
Development of Cancer Drugs for Use in Novel Combination – Determining the Contribution of the Individual Drugs’ Effects Guidance for Industry

DRAFT GUIDANCE

This guidance document is being distributed for comment purposes only.

Comments and suggestions regarding this draft document should be submitted within 60 days of publication in the *Federal Register* of the notice announcing the availability of the draft guidance. Submit electronic comments to <https://www.regulations.gov>. Submit written comments to the Dockets Management Staff (HFA-305), Food and Drug Administration, 5630 Fishers Lane, Rm. 1061, Rockville, MD 20852. All comments should be identified with the docket number listed in the notice of availability that publishes in the *Federal Register*.

For questions regarding this draft document, contact (OCE) OCE Guidances at OCE-Guidances@fda.hhs.gov or (CBER) Office of Communication, Outreach and Development, 800-835-4709 or 240-402-8010.

**U.S. Department of Health and Human Services
Food and Drug Administration
Oncology Center of Excellence (OCE)
Center for Drug Evaluation and Research (CDER)
Center for Biologics Evaluation and Research (CBER)**

**July 2025
Clinical/Medical**

Development of Cancer Drugs for Use in Novel Combination – Determining the Contribution of the Individual Drugs’ Effects Guidance for Industry

Additional copies are available from:

*Office of Communications, Division of Drug Information
Center for Drug Evaluation and Research
Food and Drug Administration
10001 New Hampshire Ave., Hillandale Bldg., 4th Floor
Silver Spring, MD 20993-0002
Phone: 855-543-3784 or 301-796-3400; Fax: 301-431-6353
Email: druginfo@fda.hhs.gov
<https://www.fda.gov/drugs/guidance-compliance-regulatory-information/guidances-drugs>*

or

*Office of Communication, Outreach and Development
Center for Biologics Evaluation and Research
Food and Drug Administration
10903 New Hampshire Ave., Bldg. 71, Rm. 3103
Silver Spring, MD 20993-0002
Phone: 800-835-4709 or 240-402-8010
Email: industry.biologics@fda.hhs.gov
<https://www.fda.gov/vaccines-blood-biologics/guidance-compliance-regulatory-information-biologics/biologics-guidances>*

**U.S. Department of Health and Human Services
Food and Drug Administration
Oncology Center of Excellence (OCE)
Center for Drug Evaluation and Research (CDER)
Center for Biologics Evaluation and Research (CBER)**

**July 2025
Clinical/Medical**

TABLE OF CONTENTS

I.	INTRODUCTION.....	1
II.	BACKGROUND	2
III.	DEMONSTRATING CONTRIBUTION OF EFFECT IN DEVELOPMENT OF CANCER DRUGS FOR USE IN COMBINATION	4
A.	Factorial Designs to Demonstrate the Contribution of Effect.....	4
B.	External Data to Demonstrate the Contribution of Effect	6
1.	<i>Suitability of External Data Source for Contribution of Effect.....</i>	<i>6</i>
2.	<i>Selection of External Data Source for Contribution of Effect.....</i>	<i>8</i>
3.	<i>Endpoint Considerations for Use of External Data</i>	<i>8</i>
C.	General Development Program Considerations for Demonstrating Contribution of Effect	9
1.	<i>Two or More Investigational Drugs (Refer to the 2013 Codevelopment Guidance)</i>	<i>9</i>
2.	<i>An Investigational Drug With a Drug Approved for a Different Indication</i>	<i>9</i>
3.	<i>Two or More Drugs Approved Individually for Different Indication(s).....</i>	<i>10</i>

1 **Development of Cancer Drugs for Use in Novel Combination –** 2 **Determining the Contribution of the Individual Drugs’ Effects** 3 **Guidance for Industry¹**

5 This draft guidance, when finalized, will represent the current thinking of the Food and Drug
6 Administration (FDA or Agency) on this topic. It does not establish any rights for any person and is not
7 binding on FDA or the public. You can use an alternative approach if it satisfies the requirements of the
8 applicable statutes and regulations. To discuss an alternative approach, contact the FDA staff responsible
9 for this guidance as listed on the title page.

15 **I. INTRODUCTION**

17 This guidance provides recommendations for characterizing the safety and effectiveness of
18 individual drugs² for use in a novel combination regimen in treating cancer. Demonstrating the
19 contribution of each drug to the overall treatment effect that is observed for the population is
20 referred to as contribution of effect throughout this guidance. This guidance is intended for
21 sponsors developing drugs for use in combination for the treatment of cancer. FDA believes the
22 recommendations in this guidance relevant to demonstrating the contribution of the individual
23 investigational drugs to the effect(s) of the combination are consistent with the requirements of
24 21 CFR § 300.50, “fixed-combination prescription drugs for humans” and the guidance expands
25 on the recommendations in the 2013 guidance for industry *Codevelopment of Two or More New*
26 *Investigational Drugs for Use in Combination* (the 2013 Codevelopment Guidance).³

28 This guidance reflects FDA’s current thinking regarding the use of clinical data for
29 demonstration of contribution of effect for the following types of novel combinations in
30 oncology:

32 • Two (or more) investigational drugs⁴ that have not been previously approved by FDA for
33 any indication

¹ This guidance has been prepared by the Oncology Center of Excellence (OCE), Center for Drug Evaluation and Research (CDER), and Center for Biologics Evaluation and Research (CBER) at the Food and Drug Administration.

² For the purposes of this guidance, the term *drug* includes both human drugs and biological products regulated by CDER and CBER.

³ We update guidances periodically. For the most recent version of a guidance, check the FDA guidance web page at <https://www.fda.gov/RegulatoryInformation/Guidances/default.htm>.

⁴ The scope of the 2013 Codevelopment guidance is limited to new investigational drugs that have not been previously developed for any indications. For the purpose of this guidance, *investigational drugs* refer to drugs that have not been approved by FDA but may have been previously developed for other indication(s).

Contains Nonbinding Recommendations

Draft — Not for Implementation

35 • An investigational drug with a drug(s) approved for a different indication
36
37 • Two (or more) drugs approved for a different indication(s)

39 This guidance does not address contribution of effect in settings where an investigational drug is
40 being developed in combination with a drug approved for the same indication for the purposes of
41 comparing the approved drug to the combination (i.e., “add-on” trials to standard of care (SOC))
42 or to fixed combinations of previously approved drugs for the approved indication(s).

43 In addition, this guidance does not address safety or dosing considerations when designing trials
44 to study two or more drugs when used in combination. Nor does it address the evaluation of
45 safety data to support the benefit-risk of two or more drugs when used in combination. For more
46 information on these concepts, refer to the 2013 Codevelopment Guidance.

47 In general, FDA’s guidance documents do not establish legally enforceable responsibilities.
48 Instead, guidances describe the Agency’s current thinking on a topic and should be viewed only
49 as recommendations, unless specific regulatory or statutory requirements are cited. The use of
50 the word *should* in Agency guidance means that something is suggested or recommended, but
51 not required.

52 **II. BACKGROUND**

53 Combination therapy in oncology is an important treatment modality. Scientific advances have
54 increased our understanding of the pathophysiological processes that underlie many cancers.
55 This increased understanding has provided further impetus to develop new therapeutic
56 approaches using combinations of drugs directed at multiple therapeutic targets to improve
57 treatment response, minimize adverse events, or both. A novel combination of drugs may be
58 considered for development when the necessity of each drug in the proposed combination is
59 supported by a strong biologic rationale including the nonclinical characterization of each drug
60 in the combination and early clinical evidence. Examples of such rationale include, but are not
61 limited to:

62 • Drugs that inhibit distinct targets in the same molecular pathway or distinct steps in
63 disease pathogenesis, provide inhibition of both a primary and compensatory pathway, or
64 inhibit the same target at different binding sites to decrease resistance or allow use of
65 lower doses to minimize overall toxicity.

66 • An investigational drug that is expected to have limited activity as monotherapy but may
67 potentiate the treatment effect of the second drug in the combination (synergy) based on
68 relevant nonclinical studies and/or short-term clinical studies on an established
69 biomarker.

70 • Information from early clinical trials support limited or lack of efficacy of an individual
71 drug(s) but the combination may provide a significant therapeutic advance that is superior
72 to the individual drug(s).

Contains Nonbinding Recommendations

Draft — Not for Implementation

81 Lack of appropriate animal models for development of oncology drugs in combination remains a
82 challenge to adequately demonstrating contribution of effect. Additionally, because preclinical
83 studies do not necessarily predict clinical activity of the drug, in most cases, clinical information
84 will provide the most compelling rationale for the contribution of effect.

85
86 A critical aspect of codevelopment of novel combinations of oncology drugs is the
87 characterization of the safety and effectiveness of the individual drugs in the combination
88 because the benefit of using the individual drugs in combination is weighed against the added
89 toxicity when they are used together. In some cases, the conventional approach to demonstrating
90 contribution of effect by employing a standard factorial design may be infeasible (e.g., when
91 monotherapy has limited activity in early clinical studies). When appropriate, it may be feasible
92 to use alternative approaches, such as external data, i.e., data external to pivotal clinical studies
93 intended to demonstrate efficacy to support evaluation of the contribution of each drug to the
94 effect of the combination.⁵

95
96 Alternatives to a standard factorial design approach may be appropriate where preliminary
97 clinical evidence with the combination suggests a large effect size is anticipated to impact a well-
98 characterized outcome of interest that is superior to the effect of the monotherapies. Such
99 approaches may accelerate development of novel combination regimens and decrease participant
100 exposure to potentially less effective therapies. Ultimately, the studies used to isolate
101 contribution of effect must be adequate and well controlled clinical investigations to meet the
102 statutory requirements for substantial evidence.⁶

103
104 The recommendations in this guidance consider previous Agency discussions with sponsors,
105 review of applications, and broader discussions with stakeholders,⁷ which highlighted
106 outstanding questions regarding considerations for the timing and approach of demonstrating
107 contribution of effect in oncology drug development programs. The rapidly evolving science in
108 oncology provides opportunities for drug development and the need for more and improved
109 treatment options, including novel combination regimens consisting of drug(s) approved for
110 different indications. This guidance includes considerations on a key aspect of codevelopment in
111 oncology – use of external data for demonstrating the contribution of the individual drugs to the
112 effect of a combination regimen. It expands on the recommendations on this topic in the 2013
113 Codevelopment Guidance and provides recommendations regarding demonstrating the
114 contribution of effect for two additional combination drug development scenarios in oncology
115 where at least one of the drugs has been previously approved for a different indication (i.e., a

⁵ The recommendations in the draft guidance for industry *Considerations for the Design and Conduct of Externally Controlled Trials for Drug and Biological Products* (February 2023) may be helpful when considering the use of external data for patient-level comparisons to demonstrate the contribution of each drug to the overall effect. When final, this guidance will represent FDA's current thinking on this topic.

⁶ See section 505(d) of the Federal Food, Drug, and Cosmetic Act (FD&C Act) (21 U.S.C. 355(d)) and 21 CFR 314.126.

⁷ Friends of Cancer Research March 14, 2019 Roundtable: Opportunities for Combination Drug Development: Data Sources and Innovative Strategies to Assess Contribution of Components.

<https://friendsofcancerresearch.org/events/combination-therapy-development-and-data-sources-assessing-drug-contributions-roundtable>.

Contains Nonbinding Recommendations

Draft — Not for Implementation

116 different cancer type or a different line of therapy in the same cancer): (1) an investigational drug
117 combined with a drug(s) approved for a different indication and (2) two (or more) drugs
118 approved for a different indication(s).

119

120

121 **III. DEMONSTRATING CONTRIBUTION OF EFFECT IN DEVELOPMENT OF**
122 **CANCER DRUGS FOR USE IN COMBINATION**

123

124 A marketing application for a drug(s) for use in a novel combination regimen must demonstrate
125 both the safety and effectiveness of the novel combination.⁸ In addition, the application would
126 provide the evidence to demonstrate that the individual components in the novel combination
127 contribute to the treatment effect of the combination.⁹ Sponsors developing cancer drugs for use
128 in novel combinations are encouraged to consult the responsible FDA review division as early as
129 possible (e.g., through a pre-investigational new drug application (IND) meeting) and frequently
130 throughout the development process, particularly for complex development programs, to obtain
131 feedback on acceptable approaches and potentially facilitate a streamlined strategy.¹⁰ The
132 amount and types of appropriate clinical data and trial designs required to support the assessment
133 of the contribution of effect for each drug may vary from one development program to another
134 depending on the context of disease and population, the availability and effectiveness of other
135 treatments, the available preclinical and clinical data, the extent of clinical data for the individual
136 drugs and the combination, and the complexity of the question(s) being investigated. A factorial
137 design randomized trial, when feasible, is highly recommended to provide sufficient data to
138 demonstrate the contribution of the individual drugs to the effect of the novel combination.

139

140 **A. Factorial Designs to Demonstrate the Contribution of Effect**

141

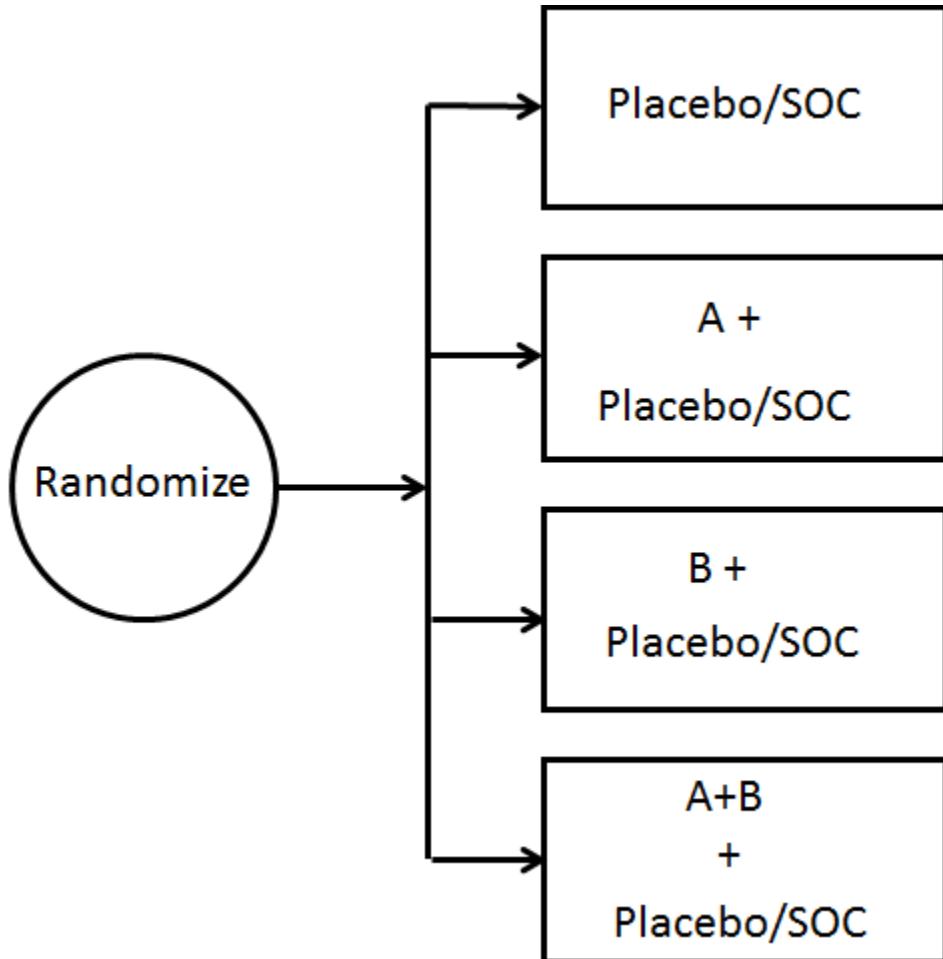
142 Traditional evaluation of novel combinations in oncology is accomplished using a multi-arm,
143 randomized trial that includes a combination arm, the monotherapy arms, and a standard-of-care
144 arm, where standard of care is not one of monotherapies (see Figure 1). This factorial trial design
145 allows for characterization of the safety and effectiveness of each individual drug and the
146 combination compared with standard of care while also demonstrating the contribution of the
147 individual drugs to the efficacy demonstrated by the combination.

148

149 The 2013 Codevelopment Guidance discusses trial designs that can be used to demonstrate
150 contribution to the effect of investigational drugs in various scenarios (i.e., when the individual
151 drugs each have activity and can be administered separately, when the individual drugs cannot be
152 administered separately, and when one individual drug is active and one has minimal activity
153 with regards to efficacy as monotherapy) (see Section V.C of the 2013 Codevelopment
154 Guidance). When each investigational drug in a novel combination regimen is active,

⁸ Section 505(d) of the FD&C Act and section 351(a) of the Public Health Service Act. See also 21 CFR 314.126.

⁹ See 21 CFR 300.50. FDA believes the recommendations in this guidance relevant to demonstrating the contribution of the individual investigational drugs to the effect(s) of the combination are consistent with the requirements of 21 CFR § 300.50, “fixed-combination prescription drugs for humans.”


¹⁰ See the draft guidance for industry *Formal Meetings Between the FDA and Sponsors or Applicants of PDUFA Products* (September 2023). When final, this guidance will represent the FDA’s current thinking on this topic.

155 randomized factorial trial designs that can demonstrate the contribution of each component to the
156 effect of the combination are recommended.

157

158 **Figure 1: Factorial Trial Design**

159

160
161

162 In settings with evidence that one of the investigational drugs in a novel combination regimen is
163 active not active by itself, a modified factorial design with three arms may be appropriate to
164 isolate the contribution of each component to the effect of the combination.¹¹

165

166 Use of an adaptive factorial trial design may promote efficiency in the development of novel
167 combinations by initially randomizing all participants to the arms specified by factorial design,
168 but allowing sponsors to drop potentially futile study arms in addition to other adaptations.¹²
169 This decreases the overall number of participants needed for the trial, while also limiting the
170 number of participants exposed to potentially less effective therapy. Adaptations and the

¹¹ Korn, EL, CJ Allegra, and B Freidlin, 2025, Phase III Evaluation of Treatment Combinations in Three-Arm Trials, JCO, 43(2):226-233.

¹² See the guidance for industry *Adaptive Designs for Clinical Trials of Drugs and Biologics* (December 2019).

Contains Nonbinding Recommendations

Draft — Not for Implementation

171 statistical analysis plan should be pre-specified, with consideration of the overall type I error
172 probability and respective power to detect a treatment effect.¹³

173
174 The primary endpoint of a trial intended to demonstrate contribution of effect for each
175 component of a combination may be a persuasive pharmacodynamic/response biomarker that can
176 provide direct evidence of a treatment effect for that cancer (e.g., overall response rate with
177 duration of response information) and can be measured earlier than other clinical endpoints of
178 importance such as progression-free (PFS) or overall survival. The limitations of this approach
179 include the potential that all the components of a novel combination are not contributing (or are
180 detrimental) to the long-term clinical outcome of interest, e.g., PFS or survival. The overall drug
181 development program should demonstrate that the individual components contribute to the
182 treatment effect of the novel combination; sponsors are therefore encouraged to discuss with the
183 Agency the trial design and choice of endpoint intended to demonstrate contribution of each drug
184 to the effect of the combination.

185
186 **B. External Data to Demonstrate the Contribution of Effect**
187
188 The rationale for use of external data to provide evidence of the contribution of effect for the
189 individual drugs to the overall combination regimen can be supported by several factors. These
190 include: 1) there is strong biological plausibility for the combination regimen, 2) the natural
191 history of the disease is highly predictable, 3) the drug as a single agent has been demonstrated to
192 not be as effective as compared with its use in combination with other classes of drugs, and/or 4)
193 the magnitude of the treatment effect of the combination is expected to be large. To consider this
194 approach, among other considerations, the external data should be from comparable populations
195 studied across the combination and the components, contain detailed information on clinically
196 relevant confounding variables, and use similar methods of response assessment and variable
197 collection across the data sources. The limitations of comparisons with external data can include
198 determination of appropriate endpoints for comparison. In general, the strengths and limitations
199 associated with various types of external data should be considered, and any plan to use such
200 data to support contribution of effect should be discussed in advance with the review division.

201
202 *1. Suitability of External Data Source for Contribution of Effect*
203
204 Sponsors conducting a trial of a combination relative to a control without a complete randomized
205 factorial design (e.g., A+B vs. SOC), and using external data to support the comparative activity
206 of the individual drugs, need to consider the appropriateness of the external data source. With
207 complete, high-quality, patient-level data, it may be possible to conduct comparative analyses to
208 estimate contribution of individual components to the treatment effect of the combination. For
209 example, incorporating patient-level external data from a contemporaneous or previously
210 conducted clinical trial to supplement or replace a single-agent arm(s) in a prospective study may
211 allow for a direct comparative analysis for establishing contribution of components. In general,
212 summary-level evidence from published clinical studies should be considered only hypothesis
213 generating for a prospective trial. Data that are not fit for purpose as a comparator, regardless of
214 whether the data are summary-level or patient-level, will only be appropriate for hypothesis
215 generation.

¹³ Ibid.

Contains Nonbinding Recommendations

Draft — Not for Implementation

216 The suitability of a data source is determined by several factors related to the comparability of
217 the trial arms. Factors may include, but are not limited to, the temporality of the treatment arms
218 for use in assessment of contribution of components to the treatment effect, source population for
219 participants, availability and similarity of inclusion and exclusion criteria including disease and
220 line of treatment, and availability of trial participants' data. Sponsors should collect sufficient
221 participant demographic and clinical characteristics to adequately assess the comparability of
222 data sources, with special attention to balancing prognostic and predictive characteristics for
223 internal validity of efficacy effect estimation.

224
225 When assessing fitness for purpose and determining whether to use external data to support
226 contribution of effect, sponsors should consider the following non-exhaustive factors:

- 228 • Knowledge of natural history of the disease under consideration
- 229
- 230 • Availability of information on the background outcome (e.g., tumor response) rate with
231 the use of standard of care when the novel combination regimen includes standard of care
232 as a component
- 233
- 234 • Availability of patient-level data, with sufficient sample size and follow-up, including
235 specific clinically relevant covariates to inform comparability of data sources as well as
236 analytical plan
- 237
- 238 • Data provenance, traceability, and auditability of data sources to ensure the accuracy,
239 reliability, and validity of key data elements^{14,15}
- 240
- 241 • Extent of missing data, including information on key clinical covariates, and exposure
242 and outcome ascertainment
- 243
- 244 • Ability to select participants for use in the evaluation of the drug(s) while remaining
245 blinded to outcome
- 246
- 247 • Pre-specified statistical analysis plan for any comparison of the experimental
248 combination therapy arm to a comparator to establish contribution of individual
249 components to the treatment effect

250
251 Due to the potential limitations of the external data source – e.g., lack of comparable participant
252 populations for the indication under consideration, variances in study conduct, and variability in
253 endpoint assessment – comparisons between different data sources may or may not be
254 appropriate. For example, in circumstances where baseline characteristics and/or disease status
255 of participants in the external arms may differ from the characteristics of those participants in the
256 trial assessing the investigational combination regimen, certain analytical methods, including

¹⁴ See the guidance for industry *Real-World Data: Assessing Registries to Support Regulatory Decision-Making for Drug and Biological Products* (December 2023).

¹⁵ See the guidance for industry *Real-World Data: Assessing Electronic Health Records and Medical Claims Data to Support Regulatory Decision-Making for Drug and Biological Products* (July 2024).

Contains Nonbinding Recommendations

Draft — Not for Implementation

257 statistical methods for causal inference and/or Bayesian methodology, should be considered to
258 account for known sources of bias and to improve the utility of the external data for cross-trial
259 comparisons. However, these analytical methods do not account for all potential limitations
260 associated with the use of external data to isolate the contribution of effect and should be
261 interpreted with appropriate caution.

262

2. Selection of External Data Source for Contribution of Effect

263

264 The selection of a fit-for-purpose data source for establishing contribution of a component to the
265 treatment effect is paramount in evaluating the strength of the evidence that can be generated
266 from a comparison of efficacy endpoints. A traditional factorial randomized controlled trial with
267 multiple arms to assess the effect of each component in a combination treatment provides the
268 greatest strength of evidence for establishing contribution of effect (see Section III.A above). As
269 an alternative design, randomized trials that borrow data from external sources to supplement a
270 randomized arm intended to demonstrate contribution of effect (hybrid or augmented data), can
271 provide adequate evidence of contribution to the treatment effect, but may also introduce some
272 uncertainty in estimation of treatment effect with the inclusion of external data. Such approaches
273 typically require careful evaluation prior to study initiation and sponsors should consult the
274 relevant Review Division. When scientifically justified and when randomization to an arm to
275 demonstrate contribution of effect would be infeasible, data from the following external sources
276 can be considered to provide varying levels of evidence of contribution of effect depending on
277 the relevance and reliability of the external data:

278

- 279 • External data from clinical trials (same setting, same indication) may offer a high degree
280 of relevance, especially when clinical trials overlap in time and the data is
281 contemporaneous, as compared with data from a previously conducted clinical trials
282 which may introduce temporal biases
- 283
- 284 • Prospectively collected patient-level data (e.g., registry data) that includes demographics,
285 disease characteristics, and treatment and outcomes of interest
- 286
- 287 • Other patient-level Real-World Data (RWD)¹⁶ sources
- 288
- 289 • Summary-level evidence from previously published trials or from previously published
290 observational (non-interventional) studies

291

3. Endpoint Considerations for Use of External Data

292

293 Appropriate endpoints and analyses thereof to demonstrate the contribution of each component
294 will depend on the context of disease, trial design, and availability of clinical information.
295 Differences in endpoints definitions and assessment methods (e.g., investigator assessment or
296 blinded independent central review), and assessment schedules, may further limit comparisons
297 across trials. In addition, prognostic characteristics are not accounted for in the absence of
298 randomization. These limitations can make it difficult to draw conclusions on the contribution of
299 randomization. These limitations can make it difficult to draw conclusions on the contribution of
300 randomization. These limitations can make it difficult to draw conclusions on the contribution of

¹⁶ For the purposes of this guidance, RWD are data relating to patient health status and/or the delivery of health care routinely collected from a variety of sources.

Contains Nonbinding Recommendations

Draft — Not for Implementation

301 each of the drugs across trials, and a large magnitude of the treatment effect of the combination
302 may need to be demonstrated on an endpoint to infer a treatment effect.

303
304 Sponsors should select the most appropriate endpoint(s) to demonstrate the contribution of
305 components to the treatment effect. Whether the external data source can be used to demonstrate
306 the contribution of effect will be dictated by the feasibility assessment of the available data
307 source and the consistency with which such outcome data are collected/reported:

308

- 309 • Time-to-event endpoints may be subject to length time (or immortal-time or survival)
310 bias for not only the baseline measurements, but also for the measurement of event time.
311 The comparability of index date and follow-up time between arms should be cautiously
312 considered.

313

- 314 • Overall survival is a well-defined and objective endpoint; however, certain real world
315 data sources can be incomplete in collection of death data, and the outcome may be
316 confounded by anti-cancer therapy that an individual receives subsequent to trial
317 participation with the drug(s) of interest.

318

- 319 • Timing of assessments as well as the evaluation criteria for the determination of tumor
320 measure-based endpoints, such as response or progression, should be comparable across
321 treatment arms.

322

- 323 • Other endpoints such as patient-reported outcomes, or other measure of clinical outcomes
324 and biomarkers, when validated, may also be considered.

325

**326 C. General Development Program Considerations for Demonstrating Contribution
327 of Effect**

328

1. Two or More Investigational Drugs (Refer to the 2013 Codevelopment Guidance)

329 When each drug of a combination is an investigational drug, sponsors should evaluate the
330 contribution of effect of the individual drugs as early as possible in development to inform the
331 development of the combination. Knowledge of the contribution of effect will allow sponsors to
332 consider whether a codevelopment approach is appropriate per the criteria recommended in the
333 2013 Codevelopment guidance. A factorial design to demonstrate the contribution of the
334 components to the effect of the combination is highly recommended (refer to Section III.A of
335 this guidance).

336

2. An Investigational Drug With a Drug Approved for a Different Indication

337 To develop an investigational drug in combination with a drug previously approved for a
338 different indication, a randomized trial is highly recommended to provide sufficient data to
339 demonstrate the contribution of the investigational drug and the approved drug to the effect of
340 the novel combination. In addition, there is greater uncertainty with the use of an external data
341 source in this type of novel combination drug development scenario to support contribution of
342 each component to the treatment effect, particularly for:

347

- 348 • An investigational drug(s) where there has been no prior determination of safety of
349 effectiveness in any indication
- 350
- 351 • Disease settings where identification of treatment effect is less reliable based on the
352 natural history of the disease
- 353
- 354 • Novel combination regimens where the magnitude of treatment effect for the
355 combination is modest
- 356

357 The type of external data source and strength of evidence required for demonstration of effect
358 will depend on available information for one or both components of the novel combination
359 regimen. A strong biologic rationale and nonclinical and/or early clinical evidence supporting the
360 necessity of each drug in the novel combination may reduce uncertainties inherent in using
361 comparisons with external data to demonstrate the contribution of the individual drug(s) to the
362 effect of the combination. In such cases, external data from clinical trials investigating the
363 previously approved drug(s) (approved for a different indication) as monotherapy in the same
364 indication as that under evaluation for the novel combination regimen may be appropriate to
365 demonstrate the contribution of effect.

366

367 Based on the limitations of external data, randomized trials performed earlier in the development
368 program with assessment of overall response rate or another endpoint that demonstrates a
369 persuasive direct treatment effect on the cancer are preferred for assessment of contribution of
370 effect.

371

3. Two or More Drugs Approved Individually for Different Indication(s)

372

373 For a novel combination in which each drug is approved for a different indication(s), a
374 randomized trial is recommended to provide sufficient data to demonstrate the contribution of
375 each of the approved drugs to the effect of the novel combination as the efficacy and safety
376 profiles would be unknown for the new indication. Extensive clinical experience and prior
377 determinations of safety and effectiveness of the previously approved drugs (in other indications)
378 may reduce the uncertainties with use of external data to support the contribution of effect. The
379 appropriateness of the external data source to demonstrate the contribution of effect of a novel
380 combination consisting of previously approved drugs for other indications will depend on the
381 information available, such as:

382

- 383 • The similarity of the etiology (e.g., molecular aberration in the tumor) across cancers or
384 clinical context of the disease
- 385
- 386 • The strength of the rationale based on the mechanism of action of the drug(s) for use of
387 the combination in a specific disease
- 388
- 389 • The strength of evidence from the external data, including the adequacy of source and
390 appropriateness of endpoint(s), demonstrating the contribution of effect of individual
391 components in other indications
- 392

Contains Nonbinding Recommendations

Draft — Not for Implementation

393 • The quantity of clinical data demonstrating the contribution of the individual components
394 to the effect of the novel combination (e.g., demonstrated in multiple disease types)
395
396 • The clinical importance of the benefit (e.g., overall survival) demonstrated with the novel
397 combination.