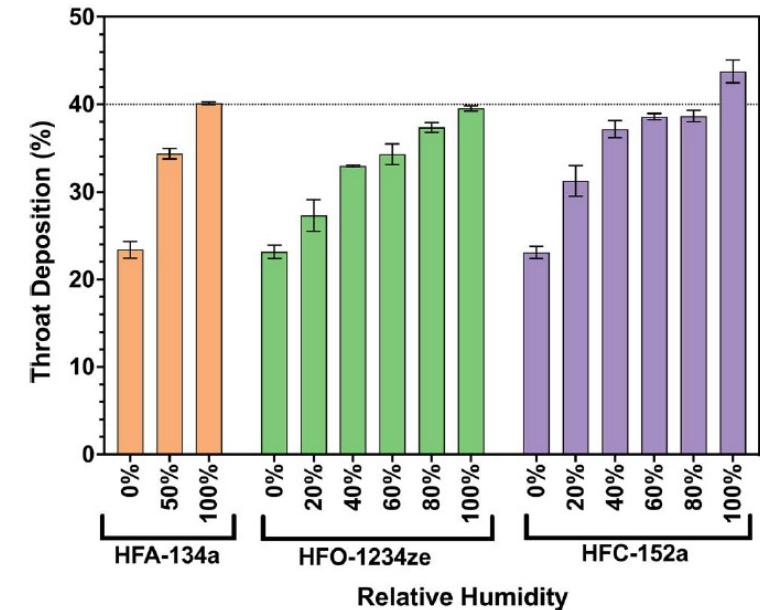
[2] – Garcia et al., in preparation.

# Recommended Areas of Research

## Effect of air humidity

- MDIs are often characterized in laboratory conditions with room air, while inhaled air is quickly humidified to 100% relative humidity in the human respiratory tract.
- Wang et al. (2024) reported that relative humidity has a significant impact on the dose of MDIs that deposit in the USP induction port [3].

→ There is a need to develop CFD methods to estimate the impact of air humidity on regional doses delivered by MDIs.



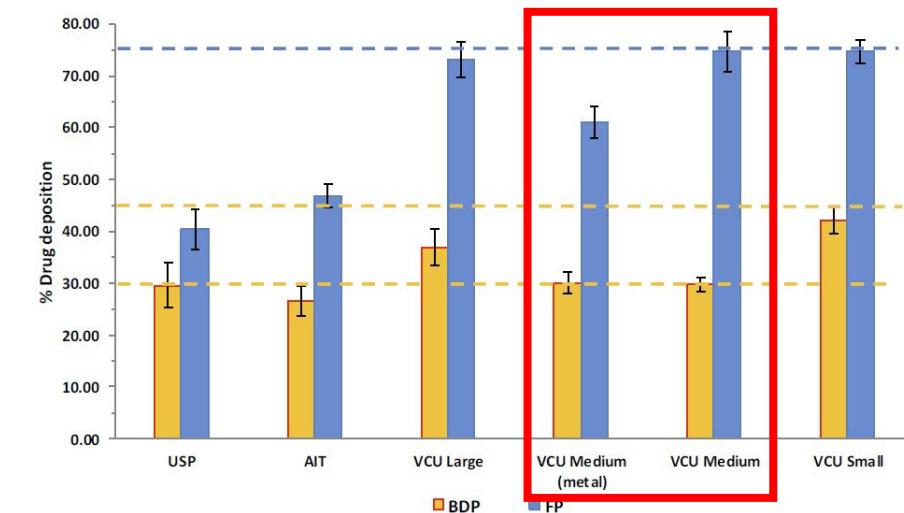
[3] – Wang et al. (2024) Aerosol Sci. Tech. 58, 115-133.

# Recommended Areas of Research

## Effect of electric charges

- Kaviratna et al. (2019) compared the dose of two MDIs in metal vs. polymer mouth-throat (MT) models [4].
- The fluticasone propionate MDI had higher deposition in the polymer MT model.

→ There is a need for more research (experimental and theoretical) to understand how electric charges affect regional doses in airway models.

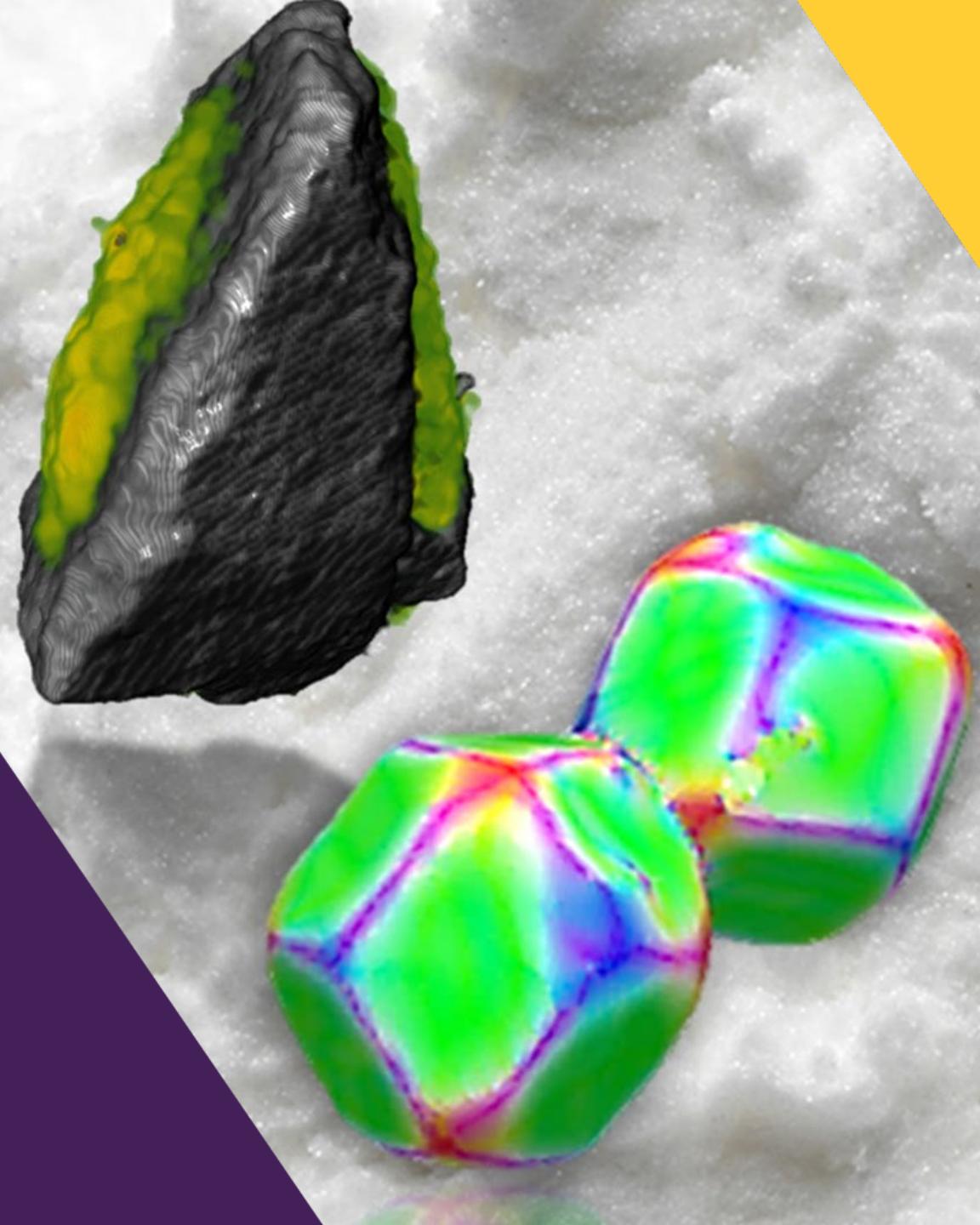


# Thank you!

Contact: [ggarcia@mcw.edu](mailto:ggarcia@mcw.edu)

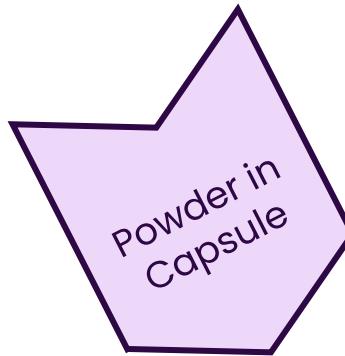
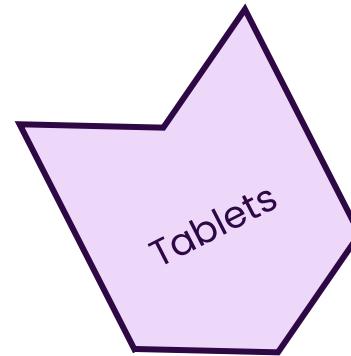
# Multiscale X-ray Computed Tomography

**Unlocking the power of seeing inside  
particulate products across multiple length  
scales**



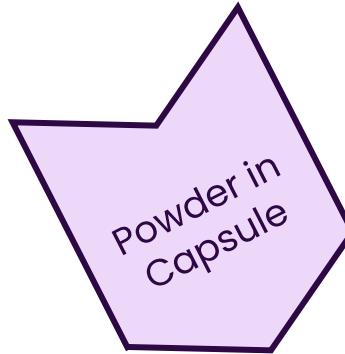
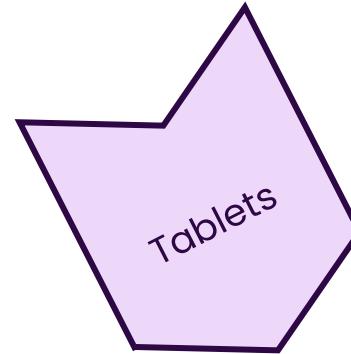
# Formulating micronized and low dose products

---



- ▶ Micronized API essential for inhaled products & beneficial for poorly soluble APIs
- ▶ Reproducible manufacturing is technically challenging – segregation, physical instability
- ▶ Content uniformity creates bioequivalence challenges

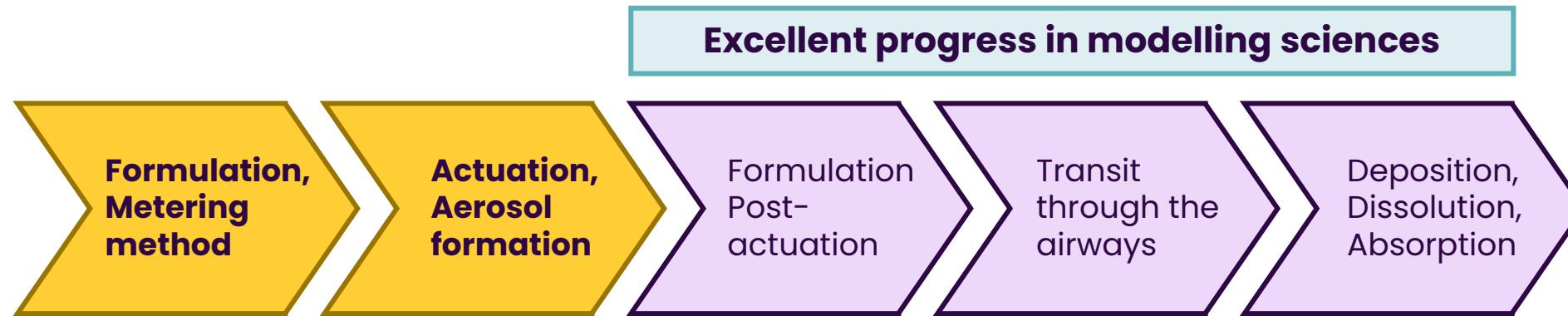
# Formulating micronized and low dose products



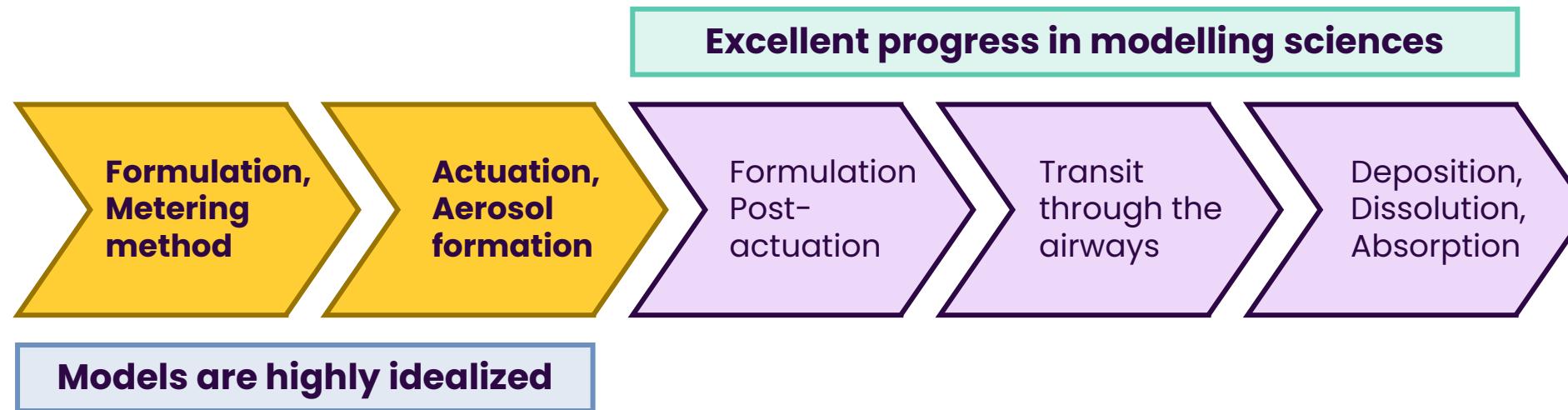
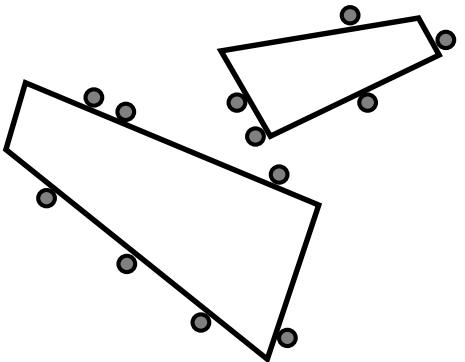
- ▶ Micronized API essential for inhaled products & beneficial for poorly soluble APIs
- ▶ Reproducible manufacturing is technically challenging – segregation, physical instability
- ▶ Content uniformity creates bioequivalence challenges

**How can imaging science contribute to predicting performance?**

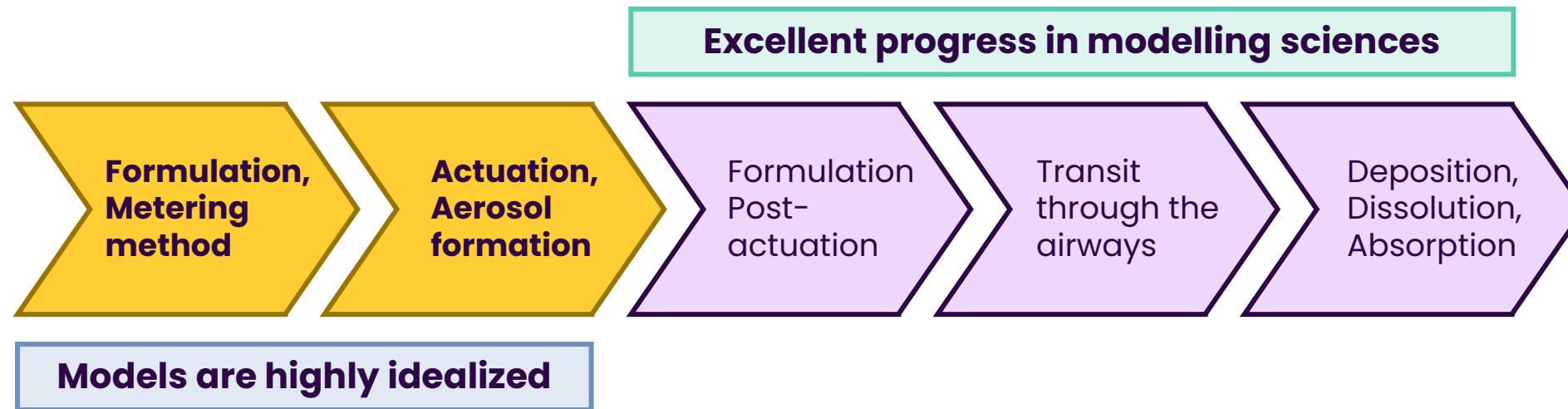
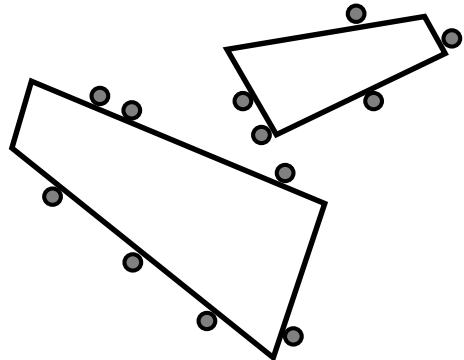
# DPIs: Exemplar of low dose, micronized blending



# DPIs: Exemplar of low dose, micronized blending



# DPIs: Exemplar of low dose, micronized blending



## Pre-actuation formulation

- ▶ Are there meaningful links between structure and drug delivery?
- ▶ How does manufacturing affect the pre-actuated structure?
- ▶ Is there a sampling method that maintains the agglomerated state of the bulk powder?

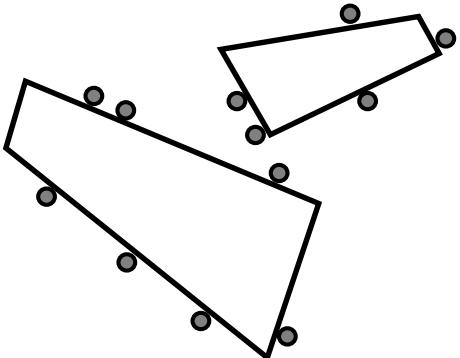
# DPIs: Exemplar of low dose, micronized blending

---

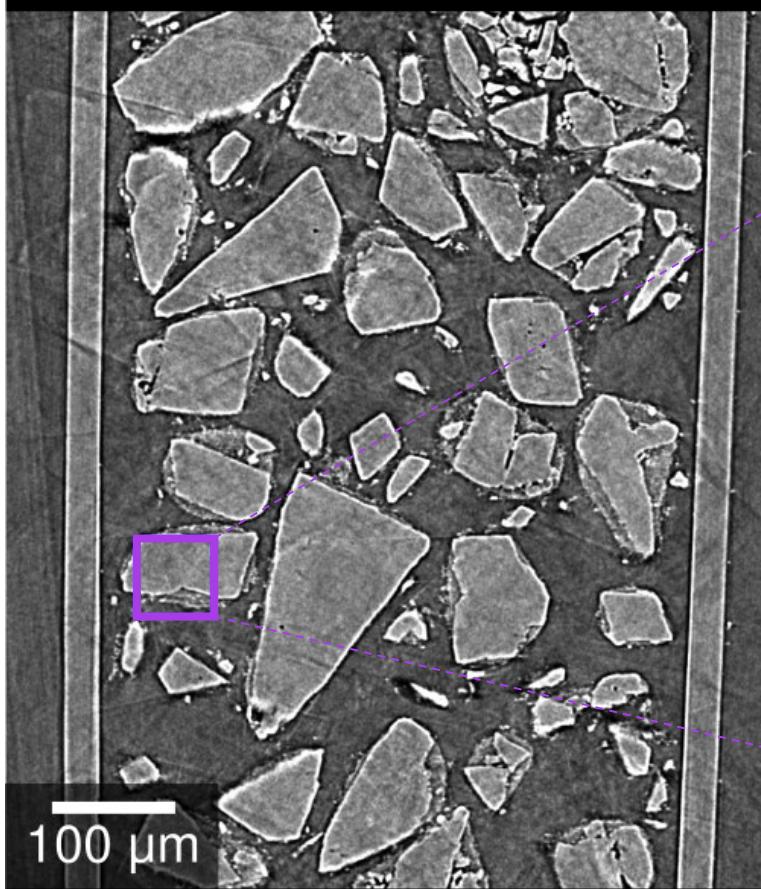
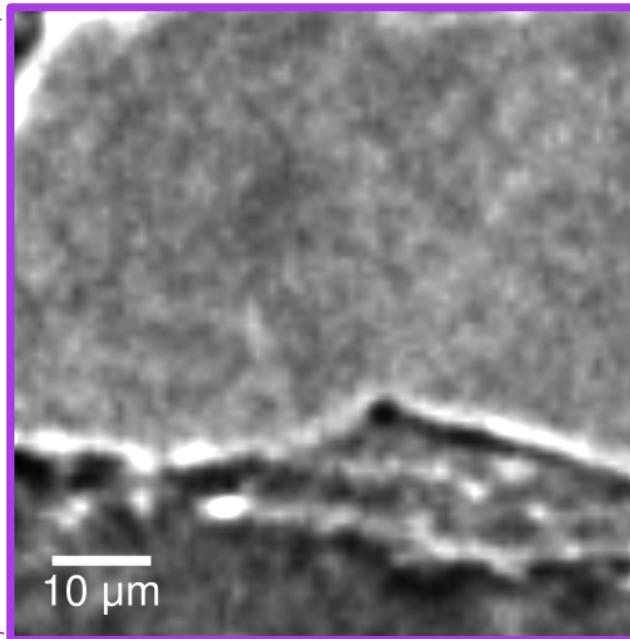


## X-ray Computed Tomography?

- ▶ Key challenge of different length scales
- ▶ Need to image on  $10^{-8}$  to  $10^{-3}$  m within one sample

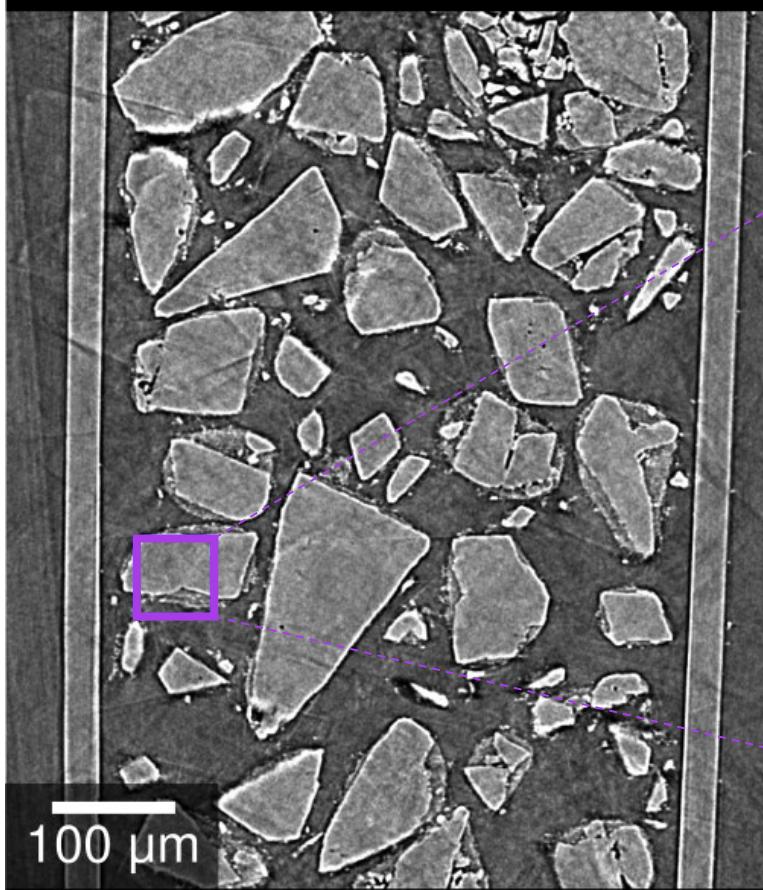


# Standard XCT imaging and image analysis

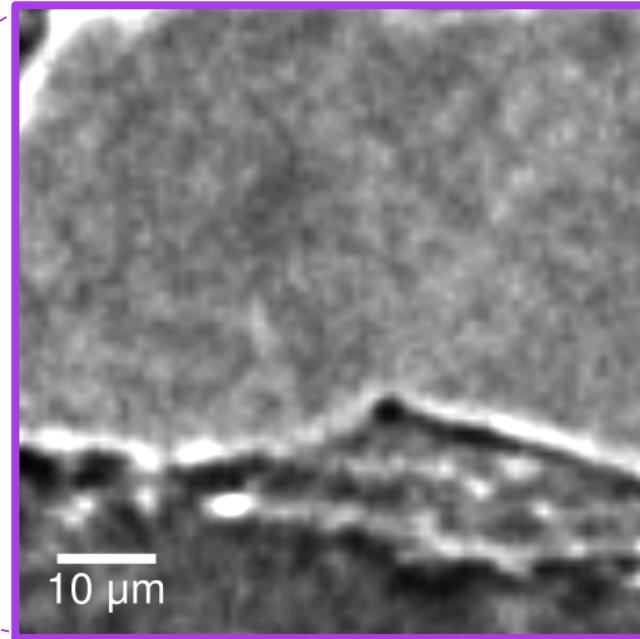


- Laboratory instruments lack resolution to image micronized drug particles
- Laboratory and synchrotron imaging is too 'noisy' for accurate analysis of micronized drug particles

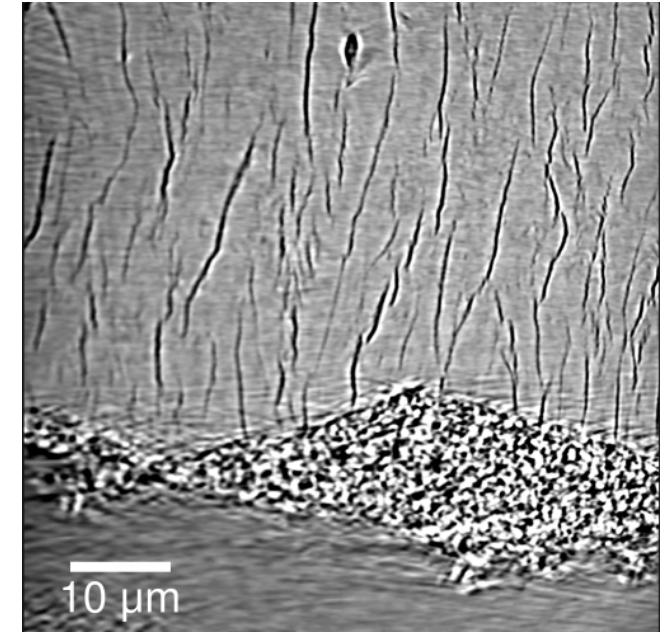
# Inhalation blends: Combining nano- and micro- XCT



Current Standards

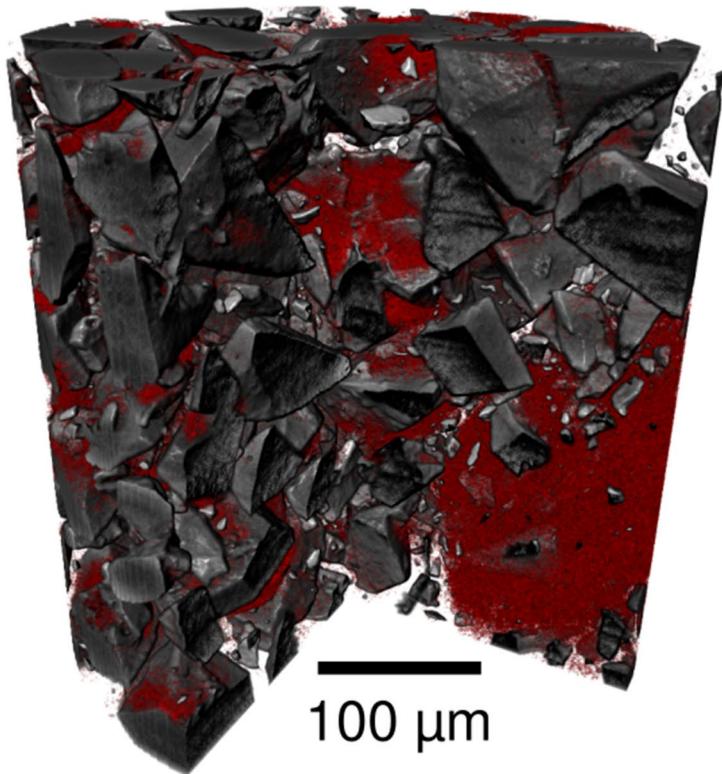
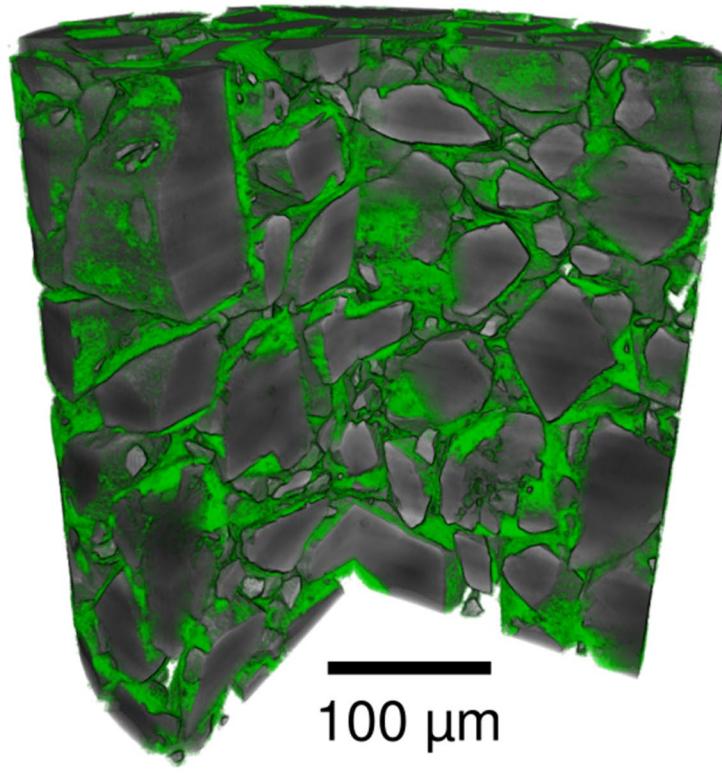


Informix Imaging



# Inhalation blends: Imaging over multiple length scales

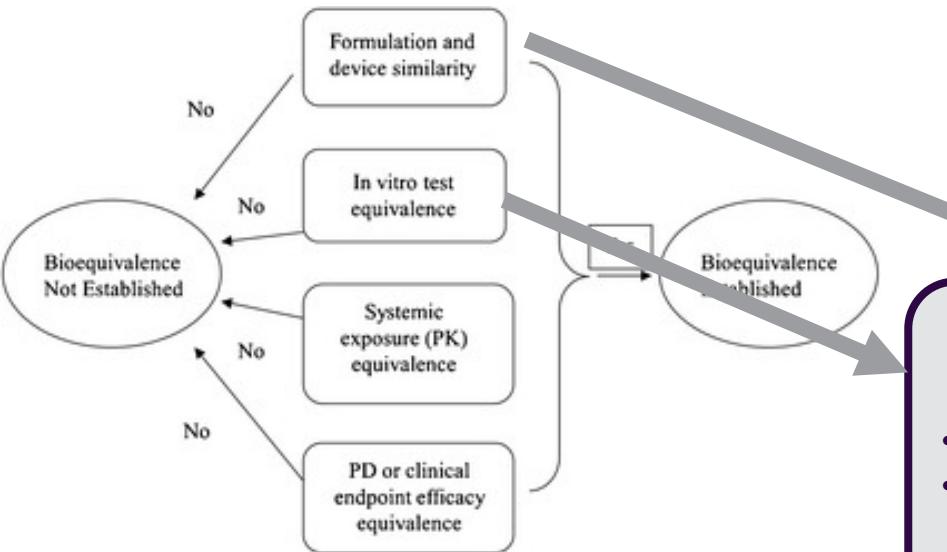
---



Characterizing powder microstructures

# Generic Development Challenge to be Solved?

Weight of evidence approach  
(USA)

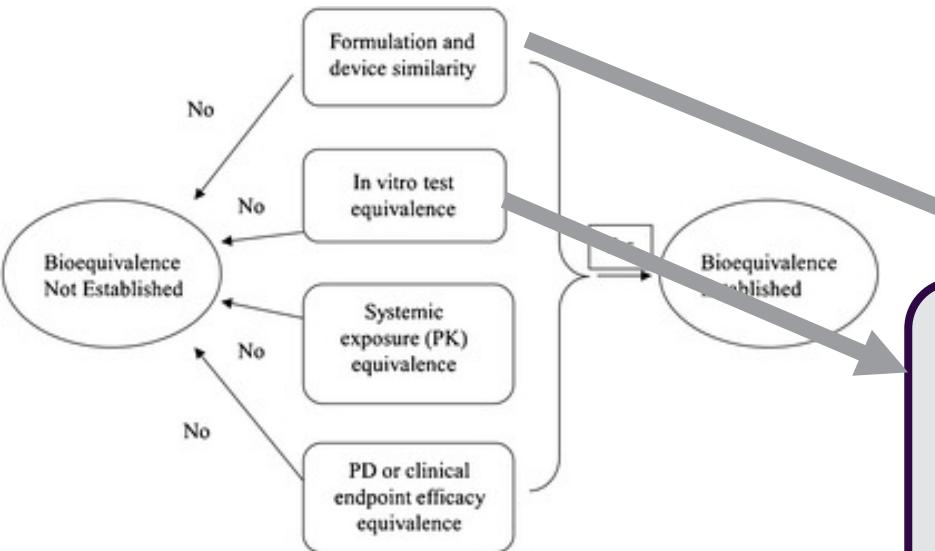


## Critical quality attributes

- Q1 – Identity of components
- Q2 – Concentration and Composition
- **Q3 – Same non-equilibrium state related to the arrangement of matter**

# Generic Development Challenge to be Solved?

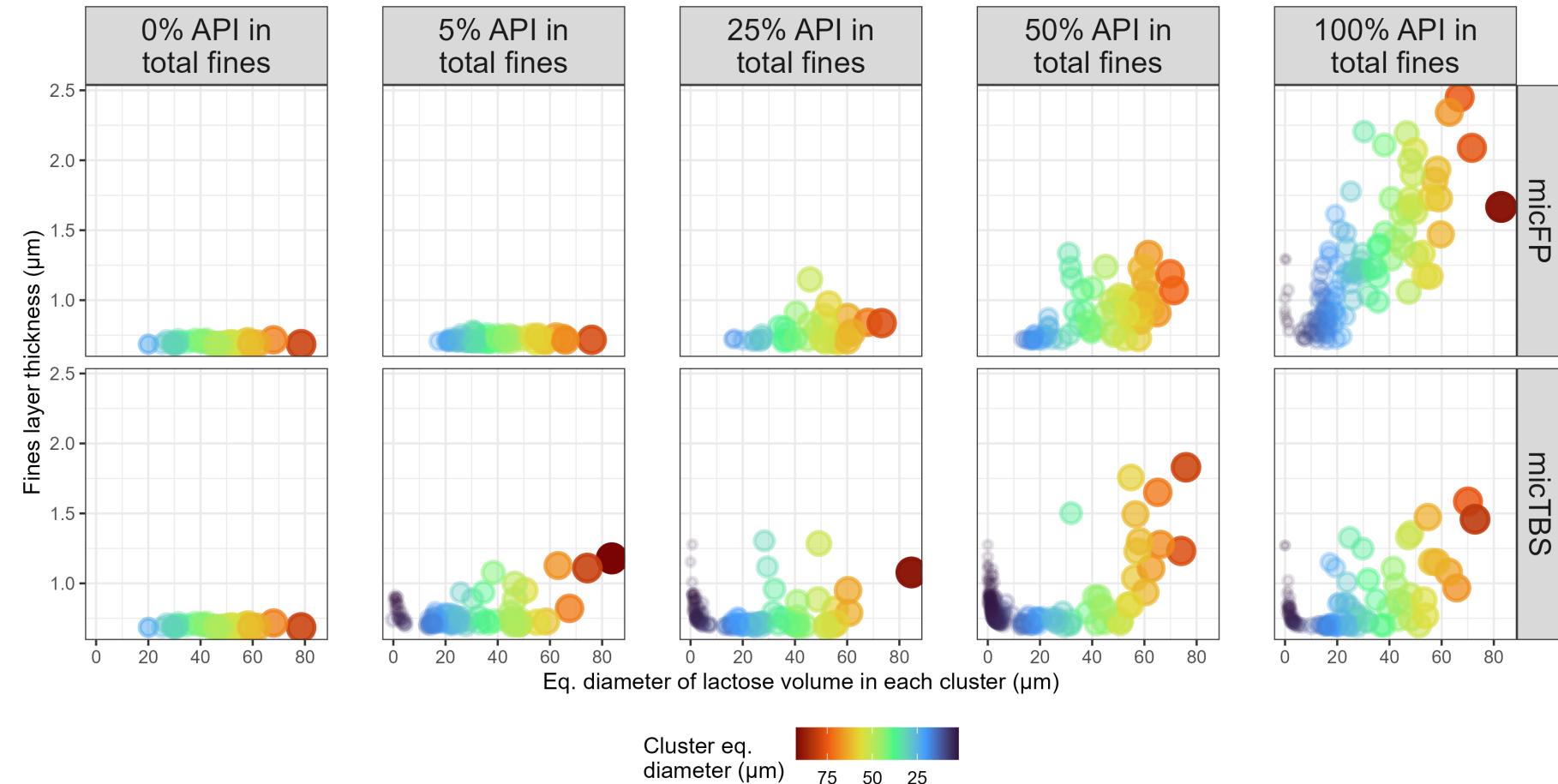
Weight of evidence approach  
(USA)



**Non-destructive Q3  
microstructural equivalence  
assessment for dry powder  
inhalation products**

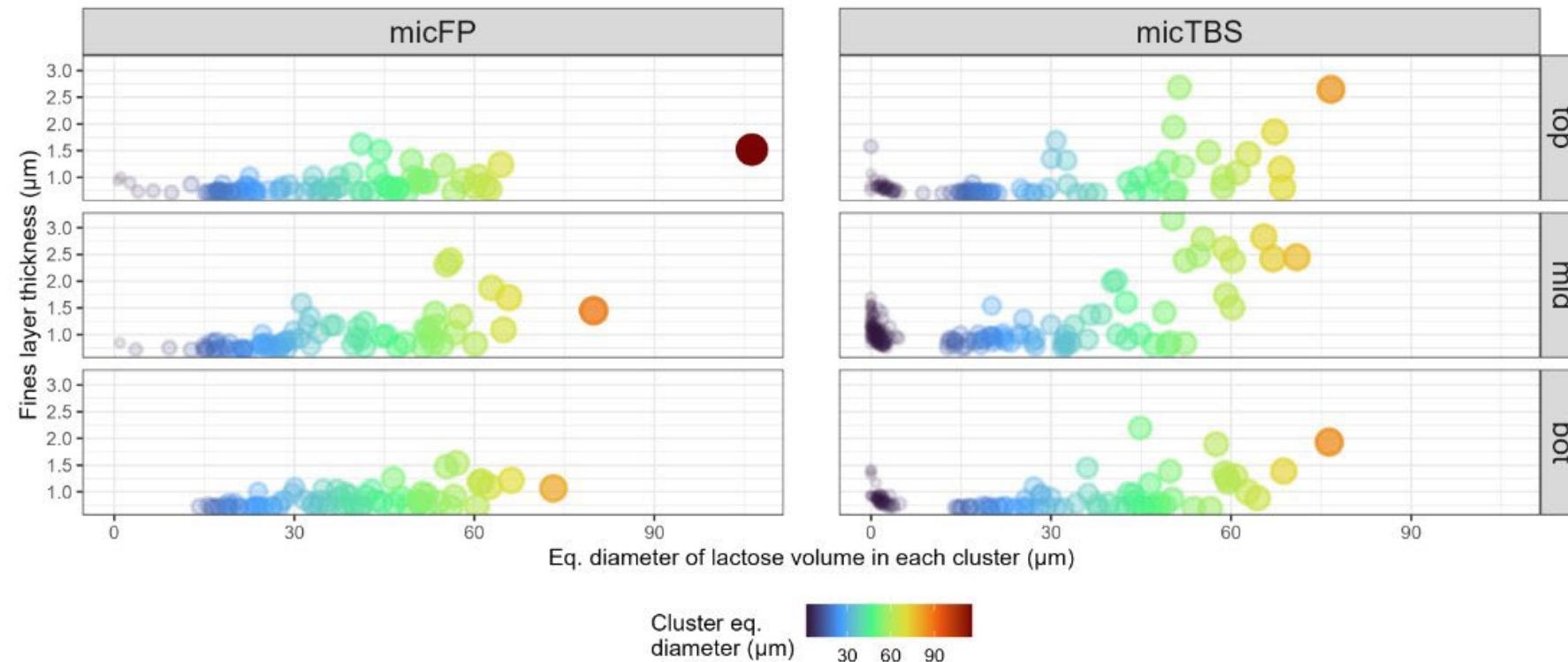
- Composition
- **Q3 – Same non-equilibrium state related to the arrangement of matter**

# Informix Analysis: Microstructural “Fingerprints”



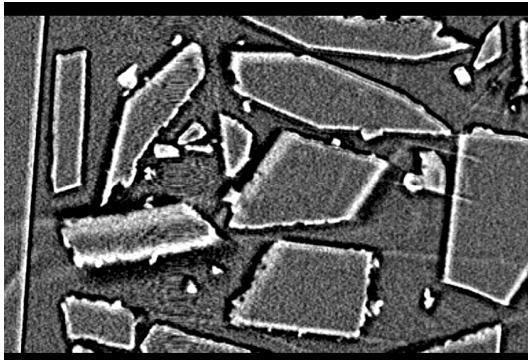
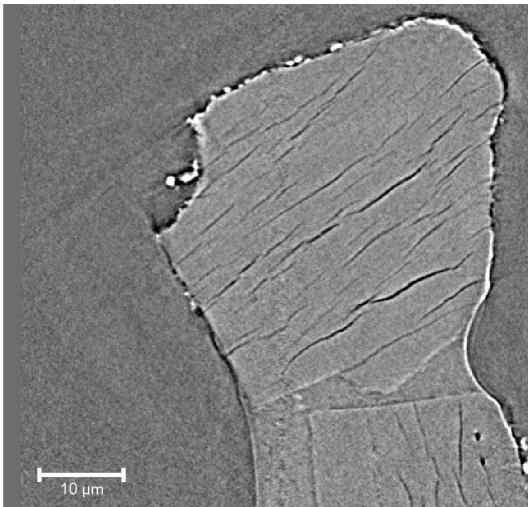
# Development challenge: Intra-sample heterogeneity

- Variability in aerosolization performance is a known problem, even where unit dose content is within uniformity limits



# Development challenge: De-risk raw material supplies

---



Nanoscale resolution of carrier lactose reveals intra-particle crystallographic faults in some commercial sources but not others

- ▶ Source of product processing failure?
- ▶ Unknown source of batch-batch variability?
- ▶ Can supply change be de-risked?

# Some research questions and challenges

---

## Knowledge and Understanding

- ▶ Does bulk microstructure correlate to aerosol microstructure?
- ▶ Will bulk microstructure equivalence equate to bioequivalence?
- ▶ Can we use bulk microstructure to build predictive digital twins?

# Some research questions and challenges

---

## Knowledge and Understanding

- ▶ Does bulk microstructure correlate to aerosol microstructure?
- ▶ Will bulk microstructure equivalence equate to bioequivalence?
- ▶ Can we use bulk microstructure to build predictive digital twins?

## Technical

- ▶ What are the limits of detection for different APIs and blend types?
- ▶ How do different API chemistries affect LODs for imaging?
- ▶ What is the appropriate scale of scrutiny for assessment?

InformiX Pharma Limited is a registered company with number 14994613 and registered office at Unit 6, Church Farm, Church Road, Barrow, Bury St. Edmunds, England, IP29 5AX, United Kingdom

Thank you for your attention



---

**E** [info@informixpharma.com](mailto:info@informixpharma.com)

**W** [informixpharma.com](http://informixpharma.com)



May 20-21, 2024

## Use of machine learning, in vitro approaches, and dosimetry models to enhance the efficiency of bioequivalence approaches for OINDPs

**Jeffry Schroeter**  
Applied Research Associates  
Rapid Presentation  
GDUFA 2024 Public Workshop

© 2024 Applied Research Associates, Inc. • ARA Proprietary





# Motivation

**Modeling and simulation along with in vitro experiments may be used to develop product-specific bioequivalence approaches that do not include comparative clinical endpoint or pharmacodynamic studies**

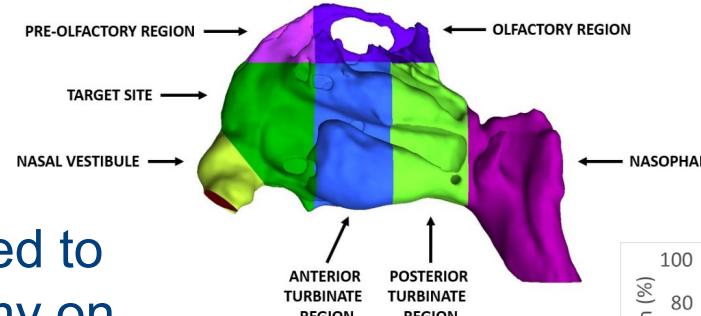
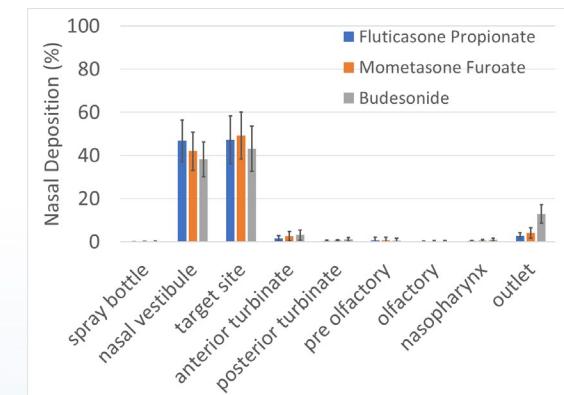
- For nasal spray products, M&S approaches have consisted of:
  - CFD models of nasal spray deposition
  - PBPK models of absorption and bioavailability



# Experience

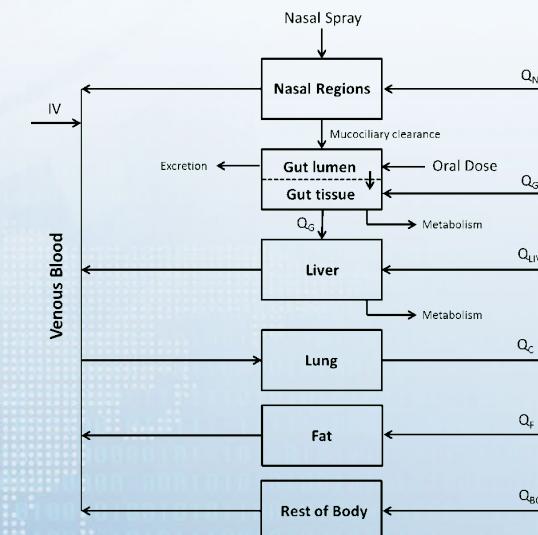
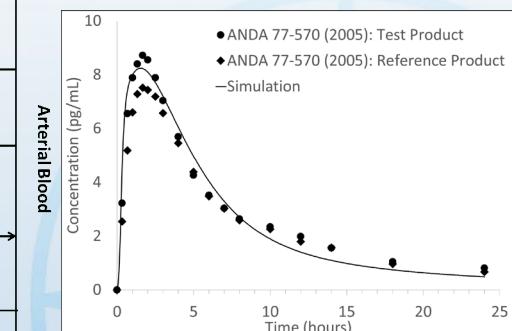
## CFD models of nasal sprays

- CFD models from multiple labs have been developed to study effects of spray parameters and nasal anatomy on regional nasal deposition



## PBPK models of corticosteroids

- PBPK models from multiple labs have been developed to study drug absorption and bioavailability from nasal sprays and OIDPs (e.g., corticosteroids)





# Solutions

## Machine Learning Models

- Given the extensive suite of studies and wealth of data for nasal spray deposition, use ML models to gain insights into effects of CQAs on regional deposition
- Conduct further CFD studies to fill in gaps

## In vitro experiments on nasal epithelial permeation

- PBPK modeling has demonstrated that systemic concentrations of nasally administered corticosteroids are highly sensitive to permeation through the nasal epithelial layer.
- Lack of model validation for tissue permeation is a current limitation of PBPK models for nasal sprays

## Unified software platforms

- Various technologies (deposition data, CFD/ML results, PBPK models) can be brought together for end-to-end predictions to assess effects of nasal spray characteristics on local and systemic tissue concentrations for comparisons of generic and reference products



# Thank you!

# Public Comments for Session 2

## ***Predictive Tools for Generic Product Development and Assessment***

### ***In Person Comments:***

- Huong Huynh, PhD, Director of Regulatory Science, and Shu Chin Ma, PhD, VP of MIDD & Quantitative Medicine, Critical Path Institute (C-Path)
- Sandra Suarez-Sharp, PhD, President, Regulatory Strategies, Simulations Plus, Inc.
- Anuj Chauhan, PhD, Professor, Colorado School of Mines
- Elad Berkman, PhD, CTO PhaseV
- Sebastian Melgar, MPH, Lead Associate Booz | Allen | Hamilton
- Brian Eden, Vice President, Global Life Sciences Technical Operations Capgemini Group
- Sandhya Polu and Anil Bhatta, Contracts Manager, Deloitte Services LP
- Anthony Cristillo, PhD, MS, MBA, Partner, Digital Health
- Sarah Ferko, MS, PMP and Ally Lu, Senior Managing Consultant, Artificial Intelligence & Analytics, IBM Consulting
- Ashlee Brunaugh, PhD, Assistant Professor, Pharmaceutical Sciences, University of Michigan
- Jinxiang Xi, PhD, Associate Professor of Biomedical Engineering, University of Massachusetts, Lowell
- Guilherme Garcia, PhD, Assistant Professor, Marquette University and The Medical College of Wisconsin
- Darragh Murnane, PhD, Professor of Pharmaceutics, University of Hertfordshire (Informix Pharma)
- Jeff Schroeter, PhD, Senior Scientist, Applied Research Associates

### ***Virtual Comments:***

- Ravendra Singh, PhD, Director of Pharmaceutical Systems Engineering Rutgers
- Sebastian Polak, PhD, Professor Jagiellonian University
- Maxime Le Merdy, PhD, Associate Director, Research and Collaboration Simulations Plus, Inc.
- Stephan Schmidt, PhD, Professor University of Florida
- ***Guenther Hochhaus, PhD, Professor, University of Florida***
- ***Yu Feng, PhD Associate Professor, Oklahoma State University***
- ***Maria Malmlöf, PhD; Per Gerde, PhD, Director of Projects, Inhalation Sciences***
- ***Laleh Golshahi, PhD, Associate Professor of Mechanical and Nuclear Engineering, Virginia Commonwealth University***
- ***Rodrigo Cristofoletti, PhD, Assistant Professor, University of Florida***

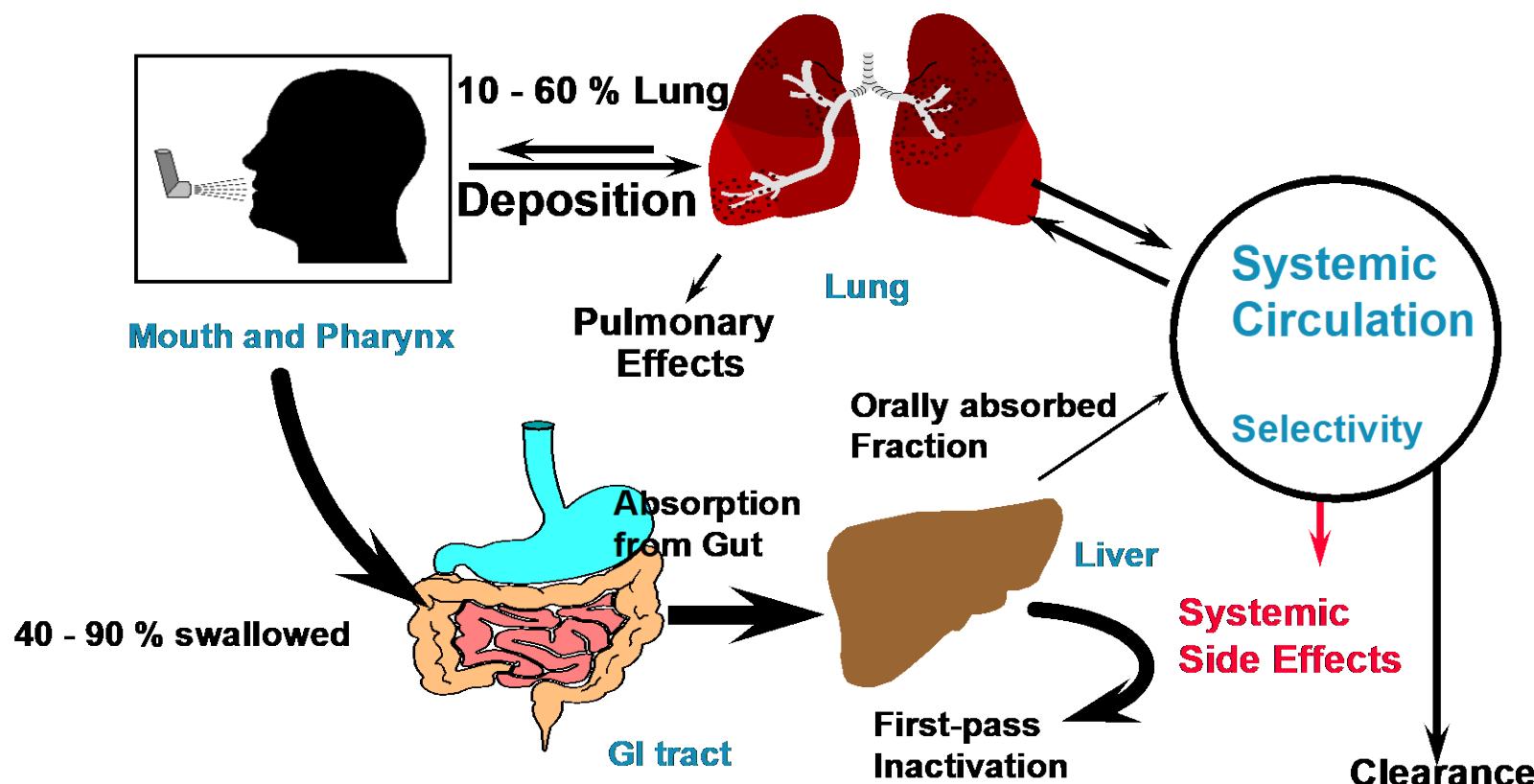
COLLEGE OF

**PHARMACY**

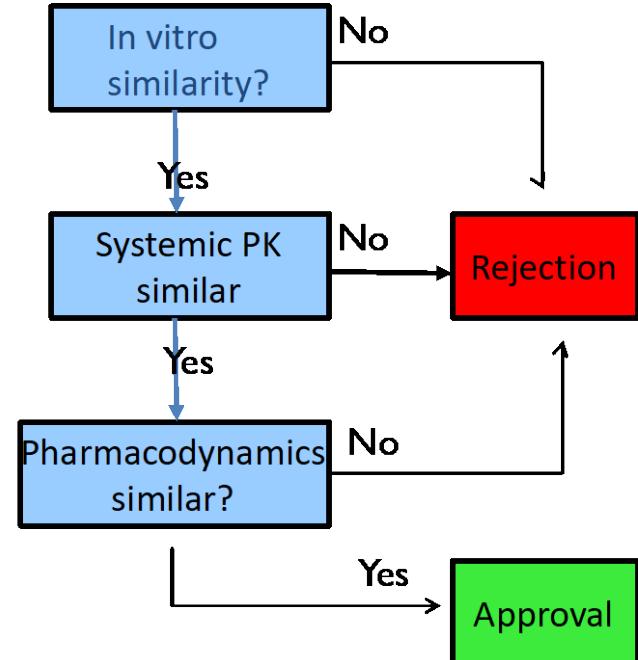
# FY24 FDA GDUFA Public Workshop

Comments from: Guenther Hochhaus, University of Florida  
[Hochhaus@ufl.edu](mailto:Hochhaus@ufl.edu)

# Reason for weight of evidence approach



FDA



What needs to be shown:

- Lung Dose
- Regional deposition
- Lung residence time

# Previous Research for OINDP successfully evaluated:

- Tools to assess regional deposition
  - Use of anatomical mouth/throat models in conjunction with typical inhalation profiles observed in patients
  - Computational fluid dynamics for predicting regional deposition of inhalation drugs
- Approaches to assess post deposition events
  - Dissolution tests (integrated into PSGs of suspension nasal sprays
  - MDRS (suspension nasal sprays, very time and resource consuming )
- Methods to assess deposition/post-deposition events
  - Population pharmacokinetic evaluation (often needs iv data)
  - Physiological based pharmacokinetics

# FDA released first product specific guidance mentioning PK as alternative to clinical endpoint studies.

Draft Guidance on Formoterol Fumarate; Glycopyrrolate

February 2024

This draft guidance, when finalized, will represent the current thinking of the Food and Drug Administration (FDA, or the Agency) on this topic. It does not establish any rights for any person and is not binding on FDA or the public. You can use an alternative approach if it satisfies the requirements of the applicable statutes and regulations. To discuss an alternative approach, contact the Office of Generic Drugs.

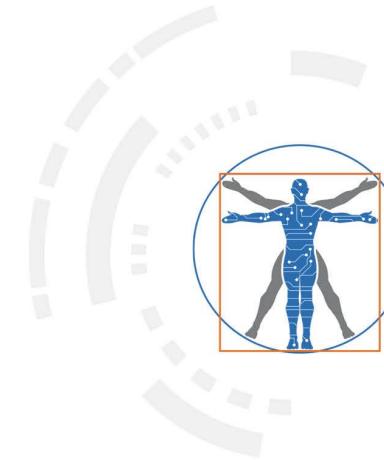
- APSD (ISM, MMAD, GSD)
- Single actuation content (standard)
- Spray pattern, Plume geometry, Priming and repriming
- Realistic APSD (mouth-throat models of different sizes (e.g., small and large) and weak and strong breathing profiles
- PK with and without charcoal
- Optional computational modeling studies **may** (have??) **be used** to support bioequivalence of the T and RS products (CFD, semi-empirical model, PBPK, population PK?) with the goal
  - Establishing **biorelevant limits** for bioequivalence comparison of key recommended studies, including **realistic APSD** and **plume geometry** studies.
  - to differentiate the impact of different products (i.e., device and formulation) on regional drug delivery
  - to assess the BE in terms of regional lung deposition  
**by conducting virtual bioequivalence simulations**

# Challenge: Establish credibility of computational models through validation

- **Validation includes comparisons between predictions and data from in vivo and/or in vitro sources including RS and at least one other drug product that is known to produce a different relevant outcome (regional deposition, systemic pharmacokinetics, or lung tissue pharmacokinetics).**
- Validation might include additional in vivo studies including anatomical and physiological conditions across subjects/patients and their variabilities.
- **Thus, development of computational methods for a specific product is very time and resource consuming, potentially resulting in companies using the traditional weight of evidence approach, thereby counteracting FDA's goal of streamlining product development.**

# Proposed suggestion for further streamlining BE assessments of OINDPs

- Develop *computational* models (CFD, PBPK, popPK) for a range of **model drugs covering the “design” space as it relates to device, formulation and physicochemical properties of the API within GDUFA sponsored research activities**
- Use these models to link differences in in vivo lung dose, residence time and regional deposition to differences in the in vitro performance (**APSD, MT-model based lung dose, dissolution rate**) as well as differences in NCA PK properties (Cmax, AUC).
- Based on this comparison define **generally applicable biorelevant limits as they relates to lung dose, residence time and regional deposition.**
- **Final Goal: allow use of standard in vitro/ PK approaches within the BE assessments of specific products without need of applying computational models**



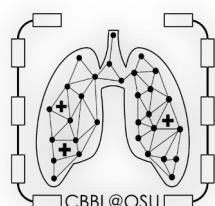
**Avicenna Alliance**  
Association for Data Driven Medicine



# Enhancing Inhaler Development: Leveraging Machine Learning and Deep Learning with Multiscale CFPD-PBPK Models for Accelerated Innovation

Yu Feng, Ph.D.

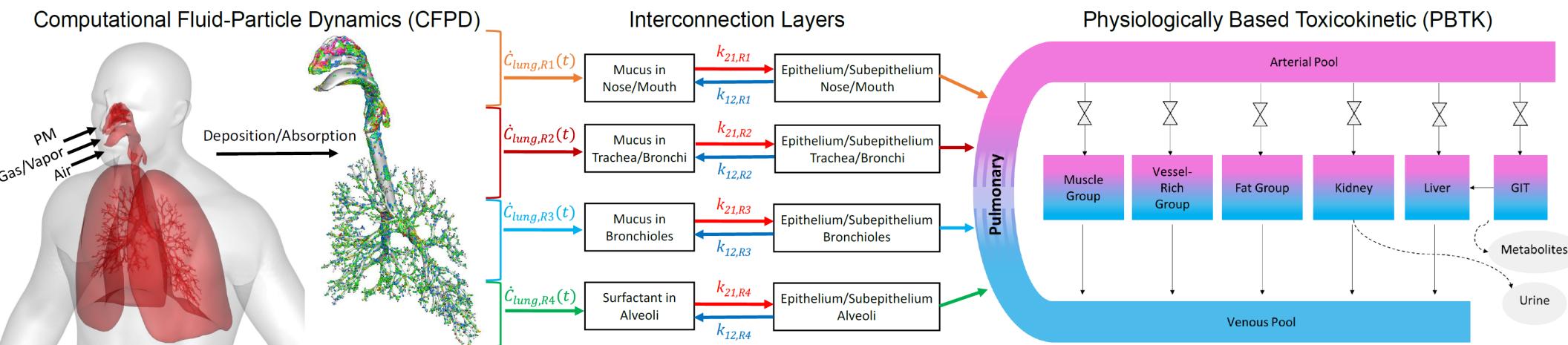
Associate Professor, School of Chemical Engineering, Oklahoma State University, Stillwater, OK, USA  
Academic Co-Chair, Pharmaceutical (Pharma) Strategy Task Force, Avicenna Alliance





# Why CFPD-PBPK Hybrid Model is Needed

- Capture Factors that Can Influence the Aerodynamics of Inhaled Medication and the Resultant PK/PD
  - Inter-Subject Variability
  - Inter-Species Variability
  - Inhaler Design Parameters
  - Patient-Inhaler Coordination
- Clinical and Regulatory Implications
  - Maximize Therapeutic Effect
  - Minimize Overdose Risks



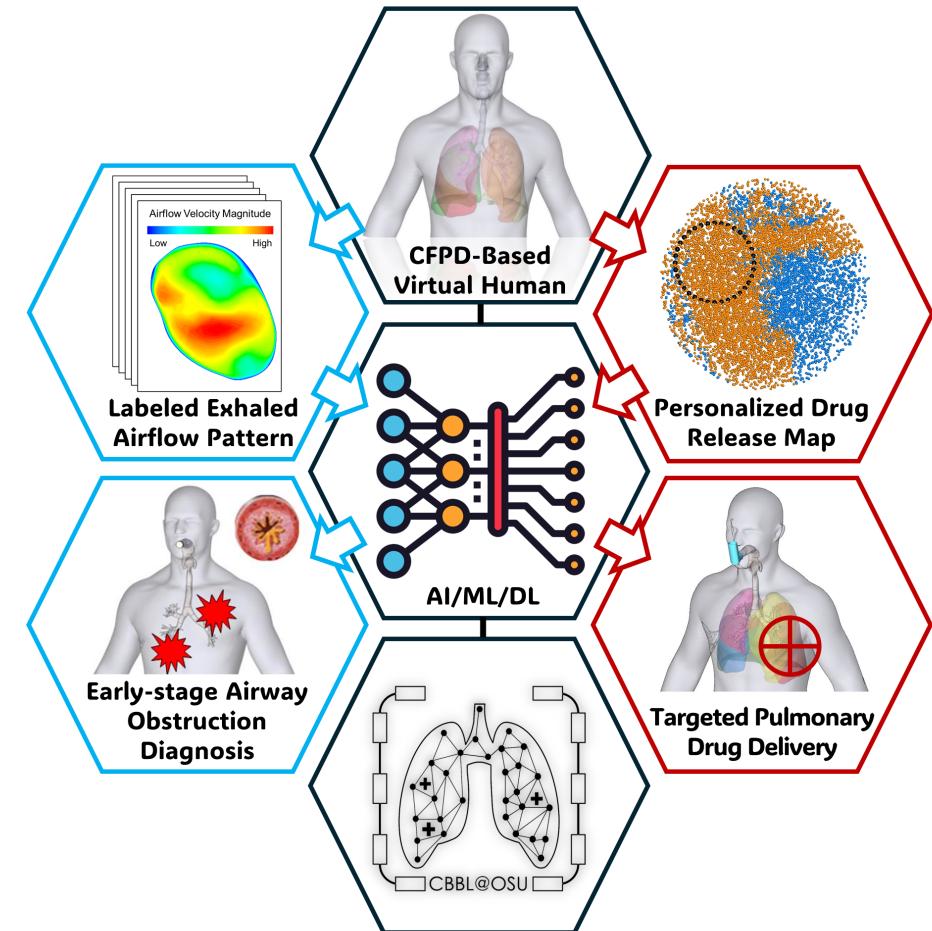


# Why AI Integration in to *In Silico* Tool is Needed?

- **Fast-running and Reliable *In Silico* Tools**
  - Faster Bioequivalence (BE) or Comparability Evaluations with Variability Studies
  - Easy-to-use *in silico* Tool empowered by AI to Accelerate Innovation Cycles in New Drug and Medical Device Development
  - More Efficient Communication between FDA and Pharma Industry Companies

- **Clinical and Regulatory Implications**

- Maximize Therapeutic Effect
- Minimize Overdose Risks

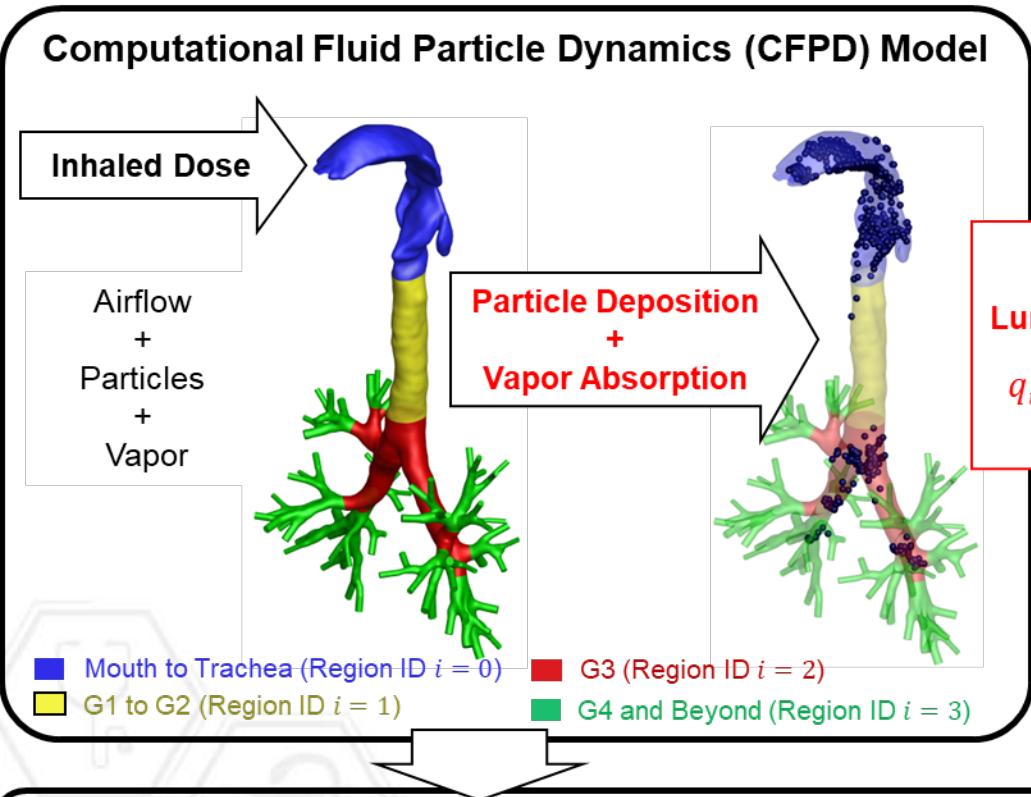


- Hu, P., Cai, C., Yi, H., Zhao, J., Feng, Y., Wang, Q. (2022). Aid Airway Obstruction Diagnosis with Computational Fluid Dynamics and Convolutional Neural Network: A New Perspective and Numerical Case Study. *ASME Journal of Fluids Engineering*, 144, 081206
- Islam, M.R., Liu, C., Shah, J., Cai, C., Feng, Y. (2024). A User-Centered Smart Inhaler Algorithm for Targeted Drug Delivery in Juvenile Onset Recurrent Respiratory Papillomatosis Treatment Integrating Computational Fluid Particle Dynamics and Machine Learning. *Physics of Fluids*, 36, 021912 (Editor's Pick and AIP Scilight Article <https://doi.org/10.1063/10.0025061>)

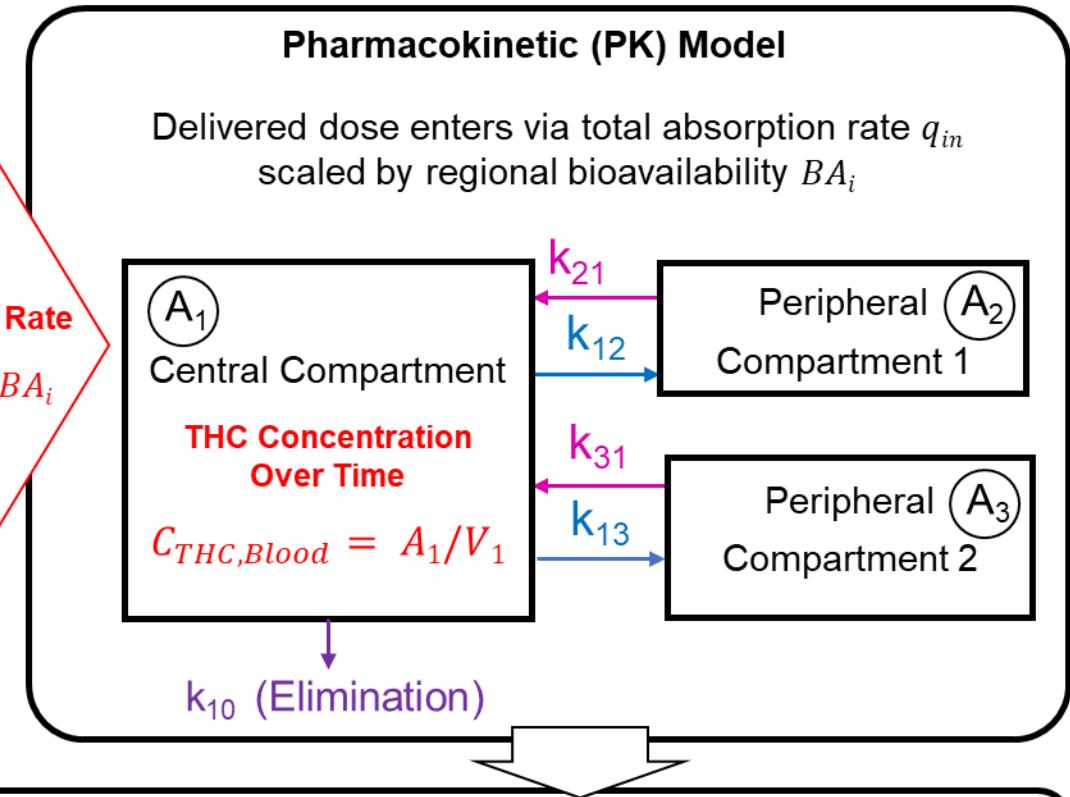


## Example 1: Capture Subject-specific Variability using CFPD-PK

### Step 1: Delivered Dose Prediction to the Respiratory System



### Step 2: Plasma Concentration $C_{THC,Blood}$ Prediction

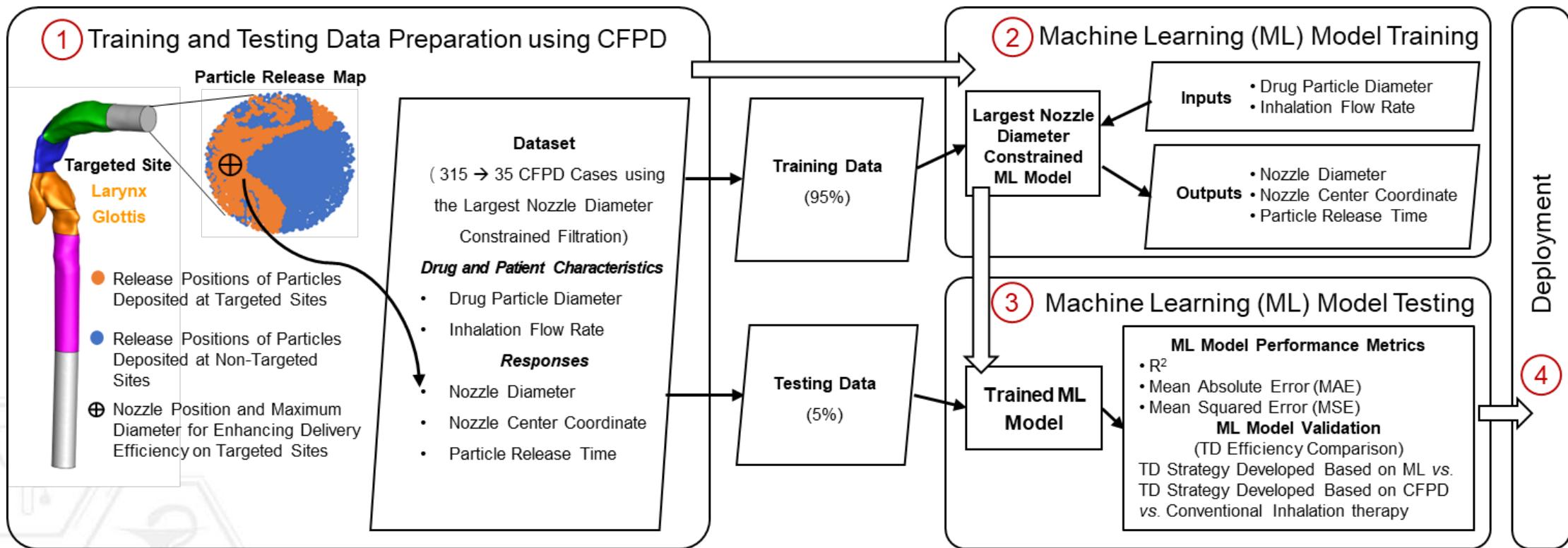


**Objective:** Provide Quantitative Evidence for Therapeutic Effectiveness Evaluation, Overdose Risk Control, and Satisfaction Optimization

- Zhao, J., Feng, Y., Tian, G., Taylor, C., Arden, S. N. (2021). Influences of Puff Protocols and Upper Airway Anatomy on Cannabis Pharmacokinetics: A CFPD-PK Study. *Computers in Biology and Medicine*, 132, 104333
- Sperry, T., Feng, Y., Song, C., Shi, Z. (2024). CFPD-PK Simulation of Inhaled Delta-9-tetrahydrocannabinol Aerosol Dynamics: Transport, Deposition, and Translocation in a Subject-Specific Mouth-to-G10 Airway. *Journal of Aerosol Science*, 177, 106334



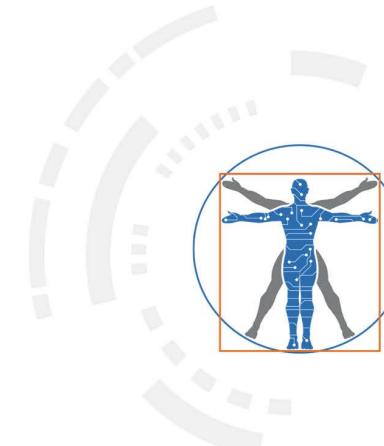
## Example 2: AI-Empowered Smart Inhaler for Patient-Specific Targeted Drug Delivery





## Suggestions

- **More Special Grant Opportunities**
  - Research and development of **AI-empowered smart inhaler technology**, not only for patient data communication, but for the **improvement in inhalation therapy effectiveness**.
  - Support the development of **international standards** for simulation-based testing for inhaler innovation with **new computational techniques and resources**.
  - Encourage the funding of **educational and training programs** focused on the intersection of CFPD-PBPK, AI, and inhaler technology. A well-informed workforce is crucial for sustained innovation and regulation in this field.
- **Extended Funding Cycles**
  - Longer funding periods (**3-5 years instead of 2 years**), as the integration of CFPD-PBPK and AI technologies requires sustained research and development beyond typical grant cycles.



**Avicenna Alliance**  
Association for Data Driven Medicine

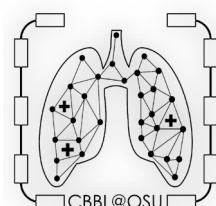
Enhancing Inhaler Development:  
Leveraging Machine Learning and Deep Learning with Multiscale  
CFPD-PBPK Models for Accelerated Innovation



# Thank you!

Yu Feng, Ph.D.

Associate Professor, School of Chemical Engineering, Oklahoma State University, Stillwater, OK, USA  
Academic Co-Chair, Pharmaceutical (Pharma) Strategy Task Force, Avicenna Alliance



# *Inhalation* Sciences



## **Dissolution and absorption testing of size-fractionated aerosols**

Per Gerde, Assoc Prof, CSO

Maria Malmlöf PhD, Director of Projects

# Complex relation between aerosol particle size and lung disposition

---

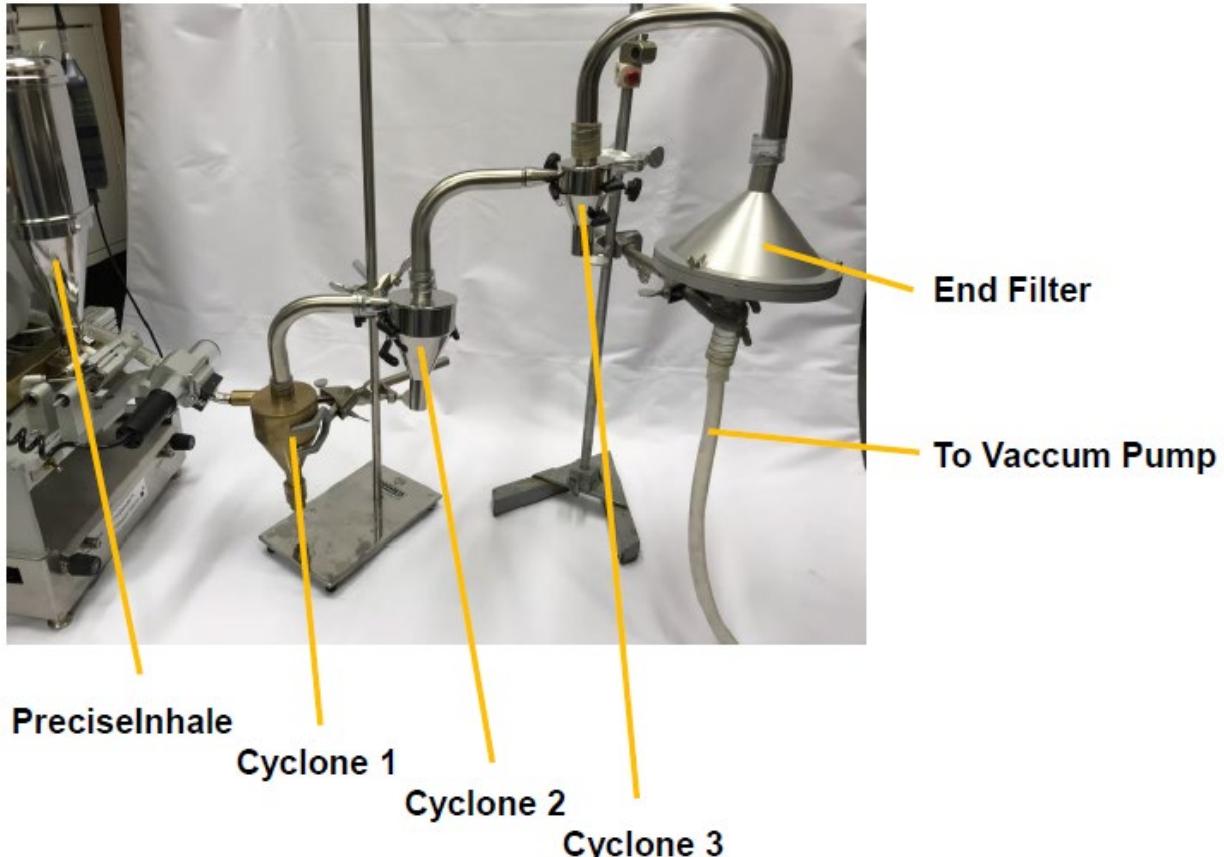
- For slowly dissolving substances with fast permeation – a strong relation exists between particle size and lung disposition
- This relation gradually disappears towards fast dissolving substances with slow permeation
- For **polydisperse** aerosols these relations are difficult to study, because of overlapping kinetics from the different aerosol size classes
- Separation of such aerosols into **narrow-disperse** size fractions may allow the critical effect of particle size to be better elucidated

# The case for study dissolution and permeation of size-fractionated aerosols

---

- In cascade impactors, high velocity impaction of separated size fractions precludes study of undisturbed kinetics from separated particles
- Aerodynamic (softer) separation of aerosols in cyclones into narrow size fractions, may allow their release kinetics to be studied following successive re-aerosolization of the different size fractions
- The powder generator of the PreciseInhale system can be used to re-aerosolize cyclone-separated size fractions

# Size separation of polydisperse aerosols in a three-stage cyclone battery plus end filter

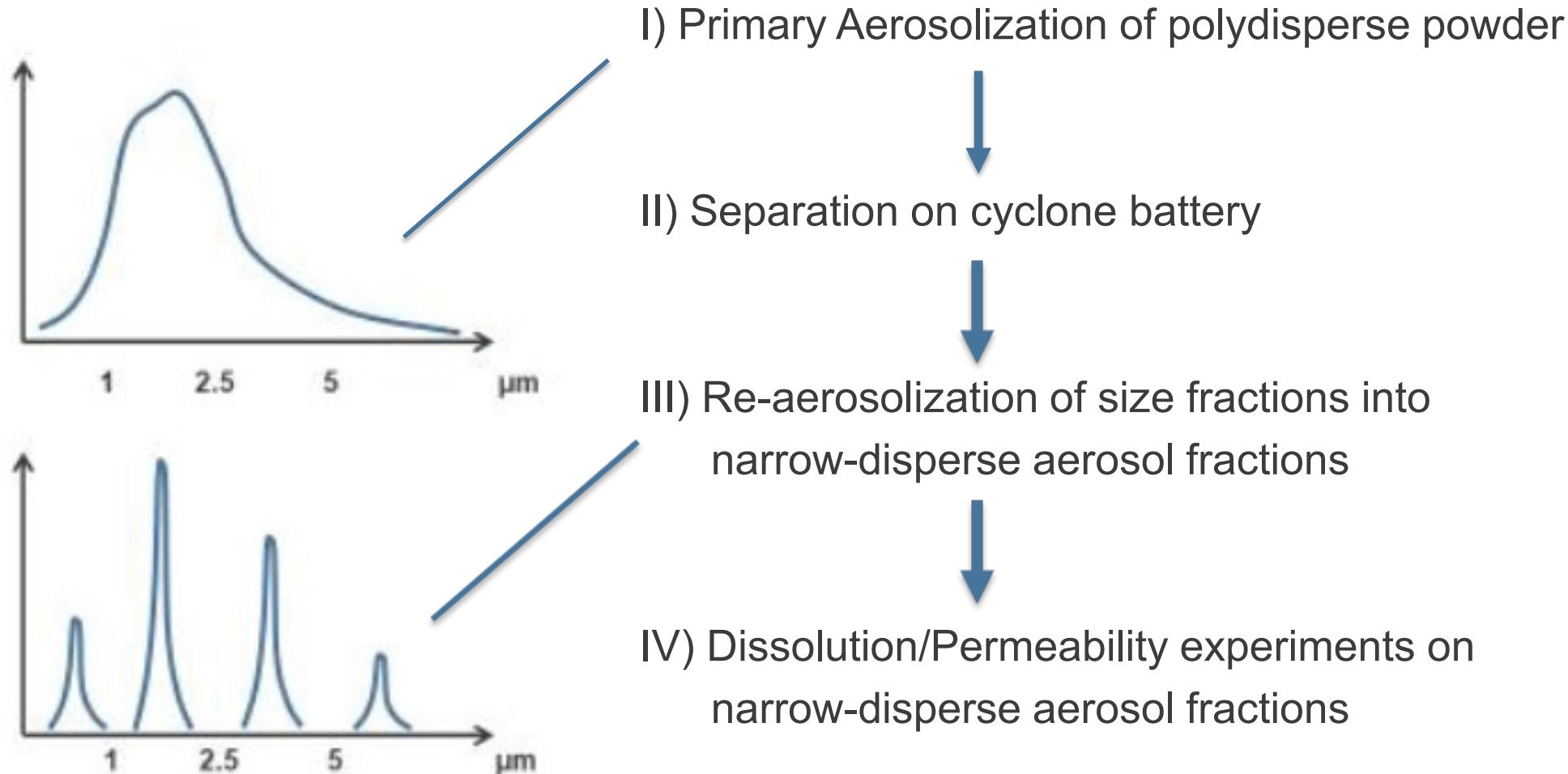


**Cascade Impactors:** Hard separation of particles destroying their integrity

**Cyclone Battery:** Soft separation maintaining particle integrity

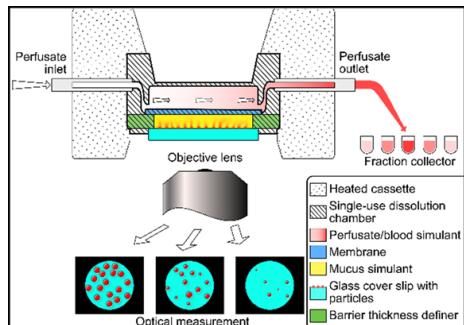
Cutoff Sizes at 25 L/min: 5  $\mu\text{m}$ , 2.5  $\mu\text{m}$  and 1  $\mu\text{m}$   $\longrightarrow$  four size categories

# Tentative scheme for investigating size-separated aerosols



# Two suitable systems for evaluating the dissolution/permeability of size separated aerosols

## I. The DissolvIt system with an artificial air/blood barrier



Primarily for evaluating the dissolution/permeability kinetics of lipophilic substances

## II. The Isolated, ventilated and perfused rat lung



Adding the physiological permeability barriers for hydrophilic substances of the intact lung; cell membranes and tight junctions

# Enhancing Bioequivalence Assessment for Combination Nasal Products with In Vitro Anatomically-Similar Nasal Models Accounting for Intersubject Variability

Laleh Golshahi, Ph.D.<sup>1,2,\*</sup>

Associate Professor

Virginia Commonwealth University (VCU)

Richmond, VA, United States

<sup>1</sup> Mechanical and Nuclear Engineering

<sup>2</sup> Pharmaceutical Engineering

[\\*LGOLSHAHI@VCU.EDU](mailto:LGOLSHAHI@VCU.EDU)

# Need for Effective Testing Tools and Methods for Assessment of Regional Nasal Drug Delivery

- *In vitro* methods demonstrating equivalent performance are generally recommended, either alone or in combination with other *in vivo* methods, by the U.S. Food and Drug Administration (FDA) to establish bioequivalence (BE) for generic locally-acting nasal suspension spray drug products with the reference product.
- Both *in vitro* and *in vivo* BE studies provide indirect assessments of the drug deposition at the nasal sites of action, which limits their ability to provide direct measurements of the drug concentration following nasal deposition.
- Regional nasal deposition *in vitro* studies offer a new potential way to evaluate performance differences between nasal spray products that may support the BE evaluation of these products across different patient populations.

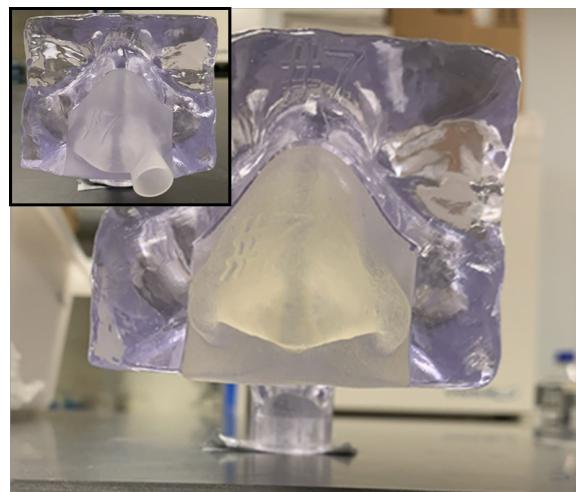
# Key Questions in Evaluating Drug Delivery for Local Action in Human Subjects

- How does intersubject variability affect the performance of nasal sprays?
- Can we utilize a pre-clinical product evaluation platform, which allows consideration of intersubject variability while also considering time and cost constraints?
- If we can have representative nasal anatomies, how could they be used in assessing bioequivalence (BE) of nasal products in terms of their drug delivery efficiency to the target regions?

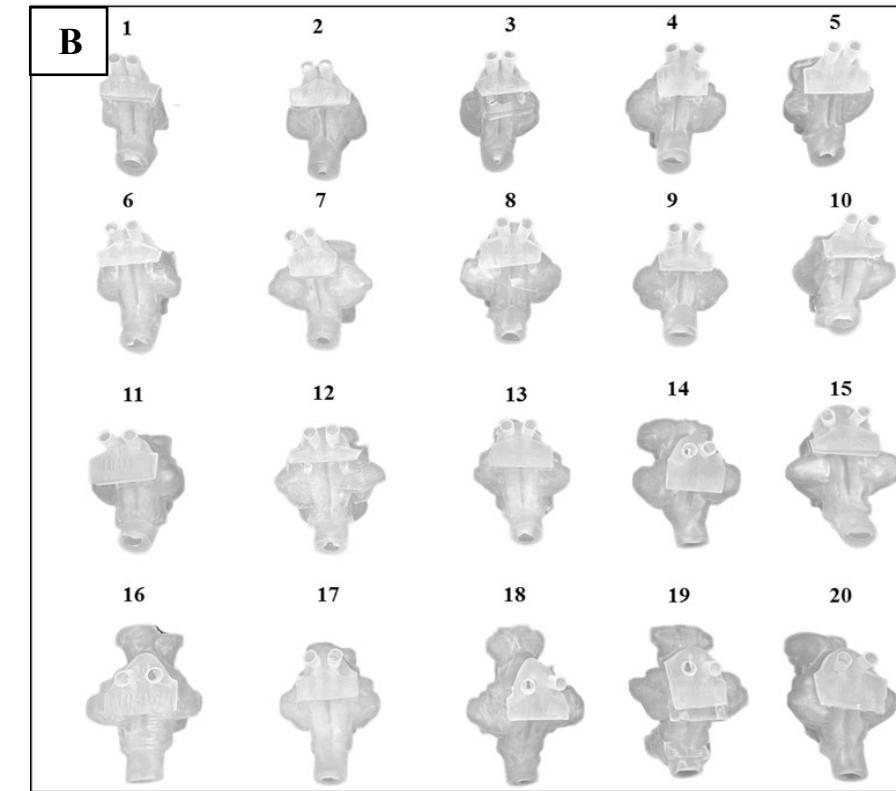
# Objectives

- Our primary objective was to capture the range of variability for regional deposition following administration of locally-acting suspension nasal drug products in adults and children.
- To achieve this goal, we first identified and processed sinonasal CT scans of 20 adults (50% female and 50%  $\geq 50$  years, age range 21-75 years old) to develop our anatomically-correct 3D models of adult nasal airways that would incorporate a measure of intersubject variability.
- A similar approach was taken and high-resolution computed tomography scans of the sinonasal region of 20 healthy pediatric human subjects (2-11 years old, 50% 2-6 years old and 50% female) were used to develop 20 three-dimensional (3D) replicas of the nasal airways, capturing 40 different nasal cavity geometries.

# Anatomically-Similar Nasal Models to Understand the Impact of Intersubject Variability on Nasal Spray Performance



*Figure 1 - Twenty 3D printed nasal airway models of the studied (A) adult subjects, showing the region posterior to internal nasal valve, and middle panel is an enlarged view of one of the adult models with the flexible anterior piece attached. Later a nozzle holder was included for administration consistency. Panel (B) shows the nasal models of the pediatric subjects.*



- Two nasal sprays, Flonase and Flonase Sensimist, with different nozzle designs, formulation, and plume characteristics were used for deposition studies within the adult nasal models.
- Similarly, two different products, Nasacort and Flonase Sensimist, were used for deposition studies within the pediatric nasal models.

# Intersubject Variability in Adult Nasal Drug Delivery via Nasal Sprays

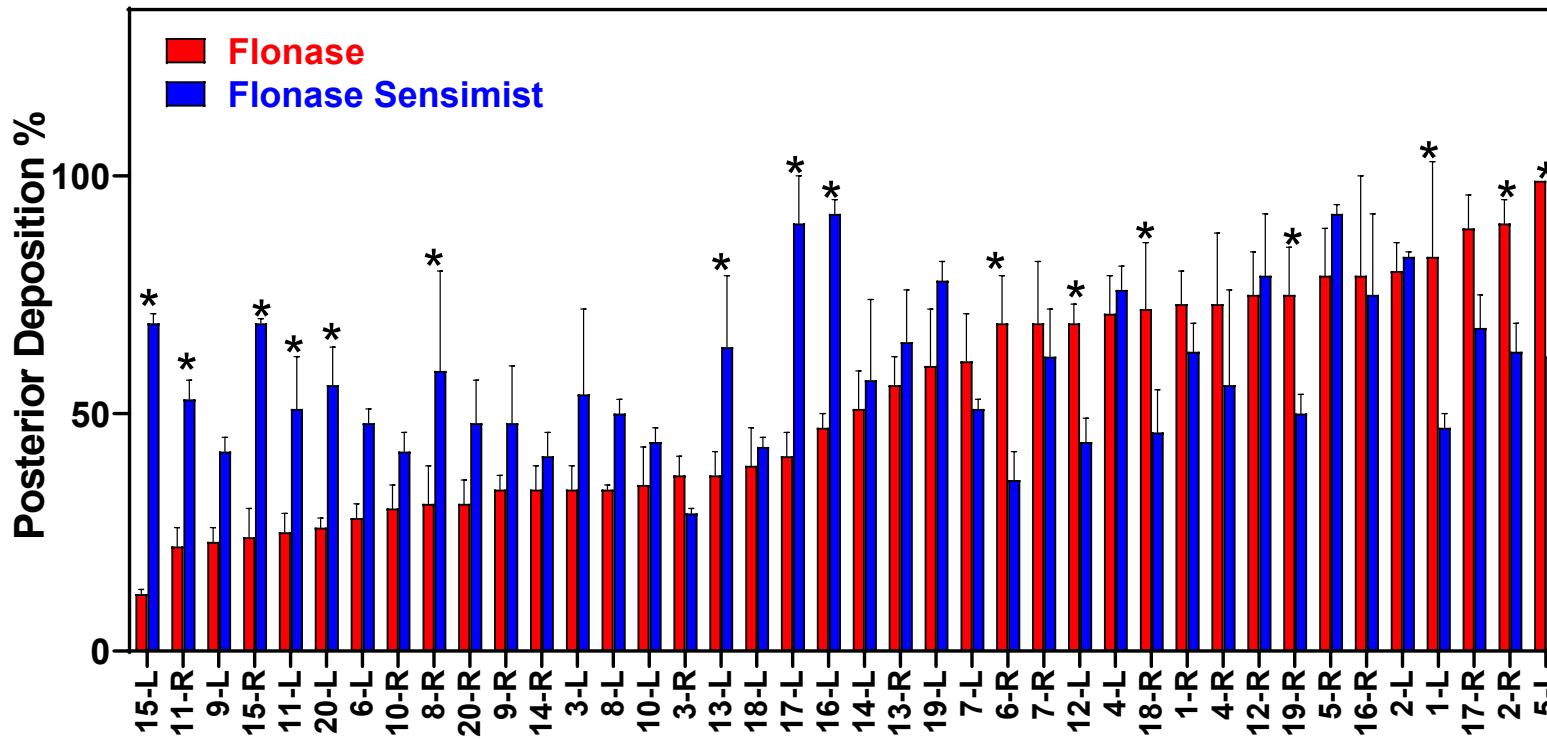


Figure 2 - Posterior deposition (PD) for Flonase (API: Fluticasone Propionate, FP) and Flonase Sensimist (API: Fluticasone Furoate, FF), sorted by ascending values of Flonase PD. Numbers show the model number; L and R stand for left and right nostril, respectively. The star (\*) sign indicates a significant difference between the two devices in the same nasal geometry.

**Range of FP:** 12-99% of dose in target regions

\*\* = significant difference between the 2 groups (observed in 16 of 40 nasal cavities).

**Range of FF:** 29-92% of dose in target regions



Posterior region (circled)

# Predictive Tools for Generic Product Development & Assessment

Rodrigo Cristofolletti, Ph.D.

Assistant Professor & Associate Director

Center for Pharmacometrics & Systems Pharmacology

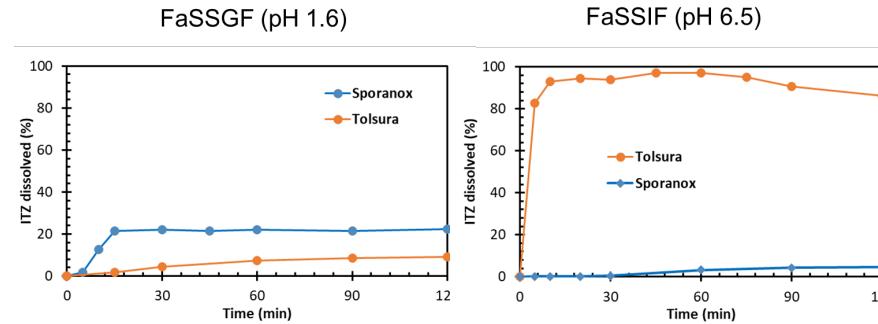
# Predicting food-formulation interaction

- **Generic drugs:**
- **FACT:** co-administration of food with oral drug products can impact drug bioavailability on a formulation-dependent way.
- **CONSEQUENCE:** FDA recommends that applicants conduct a fed BE study, in addition to a fasting BE study, except when the RLD labeling states that the product should be taken on an empty stomach
- **ALTERNATIVE:** generating Model Integrated Evidence for waiving fed BE studies
  - Integrating in vitro biopharmaceutics data under fasting and fed state conditions, PBPK modeling and fasting BE study

# Predicting food-formulation interaction

- A tale of 2 amorphous solid dispersions (ASD) containing itraconazole:
  - Tolsura® contains hypromellose phthalate (pH-dependent)
  - Sporanox® contains hypromellose (pH-independent)

Notice of Award  
FAIN# U01FD007352  
Federal Award Date  
07/20/2021

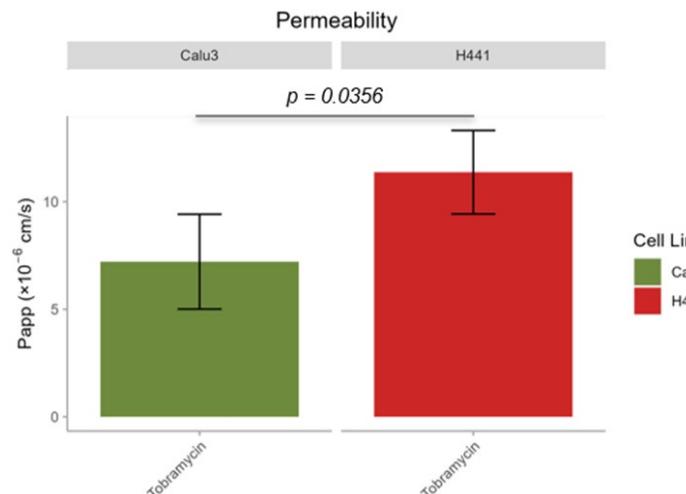


More research in oral IVIVE-PBPK modeling is needed to access the generalizability of these findings, which may streamline the development of complex oral generic formulations (e.g. ASD)

- Fasted PBPK model recapitulated Sporanox® and Tolsura® PK and fasted BE
- Fed PBPK model recapitulated:
  - Positive food effect on Sporanox®
  - Slightly negative food effect on Tolsura®

# Lung PBPK modeling

- In lung PBPK models we generally assume the same permeability across bronchial and alveolar epitheliums
- However, in vitro permeability studies across Calu-3 (representing bronchial epithelium) and NCI-H441 (representing alveolar epithelium) monolayers showed statistically significant differences:



# Lung PBPK modeling



- We also investigated tobramycin permeability across an organotypic model generated with primary human lung cells (MucilAir™, Epithelix):

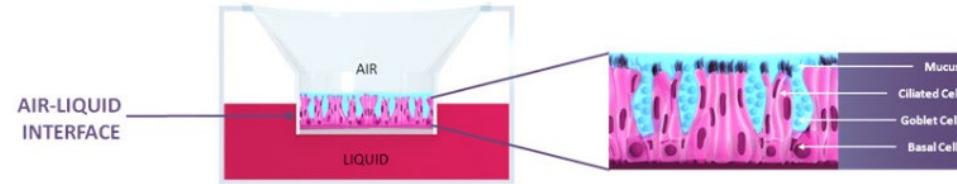
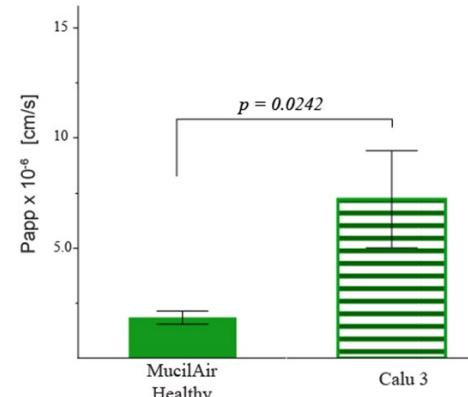


Figure representing the three cell types in MucilAir™: basal, ciliated and goblet cells

- Apparent permeability measurements differ between 2D *in vitro* monolayers formed by immortalized Calu-3 cells and the 3D organotypic bronchial model



More research assessing segment-dependent absorption across lung epithelium is needed to support the development of lung PBPK models

Thank you

# Intersubject Variability in Pediatric Nasal Drug Delivery via Nasal Sprays

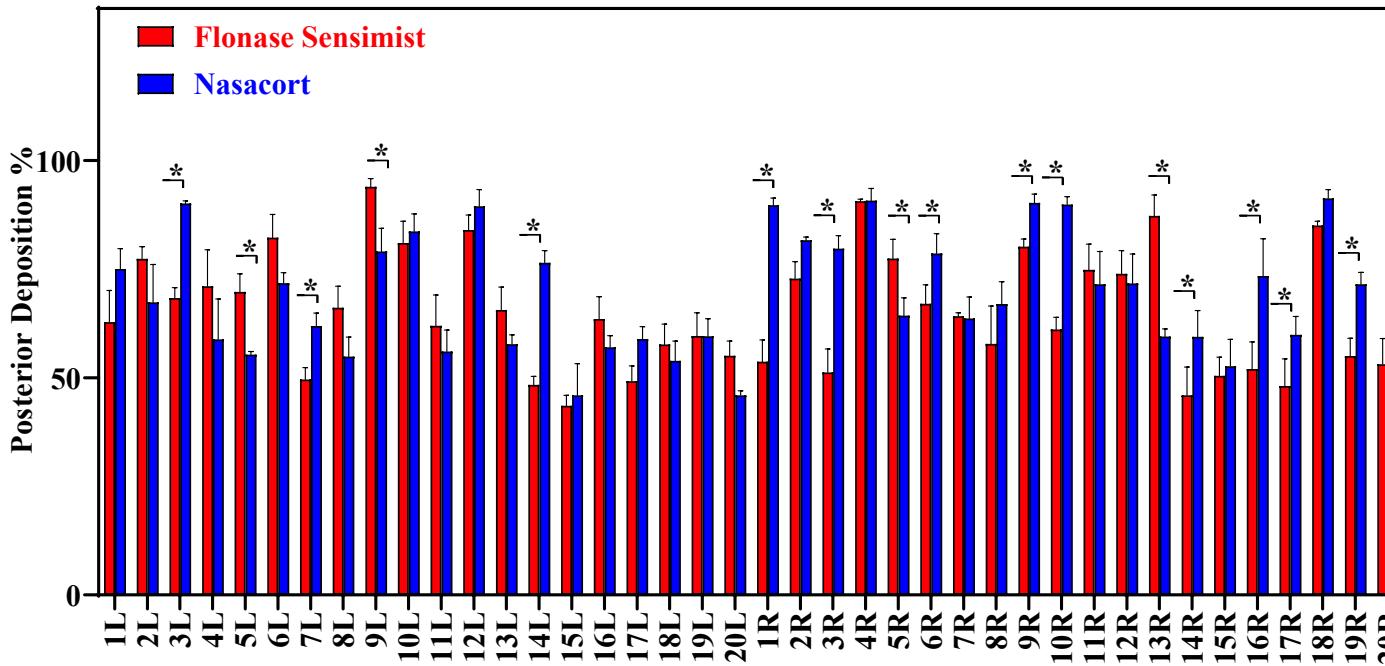


Table 1- Maximum, average and minimum PD of Flonase Sensimist and Nasacort, across all 40 nasal cavities.

|         | Average PD (%) |                   |
|---------|----------------|-------------------|
|         | Nasacort       | Flonase Sensimist |
| Minimum | 45.94±1.07     | 43.53±2.42        |
| Mean    | 69.14±13.34    | 65.32±13.45       |
| Maximum | 91.31±1.99     | 93.99±1.87        |

Figure 3 - Statistical analysis to identify models with significantly different PD between Flonase Sensimist and Nasacort. The star (\*) sign shows the models with significantly different PD comparing the two devices.

# Nasal Models Representing the Range of Drug Delivery in Adults and Children 2-11 years old

- By choosing nasal models that represent the entire population, we can account for intersubject variability while also considering time and cost constraints.
- Three nasal geometries, for each age group, were selected to represent three levels of posterior deposition: low (L), mean (M), and high (H) posterior deposition. Further details are provided below.

*Table 2 - Final selected low (L), mean (M), and high (H) adult models.*

|   | Model   | Age | Gender | Race             | Average PD (%) |                   |
|---|---------|-----|--------|------------------|----------------|-------------------|
|   |         |     |        |                  | Flonase        | Flonase Sensimist |
| L | 3-Right | 63  | F      | White            | 39.3±8.5       | 26.6±7.4          |
| M | 7-Left  | 35  | M      | Middle Eastern   | 54.7±8.8       | 48.4±1.8          |
| H | 2-Left  | 22  | F      | African American | 88.9±2.3       | 87.1±1.5          |

*Table 3 - Final selected low (L), mean (M), and high (H) pediatric models.*

|   | Model   | Age | Gender | Race             | Average PD (%) |                   |
|---|---------|-----|--------|------------------|----------------|-------------------|
|   |         |     |        |                  | Nasacort       | Flonase Sensimist |
| L | 15-Left | 9   | F      | African American | 45.96±7.29     | 43.54±2.42        |
| M | 7-Right | 5   | F      | White            | 63.67±4.93     | 64.21±0.73        |
| H | 4-Right | 3   | F      | Hispanic         | 90.81±2.79     | 90.65±0.48        |

# Regionally Sectioned Representative Nasal Models for Bioequivalence Studies

- The posterior region of the selected nasal cavities was sectioned into subregions: front, superior, middle, inferior turbinate regions, and nasopharynx.
- The *in vitro* regional drug deposition in each nasal model was studied using a controlled method for reference and test products.
- The population BE (PBE) of test products in comparison to reference product was performed for each model and its regions.

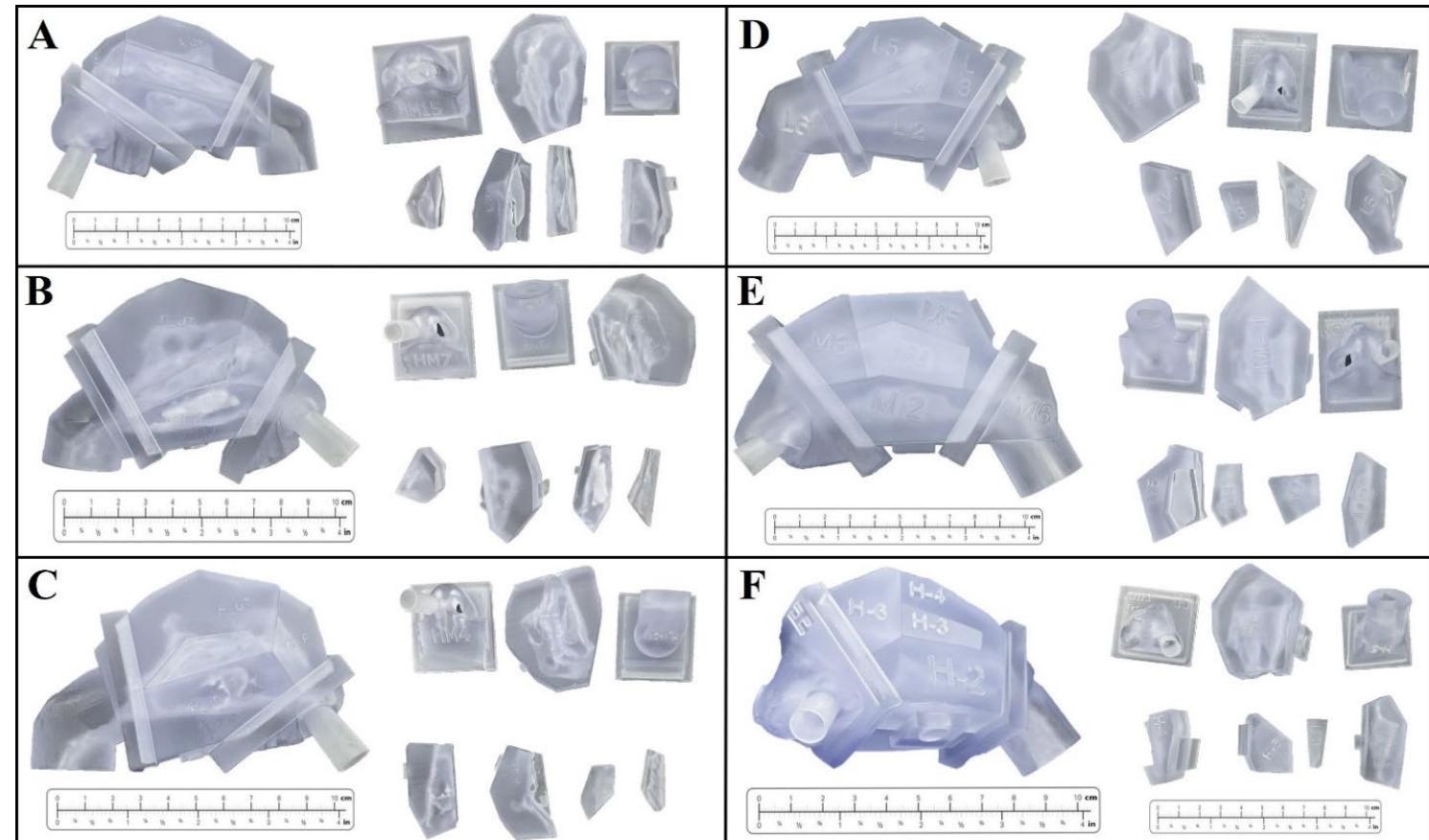


Figure 4. Representative pediatric (panels A, B and C) and adult (panels D, E and F) sectioned nasal models.

# Evaluation of Population Bioequivalence (PBE)

- The PBE method, provided in Draft Guidance on Fluticasone Propionate by the FDA, was assessed in all regions of 6 models for two generic products of triamcinolone acetonide in comparison to Nasacort.
- The regulatory constants used were: BE limit = 1.11 (in vitro) and 1.25 (in vivo),  $\varepsilon_p = 0.01$ ,  $\sigma_{T0} = 0.1$ .
- Complicated geometry of nasal airways can cause significant differences in regional deposition and by testing with these models as assessment tools early in the development process failure in in vivo studies may be avoided.
- Recommendations on an appropriate BE limit and analysis seems to be warranted.

BE Limit = 1.11

|             | Anterior | Front  | Inferior | Middle | Superior | Nasopharynx |
|-------------|----------|--------|----------|--------|----------|-------------|
| L - Leader  | Red      | Yellow | Red      | Green  | Red      | Green       |
| L - Perrigo | Green    | Yellow | Red      | Orange | Red      | Yellow      |
| M - Leader  | Yellow   | Red    | Yellow   | Orange | Red      | Green       |
| M - Perrigo | Red      | Red    | Red      | Red    | Red      | Green       |
| H - Leader  | Red      | Yellow | Red      | Yellow | Red      | Yellow      |
| H - Perrigo | Red      | Green  | Red      | Yellow | Yellow   | Yellow      |

BE Limit = 1.25

|             | Anterior | Front  | Inferior | Middle | Superior | Nasopharynx |
|-------------|----------|--------|----------|--------|----------|-------------|
| L - Leader  | Orange   | Yellow | Green    | Green  | Green    | Green       |
| L - Perrigo | Green    | Green  | Yellow   | Orange | Green    | Green       |
| M - Leader  | Yellow   | Green  | Yellow   | Orange | Yellow   | Green       |
| M - Perrigo | Red      | Yellow | Yellow   | Green  | Yellow   | Green       |
| H - Leader  | Orange   | Green  | Green    | Green  | Green    | Yellow      |
| H - Perrigo | Red      | Green  | Orange   | Green  | Green    | Yellow      |

Age group in which PBE was established

|      |            |            |         |
|------|------------|------------|---------|
| Both | Just Child | Just Adult | Neither |
|------|------------|------------|---------|

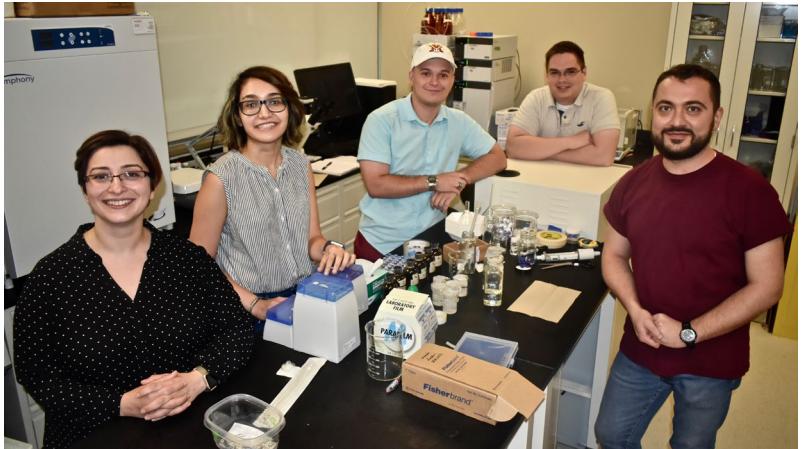
# Other Key Questions Explored with the Developed Tools

- How does disease affect regional drug deposition? Are representative models based on healthy airways relevant to diseased airways?
- Is consideration of variation in breathing patterns critical in evaluation of nasal sprays?
- How sensitive is the regional drug deposition to the user-related parameters or administration parameters of nasal sprays, i.e. administration angles, insertion depth?

# Examples of Other Remaining Considerations for Evaluating Drug Delivery with Nasal Drug Delivery Products

- Protective aspects of nasal cavity such as mucociliary clearance and the interaction of formulations in different forms, e.g. powder, with mucosa and cells should be considered by including biorelevant features.
- Given the growing interest in intranasal vaccines, understanding the intersubject variability in intranasal delivery in infants (<2 years old) would be beneficial.
- Other nasal drug delivery products and applications beyond locally-acting drugs, e.g. nose to brain, call for similar evaluation approach to provide product developers with pre-clinical assessment tools.

# Acknowledgements



**VCU Collaborators:** Dr. David Edwards , Dr. Mike Hindle, Dr. P. Worth Longest, Dr. Theodore Schuman

**FDA Collaborators:** Dr. Andrew Babiskin, Dr. Sneha Dhapare, Dr. Anubhav Kaviratna, Dr. Bryan Newman, Dr. Ross Walenga

**RARE Lab Contributors:** Dr. Ali Alfaifi, Dr. Amir Reza Esmaeili, Mohammad Hejazi, MSc, Dr. Sana Hosseini, Dr. Prakash Khadka, Dr. Michele Manniello, Xiomara (Maria) Owen, Dr. John Wilkins

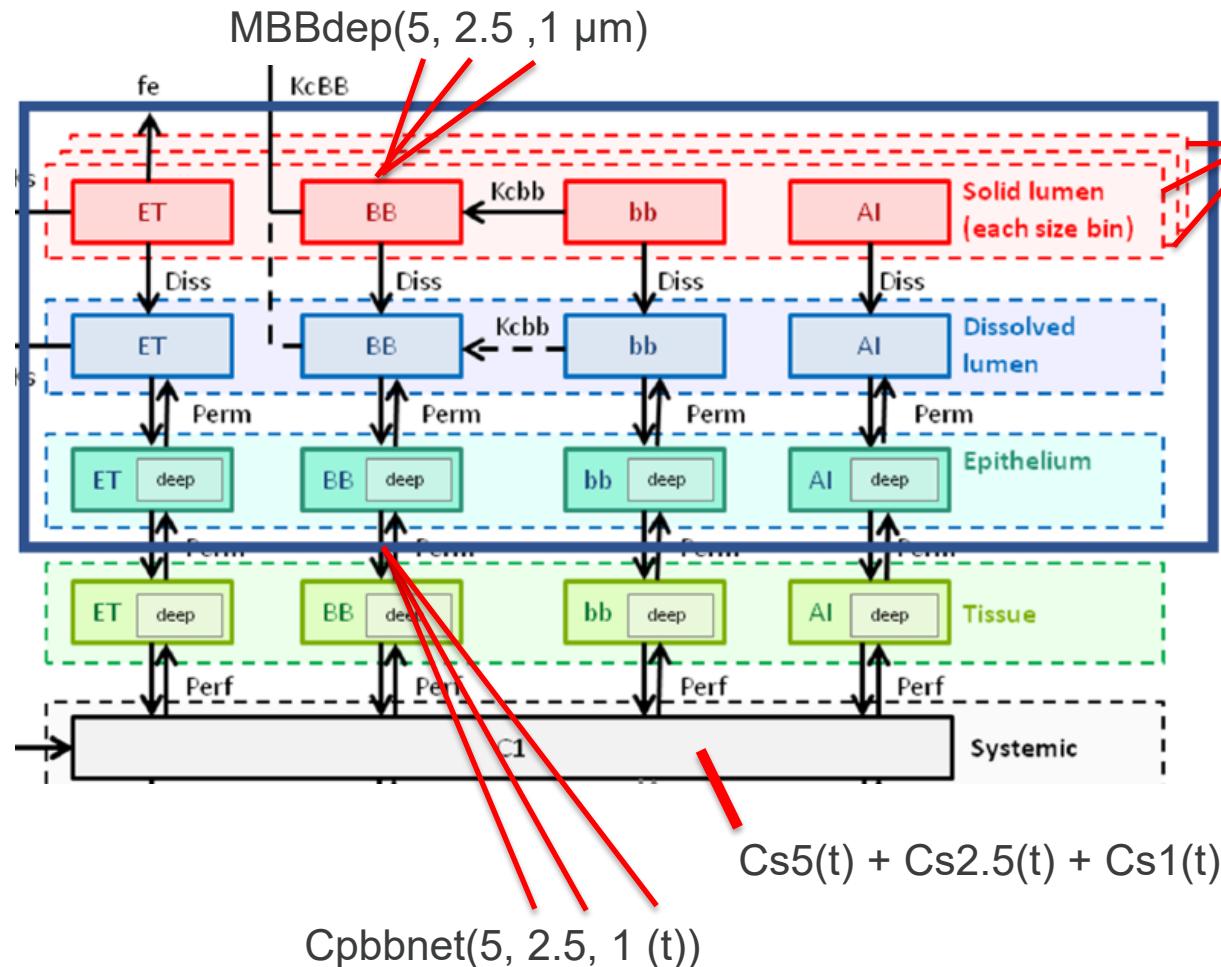


**Funding:** Department of Health and Human Services, U.S. Food and Drug Administration(2 Awards).

Views expressed in this talk do not necessarily reflect the official policies of the U.S. Food and Drug Administration, nor does any mention of trade names, commercial practices, or organization imply endorsement by the United States Government.

\* All last names are listed in alphabetical order and the order does not necessarily reflect the order of contributions.

# Advancing kinetic data from size-separated aerosols towards human systemic data using PBPK models



## Size-Fractionated Aerosols

- Preludium is prepared for modelling of size separated aerosols
- Data will be derived from both typical- (Noyes-Whitney), as well as atypical dissolution processes of for example engineered particles
- Broader understanding of the link between particle size and lung disposition

**Thank You**